
Verification of a Wireless ATM Medium-Access Protocol 

Natalia Sidorova Martin Steffen 
Dept. of Mathematics and Computer Science 

Eindhoven University of Technology Christian-Albrechts-Universitat 
Den Dolech 2, P.O.Box 5 13 

5612 MB Eindhoven, The Netherland 
n. sidorova@ tue.nl 

Inst. fur angewandte Mathematik und Informatik 

PreuBerstral3e 1-9 
24105 Kiel, Deutschland 

ms @ informatik.uni-kiel.de 

Abstract 

In this paper we report on a model-checking case study 
of an industrial medium-access protocol for  wireless ATM. 
Since the protocol is too large to be verijied by any of ex- 
isting checkers as a whole, the verijication exploits the lay- 
ered and modular structure of the protocol’s SDL specifica- 
tion and proceeds in a bottom-up, compositional way. The 
compositional arguments are used in combination with ab- 
straction techniques to further reduce the state space of the 
system. The verijication is primarily aimed at debugging 
the system. Afrer correcting the specijication step by step 
and validating various untimed and time-dependentproper- 
ties, a model of the whole control component of the medium- 
access protocol is built and verijied. The signijicance of the 
case study is in demonstrating that verijication tools can 
handle complex properties of a model as large as shown. 

1. Introduction 

Model checking [5]  is a well-established formal tech- 
nique for the verification of finite-state systems. Respon- 
sible for the increasing acceptance of model checking by 
industry is its “push-button” appeal, i.e., its promise to al- 
low for fully automatic checking of a program or a system 
- the model - against a logical specification, typically 
a formula of some temporal logic. As model checking is 
based on state-space exploration, the size of a system that 
can be checked is limited and it is often held, that only rel- 
atively small systems can be verified with a model checker. 
In the context of the Vires project’ [13], the task, however, 
was to apply model checking to a large industrial software 
product, namely the control layer of the wireless ATM com- 
munication protocol Mascara [ 141. 

The limitations of model checking by the system size 

Verifying Industrial Reactive Systems. 

implies that verification is possible only using abstractions 
and/or compositional techniques. These techniques allow to 
construct a verification model whose state space is smaller 
than the one of the original system, but providing a for- 
mal proof of correctness for each abstraction or composition 
step is prohibitively costly. Aiming primarily at debugging, 
performing these steps at a semi-formal level does not cause 
troubles, as spotted errors can easily be validated afterwards 
and checked towards the concrete model by the designers, 
and spurious errors can be detected. But in case a property 
holds for the verification model, one can not claim that the 
property holds for the system under consideration as well, 
although the obtained result argues in favour of correctness 
of the system design. Therefore, we see the primary goal 
of verification not in proving the overall correctness of the 
product, but in advanced debugging, finding potential errors 
in its design and thus increasing its reliability. 

Our experiments show that by combining relatively sim- 
ple abstraction techniques together with a compositional, 
bottom-up approach, model checking can be successfully 
applied to large industrial systems. We use the Vires tool-set 
on the SDL specification of Mascara, automatically translat- 
ing the SDL-code into the input language of a discrete-time 
extension of the well-known Spin model-checker. As Mas- 
cara is too large to be verified by any existing verifier as a 
whole, we exploit the protocol’s layered structure and per- 
form a bottom-up, compositional verification. In a number 
of cases, the proved correctness requirements of a compo- 
nent form the basis for construction of a component abstrac- 
tion. This abstraction replaces the real component at the 
next step when a slice at an upper hierarchical level of the 
protocol is considered for verification. Doing so, we were 
able to reach the point where the whole control entity of 
Mascara together with a simple abstraction of the rest of the 
protocol was taken into account. 

In the verification experiments, we found (and corrected) 
several errors of various kinds and finally verified a number 
of behavioural properties including timed ones. 
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The rest of the paper is organised as follows: Section 2 
briefly surveys the protocol, its structure and its tasks. The 
model checking tool-set we used for the verification is 
sketched in Section 3. Section 4 describes the methodol- 
ogy we followed. Section 5 briefly presents some of the 
verification results. We conclude in Section 6 by evaluating 
the results. 

2. The protocol 

Located between the ATM-layer and the physical 
medium, Mascara is a medium-access layer or, in the con- 
text of the ISDN reference model, a transmission conver- 
gence sub-layer for wireless ATM communication [ 11 in lo- 
cal area networks. It has been developed within the WAND2 

ATM Layer I 

project [ 141, a joint European initiative by various telecom- 
munication companies to specify and implement a wireless 
access system for ATM-LANs. 

Besides the standard transmission convergence sub-layer 

Figure 1. Top-level functional entities 

tasks such as cell delineation, transmission frame adapta- 
tion, header error control, cell-rate decoupling, etc., operat- 
ing over radio-links, i.e., over a necessarily shared physical 
medium, adds to the complexity of the protocol. Mascara 
has to arbitrate medium access to the radio environment of 
a variable number of mobile ATM-stations? provide en- 
hanced error detection and correction mechanisms at var- 
ious levels to counter the comparatively high bit-error rate 
of air-borne data-transmission. Last but not least, it has to 
cater for mobility features, allowing a mobile terminal to 
switch its association with an access point in a handover. 

2.1. Overall structure 

From the perspective of verification, Mascara is a large 
protocol! It is itself composed of various protocol layers 
and sub-entities (cf. Figure 1). 

The layer control protocol together with the message 
encapsulation unit assists in various ways the information 
exchange between the Mascara layer and entities located 
within the upper layers. The segmentation and reussem- 
bly unit does exactly what its name implies: cutting peer- 
to-peer control messages (also called MDPUs) into ATM- 
cell size and putting them together upon reception. All 
three mentioned top-level entities are comparatively un- 
sophisticated and straightforward, as they mainly perform 
data-transformations. The WDLC-layer, operating already 
on cell-level, is reminiscent to conventional (non-ATM) 
data-link protocols and responsible, per virtual channel, for 
error- and flow-controlled cell-transmission. The lowest 

2Wireless ATM Network Demonstrator. 
3Hence the acronym “Mobile Access Scheme based on Contention and 

40ver 300 pages of (graphical) SDL. 
Reservation for ATM. 

level of Mascara is the data-pump, including a real-time 
scheduler, which forms a large portion of the protocol’s 
code-size. Despite its raw size, the functionality offered to 
the Mascara-layers above is rather simple: the data-pumps 
of two communicating stations act as duplex, lossy Fifo- 
buffer. The other large part of Mascara, making up almost 
half of the SDL-code, is its control entity, on which we 
concentrate here. For a more thorough coverage of Mas- 
cara’s structure and internals, consult the specification ma- 
terial provided by the Wand consortium [ 141. 

2.2. Mascara control 

As the name suggests, the Mascara control entity (MCL) 
is responsible for the protocol’s control and signalling tasks. 
It uses the services of the underlying segmentation and re- 
assembly entity, the sliding-window entities (WDLC’s), and 
in general the low-layer data-pump. In turn, the control 
layer offers its services to the ATM-layer above. 

Being responsible for signalling, MCL maintains and 
manages associations, linking access points with mobile 
terminals, and connections, i.e., the basic data and sig- 
nalling transfer channels, corresponding to ATM virtual 
channels. Mascara control falls into four sub-entities, each 
divided in various sub-processes themselves. The two im- 
portant and complex ones are the dynamic control (DC) and 
the steady-state control (SSC). The division of work be- 
tween the dynamic and the steady-state control is roughly as 
follows: SSC monitors in various ways current associations 
and the quality of the radio-environment, in order to ensure 
an optimal transmission quality,’ to keep informed about al- 
ternative access points, and to initiate in time change of 
associations, so-called handovers. The dynamic control’s 
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task, on the other hand, is to set-up and tear down the as- 
sociations and connections, while managing the related ad- 
ministrative work like address-management, resource allo- 
cation, etc. Of minor complexity are the radio control entity 
(RCL, with the radio control manager RCM as its most im- 
portant process) and the generic Mascara control (GMC). 

3. Model-checking environment 

Dealing with a protocol of Mascara’s size, formal valida- 
tion results with acceptable effort are possible only with ap- 
propriate tool support, including editing and specification, 
validation, and, of course, model checking support. 

The tool-set we use for the verification experiments on 
Mascara is a combination of well-established tools and 
a number of tools developed within Vires (cf. Figure 2). 
The choice was largely determined by the following side- 
conditions. To facilitate communication with the industrial 
partners, the specification language was chosen to be SDL. 
Currently, commercial SDL-tools offer only simulation, but 
no model checking facilities. Hence, testing is the only way 
to verify the model with their use. Since developing a state- 
of-the-art model checker from scratch is a daunting task, 
it was decided to use a well-established model checker as 
starting point rather than to design a new one. The model 
checker was enhanced with adding the ability to deal with 
time, for Mascara relies heavily on timers. 

-dh.Sa-rFlud. 
, J ¶ t . u j n o ~ h . o - f = m n  

--dh.w- 
hD h. -bmUl(lq 

r(autis-dh.lF- 
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MDT- 
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Figure 2. Tool-set for Mascara verification 

The tool-set we used especially features: 

0 OBJECTGEODE, [ 111, a Telelogic tool-set for analysis, 
design, verification, and validation through simulation, 
as well as C/C++ code generation and testing of real- 
time and distributed applications. Targeted especially 
for telecommunication software and safety-critical 
systems, OBJECTGEODE integrates complementary 
object-oriented and real-time approaches based on 
SDL [ 121 and MSCs [ 101, and recently UML. 

0 sdl2if and ij2pml, which are the chain of translators 

rending SDL into the Intermediate Format IF [4], a lan- 
guage for timed asynchronous systems, and IF into DT 
Promela [2] - a discrete-time extension of Promela 
(the input language of the model checker Spin), respec- 
tively. Both tools were developed within Vires. 

0 LIVE [9], used to optimise IF specifications by static- 
analysis techniques. It transforms an IF specification 
into a semantically equivalent one by adding system- 
atic resets of non-live variables. The transformation 
preserves the behaviour while reducing dramatically 
the global state space (and further, the exploration 
time). In our experiments, LIVE reduced the state 
space of the models by a factor of 8 on the average. 

0 Spin, a software package for the specification and ver- 
ification of concurrent systems [8]. The core of Spin 
is a state-of-the-art, enumerative, on-the-fly model 
checker, which can be used to report unreachable code, 
deadlocks, unspecified receptions, race conditions, and 
the like. Correctness properties can be specified as sys- 
tem or process invariants (using assertions), or as gen- 
eral linear-time temporal logic requirements, either di- 
rectly in LTL-syntax, or indirectly as Buchi automata 
(called never claims). 

0 DTSpin [2], a discrete-time extension of Spin, intended 
for model checking concurrent systems that depend on 
timing parameters. It is completely compatible with 
the standard, untimed version of Spin. 

4. Methodology 

Our prime goal was to apply formal methods, foremost 
model checking, to industrial protocols, Mascara in this 
case. To be able to do so we needed cooperation with 
and assistance from our industrial partners, especially Intra- 
com. A common email forum, discussing our specification- 
under-development, a repository keeping track of errors 
or suspected errors in the specification, versioning of the 
stages in the specification process, and a number of co- 
operation meetings with our industrial partner with code 
walk-throughs, especially in the earlier stages of the Vires- 
project, were means to obtain an SDL-specification for the 
verification, as detailed and complete as possible. 

4.1. Bottom-up verification 

The protocol is given in SDL (Specification and Descrip- 
tion Language) [ 121, a widely accepted, standardised spec- 
ification language for telecommunication applications. Se- 
mantically, SDL is based on processes communicating via 
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asynchronous message passing. To be useful for larger- 
scale applications, it features definition of data types, al- 
lows various ways of grouping and structuring large pro- 
grams, including object-oriented design principles, and sup- 
ports a graphical notation. The layered and structured de- 
sign of Mascara with blocks of processes greatly facilitated 
the compositional approach to verification. 

We started considering relatively small blocks of pro- 
cesses from the global specification. These sub-models, 
however, can not be verified as stand-alone processes, since 
they are not self-contained, i.e., the specification of such 
a sub-model relies on the cooperation of the rest of the 
protocol. Therefore, it is necessary to close a model first 
by adding one or more environment processes specified in 
SDL at the same hierarchy level as the extracted model 
itself. This environment should be an abstraction of the 
rest of the protocol. Constructing this abstraction is dis- 
cussed later. After debugging and verifying a number of 
properties for simple components, we proceed with con- 
sidering blocks composed from the verified ones (or their 
abstractions). Conceptually, the approach corresponds to 
the rely/guarantee or assumptiodcommitment paradigm of 
compositional verification, where the abstractions take the 
role of the assumptions about the environment. 

Using a bottom-up approach in the verification, one 
gains a lot. Even assuming some magical model checker, 
which allows to feed the whole protocol to it and get the 
result by just pressing the proverbial button, would be of 
limited use, for it is very well possible, for instance, that 
some components of the system under consideration are 
deadlocked, but not the whole system. The model checker 
tells then that the system is deadlock-free and one should re- 
member to check that no component of the system is dead- 
locked. The formulation of such a property is not straight- 
forward and involves fairness restrictions and other non- 
trivial conditions. Going bottom-up, one detects such dead- 
locks at the very first steps without much effort- the model 
checker just finds these deadlocks automatically. 

4.2. Abstraction 

The size of the protocol rendered any direct, brute-force 
attempt of model checking out of question, and one of 
the main tools of our methodological arsenal was abstrac- 
tion. Abstraction is a rather general technique; intuitively 
it means replacing one semantical model by an abstract, in 
general simpler, one. To allow transfer of verification re- 
sults from the abstract model to the concrete one, both must 
be related by a safe abstraction relation. The concept of 
safe abstraction is well-developed and has applications in 
many areas of semantics, program analysis, and verification 
(cf. [7] for the seminal, original contribution). For safe0 

as “never something bad will happen”, the abstract system 
must at least show all the traces of the concrete one to be 
used as a safe abstraction. To find safe abstractions of a 
reactive, parallel system such as a protocol, it is helpful to 
distinguish between the data of a program, i.e., the values 
stored and transmitted, and its control, i.e., the control flow 
within the processes and their communication behaviour, 
and, resp., between data and control abstractions. A third 
abstraction we routinely used is related with the model of 
time of DTSpin. 

Data abstraction 

Often, the behaviour of a program does not depend on the 
specijic values of its data. In this case, many properties of 
the program stated over the full, often infinite, data domain 
can be equivalently expressed over finite domains of enough 
elements. For instance, being interested in a proof that an 
entity of Mascara handles addresses of mobile terminals 
correctly and does not give away the same address twice, 
a two-valued domain of addresses would suffice. This ap- 
proach is known as datu independence technique [ 151. 

Control abstraction 

Given the amount of various entities and processes of the 
protocol, using data-abstraction alone will not yield. The 
processes of the specification are given in great detail, to 
serve as the basis for an implementation, and they often pos- 
sess internally non-obvious behaviour (for instance loops, 
jumps, conditions depending on data-values, and the like). 
To deal with this complexity, as a very common type of con- 
trol abstraction, we simply take a whole-sale entity, such as 
a process or an SDL-block consisting of a number of pro- 
cesses as it is,5 and manually abstract away from the rest of 
the protocol, condensing it into a non-deterministic, chaotic 
environment for this component. 

From the methodological point of view, this straightfor- 
ward approach has three main advantages. First, allowing 
all possible traces by the non-deterministic environment, 
the safety of the abstraction is immediate. Secondly, clos- 
ing the model by an environment process takes time; closing 
it with a more or less chaotic environment can be done fast 
and routinely. Thirdly, leaving the structure of the entity un- 
der investigation untouched allows fast spotting of potential 
errors, in case the model checker finds a property violation 
on the abstract level. Moreover, only when retaining the 
internal process structure it is possible to detect errors con- 
cerning the internal loops, conditions, etc., at all. 

Experience with Mascara shows, however, that this sim- 
plest approach of a completely chaotic environment is sel- 
dom applicable in its pure form, for it causes many spu- 

properties in linear-time temporal logic, often paraphrased With appropriate data-abstractions. 
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riously erroneous behaviour, so-called “false negatives”, 
during model checking. Local livelocks, cycles with non- 
progressing time, and non-existing deadlocks are typical 
examples of those false errors. Moreover, the redundant be- 
haviour may also increase the state space. Another possibil- 
ity is to construct an environment being able to sendreceive 
a signal whenever the modelled system is ready to get/send 
it. Applying such an approach reduces spurious behaviour 
but it still adds some unwanted behaviour caused by sending 
non-realistic signal sequences. 

These approaches are based not on the knowledge about 
the behaviour of the rest of the protocol but on the speci- 
fication of the component under consideration, namely, its 
input-output behaviour. Both the approaches are safe only 
if no non-progressing time cycles are added in the abstrac- 
tion. Otherwise, some behaviour of the system can be lost. 
On the other hand, the approaches are cheap in sense that 
such an environment is easy and fast to implement. So they 
can be considered as a useful kind of heuristics that can be 
implied at the first stages of system debugging. 

A different approach is to provide an SDL-specification 
of the “right” environment, i.e. the one, which faithfully 
models the assumptions under which the component was 
designed, giving an abstraction of a real environment. Al- 
though it makes the soundness of verification results de- 
pendent on the quality of the environment model, it usually 
turns out to be a practical method. This process is guided 
by the understanding of the protocol and the already proved 
assumptions about the rest of the protocol. 

Time abstraction 

The closed SDL-model is translated into DT Promela by 
the translators sdl2if and iflpml, using LIVE for IF-code 
optimisation. To run the verification, one has the choice 
between verifying the timed DT Promela model using DT- 
Spin and verification of the model with abstracted time us- 
ing standard Spin (see [3] for the full description of the ab- 
straction of SDL timers we use). It would seem obvious 
to verify all non-timed properties with an abstracted-time 
model and all timed properties with a concrete model. How- 
ever, in some cases it is more convenient to verify non-timed 
properties with a concrete model as well. If some func- 
tional property is proved with the abstracted-time model, it 
is proved for all possible values of timers. However, if the 
property is disproved or a deadlock in the model is found, 
the next step is to check whether the erroneous trace given 
by Spin is a real error in the system or a spurious error 
caused by adding erroneous behaviour either by abstracting 
from time or by a too abstract environment specification. It 
can happen that the property fails to hold for the concrete 
model, however the erroneous trace given by Spin is one of 
the added behaviour. This behaviour cannot be reproduced 

for the SDL model with SDL-simulation tools and we can- 
not conclude whether the property holds or not. 

One cannot force Spin to give the trace from the non- 
added behaviour, but DTSpin allows to reduce the set of 
added behaviour by guaranteeing that timers are expiring in 
the correct order. In our experiments we had several cases 
when application of DTSpin, instead of Spin, gave a chance 
to get a real erroneous trace and disprove the property. 

Another argument in favour of timed verification sounds 
rather unexpected. It is often the case that the state space 
of a concrete model is smaller than the state space of its 
abstraction. This can be explained by the fact that the be- 
haviour of the protocol specified in SDL strongly depends 
on timers. Abstracting their values we add too much be- 
haviour which can result in a larger state space. 

4.3. Example 

We illustrate the techniques on a simple entity of Mas- 
cara, the radio conrrol (RCL). Seen from the outside, 
RCL builds Mascara-control’s interface with the lower- 
layer physical radio modem. Its task is to operate the mo- 
dem to tune into the terminal with a known frequency upon 
request, if possible. A property the RCL should guarantee 
can be phrased as the following simple response property: 

“Whenever, after initialisation, the ra- 
dio control manager receives a request Ac- 
qui r eNewAP(newchanne l), the RCM-pro- 
cess responds either positively or negatively (Ac - 
quireNewAP-ok or AcquireNewAP-ko). 
Moreover, the answer is sent in a given amount 
of time after getting the request.” 

The entity must be ready to react upon requests at any 
time, so it was closed in a chaotic environment, with the 
only restriction that the environment can send only a limited 
number of signals per time unit. To reduce the state space of 
the verification model, we used data independence limiting 
the data domain of the parameter newchannel with 2 val- 
ues. We checked the model for absence of zero-time cycles 
first, afterwards the proper initialisation of the component 
was checked. Coding the above property in LTL, we could 
finally verify that the concrete RCL satisfied the property. 

Since initialisation of RCL is a confirmed service, and 
the other entities are initialised only after the initialisation 
confirmation has been received from radio control, we can 
abstract away from the initialisation phase in radio control. 

After having verified the above LTL-property, one can 
exploit in the following experiments an abstract variant of 
RCL which is just one process, radio control manager (Fig- 
ure 3). The more sophisticated decisions of the concrete ra- 
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dio control are captured in the abstract version simply by 
a non-deterministic choice between a positive or negative 
decision and the abstraction contains all the information the 
other components need to be verified. 

I-) 

Figure 3. Abstract radio control manager 

5. Results 

Starting from MT target cell (MTC, an important part 
of the steady-state control), we proceeded investigating the 
steady-state control and the dynamic control, the two largest 
sub-blocks of Mascara-control (cf. Section 2.2), in isola- 
tion, and finally, we verified properties of a model including 
the whole Mascara control. 

Dealing with the various set-ups, we basically follow a 
bottom-up approach not only proceeding from smaller enti- 
ties to larger, combined ones, but also advancing from sim- 
pler to more complex properties. After a number of reach- 
ability checks, we use the built-in Spin features for finding 
deadlocks and livelocks. After correcting discovered struc- 
tural errors, we proceed to more advanced properties, like 
safety, liveness, and response properties. 

5.1. Reachability checks 

In all verification configurations, we routinely started 
with just checking rather simple reachability properties, ba- 
sically check-pointing various crucial steps in the protocols 
of interest to see whether they are reachable at all. We nev- 
ertheless check them, to make sure that the more compli- 
cated LTL-properties investigated later are not trivially sat- 
isfied. Depending on the entity, typical properties checked 
in MCL were amongst others: 

0 successfuhnsuccessful association is possible 

0 termination of association is possible 

0 successful connection set-up is possible 
6RCL, a small part of Mascara control, takes 9 SDL-pages of the spec- 

ification. 

incommunicado cycle successfully completed. 

The reachability checks are easiliy done by just check- 
ing assertion violations. In this way, we found a number 
of “obviously reachable” states being unreachable and thus 
a couple of unexpected errors of various kinds. Used in 
this way, reachability checking is employed as a sophisti- 
cated debugging facility with the assertions used to steer 
the checker to the critical points of the system. Besides 
weeding-out errors, we found it likewise very helpful, to use 
assertion checking (or, a little more complicated, checking 
LTL-formula) in a dual way: marking the property of in- 
terest as “undesired” while hoping for their satisfaction - 
the corresponding “error trace” is useful illustrating charac- 
teristic desired scenarios. They can be compared with the 
scenarios provided during the specification phase, thus giv- 
ing a better understanding of the behaviour of the protocol, 
and thus enhancing the confidence in the specification. 

5.2. Errors Found 

Quite a number of errors discovered were “just” pro- 
gramming errors, including such classics as uninitialised 
variables (even uninitialised variables due to a typo), for- 
gotten branches in case distinctions, mal-considered limit 
cases in loops, and the like. Concerning the communication 
behaviour, we encountered most commonly 

0 race conditions, 

0 ambiguous receiver, 

0 unspecified reception, and 

0 variables out of range 

as general errors at each stage of the verification process. 
Race conditions denote the situation where two signals 

are sent to an entity “at the same time” such that, due to 
SDL’s asynchronous communication model, the order of 
reception is undetermined; here we mean more specifically 
that an unexpected reception order results in an error. Es- 
pecially prone for this type of error turned out to be the 
initialisation phases of processes: often, the initialisation 
signals are given as unconjirmed messages, and when asyn- 
chronously a number of processes are spawned, initialised, 
and start communicating under the assumption that the rest 
of the processes is ready as well, messages may get lost. 

Unspecified reception means that a process receives a 
message in a state where no such message is foreseen; the 
default reaction in SDL in such a case is to discard the mes- 
sage. The discarding feature7 is often used on purpose in 
Mascara’s specification, since it saves code, but in some 

7Mascara is given in SDL-92 [12], the newer SDL-2000 did away with 
this feature. 
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cases, the discard is caused by unforeseen behaviour. Given 
the amount of asynchronous communication activities in the 
protocol, resulting errors are hard to detect by code inspec- 
tion. Signals in the specification with more than one poten- 
tial receiving process (“ambiguous receiver”) also had been 
a significant source of errors in MCL. 

In several cases constructing a, compared to the overall 
specification, small verification model, we got a state-space 
explosion without obvious reasons. It turned out that the 
specification contained some variable that could infinitely 
decrease or grow. For instance, due to being informed 
about deassociation of the same mobile terminal twice - 
from two different sources - an access point decreases the 
counter of associated mobile terminals by two instead of 
one. Thus, the number of associated terminals can get nega- 
tive. We found it helpful to regularly check that all variables 
in the model are bounded (their bounds are usually known 
or can be easily determined). 

Besides quite a number of instances of these general er- 
rors at each level, errors more specific to Mascara-control 
model were found and corrected. In the following section, 
we show one of the more complex properties we verified. 

5.3. Time-dependent safety property: unique 
MAC-addresses 

To illustrate up to which extent we could go with the 
verification, we describe one of the most involved proper- 
ties verified. It concerns the cooperation of the complete 
control entity (MT- and AP-side), the interaction of vari- 
ous independently working protocols - notably association 
handover, the incommunicado protocol, and the “I’m-alive’’ 
protocol, and it takes into account settings of several timers. 
To maintain an established association between a mobile 
terminal and an access point, it is important to determine 
when the association breaks down (as opposed to terminat- 
ing an association properly by deassociating). Driven by 
various timers, both sides continuously check whether their 
current association is still functioning. 

To determine that an association has gone for good, a 
mobile terminal and an access point must act independently 
and rely on their local timers, since if the connection is lost, 
no further communication is possible in the worst case. An 
important safety requirement here is, that “never the access 
point relinquishes an association before the mobile terminal 
does”. This requirement is important for the correct work- 
ing of Mascara control, especially the correct management 
of addresses by the dynamic control entity, for if the AP 
gives up the association, its dynamic control is free to reuse 
the various addresses allocated to that association for new 
ones. The property as LTL-formula reads n ( v m t - l o s t  + 
v a p - l o s t ) ,  where proposition pmt-lost describes sending 
the signal MTLost, whereby AP’s I’m-alive-agent entity 

gives-up the association. Similarly, qap- ios t  captures all 
situations, where the mobile terminal gives up the asso- 
ciation by signalling A P L o s  t or H O - i n d ,  both from the 
MHI-entity. 

We established this safety property, if the inequation 
m i n ( r A p )  > max(TMT) is satisfied, where TAP and TMT 

are the respective times for the two sides of the association. 
The two times are bounded according to the following two 
inequations. 

TAP 2 (Max-Time-Periods + 1) * Tiaa-poll 

+ ( IAA-Mm - 1) * Tf iames tar t  

TMT 5 (Max-Cellerrors) * TGDP-period 

+(Max-AP-Index + 1) * T r c m  

In the inequations, Tiaa-poll ,  T’amestart TGDP-period, and 
Trc, are the values of 4 timers determining the behaviour of 
the above-mentioned protocols, the remaining parameters 
are program constants of the responsible processes (espe- 
cially loop bounds). It should be noted that the inequations 
are not immediate from the SDL-code of MCL: while it is 
comparatively easy to identifr the timers, which can influ- 
ence satisfaction of the property by looking at the processes 
involved, what makes it complicated is the interference of 
the timed reactions: the activities of the various protocols 
can especially suspend other processes temporarily and thus 
postpone expiration of other timers. With SpinlDTSpin it is 
not possible to automatically derive the equations. There- 
fore, we verified satisfaction of the safety requirement, resp. 
checked its violation, for various combinations of values 
according to the inequations, especially for a number of 
border-cases, to validate our intuition about the correct in- 
terplay of the timers involved. 

6. Conclusion 

Formal methods, most notably model checking, are in- 
creasingly accepted as important part of the software de- 
sign process [6]. Our verification experiments on the non- 
trivial example of Mascara demonstrates that proceeding 
the straightforward way we described and using available 
technology, one can obtain significant results about com- 
plex systems. (Though that does not mean that applying 
model checking for debugging a large software product is 
an effortless enterprise.) 

A major part of the verification effort expended can be 
seen as debugging the specification. A rightful question is 
why to use model checking instead of simulation if model 
checking is not directly applicable to a large-size model 
while simulation is. We believe that both methods have their 
place and complement each other. Indeed, at the first stage 
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of debugging it is easier and better to use simulation, not 
model checking. The simple error situations like getting 
deadlocked already at the initial phase of functioning can 
be quickly detected by simulation. We always started the 
verification of our models with using the simulation facili- 
ties of OBJECTGEODE. However, after a number of errors 
that can be found by simulation are corrected, the advan- 
tages of model checker can be used. For instance, model 
checker gives a report about unreachable code in the model 
that immediately indicates the area of potential problems. 
Next, the erroneous trace given by a simulator can be very 
long, and one can not force a simulator to give a shortest 
one. With a model checker, one can (as most model check- 
ers include a “shortest trail” option). That significantly sim- 
plifies the following analysis of the cause of an error. One 
more argument is that only a quite restricted set of temporal 
properties can be verified via simulation. Model checking 
enlarge the facilities of debugging in this sense. 

One of the minor problems in the effort is, in our ex- 
perience, finding pmperties to verify. First of all, one can 
achieve already a lot checking simple properties such as 
finding dead code and illegal termination. As it stressed 
before, we found it helpful routinely checking reachability 
of crucial control-points in the expected behaviours. More- 
over, after working on the specification for a while, one gets 
a fairly good understanding of it, what easily gives scores 
of properties to check. The functionality of each entity or 
each group of entities can often be understood as a set of 
services offered either to a communication peer or to some 
upper layer, and thus safety properties like “each acknowl- 
edgment must be caused by a previous request” and liveness 
properties like “each request will eventually lead to an an- 
swer”. Especially fruitful for finding errors and unexpected 
reactions are verifying such properties under interference of 
various protocols. 

A clear conclusion to draw is that tools supporting ab- 
stractions would extend a lot the applicability of verifica- 
tion. Just with applying LIVE tool with very simple un- 
derlying abstraction principles, the state space is in average 
reduced by one order of magnitude. Some other reduction 
techniques, which we used manually and which, as straight- 
forward as they are, turned out to be effective, could also 
profit from tool support. Another direction for tool devel- 
opment would be to automatically close the environment, in 
the simplest case with a chaotic one, or with one reflecting 
a behaviour defined by a temporal logic formula. 

We verified properties of Mascara control as one large 
entity of the whole Mascara medium access protocol. De- 
bugging the code step by step with enough time and man- 
power, one could doubtlessly continue in this style repair- 
ing more errors and verifying further parts of Mascara. In 
should be noted, that although the strategy we followed is 
currently time consuming and tedious, the reasons for it are 

more of mundane than of theoretical or principal nature. 
Here, the significance is in demonstrating, that our tools can 
in principle handle complex properties (including properties 
depending on timers) of a model as large as shown. 
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