Verification of Mascara-Control

NATALIA SIDOROVA MARTIN STEFFEN

TU Eindhoven

Dept. of Electrical Engineering Inst. für Informatik u. Prakt. Mathematik CAU Kiel

> June 2000 Vires-Review, Autrans

Overview

- Mascara-control
- Approach and tools
- Results
- Conclusion

Mascara

- medium-access for wireless ATM ¹
- Vires-Spec: ≥ 300 pages (graphical) SDL-92 [1]
- large sub-entity: Mascara-control
 - task: signalling/control
 - interfaces will all other entities

 $^{^1}$ "Mobile Access Scheme based on Contention and Reservation for ATM".

Mascara-control

main/largest entities:

- dynamic control
 - set-up/tear down associations and connections²
 - address management (conn./assoc.)
 - process creation
- steady-state control
 - monitor current association
 - monitor radio environment
 - collect info. about alternative associations

²Hand-over is no MCL-service by itself, but composed of association and deassociation.

Main protocols involved

- association handling (set-up, tear-down)
- connection handling (set-up, tear-down)
- incommunicado: scanning the radio environment regularly
- I'm alive: sending invitations to overdue MTs
- alarm handling: fast reaction, if association breaks down

Approach

- bottom-up approach:
 - 1. MTC/steady-state control
 - 2. dynamic-control
 - 3. one-sided configuration for MCL
 - 4. 2-sided configuration for MCL
- closing manuall each configuration by environment
- debugging entities step-by-step

Abstractions

- underlying physical layer + data pump + WDLCs + CSR: lossy buffer³
- abstracting away from generic Mascara control (= global initialization)
- abstracting largely radio control: non-determinism to represent decisions depending on physical environment
- general types of abstractions:
 - data-abstractions:
 - * keeping the control-structure + reducing/removing the data-part
 - * e.g.: two addresses
 - simple control-abstractions

³for 2-sided configurations.

Model checking environment

Reachability checks

- easily done, by assertion violations
- ⇒ routine check-pointing crucial steps
 - ullet additional value: asserting desiredly reachable points as false
- ⇒ illustration of desired behaviour
- ⇒ comparison with Wand-MSCs [4]

Most common errors

- plain programming bugs
- values out of range
- race conditions (especially in the initialisation phases)
- ambiguous receiver
- unspecified reception

Time-dependent property: unique MAC addresses

• AP dynamic control: administers MT-addresses

Requirement:

"never the access point relinquishes an association before the mobile terminal does"

$$\Box(\varphi_{mt-lost} \to \varphi_{ap-lost}) \tag{1}$$

• satisfaction depends on 4 timers + 4 program constants

side	timer	program constant	process entity
AP-side	T_{iaa_poll}	$Max_Time_Periods$	AIA
	T_{frame_start}	IAA_Max	AIA
MT-side	T_{GDP_period}	$Max_Cellerrors$	GDP
	T_{rcm}	Max_AP_Index	MTC

Unique MAC addresses (2)

"minimal time for AP to give up must exceed maximal time for MT to give up"

$$\min(\tau_{AP}) > \max(\tau_{MT}),$$

Bounds of times

$$au_{AP} \geq (Max_Time_Periods + 1) * T_{iaa_poll} + (IAA_Max - 1) * T_{frame_start}$$

$$au_{MT} \leq (Max_Cellerrors) * T_{GDP_period} + (Max_AP_Index + 1) * T_{rcm}$$

- extremal case (for τ_{AP}): 1 MT
- \Rightarrow configuration 1 AP, 1 MT

Results (overview)

	Reachability			
1.	MT can go incommunicado			
2.	forward hand-over possible			
3.	incommunicado scenario			
4.	backward hand-over at MT			
• • •	Errore found			
1.	Errors found			
	negative number of associated MT's			
2.	twice <i>"start-of-tip</i> " without end-of-tip in between			
3.	twice " $\mathit{end-of-tip}$ " without start-of-tip in between $ o$ illegal termination			
4.	incommunicado becomes impossible			
5.	illegal termination			
6.	infinite undetected loop in backward hand-over			
	Verified properties			
1.	no illegal termination			
2.	toggle-array chooses correct branches in ATI (start-tip)			
3.	toggle-array chooses correct branches in ATI (end-of-tip)			
	Timed properties (positive and negative results)			
1.	permanent backward hand-over (im)possible			
2.	unique/ambiguous MAC-addresses			

Conclusions

- Debugging of one large part of Mascara using model-checking
- good touch-stone of the Vires tool-set
- experiments provided valuable feed-back to the tool-development
- simple abstractions already get you far

Lessons learned

- more effort on specification
- tool integration
- make easy things easy
- ⇒ support for routine task, like
 - diagnostics
 - automatic closing of the model
 - whole-sale chaotic abstraction of complete entities + necessery (small, but many) interface adaptations

Literatur

- Dennis Dams. Susanne Graf, Guoping Jia, Steffen. Natalia Sidorova. Martin and Dia-Mas-[3] Tourko SDL-specification of the Available protocol. electronically at cara www.informatik.uni-kiel.de/~seriv/Deliv/Spec/, November 1999. [4]
- [2] Natalia Sidova and Martin Steffen. Verification of a wireless ATM medium-access protocol. Technical Re-

port TR-ST-00-3, Lehrstuhl für Software-Technologie, Institut für Informatik und praktische Mathematik, Christian-Albrechts-Universität Kiel, May 2000. Submitted for publication.

A wireless ATM network demonstrator (WAND), ACTS project AC085. http://www.tik.ee.ethz.ch/~wand/, 1998.

Working groups at Intracom Ascom, UoA and Eurecom. Message sequence charts for the Mascara-protocol. distributed electronically for internal use, 1998.