
A Specification-Driven Interpreter for Testing
Asynchronous Creol Components?

3. October 2008

Marcel Kyas1 and Andries Stam2 and Martin Steffen1 and Arild B. Torjusen1

1 University of Oslo, Norway
2 Almende, The Netherlands

1 Motivation

Software testing [12] is an established practice to ensure the quality of pro-
grams and systems. Hosts of different testing approaches and frameworks have
be proposed and put to (good) use over the years. Formal methods and program
language theory have proven valuable to render testing practice a more formal,
systematic discipline (cf. e.g. [5]). In itself not a new proposal —first inspira-
tions to put testing on more formal grounds can be dated back as early as the
seminal Nato conference on “Software Engineering” [8]— formal approaches to
testing have has gained momentum in recent years, as for instance witnessed
by the trend towards model-based testing [4,1]. In this paper we propose and
explore a formal approach for black-box testing asynchronously communicating
components in open environments.

Creol: a language for asynchronously communicating, active objects
Creol [3,7] is a high-level, object-oriented language for distributed systems, fea-
turing active objects. Creol is formally defined and especially its operational
semantics is implemented in rewriting logic, using Maude [2] as execution plat-
form. Its communication model is based on exchanging messages asynchronously.
This is in contrast with object-oriented languages based on multi-threading, such
as Java or C], which use “synchronous” message passing in which the calling
thread inside one object blocks and control is transferred to the callee. Exchang-
ing messages asynchronously decouples caller and callee, which makes that mode
of communication advantageous in a distributed setting. On the other hand, the
asynchronicity makes validating and testing of programs more challenging.

Behavioral interface description language Abstracting from internal exe-
cutions, the black-box behavior of components is given by interactions at their

? Part of this work has been supported by the EU-project IST-33826 Credo: Modeling
and analysis of evolutionary structures for distributed services and the German-
Norwegian DAAD-NWO exchange project Avabi (Automated validation for behav-
ioral interfaces of asynchronous active objects).

http://www.cwi.nl/projects/credo/
http://www.ifi.uio.no/avabi/


2

interface. We formalize the interface specification language over communication
trace labels to specify components in terms of traces of observable behavior.

In the specification language, a clean separation of concerns between inter-
action under the control of the component or coming from the environment is
central, which leads to an assumption-commitment style description of a com-
ponent’s behavior. The assumptions schedule the order of inputs, whereas the
outputs as commitments are being tested for conformance. To ensure the men-
tioned separation of responsibilities, we define well-formedness conditions which
in addition assure that only “meaningful” traces, i.e., those corresponding to
actual behavior, can be specified. The specification language is characterized by
two other salient features: it allows to specify freshness of communicated values
and furthermore, it respects the asynchronous nature of communication in Creol:
Due to asynchronous communication, the order in which outgoing messages from
a component are observed by an external observer does not necessarily reflect
the order in which they where actually sent. We take this into account by only
considering trace specifications up-to, an appropriate notion of observational
equivalence. The specification language is a simple recursive trace language des-
ignating sets of finite traces over communication labels.

A second point to stress is that the specification language is designed to
be efficiently executable on Creol’s executing platform and thus be used for
testing a component. We define an operational semantics for the specification
language. Th is done by synchronising the execution of the specifications with
that of the component for the purpose of both generating the required input to
the component and at the same time testing that the output behavior of the
component conforms to the specification, up-to observational equivalence.

2 Results

The paper extends the technical report [6], which concentrates on the formal-
ization, and contains the following contributions:

Formalization: We formalize the interface behavior of a concurrent, object-
oriented, language plus a corresponding behavioral interface specification
language. This gives the basis testing active Creol objects, where a test
environment can be simulated by execution of the specifications.

Implementation: The existing Creol interpreter, realized by rewriting logic
on the Maude platform, is extended with the implementation of the men-
tioned specification language. This yields a specification-driven interpreter
for testing asynchronous Creol components.

Case study: As a case study, we apply the test methodology to a model of an
industrial software system which is inherently multi-threaded and based on
asynchronous communication.



3

References

1. Model-Based Testing of Reactive Systems, volume 3472 of Lecture Notes in Com-
puter Science. Springer-Verlag, 2005.

2. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Tal-
cott. The Maude 2.0 system. In Nieuwenhuis [11], pages 76–87.

3. The Creol language. http:heim.ifi.uio.no/creol, 2007.
4. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton,

and B. M. Horowitz. Model-based testing in practice. In Proceedings of the 1999
International Conference on Software Engineering, 1999, pages 285–294, 1999.

5. M.-C. Gaudel. Testing can be formal, too. In Mosses et al. [9], pages 82–96.
6. I. Grabe, M. Steffen, and A. B. Torjusen. Executable interface specifications for

testing asynchronous Creol components. Technical Report 375, University of Oslo,
Dept. of Computer Science, July 2008. A shorter version has been submitted for
conference proceedings.

7. E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model
for distributed concurrent systems. Theoretical Computer Science, 365(1–2):23–66,
Nov. 2006.

8. A. I. Llewelyn and R. F. Wickens. The testing of computer software. In Naur and
Randell [10], pages 189–199.

9. P. D. Mosses, M. Nielsen, and M. I. Schwarzbach, editors. TAPSOFT ’95: The-
ory and Practice of Software Development, 6th International Joint Conference
CAAP/FASE, volume 915 of Lecture Notes in Computer Science. Springer-Verlag,
1995.

10. P. Naur and B. Randell, editors. Software Engineering: A Report on a Conference
sponsored by the NATO science committee. NATO, Jan. 1969.

11. R. Nieuwenhuis, editor. Proceedings of the 14th International Conference on
Rewriting Techniques and Applications (RTA 2003), volume 2706 of Lecture Notes
in Computer Science. Springer-Verlag, June 2003.

12. R. Patton. Software Testing. SAMS, second edition, July 2005.

http:heim.ifi.uio.no/creol

	A Specification-Driven Interpreter for Testing Asynchronous Creol Components[0.1em] 3. October 2008 
	Marcel Kyas and Andries Stam and Martin Steffen and Arild B. Torjusen

