
Verification of a Wireless ATM Medium-Access Protocol

Natalia Sidorova Martin Steffen
Dept. of Mathematics and Computer Science

Eindhoven University of Technology Christian-Albrechts-Universitat
Den Dolech 2, P.O.Box 5 13

5612 MB Eindhoven, The Netherland
n. sidorova@ tue.nl

Inst. fur angewandte Mathematik und Informatik

PreuBerstral3e 1-9
24105 Kiel, Deutschland

ms @ informatik.uni-kiel.de

Abstract

In this paper we report on a model-checking case study
of an industrial medium-access protocol for wireless ATM.
Since the protocol is too large to be verijied by any of ex-
isting checkers as a whole, the verijication exploits the lay-
ered and modular structure of the protocol’s SDL specifica-
tion and proceeds in a bottom-up, compositional way. The
compositional arguments are used in combination with ab-
straction techniques to further reduce the state space of the
system. The verijication is primarily aimed at debugging
the system. Afrer correcting the specijication step by step
and validating various untimed and time-dependentproper-
ties, a model of the whole control component of the medium-
access protocol is built and verijied. The signijicance of the
case study is in demonstrating that verijication tools can
handle complex properties of a model as large as shown.

1. Introduction

Model checking [5] is a well-established formal tech-
nique for the verification of finite-state systems. Respon-
sible for the increasing acceptance of model checking by
industry is its “push-button” appeal, i.e., its promise to al-
low for fully automatic checking of a program or a system
- the model - against a logical specification, typically
a formula of some temporal logic. As model checking is
based on state-space exploration, the size of a system that
can be checked is limited and it is often held, that only rel-
atively small systems can be verified with a model checker.
In the context of the Vires project’ [13], the task, however,
was to apply model checking to a large industrial software
product, namely the control layer of the wireless ATM com-
munication protocol Mascara [141.

The limitations of model checking by the system size

Verifying Industrial Reactive Systems.

implies that verification is possible only using abstractions
and/or compositional techniques. These techniques allow to
construct a verification model whose state space is smaller
than the one of the original system, but providing a for-
mal proof of correctness for each abstraction or composition
step is prohibitively costly. Aiming primarily at debugging,
performing these steps at a semi-formal level does not cause
troubles, as spotted errors can easily be validated afterwards
and checked towards the concrete model by the designers,
and spurious errors can be detected. But in case a property
holds for the verification model, one can not claim that the
property holds for the system under consideration as well,
although the obtained result argues in favour of correctness
of the system design. Therefore, we see the primary goal
of verification not in proving the overall correctness of the
product, but in advanced debugging, finding potential errors
in its design and thus increasing its reliability.

Our experiments show that by combining relatively sim-
ple abstraction techniques together with a compositional,
bottom-up approach, model checking can be successfully
applied to large industrial systems. We use the Vires tool-set
on the SDL specification of Mascara, automatically translat-
ing the SDL-code into the input language of a discrete-time
extension of the well-known Spin model-checker. As Mas-
cara is too large to be verified by any existing verifier as a
whole, we exploit the protocol’s layered structure and per-
form a bottom-up, compositional verification. In a number
of cases, the proved correctness requirements of a compo-
nent form the basis for construction of a component abstrac-
tion. This abstraction replaces the real component at the
next step when a slice at an upper hierarchical level of the
protocol is considered for verification. Doing so, we were
able to reach the point where the whole control entity of
Mascara together with a simple abstraction of the rest of the
protocol was taken into account.

In the verification experiments, we found (and corrected)
several errors of various kinds and finally verified a number
of behavioural properties including timed ones.

84
1530-1362/00 $10.00 0 2000 EEE

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

http://informatik.uni-kiel.de

The rest of the paper is organised as follows: Section 2
briefly surveys the protocol, its structure and its tasks. The
model checking tool-set we used for the verification is
sketched in Section 3. Section 4 describes the methodol-
ogy we followed. Section 5 briefly presents some of the
verification results. We conclude in Section 6 by evaluating
the results.

2. The protocol

Located between the ATM-layer and the physical
medium, Mascara is a medium-access layer or, in the con-
text of the ISDN reference model, a transmission conver-
gence sub-layer for wireless ATM communication [11 in lo-
cal area networks. It has been developed within the WAND2

ATM Layer I

project [141, a joint European initiative by various telecom-
munication companies to specify and implement a wireless
access system for ATM-LANs.

Besides the standard transmission convergence sub-layer

Figure 1. Top-level functional entities

tasks such as cell delineation, transmission frame adapta-
tion, header error control, cell-rate decoupling, etc., operat-
ing over radio-links, i.e., over a necessarily shared physical
medium, adds to the complexity of the protocol. Mascara
has to arbitrate medium access to the radio environment of
a variable number of mobile ATM-stations? provide en-
hanced error detection and correction mechanisms at var-
ious levels to counter the comparatively high bit-error rate
of air-borne data-transmission. Last but not least, it has to
cater for mobility features, allowing a mobile terminal to
switch its association with an access point in a handover.

2.1. Overall structure

From the perspective of verification, Mascara is a large
protocol! It is itself composed of various protocol layers
and sub-entities (cf. Figure 1).

The layer control protocol together with the message
encapsulation unit assists in various ways the information
exchange between the Mascara layer and entities located
within the upper layers. The segmentation and reussem-
bly unit does exactly what its name implies: cutting peer-
to-peer control messages (also called MDPUs) into ATM-
cell size and putting them together upon reception. All
three mentioned top-level entities are comparatively un-
sophisticated and straightforward, as they mainly perform
data-transformations. The WDLC-layer, operating already
on cell-level, is reminiscent to conventional (non-ATM)
data-link protocols and responsible, per virtual channel, for
error- and flow-controlled cell-transmission. The lowest

2Wireless ATM Network Demonstrator.
3Hence the acronym “Mobile Access Scheme based on Contention and

40ver 300 pages of (graphical) SDL.
Reservation for ATM.

level of Mascara is the data-pump, including a real-time
scheduler, which forms a large portion of the protocol’s
code-size. Despite its raw size, the functionality offered to
the Mascara-layers above is rather simple: the data-pumps
of two communicating stations act as duplex, lossy Fifo-
buffer. The other large part of Mascara, making up almost
half of the SDL-code, is its control entity, on which we
concentrate here. For a more thorough coverage of Mas-
cara’s structure and internals, consult the specification ma-
terial provided by the Wand consortium [141.

2.2. Mascara control

As the name suggests, the Mascara control entity (MCL)
is responsible for the protocol’s control and signalling tasks.
It uses the services of the underlying segmentation and re-
assembly entity, the sliding-window entities (WDLC’s), and
in general the low-layer data-pump. In turn, the control
layer offers its services to the ATM-layer above.

Being responsible for signalling, MCL maintains and
manages associations, linking access points with mobile
terminals, and connections, i.e., the basic data and sig-
nalling transfer channels, corresponding to ATM virtual
channels. Mascara control falls into four sub-entities, each
divided in various sub-processes themselves. The two im-
portant and complex ones are the dynamic control (DC) and
the steady-state control (SSC). The division of work be-
tween the dynamic and the steady-state control is roughly as
follows: SSC monitors in various ways current associations
and the quality of the radio-environment, in order to ensure
an optimal transmission quality,’ to keep informed about al-
ternative access points, and to initiate in time change of
associations, so-called handovers. The dynamic control’s

85

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

task, on the other hand, is to set-up and tear down the as-
sociations and connections, while managing the related ad-
ministrative work like address-management, resource allo-
cation, etc. Of minor complexity are the radio control entity
(RCL, with the radio control manager RCM as its most im-
portant process) and the generic Mascara control (GMC).

3. Model-checking environment

Dealing with a protocol of Mascara’s size, formal valida-
tion results with acceptable effort are possible only with ap-
propriate tool support, including editing and specification,
validation, and, of course, model checking support.

The tool-set we use for the verification experiments on
Mascara is a combination of well-established tools and
a number of tools developed within Vires (cf. Figure 2).
The choice was largely determined by the following side-
conditions. To facilitate communication with the industrial
partners, the specification language was chosen to be SDL.
Currently, commercial SDL-tools offer only simulation, but
no model checking facilities. Hence, testing is the only way
to verify the model with their use. Since developing a state-
of-the-art model checker from scratch is a daunting task,
it was decided to use a well-established model checker as
starting point rather than to design a new one. The model
checker was enhanced with adding the ability to deal with
time, for Mascara relies heavily on timers.

-dh.Sa-rFlud.
, J ¶ t . u j n o ~ h . o - f = m n

--dh.w-
hD h. -bmUl(lq

r(autis-dh.lF-
md.th.-dh..w-dh.d

--dh.- IF-la
MDT-

n*a-h.w

Figure 2. Tool-set for Mascara verification

The tool-set we used especially features:

0 OBJECTGEODE, [111, a Telelogic tool-set for analysis,
design, verification, and validation through simulation,
as well as C/C++ code generation and testing of real-
time and distributed applications. Targeted especially
for telecommunication software and safety-critical
systems, OBJECTGEODE integrates complementary
object-oriented and real-time approaches based on
SDL [121 and MSCs [101, and recently UML.

0 sdl2if and ij2pml, which are the chain of translators

rending SDL into the Intermediate Format IF [4], a lan-
guage for timed asynchronous systems, and IF into DT
Promela [2] - a discrete-time extension of Promela
(the input language of the model checker Spin), respec-
tively. Both tools were developed within Vires.

0 LIVE [9], used to optimise IF specifications by static-
analysis techniques. It transforms an IF specification
into a semantically equivalent one by adding system-
atic resets of non-live variables. The transformation
preserves the behaviour while reducing dramatically
the global state space (and further, the exploration
time). In our experiments, LIVE reduced the state
space of the models by a factor of 8 on the average.

0 Spin, a software package for the specification and ver-
ification of concurrent systems [8]. The core of Spin
is a state-of-the-art, enumerative, on-the-fly model
checker, which can be used to report unreachable code,
deadlocks, unspecified receptions, race conditions, and
the like. Correctness properties can be specified as sys-
tem or process invariants (using assertions), or as gen-
eral linear-time temporal logic requirements, either di-
rectly in LTL-syntax, or indirectly as Buchi automata
(called never claims).

0 DTSpin [2], a discrete-time extension of Spin, intended
for model checking concurrent systems that depend on
timing parameters. It is completely compatible with
the standard, untimed version of Spin.

4. Methodology

Our prime goal was to apply formal methods, foremost
model checking, to industrial protocols, Mascara in this
case. To be able to do so we needed cooperation with
and assistance from our industrial partners, especially Intra-
com. A common email forum, discussing our specification-
under-development, a repository keeping track of errors
or suspected errors in the specification, versioning of the
stages in the specification process, and a number of co-
operation meetings with our industrial partner with code
walk-throughs, especially in the earlier stages of the Vires-
project, were means to obtain an SDL-specification for the
verification, as detailed and complete as possible.

4.1. Bottom-up verification

The protocol is given in SDL (Specification and Descrip-
tion Language) [121, a widely accepted, standardised spec-
ification language for telecommunication applications. Se-
mantically, SDL is based on processes communicating via

86

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

asynchronous message passing. To be useful for larger-
scale applications, it features definition of data types, al-
lows various ways of grouping and structuring large pro-
grams, including object-oriented design principles, and sup-
ports a graphical notation. The layered and structured de-
sign of Mascara with blocks of processes greatly facilitated
the compositional approach to verification.

We started considering relatively small blocks of pro-
cesses from the global specification. These sub-models,
however, can not be verified as stand-alone processes, since
they are not self-contained, i.e., the specification of such
a sub-model relies on the cooperation of the rest of the
protocol. Therefore, it is necessary to close a model first
by adding one or more environment processes specified in
SDL at the same hierarchy level as the extracted model
itself. This environment should be an abstraction of the
rest of the protocol. Constructing this abstraction is dis-
cussed later. After debugging and verifying a number of
properties for simple components, we proceed with con-
sidering blocks composed from the verified ones (or their
abstractions). Conceptually, the approach corresponds to
the rely/guarantee or assumptiodcommitment paradigm of
compositional verification, where the abstractions take the
role of the assumptions about the environment.

Using a bottom-up approach in the verification, one
gains a lot. Even assuming some magical model checker,
which allows to feed the whole protocol to it and get the
result by just pressing the proverbial button, would be of
limited use, for it is very well possible, for instance, that
some components of the system under consideration are
deadlocked, but not the whole system. The model checker
tells then that the system is deadlock-free and one should re-
member to check that no component of the system is dead-
locked. The formulation of such a property is not straight-
forward and involves fairness restrictions and other non-
trivial conditions. Going bottom-up, one detects such dead-
locks at the very first steps without much effort- the model
checker just finds these deadlocks automatically.

4.2. Abstraction

The size of the protocol rendered any direct, brute-force
attempt of model checking out of question, and one of
the main tools of our methodological arsenal was abstrac-
tion. Abstraction is a rather general technique; intuitively
it means replacing one semantical model by an abstract, in
general simpler, one. To allow transfer of verification re-
sults from the abstract model to the concrete one, both must
be related by a safe abstraction relation. The concept of
safe abstraction is well-developed and has applications in
many areas of semantics, program analysis, and verification
(cf. [7] for the seminal, original contribution). For safe0

as “never something bad will happen”, the abstract system
must at least show all the traces of the concrete one to be
used as a safe abstraction. To find safe abstractions of a
reactive, parallel system such as a protocol, it is helpful to
distinguish between the data of a program, i.e., the values
stored and transmitted, and its control, i.e., the control flow
within the processes and their communication behaviour,
and, resp., between data and control abstractions. A third
abstraction we routinely used is related with the model of
time of DTSpin.

Data abstraction

Often, the behaviour of a program does not depend on the
specijic values of its data. In this case, many properties of
the program stated over the full, often infinite, data domain
can be equivalently expressed over finite domains of enough
elements. For instance, being interested in a proof that an
entity of Mascara handles addresses of mobile terminals
correctly and does not give away the same address twice,
a two-valued domain of addresses would suffice. This ap-
proach is known as datu independence technique [151.

Control abstraction

Given the amount of various entities and processes of the
protocol, using data-abstraction alone will not yield. The
processes of the specification are given in great detail, to
serve as the basis for an implementation, and they often pos-
sess internally non-obvious behaviour (for instance loops,
jumps, conditions depending on data-values, and the like).
To deal with this complexity, as a very common type of con-
trol abstraction, we simply take a whole-sale entity, such as
a process or an SDL-block consisting of a number of pro-
cesses as it is,5 and manually abstract away from the rest of
the protocol, condensing it into a non-deterministic, chaotic
environment for this component.

From the methodological point of view, this straightfor-
ward approach has three main advantages. First, allowing
all possible traces by the non-deterministic environment,
the safety of the abstraction is immediate. Secondly, clos-
ing the model by an environment process takes time; closing
it with a more or less chaotic environment can be done fast
and routinely. Thirdly, leaving the structure of the entity un-
der investigation untouched allows fast spotting of potential
errors, in case the model checker finds a property violation
on the abstract level. Moreover, only when retaining the
internal process structure it is possible to detect errors con-
cerning the internal loops, conditions, etc., at all.

Experience with Mascara shows, however, that this sim-
plest approach of a completely chaotic environment is sel-
dom applicable in its pure form, for it causes many spu-

properties in linear-time temporal logic, often paraphrased With appropriate data-abstractions.

87

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

riously erroneous behaviour, so-called “false negatives”,
during model checking. Local livelocks, cycles with non-
progressing time, and non-existing deadlocks are typical
examples of those false errors. Moreover, the redundant be-
haviour may also increase the state space. Another possibil-
ity is to construct an environment being able to sendreceive
a signal whenever the modelled system is ready to get/send
it. Applying such an approach reduces spurious behaviour
but it still adds some unwanted behaviour caused by sending
non-realistic signal sequences.

These approaches are based not on the knowledge about
the behaviour of the rest of the protocol but on the speci-
fication of the component under consideration, namely, its
input-output behaviour. Both the approaches are safe only
if no non-progressing time cycles are added in the abstrac-
tion. Otherwise, some behaviour of the system can be lost.
On the other hand, the approaches are cheap in sense that
such an environment is easy and fast to implement. So they
can be considered as a useful kind of heuristics that can be
implied at the first stages of system debugging.

A different approach is to provide an SDL-specification
of the “right” environment, i.e. the one, which faithfully
models the assumptions under which the component was
designed, giving an abstraction of a real environment. Al-
though it makes the soundness of verification results de-
pendent on the quality of the environment model, it usually
turns out to be a practical method. This process is guided
by the understanding of the protocol and the already proved
assumptions about the rest of the protocol.

Time abstraction

The closed SDL-model is translated into DT Promela by
the translators sdl2if and iflpml, using LIVE for IF-code
optimisation. To run the verification, one has the choice
between verifying the timed DT Promela model using DT-
Spin and verification of the model with abstracted time us-
ing standard Spin (see [3] for the full description of the ab-
straction of SDL timers we use). It would seem obvious
to verify all non-timed properties with an abstracted-time
model and all timed properties with a concrete model. How-
ever, in some cases it is more convenient to verify non-timed
properties with a concrete model as well. If some func-
tional property is proved with the abstracted-time model, it
is proved for all possible values of timers. However, if the
property is disproved or a deadlock in the model is found,
the next step is to check whether the erroneous trace given
by Spin is a real error in the system or a spurious error
caused by adding erroneous behaviour either by abstracting
from time or by a too abstract environment specification. It
can happen that the property fails to hold for the concrete
model, however the erroneous trace given by Spin is one of
the added behaviour. This behaviour cannot be reproduced

for the SDL model with SDL-simulation tools and we can-
not conclude whether the property holds or not.

One cannot force Spin to give the trace from the non-
added behaviour, but DTSpin allows to reduce the set of
added behaviour by guaranteeing that timers are expiring in
the correct order. In our experiments we had several cases
when application of DTSpin, instead of Spin, gave a chance
to get a real erroneous trace and disprove the property.

Another argument in favour of timed verification sounds
rather unexpected. It is often the case that the state space
of a concrete model is smaller than the state space of its
abstraction. This can be explained by the fact that the be-
haviour of the protocol specified in SDL strongly depends
on timers. Abstracting their values we add too much be-
haviour which can result in a larger state space.

4.3. Example

We illustrate the techniques on a simple entity of Mas-
cara, the radio conrrol (RCL). Seen from the outside,
RCL builds Mascara-control’s interface with the lower-
layer physical radio modem. Its task is to operate the mo-
dem to tune into the terminal with a known frequency upon
request, if possible. A property the RCL should guarantee
can be phrased as the following simple response property:

“Whenever, after initialisation, the ra-
dio control manager receives a request Ac-
qui r eNewAP(newchanne l), the RCM-pro-
cess responds either positively or negatively (Ac -
quireNewAP-ok or AcquireNewAP-ko).
Moreover, the answer is sent in a given amount
of time after getting the request.”

The entity must be ready to react upon requests at any
time, so it was closed in a chaotic environment, with the
only restriction that the environment can send only a limited
number of signals per time unit. To reduce the state space of
the verification model, we used data independence limiting
the data domain of the parameter newchannel with 2 val-
ues. We checked the model for absence of zero-time cycles
first, afterwards the proper initialisation of the component
was checked. Coding the above property in LTL, we could
finally verify that the concrete RCL satisfied the property.

Since initialisation of RCL is a confirmed service, and
the other entities are initialised only after the initialisation
confirmation has been received from radio control, we can
abstract away from the initialisation phase in radio control.

After having verified the above LTL-property, one can
exploit in the following experiments an abstract variant of
RCL which is just one process, radio control manager (Fig-
ure 3). The more sophisticated decisions of the concrete ra-

88

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

dio control are captured in the abstract version simply by
a non-deterministic choice between a positive or negative
decision and the abstraction contains all the information the
other components need to be verified.

I-)

Figure 3. Abstract radio control manager

5. Results

Starting from MT target cell (MTC, an important part
of the steady-state control), we proceeded investigating the
steady-state control and the dynamic control, the two largest
sub-blocks of Mascara-control (cf. Section 2.2), in isola-
tion, and finally, we verified properties of a model including
the whole Mascara control.

Dealing with the various set-ups, we basically follow a
bottom-up approach not only proceeding from smaller enti-
ties to larger, combined ones, but also advancing from sim-
pler to more complex properties. After a number of reach-
ability checks, we use the built-in Spin features for finding
deadlocks and livelocks. After correcting discovered struc-
tural errors, we proceed to more advanced properties, like
safety, liveness, and response properties.

5.1. Reachability checks

In all verification configurations, we routinely started
with just checking rather simple reachability properties, ba-
sically check-pointing various crucial steps in the protocols
of interest to see whether they are reachable at all. We nev-
ertheless check them, to make sure that the more compli-
cated LTL-properties investigated later are not trivially sat-
isfied. Depending on the entity, typical properties checked
in MCL were amongst others:

0 successfuhnsuccessful association is possible

0 termination of association is possible

0 successful connection set-up is possible
6RCL, a small part of Mascara control, takes 9 SDL-pages of the spec-

ification.

incommunicado cycle successfully completed.

The reachability checks are easiliy done by just check-
ing assertion violations. In this way, we found a number
of “obviously reachable” states being unreachable and thus
a couple of unexpected errors of various kinds. Used in
this way, reachability checking is employed as a sophisti-
cated debugging facility with the assertions used to steer
the checker to the critical points of the system. Besides
weeding-out errors, we found it likewise very helpful, to use
assertion checking (or, a little more complicated, checking
LTL-formula) in a dual way: marking the property of in-
terest as “undesired” while hoping for their satisfaction -
the corresponding “error trace” is useful illustrating charac-
teristic desired scenarios. They can be compared with the
scenarios provided during the specification phase, thus giv-
ing a better understanding of the behaviour of the protocol,
and thus enhancing the confidence in the specification.

5.2. Errors Found

Quite a number of errors discovered were “just” pro-
gramming errors, including such classics as uninitialised
variables (even uninitialised variables due to a typo), for-
gotten branches in case distinctions, mal-considered limit
cases in loops, and the like. Concerning the communication
behaviour, we encountered most commonly

0 race conditions,

0 ambiguous receiver,

0 unspecified reception, and

0 variables out of range

as general errors at each stage of the verification process.
Race conditions denote the situation where two signals

are sent to an entity “at the same time” such that, due to
SDL’s asynchronous communication model, the order of
reception is undetermined; here we mean more specifically
that an unexpected reception order results in an error. Es-
pecially prone for this type of error turned out to be the
initialisation phases of processes: often, the initialisation
signals are given as unconjirmed messages, and when asyn-
chronously a number of processes are spawned, initialised,
and start communicating under the assumption that the rest
of the processes is ready as well, messages may get lost.

Unspecified reception means that a process receives a
message in a state where no such message is foreseen; the
default reaction in SDL in such a case is to discard the mes-
sage. The discarding feature7 is often used on purpose in
Mascara’s specification, since it saves code, but in some

7Mascara is given in SDL-92 [12], the newer SDL-2000 did away with
this feature.

89

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

cases, the discard is caused by unforeseen behaviour. Given
the amount of asynchronous communication activities in the
protocol, resulting errors are hard to detect by code inspec-
tion. Signals in the specification with more than one poten-
tial receiving process (“ambiguous receiver”) also had been
a significant source of errors in MCL.

In several cases constructing a, compared to the overall
specification, small verification model, we got a state-space
explosion without obvious reasons. It turned out that the
specification contained some variable that could infinitely
decrease or grow. For instance, due to being informed
about deassociation of the same mobile terminal twice -
from two different sources - an access point decreases the
counter of associated mobile terminals by two instead of
one. Thus, the number of associated terminals can get nega-
tive. We found it helpful to regularly check that all variables
in the model are bounded (their bounds are usually known
or can be easily determined).

Besides quite a number of instances of these general er-
rors at each level, errors more specific to Mascara-control
model were found and corrected. In the following section,
we show one of the more complex properties we verified.

5.3. Time-dependent safety property: unique
MAC-addresses

To illustrate up to which extent we could go with the
verification, we describe one of the most involved proper-
ties verified. It concerns the cooperation of the complete
control entity (MT- and AP-side), the interaction of vari-
ous independently working protocols - notably association
handover, the incommunicado protocol, and the “I’m-alive’’
protocol, and it takes into account settings of several timers.
To maintain an established association between a mobile
terminal and an access point, it is important to determine
when the association breaks down (as opposed to terminat-
ing an association properly by deassociating). Driven by
various timers, both sides continuously check whether their
current association is still functioning.

To determine that an association has gone for good, a
mobile terminal and an access point must act independently
and rely on their local timers, since if the connection is lost,
no further communication is possible in the worst case. An
important safety requirement here is, that “never the access
point relinquishes an association before the mobile terminal
does”. This requirement is important for the correct work-
ing of Mascara control, especially the correct management
of addresses by the dynamic control entity, for if the AP
gives up the association, its dynamic control is free to reuse
the various addresses allocated to that association for new
ones. The property as LTL-formula reads n (v m t - l o s t +
v a p - l o s t) , where proposition pmt-lost describes sending
the signal MTLost, whereby AP’s I’m-alive-agent entity

gives-up the association. Similarly, qap- ios t captures all
situations, where the mobile terminal gives up the asso-
ciation by signalling A P L o s t or H O - i n d , both from the
MHI-entity.

We established this safety property, if the inequation
m i n (r A p) > max(TMT) is satisfied, where TAP and TMT

are the respective times for the two sides of the association.
The two times are bounded according to the following two
inequations.

TAP 2 (Max-Time-Periods + 1) * Tiaa-poll

+ (IAA-Mm - 1) * Tf iames tar t

TMT 5 (Max-Cellerrors) * TGDP-period

+(Max-AP-Index + 1) * T r c m

In the inequations, Tiaa-poll , T’amestart TGDP-period, and
Trc, are the values of 4 timers determining the behaviour of
the above-mentioned protocols, the remaining parameters
are program constants of the responsible processes (espe-
cially loop bounds). It should be noted that the inequations
are not immediate from the SDL-code of MCL: while it is
comparatively easy to identifr the timers, which can influ-
ence satisfaction of the property by looking at the processes
involved, what makes it complicated is the interference of
the timed reactions: the activities of the various protocols
can especially suspend other processes temporarily and thus
postpone expiration of other timers. With SpinlDTSpin it is
not possible to automatically derive the equations. There-
fore, we verified satisfaction of the safety requirement, resp.
checked its violation, for various combinations of values
according to the inequations, especially for a number of
border-cases, to validate our intuition about the correct in-
terplay of the timers involved.

6. Conclusion

Formal methods, most notably model checking, are in-
creasingly accepted as important part of the software de-
sign process [6]. Our verification experiments on the non-
trivial example of Mascara demonstrates that proceeding
the straightforward way we described and using available
technology, one can obtain significant results about com-
plex systems. (Though that does not mean that applying
model checking for debugging a large software product is
an effortless enterprise.)

A major part of the verification effort expended can be
seen as debugging the specification. A rightful question is
why to use model checking instead of simulation if model
checking is not directly applicable to a large-size model
while simulation is. We believe that both methods have their
place and complement each other. Indeed, at the first stage

90

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

of debugging it is easier and better to use simulation, not
model checking. The simple error situations like getting
deadlocked already at the initial phase of functioning can
be quickly detected by simulation. We always started the
verification of our models with using the simulation facili-
ties of OBJECTGEODE. However, after a number of errors
that can be found by simulation are corrected, the advan-
tages of model checker can be used. For instance, model
checker gives a report about unreachable code in the model
that immediately indicates the area of potential problems.
Next, the erroneous trace given by a simulator can be very
long, and one can not force a simulator to give a shortest
one. With a model checker, one can (as most model check-
ers include a “shortest trail” option). That significantly sim-
plifies the following analysis of the cause of an error. One
more argument is that only a quite restricted set of temporal
properties can be verified via simulation. Model checking
enlarge the facilities of debugging in this sense.

One of the minor problems in the effort is, in our ex-
perience, finding pmperties to verify. First of all, one can
achieve already a lot checking simple properties such as
finding dead code and illegal termination. As it stressed
before, we found it helpful routinely checking reachability
of crucial control-points in the expected behaviours. More-
over, after working on the specification for a while, one gets
a fairly good understanding of it, what easily gives scores
of properties to check. The functionality of each entity or
each group of entities can often be understood as a set of
services offered either to a communication peer or to some
upper layer, and thus safety properties like “each acknowl-
edgment must be caused by a previous request” and liveness
properties like “each request will eventually lead to an an-
swer”. Especially fruitful for finding errors and unexpected
reactions are verifying such properties under interference of
various protocols.

A clear conclusion to draw is that tools supporting ab-
stractions would extend a lot the applicability of verifica-
tion. Just with applying LIVE tool with very simple un-
derlying abstraction principles, the state space is in average
reduced by one order of magnitude. Some other reduction
techniques, which we used manually and which, as straight-
forward as they are, turned out to be effective, could also
profit from tool support. Another direction for tool devel-
opment would be to automatically close the environment, in
the simplest case with a chaotic one, or with one reflecting
a behaviour defined by a temporal logic formula.

We verified properties of Mascara control as one large
entity of the whole Mascara medium access protocol. De-
bugging the code step by step with enough time and man-
power, one could doubtlessly continue in this style repair-
ing more errors and verifying further parts of Mascara. In
should be noted, that although the strategy we followed is
currently time consuming and tedious, the reasons for it are

more of mundane than of theoretical or principal nature.
Here, the significance is in demonstrating, that our tools can
in principle handle complex properties (including properties
depending on timers) of a model as large as shown.

Acknowledgments

The work has been partially supported by the Esprit-LTR
project #23498 Vires. We gratefully acknowledge VER-
ILOG for giving us access to their OBJECTGEODE SDL
environment. We especially like to thank Intracom, who
helped in understanding the protocol beyond their duty.

References

[13 The ATM forum. www . a t m f orum. com/, 2000.
[2] D. BoSnaEki and D. Dams. Integrating real time into Spin:

A prototype implementation. In FOR”EPSTV’98. Kluwer
Academic Publisher, 1998.

[3] D. BoSnaEki, D. Dams, L. Holenderski, and N. Sidorova.
Verifying SDL in Spin. In TACAS 2000, volume 1785 of
Lecture Notes in Computer Science. Springer-Verlag, 2000.

[4] M. Bozga, J.-C. Femandez, L. Ghirvu, S . Graf, J.-P. Krimm,
and L. Mounier. IF: An intermediate representation and vali-
dation environment for timed asynchronous systems. In Pro-
ceedings of FM 99, LNCS 1708. Springer-Verlag, 1999.

[5] E. M. Clarke, 0. Grumberg, and D. Peled. Model Checking.
MIT Press, 1999.

[6] E. M. Clarke and J. M. Wing. Formal methods: State of the
art and future directions. ACM Computing Surveys, Decem-
ber 1996.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In 4th POPL, Los Angeles,
CA. ACM, 1977.

[8] G. J. Holzmann. Design and Validation of Computer Proto-
cols. Prentice Hall, 1991.

[9] L. Ghirvu. M. Bozga, J.C1. Femandez. State space reduction
based on Live. In Proceedings of SAS99 (Venetia, Italy),
September 1999.

[101 Message sequence charts (MSC). ITU-TS Recommendation
2.120, 1996.

[l l] ObjectGeode 4. www. csver i log. com/ , 2000.
[12] Specification and Description Language SDL, blue book.

CCITT Recommendation 2.100, 1992.
[131 Verifying industial reactive systems (VIRES),

Esprit long-term research project LTR-23498.
r a d o n . i c s . e l e . t u e . n l / - v i r e s / , 1998-2000.

[14] A wireless ATM network demonstrator (WAND), ACTS
projectAC085. www. t ik .ee .e thz .ch / -wand/ , 1998.

[151 P. Wolper. Expressing interesting properties of programs in
propositional temporal logic. In POPL‘86, pages 184-193.
ACM, January 1986.

91

Authorized licensed use limited to: UNIVERSITY OF OSLO. Downloaded on February 03,2021 at 07:42:09 UTC from IEEE Xplore. Restrictions apply.

