
INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK

LEHRSTUHL FÜR SOFTWARETECHNOLOGIE

Verifying Mascara Control

Natalia Sidorova
Martin Steffen

Bericht Nr. TR-ST-00-1
May 2000

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

2

Verifying Mascara Control

Natalia Sidorova1 and Martin Steffen2

1 Department of Electrical Engineering
Eindhoven University of Technology, The Netherlands

natalia@ics.ele.tue.nl
2 Institut für angewandte Mathematik und Informatik

Christian-Albrechts-Universität
Preußerstraße 1–9, D-24105 Kiel, Deutschland

ms@informatik.uni-kiel.de

Abstract. This document reports on a series of verification experiments
on the control-part of Mascara, a medium-access protocol for wireless
ATM-networks.

1 Introduction

1.1 Mascara control

Let’s begin surveying quickly tasks and structure of Mascara control. For
a more thorough picture of the protocol, consult the specification report
[4] or the official Wand documents [12, 6, 5].

As the name suggests, the Mascara control entity (MCL) is the part
of Mascara responsible for the protocol’s control and signalling tasks. It
uses the services of the underlying segmentation and reassembly entity,
the sliding-window entities (WDLC’s), and in general the low-layer data-
pump. In turn, the control layer offers its services to the ATM-layer above.

Mascara-control falls into four subentities, each divided in various
sub-processes themselves. The two important and complex ones are the
dynamic control (DC) and the steady-state control (SSC). Th two of minor
complexity are the radio control entity (RCL) and the generic Mascara
control (GMC). We will concentrate on the first two.

Mascara-control takes care of associations, connecting access points
to mobile terminals, and connections, i.e., the basic data and signalling
transfer channels. Both are managed by MCL either in response to re-
quests from the upper layer or by taking initiative of its own.

The division of work between the dynamic and the steady-state con-
trol is roughly as follows: SSC monitors in various ways current associ-
ations and the quality of the radio-environment, in order to initiate in
time change of associations, so-called handovers. The dynamic control’s

2

task, on the other hand, is to set-up and tear down the associations and
connections, while managing the related administrative work like address-
management, resource allocation, etc. Figure 1 gives an overview over the
static process structure and the signal connections at a mobile terminal
of the model we used in the verifications to follow.3 The counterpart at
the access point is similar.

environment Fri Mar 24 10:15:26 2000

property1.pr View: 25 / Page: 31

block environment

SIGNAL NEVER_SENT;

MTC_MAA

SYNCHRO_WITH,
ASSOCIATION_COMPLETED_MTC

SYNCHRO_WITH_ACK,
MAA_ACTIVE

MAA_MHI
ASSOCIATION_COMPLETED_MHI

AP_LOST, HO_ind

MTC_MTI

INIT_HO_SEEK_INFO_OK,
INIT_HO_SEEK_INFO_KO

INIT_HO_SEEK_INFO,
STOP_HO_SEEK_INFO

MTC_MEF

MEASURE_RLQ_cnf_MTC

MEASURE_RLQ_req_MTC

MTC_RCM

ACQUIRE_NEW_AP_OK,
ACQUIRE_NEW_AP_KO

ACQUIRE_NEW_AP

MTC_MPR
NEIGH_AP_LOAD_INFO_cnf

NEIGH_AP_LOAD_INFO_req

MTC_GDP
SUSPEND_MSC_OK,
RESUME_MSC_OK

SUSPEND_MSC,
RESUME_MSCMTC_MHI

GET_TARGET_AP

AP_LOST, TARGET_AP_FOUND,
SUSPEND_MHI, RESUME_MHI

UPPER_MAA

(MMAA2UPPER)

(UPPER2MMAA)

MAA_MTMASC

(MAA2MTMASC)

(MTMASC2MAA)
MAA_MMA (MAA2MMA)(MMA2MAA)

UPPER_MMA

(MMMA2UPPER)

MMA_MTMASC
(MMA2MTMASC)

(MTMASC2MMA)

MDG_MAA

(MDG2MAA)

(MAA2MDG)
UPPER_MDG

(MMDG2UPPER)

(UPPER2MMDG)

MSG_MHI

INIT_MHI

Upper_proc_MTC

INIT_MTC

MTMASC_MHI
AP_LOST

NOTHING

NEVER_SENT

NEVER_SENT

MDG

MMA

UPPER_PROC

MTMASC_PROC

MAA

MTI RCM

GDP MPR

MEF

MHI
/* Handover Ind */

Fig. 1. Mascara-control processes and signals (MT-side)

1.2 General approach

In a series of experiments of increasing complexity, working bottom-up,
we investigate the dynamic control resp. steady-state control in isolation,
a combination of steady-state and dynamic control for a one-sided con-
figuration, and a full configuration for one MT and one AP. As starting
point for each of the verification experiments, we used the common, global

3 To be precise: the picture shows part of the structure for the “MT-side-only” con-
figuration. The process structure for the other configurations is similar and omitted
here.

3

SDL-specification [3] with an appropriately chosen and adapted part of
the control-entity. The model is closed by an environment representing
the rest of Mascara and the upper layer and issuing requests to the dy-
namic control, where the form of the abstraction and the environment
depends on the entity under investigation.

Besides the simplifications and abstractions described more concretely
below, we stuck to Mascara’s overall model [3] developed in the specifi-
cation part of Mascara as close as possible. This especially means that
we kept the process and interfaces structure of [3], but in general simpli-
fied heavily on the data stored and transmitted and consequently also on
the parameters transmitted on the signals. In other words, a principal,
general simplification we used was data abstraction.

To model-check various properties, we used the Spin model-checker
[8] [9], respectively its discrete-time extension DTSpin [7] [2] developed
in Eindhoven within the Vires project. To feed the model into Spin, the
SDL-code is translated in two steps:

1. translating SDL to the intermediate format using sdl2if [13], and

2. translating the result into Spin’s input language Promela, using if2pml
[10].

In case of an error found or in case of the reachability checks, we tried
to produce the shortest trail witnessing the error or reaching the chosen
control-point. In some cases, especially for the later, more complex models
and properties, minimizing the trail with Spin was too time-consuming;
in those cases we manually reduced the depth of Spin’s seach-space in a
few steps until we found a trace of tolerable length.

1.3 Properties

The exact properties for the different configurations are given and ex-
plained in the corresponding sections. When dealing with the various set-
ups, we basically followed a bottom-up approach not only proceeding from
smaller entities to larger, combined ones, but also advancing from simpler
to more complex properties. In all cases we routinely started with just
checking rather simple reachability properties, basically check-pointing
various crucial steps in the protocols of interest to see whether they are
reachable at all. We nevertheless checked them, to make sure that the
more complicated properties listed later are not trivially satisfied. The
reachability checks are very easily and quickly done by just checking as-
sertion violations (or, a little more complicated, checking LTL-formulas

4

upper_proc_i0:9
26

27

mdg_i0:6
29

1!init_mdc,9,0

30

31

mtmasc_proc_i0:8
33

3!init_mhi,6

maa_i0:4
37

2!init_maa,6,0,0

38

40
3!set_mac_addr,4

41

43
2!set_mac_addr_ack,8,0,0

45

2!association_req,9,0,0

46

48
3!synchro_with,4

49

51
2!synchro_with_ack,8,0,0

53

adg_i0:3
55

4!mpdu_mt_ap_association,4,0

56

57

58

apmasc_proc_i0:7
60

6!mt_associated,3

aaa_i0:1
62

5!pseudo_create,3,0

64

5!mt_ap_association,3,0

65

67

6!instanciate_csr_from_aaa,1

68

70
5!pid_registered_to_aaa,7,0

71

73

2!mpdu_ap_mt_mac_addr_allocate,1,0,0

74

753!mt_address,4

77

3!set_mac_addr,4

78

80
2!set_mac_addr_ack,8,0,0

81

83

5!mpdu_mt_ap_mac_addr_received,4,0

84

86
2!mpdu_ap_mt_association_ack,1,0,0

883!association_completed,4

893!association_completed,4

90

94

7!association_cnf,4,0,0

96
96

96
96

mma_i0:5
96

96
96

ama_i0:2
96

96

__Timers:0
96

Fig. 2. Successful association

in Spin marking the property of interest as “undesired”, while hoping
for their satisfaction and the corresponding error traces). In this way
we found some “obviously reachable” states being unreachable and thus
a couple of unexpected errors of various kinds. Moreover, the resulting
traces are rather useful illustrating characteristic desired scenarios, such
as association setup, connection setup, etc.4 giving a better understanding
of the behavior of the protocol enhancing the confidence in our models
(and our translations, for that matter. . .). We found it quite useful to
compare the traces with the message sequence charts developed by the
Wand-consortium [15].

4 Cf. Figure 2 for one simple example, the complete set of such pictures is accessible
via the corresponding web pages.

5

After a few of the reachability checks, we in general proceeded to
more advanced properties, like safety or liveness properties. Depending
on whether the property was found to hold or not, it is listed as error or
a verified property. In the error-cases, we will discuss if the error shows
up in the global model as well.

1.4 General simplifications and abstractions

Mascara-control is a sublayer of Mascara, located on top of a few lower
layers. More specifically, MCL relies on

– control-segmentation and reassembly,
– wireless data-link control, and the
– MAC data pump

as lower entities of the protocol stack to perform its task. In our model,
all peer-to-peer communication of the dynamic control entities has been
replaced by direct, buffered communication between the entities, either
reliable or lossy. In case of lossy channels, the scheduler as part of the
data pump, whose internals are not available to us, is abstracted into
fairness assumptions wrt. to loosing messages.

1.5 Further information

This part of the verification document parallels the material at the Vires
verification web-pages, offering a reorganized and more distilled picture,
while the net resources contain the complete verification material, in-
cluding the source code of the models, version information about precise
changes and repairs in the model during the verification effort, resource
consumption, and, if appropriate, graphical representations of error traces
encountered. Due to limitations of space (and general interest), we don’t
include all of this microscopic information into the report, but refer the
tireless reader to

http://www.informatik.uni-kiel.de/~seriv/Deliv/Veri

1.6 Structure

In the following Sections, we summarize the results for three configu-
rations and abstractions of increasing complexity: first, Section 2 and
Section 3 discuss a configuration with concerning an abstract version of
steady-state control, concentrating on its most complex component, the

6

MT target cell and the dynamic control part, afterwards a combination
of dynamic and steady-state control, first for a one-sided configuration,
only (Section 4) and afterwards modelling both AP’s and MT’s side of
the protocol (Section 5). We conclude in Section 6.1 summing up the
experiences and discussing the relevance of the experiments.

2 Steady-state control

We did a series of verification experiments, using tools sdl2if, if2pml, Spin,
DTSpin. At first, we started with two modest goals:

– to try the combination of all the tools involved in the verification
process,

– and to check the limits of the verifiers (Spin and DTSpin).

Later it turned out that we were able to achieve more than we had
expected. In fact, we were not only able to go through the whole verifi-
cation process on just a small example, as we intended initially, but we
also managed to expose some bugs in the tools and several errors in the
Steady State Control specification (i.e., its SDL model).

2.1 Experiments

We have done about 20 verification experiments whose complexity in-
creased progressively. All of them were devoted to analysing the behaviour
of MTC — the most complex component of the Steady State Control
module. We went through the following phases.

First, we wanted to obtain the Promela model of MTC, by pushing the
SDL specification through the pipe of translators sdl2if and if2pml. This
worked quite smoothly, after we managed to get a syntactically correct
SDL specification of MTC. During this phase, some minor bugs were
exposed in sdl2if and if2pml, but these were easy to correct.

Second, the SDL specification of MTC had to be closed by providing
an environment. We hand coded a greatly simplified environment directly
in Promela. This consisted in observing that MTC communicates with
its environment by several variants of simple request/confirm protocols
which were coded as separate Promela processes. The verification exper-
iments performed during the second phase were mostly inconclusive, due
to the fact that Spin could not enumerate the state space (even with
2048MB of memory). However, one of the experiments exposed a bug in
Spin. This was reported to Gerard Holzmann who kindly corrected it.

7

The state explosion problem was caused, in our opinion, by our initial
environment being too nondeterministic, i.e. too abstract. But even this
simple abstraction allowed to expose a deadlock (described later).

Third, we decided to build a less abstract environment by replacing
our simple Promela processes with the SDL models of all the Steady State
Control components which MTC relies on. Of course, we had to slightly
modify the components in order to abstract out the real behaviour of other
components on which the whole Steady State Control relied, in turn. Af-
ter this phase we had quite a faithful Promela model for the whole Steady
State Control, obtained automatically, via sdl2if and if2pml. The verifica-
tion experiments performed during the third phase were more successful
(described later). Also, another bug was exposed in Spin.

We started using Spin during the second and third phase while DT-
Spin was used during the third phase only.

2.2 Results

First deadlock An experiment performed in the second phase exposed the
following deadlock scenario:

During the initialization phases, Gen MC proc sends signals INIT MDC
to start initialising MT Dynamic Control and INIT MSS to start initial-
ising MT Steady State Control (both action are performed together in
an atomical way). After receiving them, MDG (in MT Dynamic Con-
trol) and MSG (in Steady State Control) initialise other entities of MT
Dynamic/Steady State Control.

MAA is initialized by MDG and sends SYNCHRO WITH to MTC
at the moment when MTC is not initialised yet. The only signal MTC
is waiting for is INIT MTC. So it discards this SYNCHRO WITH, and
then it gets and consumes INIT MTC. Now MTC is waiting for SYN-
CHRO WITH fromMAA while MAA is waiting for SYNCHRO WITH ACK
from MTC, resulting in a deadlock.

This error was removed by enforcing a proper initialization order be-
tween MAA and MTC. It was obtained by sending a ’synchronising’ signal
from MTC to MAA.

Second deadlock An experiment performed in the third phase exposed
another, and this time more complex, deadlock:

The deadlock scenario actually starts when after a normal initialisa-
tion stage, MTC sends INIT HO SEEK INFO to MTI. After that, MTC
goes to the Associated state again and receives GET TARGET AP(backward ho)

8

from MHI. They perform the backward handover procedure at the end of
which MTC is in Associated state again while MHI is in non assoc.

Now it is supposed that MTC, MAA and MHI will go through the
SYNCHRO WITH + ASSOCIATION COMPLETED stage, but instead
of that, MTC gets the reply INIT HO SEEK INFO OK as an answer to
its previous request to MTI and leaves the Associated state (MTC is inside
the TIP procedure now). As a result of that, signal SYNCHRO WITH,
which is received somewhere in between, will be discarded. Consequently,
SYNCHRO WITH ACK will not be sent back to MAA, thus MAA will be
blocked and it can send ASSOCIATION COMPLETED neither to MTC
nor to MHI. Thus MHI will be blocked too and the deadlock occurs.

This error was corrected by informing MTI about the handover re-
quest.

Third deadlock Next, we considered a simplified model of the MTC envi-
ronment allowing to initiate a forward handover procedure only to MTC
not to MPX.

After enumerating the state space, DTSpin reported unreachable code:

line 323, state 163, "the_channel = i"

line 324, state 164, "q_rcm_0!acquire_new_ap,_pid,the_channel"

and

line 569, state 373, "ap_mac_addr = i"

line 570, state 374, "q_mhi_0!target_ap_found,_pid,ap_mac_addr"

line 571, state 375, "beacon_received = 0"

From this, it can be deduced that the forward handover never takes
place. On the other hand the part of the code where AP LOST was sent
by MTC to MHI was reachable. Moreover this signal was eventually con-
sumed by MHI and it started the forward handover procedure.

Now we reconstructed with Spin such a scenario (which turned out
to be a deadlock) by putting assert(false) after consuming AP LOST in
MAA.

After some normal activity MHI initializes a backward handover.
MTC successfully finds the new AP and tries to get back the associa-
tion to its old AP for the period it will be waiting for the association
with the new AP. However, the old AP has been lost, so MTC receives
ACQUIRE NEW AP KO being in the return to old ap state. According
to the code, MTC sends AP LOST to MHI in order to initiate a forward
handover, sets Beacon received into false and goes to Non Associated
state. MHI forwards AP LOST to MAA.

9

As the result we have MTC in the Non Associated state, where it waits
only for SYNCHRO WITH from MAA; MHI in find target ap waiting for
TARGET AP FOUND from MTC (or one more AP LOST); and MAA
in the state where it waits for a signal from Ccon. On the other hand,
Ccon will send this signal only after receiving HO IND from MHI. So we
have a classical deadlock situation because of a circular waiting.

Analysis of the code showed that there is an error caused by mixing
the situation when MT tries to get back the connection to the old AP
after the TIP procedure and after the backward handover procedure. Any
unsuccessful attempt to get the connection back after the TIP procedure
led to deadlock too. We corrected the code to avoid deadlocks.

Functional property Finally, we decided to check some functional prop-
erty of MTC. As was already mentioned, MTC communicates with its
environment using several simple request/confirm protocols where the re-
quest should alternate with the confirmation. (In fact, there are several
variants of this protocol, depending on whether the confirmation is a dou-
ble success/failure signal, a single success signal, or no signal at all, in
which case it must be guarded by a timer.)

In particular, MTC uses this alternating pattern when it communi-
cates with GDP, in order to temporarily suspend MSC and later resume
it. Since the suspend and resume messages are sent in separate parts of
the SDL specification of MTC, it is not obvious, just by inspecting the
SDL code, whether the suspend and resume messages alternate. A simple
experiment indeed confirmed that this is always the case.

We first tried to encode this simple safety property as a so-called trace
observer

trace {

do

:: gdp!suspend_msc -> gdp!resume_msc

od

}

but this experiment exposed a bug in Spin. So the property was instead
encoded as a direct observer, via assert statements embedded directly in
the Promela code (just before sending the relevant messages), and Spin
could enumerate the whole state space checking that the property is not
violated.

In this experiment, Spin reported the following statistics:

10

State-vector 416 byte, depth reached 3450, errors: 0

55959 states, stored

23.727MB memory usage for states

25.582MB total actual memory usage

which should be read in the following way:

State-vector 416 byte is the memory needed to represent one state.
55959 states, stored is the number of different states found in the

model (all the states must be kept during the state space enumeration,
so 23.727MB memory was needed for states).

depth reached 3450 is the longest acyclic path through the model (since
Spin must keep a state stack of at least this depth, about 1.7MB was
needed in addition to the state memory).

As a conclusion, it is quite likely that with our 2048MB memory we will
be able to handle a model about 75 times bigger!

False errors Since we worked with an abstraction of the Steady State
Control, the errors reported by Spin (i.e., the erroneous traces) had to
be always interpreted in the context of the whole SDL specification for
MASCARA, to single out so-called false negatives.

For example, one of the verification experiments found a livelock
caused by RCM: MAA sends SYNCHRO WITH and this triggers MTC
to send ACQUIRE NEW AP to RCM, to which RCM in turn replies with
ACQUIRE NEW AP KO, so MTC answers the initial SYNCHRO WITH
with SYNCHRO WITH ACK(fail), and this can be repeated again.

After analysing the SDL code, it turned out that this potential livelock
is allowed by the MASCARA protocol.

Currently, the often tedious and time consuming task of interpreting
an erroneous trace cannot be automated since it would call for a separate
tool able to convert the Spin error report to an input of the simulation
tool for SDL.

As standard Spin does not support modeling time, in the experiments
described in the previous section we had to use an abstracted version of
timers and timer operations, based on non-deterministic timer expira-
tions. This implied that in our system we could consider time only in a
qualitative way.

In order to deal with the real-time aspects in a quantitative manner,
in the third phase of our experiments we used the discrete-time extension
of Spin, DTSpin, developed in the framework of the VIRES project. We

11

repeated with DTSpin all our experiments using the values of the timing
parameters as they were defined in the SDL specification. The outcome
was essentially the same as with the standard Spin, i.e. we detected the
same deadlocks and we were able to verify the same aforementioned func-
tional property. Moreover, it turns out that the introduction of time did
not significantly increase the state space of the verified model (less than
one order of magnitude).

3 Dynamic control

The dynamic control forms one large part of MCL, its basic task is to set
up and tear down associations and connections. It has an upper interface
to the control layer on top of Mascara. The peer-to-peer signals are sent
to and received from the control segmentation and reassembly for the
actual transmission. It exchanges control signals with many other entities
of the Mascara-protocol.

3.1 Simplifications and abstractions

To tackle properties of the dynamic control independently of the rest of
the protocol, the relevant entities had to be cut-out of the global protocol.
The dynamic control relies on

– control-segmentation and reassembly,
– wireless data-link control, and the
– MAC data pump

as lower entities of the protocol stack to perform its task. In our model,
all peer-to-peer communication of the dynamic control entities has been
replaced by direct, reliable communication between the entities. From the
entities of the dynamic control, only the

1. generic dynamic agents, the

2. association agents, and the
3. MVC agents

are included. This means especially, the handover indicator, nominally
part of the dynamic control, has been left out in this series, since its
behavior is more closely related to the task of the steady-state control and
is treated together with that part. So the rest of Mascara control including
handover indicator has been abstracted away and replaced by a more

12

or less chaotic environment. Creation and termination of processes, an
important part of the behavior of the dynamic control, has been replaced
by statically starting a fixed number of instances and simulating creation
and termination by appropriate signaling. This was motivated by the lack
of process creation in the IF-language.

Figure 3 gives a global overview about the configuration, where the
lower-layers have just been replaced by a direct connection between the
two sides and where the rest of Mascara, especially the steady-state con-
trol, has been replaced by abstract versions (AP MASC and MT MASC). The
model has been closed by adding a separate environment process (entity
UPPER of the Figure).

Dynamic_Control Fri Mar 24 11:22:48 2000

dc.pr View: 9 / Page: 13

system Dynamic_Control

DC_DC

(AAA2MAA), (AMA2MAA)
(MAA2ADG),(MAA2AAA),(MMA2AAA)

ADC_APMASC

(ADG2APMASC),(AAA2APMASC),(AMA2APMASC)

(APMASC2ADG),(APMASC2AAA),(APMASC2AMA)

MDC_MTMASC

(MDG2MTMASC),
(MAA2MTMASC),
(MMA2MTMASC)

(MTMASC2MAA),
(MTMASC2MMA)

UPPER_ADC

(MADG2UPPER),
(MAAA2UPPER),
(MAMA2UPPER)

(UPPER2MADG)

UPPER_MDC
(MMDG2UPPER),
 (MMAA2UPPER),(MMMA2UPPER)

(UPPER2MMAA),(UPPER2MMDG)

AP_Dynamic_Ctrl MT_Dynamic_Ctrl

AP_MASC MT_MASC

Upper

Fig. 3. Dynamic control global model

Model As sketched in Figure 3, the SDL-model of the dynamic control,
fed into the translators from SDL to Promela, consists of the following
parts:

– common upper layer
– AP side

• dynamic generic agent
• association agent
• MVC agent

– MT side

13

• dynamic generic agent
• association agent
• MVC agent

– underlying medium, assuring reliable, peer-to-peer communication us-
ing direct SDL-channels.

The static structure of the processes ADG, AAA, and AMA is shown
in Figure 4, the counter-part at the mobile terminal is (almost) symmetric.
As usual, the complete code can be obtained from the web resources
bundling the verification results.

AP_Dynamic_Ctrl Fri Mar 24 11:22:48 2000

dc.pr View: 12 / Page: 16

block AP_Dynamic_Ctrl

UPPER_ADC UPPER_ADC UPPER_ADC

ADC_APMASC

UPPER_ADG

(MADG2UPPER)

(UPPER2MADG)

UPPER_AAA

(MAAA2UPPER)

(UPPER2MAAA)

UPPER_AMA

(MAMA2UPPER)

ADG_AAA
(ADG2AAA)

(AAA2ADG)

AAA_AMA

(AAA2AMA)

(AMA2AAA)

AAA_PEER

(AAA2MAA)

(MAA2AAA),(MMA2AAA)

AMA_PEER

(AMA2MAA)

ADG_APMASC

(ADG2APMASC)

(APMASC2ADG)

AAA_APMASC

(AAA2APMASC)

(APMASC2AAA)

AMA_APMASC

(AMA2APMASC)

(APMASC2AMA)

ADG_PEER

(MAA2ADG)

AAA

AMA

ADG

Fig. 4. Dynamic control processes, AP-side

For a beginning, we choose to start with the additional simplifying as-
sumption, that there is only one MT and one AP. This allowed a large
reduction in the state space, since in this way, the different addresses to
be stored and transmitted can be completely abstracted away. Note that
with one AP only, a proper handover cannot be directly modeled and ver-
ified, but note that handover is not a service of the dynamic control, but
consists of an appropriate sequence of deassociation and association step,
the signaling each of which can be modeled using this simplified setup.
What cannot be modeled is the correct calculation of the addresses, but
this is the task of the data procedures and independent of the signaling,
on which we chose to concentrate here.

14

3.2 Results

Table 1 collects the corresponding verification results. The verification
efforts concentrated on the proper functioning of the association-related
functionality of dynamic control, i.e., neglecting the connection-oriented
features for a start. The latter are modeled in the abstraction, but nei-
ther mentioned in the properties and nor stimulated by the environment.
Hence, they do not contribute seriously to the state-space.

As described in Section 1, we started with simple reachability prop-
erties.

Reachability checks

1. AAA associated partial association
2. MAA associated a successfully completed association
3. terminating an association after AAA has been notified of a new association, some-

thing goes wrong at the MAA side

Errors

1. race condition (1) association request too early
2. race condition (2) association request still too early
3. unspecified reception MT Deassociation cnf has 2 possible receivers
4. unspecified reception In state aaa.wait addr received, signal

Association ind has two possible receivers

Verified properties

1. association/deassociation Correct handling of association failure at the MT side. If
for some reason, the MT decides a power-on handover
should not be continued, then also the corresponding
AAA will terminate, if it already had taken notice of
association being built up.

2. no unsolicited MT-association If the MT is associated, reported by Association cnf

to the upper layer, the AP must reported the successful
association of the new MT before (by Association ind)

Table 1. Verification results for dynamic control (association handling)

Reachability Concentrating on properties of the association handling,
we check-pointed the crucial stages in the corresponding signal-exchanges.
The table contains the stages, where first, the AP-side has all the nec-
essary information, where secondly the MT-side has it, too, thus com-
pleting an association,5 and thirdly a previously established association

5 Cf. Figure 2 on page 4 for an example, further scenarios are available electronically
at Vires’ web resources.

15

is revoked by some signal at the AP or at the MT side. Basically, the
first two scenarios are intended to capture the normal course of behavior
of the association-related services, and thus allowed to compare the the
resulting scenarios with the ones provided by industry [15].

Errors Spin, in general, found the counterexamples rather quickly. In
the examples below, we show the ones with the shortest error trail.

The properties are simple untimed properties. To avoid an infinite
state space, we cannot use an completely chaotic environment —this
would fill SDL’s input queues beyond any bound; instead we have the
environment generate only a finite amount —typically a small number—
of signals. To obtain the results, we manually repaired the errors detected
earlier in the SDL-code and also partially in the Promela-code.

The errors encountered fall into two categories: race conditions and
unspecified receptions. In the first case, signals are received in an unex-
pected order, such that one of the signals is just ignored, leading to a
deadlock. Figure 5 shows one simple instance of this kind: during initial-
ization at the MT-side, dynamic control is initialized and immediately
afterwards, an association request is issued.

In the sealed-off and abstracted model of dynamic control used here,
the signals are sent by the upper process used to model the environment,
including the rest of Mascara’s control. In the global Mascara model [3],
the routing of the signals is slightly more complex than shown here: the
signal Association req is sent from the upper layer to MAA as shown,
but Init MDC actually is sent from Mascara generic control to dynamic
generic control in reaction to a request to open the MAC-layer. This
opening request comes from the upper layer and Init MDC is issued to
MDC after the radio-control manager is running, which is not modeled
here. Nevertheless, as there is no confirmation to the upper protocol layer
that the MAA is indeed running, there’s nothing in the global model, as
well, to prevent the upper-layer from sending the association request,
while the MAA is not ready to receive it.

The verification gave various variants of the scenario of Figure 5. We
expect that more instances of this error can be found in the dynamic
control, for example for connection setup or for the interactions with the
rest of Mascara, which we abstracted away in the current model. This kind
of racing condition leading to unexpected reception of signals, especially
in the initialization phases, has also been reported earlier in the effort to
verify the steady-state control entity (cf. Section 2).

16

upper_proc_i0:10

12

13

maa_i0:5

19

3!association_req,10,0,0

mdg_i0:7

23

2!init_mdc,10,0

24

25

27

3!init_maa,7,0,0

28

mtmasc_proc_i0:9

30

5!init_mhi,7

32

5!set_mac_addr,5

33

35

3!set_mac_addr_ack,9,0,0

Fig. 5. Association request too early

The second type of error is caused using signals where more than one
receiver is possible.

One such error is shown in Figure 6. It invalidates the liveness-property,
expressing that deassociation is a confirmed service of Mascara control to
the upper layer:

If the upper layer at the MT-side requests a deassociation, even-
tually the deassociation is confirmed.

The trace shows that this is not the case. The error occurs, when a half-
established association, i.e., when after sending the first handshake, MAA
has reached state associating wo addr. At this point, the association is
already being revoked by the upper layer, sending MT Deassociate to the
dynamic generic control. MAA should then, after a few steps, confirm the
deassociation, but since the corresponding signal MT Deassociation cnf

has two possible receivers, the signal is not translated, and in the trace
shown the signal is missing.

Another bug of this kind invalidates the safety property, which could
be dubbed “no unsolicited MT-association”:

If the MT is associated, the upper layer of the AP must have been
informed by the new MT before.

Figure 7 shows the violation.6 After receiving the 3rd association hand-
shake of AAA, the agent should signal Association ind to the upper
layer and complete the set-up by giving the 4th handshake back to MT.
In state wait addr received of AAA, Association ind has two possible

6 The shown part of the trace starts shortly before the second association handshake
only.

17

upper_proc_i0:9
26

27

30

33

mdg_i0:6
35

1!init_mdc,9,0

36

37

mtmasc_proc_i0:8
39

3!init_mhi,6

maa_i0:4
43

2!init_maa,6,0,0

44

46
3!set_mac_addr,4

47

49
2!set_mac_addr_ack,8,0,0

51

2!association_req,9,0,0

52

54
3!synchro_with,4

55

57

1!mt_deassociate,9,0

58

60

1!mt_deassociate,9,0

62

2!synchro_with_ack,8,0,0

64

66

2!mt_deassociation_req,6,3,0

adg_i0:3
68

4!mpdu_mt_ap_association,4,0

69

70

71

apmasc_proc_i0:7
73

6!mt_associated,3

aaa_i0:1
75

5!pseudo_create,3,0

77

5!mt_ap_association,3,0

78

80

6!instanciate_csr_from_aaa,1

81

83
5!pid_registered_to_aaa,7,0

84

86

2!mpdu_ap_mt_mac_addr_allocate,1,0,0

Cycle/Waiting90
90

90
90

mma_i0:5
90

90
90

ama_i0:2
90

90

__Timers:0
90

Fig. 6. Deassociation confirmation not sent at MT

receivers and therefore is not being translated. Hence the signal is missing
in the scenario and model-checking reports an error.

Since the signals and signal-lists of the abstracted version are just the
ones from the global model (except simplified parameters), those errors
appear in the large model as well. Indeed, considering the amount of
overall signals, we expect more such errors lurking in the whole protocol.

While in principle, ObjectGeode is smart enough to catch mis-
specifications like “ambiguous receiver” and often does (for instance also
for signals which have no possible receivers), sometimes, as in these two
cases, they slip through the checks that the ObjectGeode offers. The
fact that sdl2if refuses to translate signals with ambiguous received shows
that the detection is possible at compile time and using the —undocu-
mented— sdl2if -option -S one can even get a log-output . . .). Which
errors go unnoticed and under which conditions is not transparent to us.

18

86

90

6!instanciate_csr_from_aaa,1

91

94

5!pid_registered_to_aaa,7,0

95

99

2!mpdu_ap_mt_mac_addr_allocate,1,0,0

101

1023!mt_address,4

105

3!set_mac_addr,4

106

109

2!set_mac_addr_ack,8,0,0

110

114

5!mpdu_mt_ap_mac_addr_received,4,0

116

119

2!mpdu_ap_mt_association_ack,1,0,0

1223!association_completed,4

1233!association_completed,4

124

128

7!association_cnf,4,0,0

131

131

131

131

mma_i0:6

131

131

131

ama_i0:3

131

131

__Timers:1

131

Fig. 7. Association indication not sent at AP

Verified properties While the reachability analysis of above mainly
checks various standard association-related scenarios of dynamic control,
which could be compared with [15], the interesting and error-prone be-
haviors in this part deal with the interference of these services. Indeed,
much of the complexity of the control structure of dynamic control is
due to the fact, that requests concerning services offered to the above
layer must be dealt-with gracefully at any point in time, leading to con-
sistent views about the status of the association in the entities involved.
The properties (and the environment) we chose are of that kind, namely
that the interference of association set-up and deassociation is handled
properly.

The first property could be called a “correct handling of initial associ-
ation failure” at the MT side. More specifically, it tests, whether not the
AAA will falsely consider an MT to be associated, if during a power-on
handover, i.e., during the very first association signal exchanges, a failure
occurs. Setting ϕ1 as “reception at AAA of the first association hand-
shake”, ϕ2 as “failure reported at MAA”, and ϕ3 termination of AAA,
the verified property LTL-property reads:

ϕ = ✷(ϕ1 → ✷(ϕ2 → ✸ϕ3)).

19

Proposition ϕ1 denotes the point in time, the association agent at the
AP-side is informed for the first time about the intention of the MT to
set-up a new association; before that point, the corresponding association
agent does not exist. The error-reporting proposition ϕ2 is set to true
at MAA, if for any kind of reason, the association set-up is disrupted
or, once established, terminated again. A number of failures and signals
can trigger this event at MAA: 1) reception of AP Lost when the radio
connection breaks down, 2) revoking of the association by the upper layer
with the signal MT Deassociation req, 3) failure at MTC (and lower
layers) to synchronize or re-synchronize with the AP, for instance after
an incommunicado phase7, 4) the maximal number of fruitless MAA-
attempts to associate with the AP is exceeded, 5) the AP turns down the
association request (either using the second or the fourth handshake), or
finally 6) the fourth handshake from the AAA arrives too late. Proposition
ϕ2 covers all the six mentioned situations. It should be noted that not all
of the six situations are to be expected in a properly working protocol.
Inspecting the code of [3], one would for instance conclude with a certain
confidence that no incommunicado phase will actually occur during the
initial association phase. Nevertheless, we simply check-point with ϕ2 all
possible situations. Moreover, since we are deal with an abstract version of
the protocol, the behavior of the rest, especially the steady-state control,
is more non-deterministic. Note also that, despite the “eventuality” in ϕ,
the property does not depend on the assumption, the lower layers provide
a non-lossy communication buffer, since, after a failure, the ✸ϕ3-part is
guaranteed by time-outs.

The second property is the safety property “no unsolicited MT-association”
mentioned above: if the mobile terminal is associated, reported by Association cnf

to the upper layer, the AP must reported the successful association of the
new MT before (by Association ind).8

3.3 Possible extensions

The experiments reported above cover only part of what could go wrong
at the dynamic control. Routinely, one could continue in the same style,
using the same model, checking the same properties also for the two
other types of handovers —forward and backward— since all three types
of handovers are handled almost uniformly in MAA.

7 cf. the Mascara-specification [1] for details.
8 It’s the same property as mentioned in the errors-section and shown in Figure 7.
The current experiment was done after repairing the cause of the error.

20

The experiments covered the behavior on the level of associations. The
behavior on the level of connections is similar, the peer-to-peer partners
are then MVC-agents and not association agents. Besides that, the ser-
vices offered to the upper layer are comparable (opening and closing, and
additionally switching) such that corresponding properties can be checked
much in the same way. The abstract model contains the corresponding
entities and code already, only the environment needed adapting. Besides
that it would be worthwhile to check whether there is unhealthy interfer-
ence between the two layers of services, for instance, what happens with
a partially established connection if the whole association is terminated
etc.

4 Steady-state and dynamic control, MT-side

Following a bottom-up approach, at the next stage, we combine the mod-
els for dynamic and steady-state control. Starting from the same global
model [3], both abstract models had been worked out in parallel and
largely independently in Eindhoven and Kiel, and moreover investigated
and cleaned-up separately (cf. Section 2 and Section 3). Targeting at
properties for a complete dynamic control configuration, the experiments
reported in this section were mainly intended as sanitary checks for consis-
tency after combining back the two models. Since MTs target cell MTC,
which is not present at the access point, is the most complex entity of
the steady-state control, we choose the combination of steady-state and
dynamic control for the mobile terminal to check for consistency of the
separately developed models, before turning to the two-sided model in
the next section.

4.1 Simplifications and abstractions

The starting point of the model was once more Vires’ global specification
of Mascara. The configuration consists of the control entities of one mobile
terminal. More specifically, the processes featured in the model are:

– an upper layer as environment upper proc

– processes of MT’s dynamic and steady-state control
• MT-target cell
• handover indicator
• one instance of MVC-agent
• association agent
• tip agent

21

• further processes of less importance for the properties checked:

∗ dynamic generic agent
∗ radio control manager
∗ measurement functions
∗ generic dynamic control
∗ generic steady-state control

– abstracted rest of MT-behavior (mtmasc proc)

– data pump as lower layer

Besides the mentioned simplifications, we stuck to Mascara’s overall
as close as possible and followed the approach described in Section 1,
using the combination of sdl2if and if2pml to obain Promela-code, fed
into DTSpin.

4.2 Results

Table 2 collects the corresponding verification results.

Reachability We started with checking simple reachability properties
like “it is possible that Synchro With is sent and received”, “it is possible
for the MT-association agent to get associated”.

Errors So as we were verifying the model containing both dynamic and
steady state control, each of which had been previously verified as a sepa-
rate model, we mainly aimed to check that putting them together will not
cause problems. This series of experiments was considered as an prepara-
tory step in the bottom-up way from the verification of the control sub-
entities to the verification of the whole Mascara control for the two-sided
configuration of Section 5.

An important interaction between the dynamic control and the steady
state control concerns the phase of establishing the association to an AP.
Therefore, the property that should hold is “It is possible for the MT to
associate to an AP”. This property was successfully verified for the sepa-
rate closed model of the dynamic control including a simple abstraction of
steady state control whose behavior was not chaotic but regular in sense
that several assumptions over steady state control behavior were made.

Some of the assumptions fitted the properties that were verified for
the model of the steady state control, but some others did only under
the new assumptions, that would claim that in several situations control
sub-entities are always synchronized.

22

2. Simple liveness property : if the sig-
nal synchro-with is sent, then even-
tually the corresponding acknowl-
edgment is received. The property
does not hold, because of a deadlock
by unspec. reception (caused by a
racing condition).

MTC cannot handle Synchro With in states other than
associated and non associated. MAA sending this sig-
nal waits for the acknowledgment Synchro With ack, if
this doesn’t come, since MTC has ignored Synchro With,
MAA deadlocks. The error can occur in various situa-
tions.

Deadlock by “uncooperative” environment
deadlock by AP requesting deassociation
AP gets lost
too early reassociation request

race condition After an association has been set up, it is lost again, the
upper layer requests a new association, but the signal
Synchro With is not received, so the deadlock occurs.

unspecified reception signal MT Deassociated cnf has 2 possible receivers. This
fact remained unnoticed by the SDL-checker, and neither
the if2pml issued a warning, that it could be sent to the
wrong place. The scenario produced by Spin shows where
it fails.

unspecified reception In state aaa.wait addr received, the signal
Association ind to be sent after the 3rd associa-
tion handshake has two possible receivers (and is not
being translated). This invalidates the safety property:
If the MT is associated (reported by Association cnf),
the upper layer of the AP must have been informed by
the new MT before (by Association ind)

Table 2. Verification results steady-state and dynamic control (MT only)

23

At the signal exchange level the interaction between the control sub-
entities during the association phase looks like the following: MAA sends
signal synchro with to MTC. If MTC is in non-associated state, it sends
a request to RCM to tune the mobile terminal into the correspondent fre-
quency. Depending on the answer of the RCM,MTC sends Synchro With ack

with a positive or negative acknowledgment to MAA.

It is essential that non-associated is the only state where the target
cell can process the signal synchro with, in all the others it simply discard
the signal. It had been already verified on the model of the steady-state
control that receiving synchro with in this state, MTC always acknowl-
edges it (in one time unit).

Another essential point is that association agent is designed in such
a way that after sending synchro with it is locked until it gets the ac-
knowledgement from MTC. This means that the protocol behavior relies
on the assumption that MAA sends synchro with only when MTC is in
the non-associated state.

So the property we chose to verify was the following: “if the signal
synchro with is sent, then eventually the corresponding acknowledge-
ment is received”. We found a number of situations where this property
is violated.

Several of them occur due to an (natural) assumption that the upper
layer (which is outside the scope of Mascara’s specification) behaves com-
pletely chaotically. It turned out that in order to get Mascara working
some assumptions on the behavior of the upper layer have to be taken.
Therefore, a (non-chaotic) model of the upper layer was built.

Another cause of the error had been again race conditions.

After repairing the model, the property was verified under condition
that several assumptions on the environment, basically the upper layer,
the property holds.

Verified properties Finally, we verified the property that it is possible
for the mobile terminal to associate to an AP, though it is also possible
that the MT will never get associated to an AP (due to the poor con-
nection quality – in case if it is permanently impossible to tune into the
frequency of any AP).

4.3 Possible extensions

The extension that we intended to do at the next verification stage is the
model containing the whole Mascara control. In the current model, the

24

AP control was presented by an abstraction based on some assumptions
about its behavior (namely, that an AP reacts to all the signals coming
from the MT control as it specified in the textual description of Mascara).
At the next stage it was supposed to investigate whether the combined
model would produce the expected behavior.

Getting the model through the tools As it is shown in the table on the
time consumption (Table 5), about a half of the time in this series of
experiments were spent on getting the model through the various tools.
Besides combining the two separately developed abstract models for dy-
namic and steady-steady state control, used in the following series for a
series of experiments on a two-sided configuration of Mascara-control, an
important side-effect of the current series was to hammer out a number
of bugs that had went unnoticed before. As we worked with a combina-
tion of ObjectGeode, sdl2if, if2pml , Spin, and DTSpin, it took some
time to identify which of these tools had been the actual source of the
error, and localizing which situation, which architecture, which version
of tools etc., each bug or curious behavior occurred. This required close
cooperation with the the tool-developers; in case tools developed within
the Vires-project had been spotted as cause of the unexplainable behav-
ior —in most cases rather small glitches— the errors were corrected the
shortest possible terms. It should be noted, that when talking about un-
explainable behavior of the tool set, this also concerns the more mature
tools like ObjectGeode, and Spin/XSpin, and even gcc.

5 Steady-state and dynamic control

This section reports the results about the verification of a complete Mas-
cara control configuration, complete in sense that at least one MT and
one AP are involved. Thus, it generalizes and extends the verification
results for a one-sided configuration from Section 4, which dealt with a
one-sided configuration and Section 3, dealing with the dynamic control
part, only.

Different from the results in Section 3 and 4, the properties to be
verified here concentrate on the proper operation of an existing association
(which is more or less the task of the steady-state control, however, the
dynamic control also contributes to it). More precisely, the model is used
to verify the combined functioning of the protocols for

– I’m alive, for
– incommunicado, and for the

25

– backward and forward handover.

in the context of one single MT and one AP. Thus, neglecting the pure
data transfer functionality, the investigation covers much of the most com-
plicated behavior of Mascara in the higher layers of the protocol (layers
above the data-pump and the WDLC).

5.1 Simplifications and abstractions

Concentrating on Mascara control entity, the model again replaces lay-
ers below the control-layer by simplified versions. The abstract version of
the data pump is inspired by the simplified model produced in Greno-
ble. While preserving more or less the “official” interface with the upper
layer, the data-pump and the sliding-window entities simply transfer the
required signals as a lossy communication channel between the two in-
stances of Mascara and especially generate framestart signals periodi-
cally.

The layers upper the control entities are partly merged into the asso-
ciation agents to simplify the model such that it can be handled by the
model-checker. All the behavior related to interaction with the physical
reality (measuring the signal strength, measuring the error rate etc. at
the lower layers) is replaced by non-deterministic behavior.

This leads to the following configuration, consisting of dynamic and
steady-state control entities of one mobile terminal and one access point.
More specifically, the processes featured in the model are:

– at the mobile terminal

• MT-target cell

• hand-over indicator

• association agent (partly serving as upper layer)

• tip agent

• radio control manager

– at the access point

• tip agent

• I’m alive agent

– lower layer: generic data pump

Model The starting point of the verification was again a stand-alone,
sealed-off version of the entities mentioned, developed in Eindhoven, which
was cut out of the global “official” Vires-model of Mascara. Besides the

26

mentioned simplifications, we sticked to Mascara’s overall model as close
as possible.

The model has been translated by the Vires-toolset into Promela
and checked with DTSpin. To model-check various properties, we used
the model-checker DTSpin, a discrete-time extension of the Spin model-
checker, developed in Eindhoven within the Vires project. To feed the
model into spin, the SDL-code is translated in two steps:

1. translating SDL to the intermediate format using sdl2if, and

2. translating the result into Spin’s input language Promela, using if2pml

5.2 Results

Table 3 collects the corresponding verification results, where both timed
and untimed sets of experiments are carried out with DTSpin. The results
concerning the verified properties and the errors found in general depend
on each other, in that errors found while trying to verify the property led
to a corrected version of the model.

Unlike in the preliminary series, this time we ran into more serious
state-space problems.9 Especially for the later versions of the model (af-
ter necessary corrections and modifications) to obtain a model for which
we tried to verify the timed property, the size increased considerably,
Spinquickly ran out of memory even for minimal buffer sizes, and we had
to fiddle some time to obtain a small-enough model.

Reachability

Again we started checking whether a number of crucial points in the
various protocols mentioned above which contribute to the combined be-
havior, are reachable at all. The reachability checks are done by simply
checking assertion violations. Figure 8 shows one typical behavior of one
of the protocols, namely completing one single cycle of the incommu-
nicado protocol. Further scenarios concerning the signal exchanges for
various handovers are available at the corresponding web resources.

9 Some figures concerning resource consumption can be found at the corresponding
web-page.

27

Reachability

1. MT can go incommunicado
2. forward hand-over possible
3. incommunicado scenario
4. backward hand-over at MT return to old AP

Errors found

1. value out of range number of associated MT’s becomes negative
2. twice “start-of-tip” without end-of-tip in

between
caused by break of connection during incommuni-
cado

3. twice “end-of-tip” without start-of-tip in
between ← illegal termination

caused by unreported typo in the SDL-model

4. incommunicado becomes impossible caused by interference of backward hand-over and
incommunicado protocol

5. illegal termination MTI isn’t aware of backward hand-over
6. infinite undetected loop in backward hand-

over
In case radio quality is generally bad, MTC can
loop forever in scanning the environment and no
one notices.

Verified properties

1. no illegal termination verified after repairing of model
2. toggle-array chooses correct branches in

ATI (start-tip)
verified after repairing of model

3. toggle-array chooses correct branches in
ATI (end-of-tip)

verified after repairing of model

Timed properties (positive and negative results)

1. AP gives up association before MT
2. AP gives up too early (2)
3. permanent backward hand-overs possible MT is too eager to scan environment, without

time to send MT alive
4. AP gives up the association too early wrong combination of values for 4 timers and 4

other program constants
5. AP gives up association too early
6. permanent backward hand-over impossible corrects an earlier error
7. AP will always wait long enough before

giving up association
cf. a previously listed error, here a different choice
of values for the timers/constants verifies the
property.

Table 3. Verification results

28

mtc_i0:4

18

maa_i0:8

20

1!maa_active,4,0

23

25

2!synchro_with,8,0

72

74

1!synchro_with_ack,4,0

78

79

80

81

mhi_i0:7

83

3!association_completed_mhi,8,0

gdp_i0:6

86

5!resume_msc,8,0

89

2!association_completed_mtc,8,0

amaia_i0:2

92

4!mt_associated,8,1

100

103

4!mt_alive,6,1

109

112

4!mt_alive,6,1

144

147

4!mt_alive,6,1

152

mti_i0:5

154

6!init_ho_seek_info,4,0

156

ati_i0:3

159

7!mpdu_tip,5,1,0

162

163

166

4!mt_sleep,3,1

170

6!mpdu_tip_ack,3,1

172

174

2!init_ho_seek_info_ok,5,0

176

177

179

3!suspend_mhi,4,0

182

5!suspend_msc,4,0

240

242

5!resume_msc,4,0

247

250

3!resume_mhi,4,0

256

259

4!mt_alive,6,1

2676!stop_ho_seek_info,4,0

269

269

269

269

269

269

269

:init::1

269

__Timers:0

269

Fig. 8. Incommunicado scenario

Errors

The second block of entries of Table 3 shows the errors in overview.

The first error by an interference of backward and a forward handover,
leading to erroneous behavior at the I’m-alive-agent at the AP-side. In
the AIA it seems not to been foreseen that a deassociation request can
occur “at the same time” as a forward handover. The AIA keeps track of
the number of associated MTs using the variable N ASS, increasing resp.
decreasing this counter at each association resp. deassociation. An obvious
invariant for this counter, that it never takes negative values, does not

29

hold. The error trace shows the situation where the error occurs:10 if for
a given, previously established association, a maximal number of “I’m-
alive”-invitations remain unanswered by the concerned mobile terminal,
AIA gives up this association, it initiates a forward handover by the signal
AP Lost and decreases its counter. If, immediately afterwards, the upper-
layer requests a deassociation, ADG relays the signal MT Deassociated

and the number is decreased another time without checking whether the
association is still in operation. The relevant pieces of code are shown in
Figure 9.

AMAIA Mon Apr 24 12:53:33 2000

Steady

MT_ASSOCIATED
(MT_MAC_ADDR)

/* ADG */

T(MT_MAC_ADDR)!ValidAddrFlag:= True

N_ASS:= N_ASS+1

-

MT_DEASSOCIATED
(MT_MAC_ADDR)

/* ADG */

Either AP has deassociated
the MT, or AP didn’t manage
to create a CSR instance.

T(MT_MAC_ADDR)!ValidAddrFlag:= False

T(MT_MAC_ADDR)!WakeUpFlag:= True

T(MT_MAC_ADDR)!Counter:= 0

N_ASS:= N_ASS-1

N_ASS = 0

TRUE

wait_assoc

FALSE

-

AMAIA 4 Mon Apr 24 13:11:56 2000

mss_ass-copy.pr View: 11 / Page: 18

process AMAIA

Steady

FRAME_START
/* ASC */

Beginning of
a new
time frame

i:=0

fs_beg

i = MT_MAX_actif

TRUE

.............

FALSE

T(i)!Counter = IAA_max

TRUE
MT_LOST

(i)
/* ADG */

T(i)!ValidAddrFlag:= False

T(i)!WakeUpFlag:= True

T(i)!Counter:= 0

N_ASS := N_ASS - 1

FALSE

’no action’

i:= i +1

fs_beg

Fig. 9. Number of associated MT can get negative (AIA)

The same erroneous behavior is possible in the AIA of the global
model [3], as well, if the upper layer issues the deassociation request im-
mediately following the forward handover is initiated. Considering the
behavior of the concrete Mascara protocol and the concrete environment,
we see that the upper layer is being informed about the loss of association
by the signal AP Association Lost ind from ADG and it is plausible to
expect that an upper layer will not request a deassociation of an MT
after being told that the association has been lost. Nevertheless, due to
the asynchronous nature of message passing, there’s nothing in the model
to prevent the upper layer to request deassociation while it has not yet
received the AP Association Lost ind-message.

10 With 500 steps the trail is too long to be conveniently be shown here.

30

The error has been corrected in later versions by checking whether
the MT is still associated before decrementing the counter.

The next two errors concern the proper functioning of the incommu-
nicado protocol. The incommunicado protocol is a peer-to-peer protocol
between a pair of Tip-agents MTI and ATI, where the ATI functions as
server granting permissions to go incommunicado to the MTI-clients. As
long as an association remains established, an MT once in a while goes
temporarily incommunicado and turns back shortly after.11 So each MT,
driven by its timers, toggles between a silent incommunicado and the
normal communication phase.

One property of the incommunicado protocol is that never twice a
start-of-tip is request without either a end-of-tip request of a MTI-timeout
in between”. The property does not hold and the error is caused by an
interference of the incommunicado protocol with the forward and the
backward handover under certain circumstances. Figure 10 shows an error
trace: After and association has been established and if in the course of
a backward handover, the MT fails to reconnect to the old AP,12 this
triggers a forward handover. In case this forward handover happens to
connect to the old AP once again, the scenario shown occurs, leading to a
second request for incommunicado. As a consequence, the MTI will never
be allowed to go incommunicado in the new association, since the MT is
already in incommunicado from the perspective of the AP.

Another error related to the incommunicado protocol concerns the
reaction of the AP tip-agent to the end-of-tip request: when one of the
MTI-peers has left for its incommunicado phase, it is expected to report
back into duty by one single end-of-tip signal. Receiving two such signals
without another start-of-tip in between is considered as an error by ATI.

In effect, receiving two end-of-tip signals leads to an illegal termination
of ATI, and thus would result in a rather serious error, since not only
the ill-behaved association would be affected, but all current and future
associations of the AP (basically, the complete MAC-layer of the given
AP would go silently out of business, and no precautions seem to have
been taken, to restart the process again — or any other). The reason,

11 For the purpose of the incommunicado-phases, the details of granting incommuni-
cado permission, and the behavior during incommunicado, consult the specification
report [4].

12 Backward handover is the graceful form of handover, where before changing to the
new AP, the connection to the old one is re-activated to allow for a proper deasso-
ciation.

3
1

maa_i0:11

27

30

32

2!synchro_with,11,0

33

rcm_i0:8

35

3!acquire_new_ap,6,0

80

82

2!acquire_new_ap_ok,8,0

83

85

1!synchro_with_ack,6,0

89

90

91

92

mhi_i0:10

94

4!association_completed_mhi,11,0

gdp_i0:9

97

6!resume_msc,11,0

100

2!association_completed_mtc,11,0

amaia_i0:2

103

5!mt_associated,11,1

110

113

5!mt_alive,9,1

119

asc_i0:5

124

127

5!mt_alive,9,1

130

5!frame_start,5,0

157

162

mti_i0:7

164

7!init_ho_seek_info,6,0

166

ati_i0:3

169

8!mpdu_tip,7,0,0

172

173

176

7!mpdu_tip_ack,3,0

178

180

2!init_ho_seek_info_ok,7,0

182

184

186

4!suspend_mhi,6,0

189

6!suspend_msc,6,1

194

197

3!acquire_new_ap,6,0

200

5!mt_alive,9,1

203

5!mt_sleep,3,0

211

213

2!acquire_new_ap_ok,8,0

197

3!acquire_new_ap,6,0

200

203

211

213

2!acquire_new_ap_ok,8,0

219

221

3!acquire_new_ap,6,0

228

230

2!acquire_new_ap_ok,8,0

236

238

3!acquire_new_ap,6,0

243

246

5!frame_start,5,0

270

272

2!acquire_new_ap_ok,8,0

278

280

6!resume_msc,6,0

285

286

288

4!resume_mhi,6,0

291

3!acquire_new_ap,6,0

297

303

305

2!acquire_new_ap_ko,8,0

307

309

4!ap_lost,6,0

311

312

314

1!ap_lost,10,0

316

2!get_target_ap,10,1

321

323

3!acquire_new_ap,6,0

326

5!mt_alive,9,1

332

338

340

2!acquire_new_ap_ok,8,0

345

347

4!target_ap_found,6,0

348

350

1!ho_ind,10,0

351

352

355

357

6!suspend_msc,11,0

360

2!synchro_with,11,0

361

363

3!acquire_new_ap,6,0

368

5!mt_alive,9,1

371

5!mt_deassociated,11,1

360

361

363

3!acquire_new_ap,6,0

368

371

374

5!mt_deassociated,11,1

383

5!frame_start,5,0

389

391

2!acquire_new_ap_ok,8,0

392

394

1!synchro_with_ack,6,0

398

399

400

401

403

4!association_completed_mhi,11,0

406

6!resume_msc,11,0

409

2!association_completed_mtc,11,0

412

5!mt_associated,11,1

419

422

5!mt_alive,9,1

428

433

436

5!mt_alive,9,1

439

5!frame_start,5,0

4622!get_target_ap,10,2

4665!mt_alive,9,1

471

473

7!init_ho_seek_info,6,0

475

478

8!mpdu_tip,7,0,0

481

481

481

481

481

481

481

adg_i0:4

481

481

481

:init::1

481

__Timers:0

481

32

why the designers expected that under no circumstances twice the end-
of-tip should be received is understandable: the MTI-peer strictly toggles
between incommunicado and communicating phases; even if the service
requests or their (positive or negative) acknowledgments are lost, the code
shows that MTI at least never signals twice the end-of-tip request. In the
worst case it would just stay incommunicado.

So we checked the property, where the erroneous termination state
if ATI is reachable. . Indeed, it is reachable, the error trace is given in
Figure 11. The reason for the error is rather prosaic: it is caused by a
typo in MTI, where in the signal MPDU Tip, the parameter mt mac addr

is used instead of the correct my mt mac address, which make the ATI
confuse the originator of the request and consequently leads to the ter-
mination of the tip-agent. ObjectGeode did not give warnings about
the use of the uninitialized variable. It is not clear, whether the actual
error can be traced back to [3] (let alone the industry’s model), but the
signals and the possible termination are the same in the global model.
Besides that we consider it unwise, to simply terminate the process and
in consequence, crippling the whole MAC-layer, as soon as it receives an
unexpected address (just imagine a malicious MT chooses to send twice
an end-of-tip or an en-of-tip with a fake address).

A related error occurs considering common behavior of the incom-
municado protocol and a backward handover. The error trace is given
in Figure 12. Just just after the incommunicado is granted to MTI, a
backward handover is initiated by MHI. After this has been successfully
completed by returning to the same AP again —possibly via visiting
others in between— the next request for going incommunicado will be
ignored and all subsequent ones as well. The error has been repaired and
the mentioned property verified afterwards.

The same error —illegal termination— occurs also after a removing
the typo, this time in connection to a backward handover : the MTI keeps
on trying to go incommunicado, even when a handover occurs. So if after
associating anew to an AP, i.e., the same AP in the scenario, ATI receives
an positive start-of-tip MPDU, it gets confused and terminates.

The error has been repaired by introducing new signal Suspend MTI.
The signal is sent in the “associated”-state from MTC to MTI in re-
sponse to a handover request, to reset MTI and stop it from looking for
incommunicado in case it does so at that time (cf. Figure 13).

The next error concerns the behavior of the MT target cell (MTC).
The property checked is the invariance:

33

mtc_i0:4

18

maa_i0:8

20

1!maa_active,4,0

23

25

2!synchro_with,8,0

72

74

1!synchro_with_ack,4,0

78

79

80

81

mhi_i0:7

83

3!association_completed_mhi,8,0

gdp_i0:6

86

5!resume_msc,8,0

89

2!association_completed_mtc,8,0

amaia_i0:2

92

4!mt_associated,8,1

100

103

4!mt_alive,6,1

109

112

4!mt_alive,6,1

144

147

4!mt_alive,6,1

152

mti_i0:5

154

6!init_ho_seek_info,4,0

156

ati_i0:3

159

7!mpdu_tip,5,1,0

166

169

4!mt_alive,6,1

175

179

7!mpdu_tip,5,0,0

182

183

186

4!mt_sleep,3,0

190

6!mpdu_tip_ack,3,0

192

194

2!init_ho_seek_info_ok,5,0

196

197

199

3!suspend_mhi,4,0

202

5!suspend_msc,4,0

260

262

5!resume_msc,4,0

267

270

3!resume_mhi,4,0

276

279

4!mt_alive,6,1

287

290

6!stop_ho_seek_info,4,0

291

293

7!mpdu_tip,5,1,1

296

296

296

296

296

296

296

:init::1

296

__Timers:0

296

Fig. 11. Twice end-of-tip

✷(ϕmt−lost → ϕap−lost) (1)

meaning intuitively that it must always be the mobile terminal that gives
up an association before the access point does so. Proposition ϕmt−lost

describes sending the signal MT Lost, whereby AP’s I’m-alive-agent relin-
quishes the association. Similarly, ϕap−lost captures the situations, where
the mobile terminal gives up the association by signaling AP Lost or
HO ind (both from MHI).

The property is important for the correct working of Mascara-control,
especially the correct management of addresses by the dynamic control
entity: if the access point considers prematurely a mobile terminal to be
deassociated, while in fact the MT is still trying to get back into contact,
the AP might give away the addresses anew, which will cause confusion.

Whether this property holds or not depends intuitively on a number of
timers and program variables. But the error discussed concerning MTC
here shows up irrespective of any timer settings. A closer investigation

34

mtc_i0:4

18

maa_i0:8

20

1!maa_active,4,0

23

25

2!synchro_with,8,0

72

74

1!synchro_with_ack,4,0

78

79

80

81

mhi_i0:7

83

3!association_completed_mhi,8,0

gdp_i0:6

86

5!resume_msc,8,0

89

2!association_completed_mtc,8,0

amaia_i0:2

92

4!mt_associated,8,1

132

136

mti_i0:5

138

6!init_ho_seek_info,4,0

140

ati_i0:3

143

7!mpdu_tip,5,1,0

146

147

150

4!mt_sleep,3,1

154

6!mpdu_tip_ack,3,1

156

158

2!get_target_ap,7,2

163

165

5!suspend_msc,4,0

173

2!init_ho_seek_info_ok,5,0

182

184

5!resume_msc,4,0

196

198

3!target_ap_found,4,0

199

201

1!ho_ind,7,0

202

143

146

147

150

4!mt_sleep,3,1

154

6!mpdu_tip_ack,3,1

156

158

2!get_target_ap,7,2

163

165

5!suspend_msc,4,0

173

2!init_ho_seek_info_ok,5,0

182

184

5!resume_msc,4,0

196

198

3!target_ap_found,4,0

199

201

1!ho_ind,7,0

202

203

205

4!mt_deassociated,8,1

215

217

5!suspend_msc,8,0

220

2!synchro_with,8,0

226

228

1!synchro_with_ack,4,0

232

233

234

235

237

3!association_completed_mhi,8,0

240

5!resume_msc,8,0

243

2!association_completed_mtc,8,0

246

4!mt_associated,8,1

264

266

6!init_ho_seek_info,4,0

268

271

7!mpdu_tip,5,1,0

274

274

274

274

274

274

274

:init::1

274

__Timers:0

274

Fig. 12. Incommunicado and backward handover

of Mascara-control wrt. to this property and various timers will follow
below.

Spin reports a violation of this property. The trace, given in Figure 14,
can be interpreted as follows. During the initial phase of a backward
handover, when MTC scans the candidate APs, it can happen that the
radio quality is generally bad such that no appropriate candidate AP is
found during the scan. MTC reacts in repeating the scan loop (without
exit condition in the loop), so MTC can loop indefinitely scanning the
environment and no one notices. Especially, no timer at MT breaks the
loop and no alarm signal (as AP Lost or HO ind) is ever issued, hence
ϕap−lost will never be true, AP gives up after a while, and property (1)
fails to hold.

The error shows up also in the global Vires model [3]. Note that
the error cannot be avoided in the abstract model by imposing fairness
assumptions on the decision of the radio-control manager, here modeled
by non-deterministic choice, whether the radio quality is good enough
to warrant an association attempt. Neither would this be justified in the
concrete model, since an endured deterioration of the radio connection
cannot be ruled out. The problem is, that if a complete loss of connections
should happen, at least it ought to be noticed by the responsible parts of
Mascara-control, especially by MHI, and reported to the upper layers.

The error has been repaired by distinguishing forward and backward
handover in MTC (cf. Figure 15).

35

MTI Wed Apr 26 06:52:41 2000

mss_ass.pr View: 22 / Page: 32

wait_AP_answer

MPDU_TIP_ACK
(MT_MAC_Addr)

/*ATI*/

incommunicado
is accepted

reset (T_TIP_WAIT_ACK)

INIT_HO_SEEK_INFO_OK
/*MTC*/

inform the MTC
to start
scanning

MTI_Active

T_TIP_WAIT_ACK

retries<=3

false

INIT_HO_SEEK_INFO_KO
/* MTC */

proposed by
Dennis.
To be verified

retries:=1

MTI_Active

true

MPDU_TIP
(My_MT_MAC_Addr,

start_tip)
/*ATI*/

set (NOW+TIP_WAIT_PERIOD,
T_TIP_WAIT_ACK)

retries:=
retries+1

-

SUSPEND_MTI
/* MTC */

MTI_Active

MTC Associated_3 Wed Apr 26 06:52:41 2000

mss_ass.pr View: 16 / Page: 25

process MTC
/* Target Cell */

Associated

GET_TARGET_AP(HO)
/*HO is the type of

handover*/
/* MHI */

"emergency case":
MHI asks for
a candidate AP
to handover to

SUSPEND_MTI
/* MTI */

reset (T_NEIGH_SEARCH)

TIP_Flag:=FALSEWe are in the
HO case

i:=1Beginning of
the AP array

HO

forward_HO

’find frequency
for current index i

and return it
in the_channel’

’the_channel := i’

we make a kind of
simplification based
on the one-to-one
correspondence
between indexes and
 channels

SET (NOW+1,T_RCM)

wait_AP_ACQUISITION_DUE_TO_HO

backward_HO

’urgency:= later’

susp_Msc

INIT_HO_SEEK_INFO_OK
/*MTI*/

TIP_Flag:=True

SUSPEND_MHI
/*MHI*/

’urgency:=
immediately’

susp_Msc

SUSPEND_MSC
/*(urgency)*/

/* GDP */

wait_ack_suspended

INIT_HO_SEEK_INFO_KO
/*MTI*/

The AP
refuses

set (NOW+TIP_PERIOD,
T_NEIGH_SEARCH)

Associated

Fig. 13. Signal MTI Suspend

Verified properties In the following we shortly describe the properties
verified on the abstract version of Mascara-control (cf. also Table 3). The
section is comparatively short, since basically it is just a re-run of the
verification attempts, which failed in the previous section, after correcting
the code. Besides that, we explain in some greater length the verification
of the timed property (1) mentioned afore.

The first property verified proves “absence of illegal termination” of
AP’s Tip-agent, which means, never twice an “end-of-tip” without an
“start-of-tip” in between (cf. the corresponding paragraph in the previous
error-section.

The next two properties concern the behavior of a data-structure in
ATI, the “toggle-array” which keeps track in which state —incommuni-
cado or not— each associated MT currently is, and the values are updated

36

mtc_i0:3

29

maa_i0:7

32

1!maa_active,3,0

36

39

2!synchro_with,7,0

75

78

1!synchro_with_ack,3,0

83

84

85

86

mhi_i0:6

89

3!association_completed_mhi,7,0

gdp_i0:5

93

5!resume_msc,7,0

97

2!association_completed_mtc,7,0

amaia_i0:1

101

4!mt_associated,7,1

163

168

174

4!mt_alive,5,1

178

2!get_target_ap,6,2

179

184

187

5!suspend_msc,3,0

mti_i0:4

191

6!suspend_mti,3,0

872

875

5!resume_msc,3,0

896

905

5!mt_lost,1,3

907

907

907

907

907

ati_i0:2

907

907

__Timers:0

907

Fig. 14. Loop in backward handover

appropriately upon reception of the start-of-tip and end-of-tip server re-
quests. Upon repairing two previously reported errors concerning the in-
communicado protocol, the proper behavior of the ATI could be proved.
The proof works for a non-lossy communication channel and for lossy
channel under the proviso that the timer at MTI has a large enough
value, such that non-lost acknowledgments reach MTI before the time-
out. Since we proved that, based on the values of the toggle-array, ATI
always choose the correct branch, we could remove this data structure
and optimize ATI accordingly (cf. Figure 16).

Timed property The most complex property investigated in the current
set-up is a timed property (cf. Equation 1) guaranteed by the proper
behavior of mainly

– MT

• MTC

• MHI and data pump

• MTI

– AP

• ATI

37

MTC wait_AP_acquisition Wed Apr 26 10:30:36 2000

mss_ass.pr View: 19 / Page: 26

process MTC
/* Target Cell */

wait_AP_ACQUISITION_DUE_TO_TIP,
wait_AP_ACQUISITION_DUE_TO_HO

T_RCM

’RCM decision’

’ok’

wait_data

’ko’

i:=i+1

i<=Max_AP_index

False

i:=1

TIP_flag

False

’find frequency
for current index i

and return it
in the_channel’

’the_channel := i’

SET (NOW+1,T_RCM)

wait_AP_ACQUISITION_DUE_TO_HO

True

RESUME_MSC
/*GDP*/

wait_resume_MSC

True

’find frequency
for current index i

and return it
in the_channel’

’the_channel := i’

SET (NOW+1,T_RCM)

-

MTC wait_AP_acquisition Wed Apr 26 10:35:25 2000

mss_ass.pr View: 19 / Page: 26

process MTC
/* Target Cell */

wait_AP_ACQUISITION_DUE_TO_TIP,
wait_AP_ACQUISITION_DUE_TO_HO

T_RCM

’RCM decision’

’ok’

wait_data

’ko’

i:=i+1

i<=Max_AP_index

False

i:=1

TIP_flag

False

HO

Forward_HO

’find frequency
for current index i

and return it
in the_channel’

’the_channel := i’

SET (NOW+1,T_RCM)

Backward_HO

back_ho

wait_AP_ACQUISITION_DUE_TO_HO

True

RESUME_MSC
/*GDP*/

wait_resume_MSC

True

’find frequency
for current index i

and return it
in the_channel’

’the_channel := i’

SET (NOW+1,T_RCM)

-

Fig. 15. Loop in MTC

• AIA

An important functionality for maintaining an established associa-
tion is to determine, when the association breaks down (as opposed to
terminating an association properly by deassociating). Driven by various
timers, both AP and MT continuously check whether the current associ-
ation is still functioning. (cf. the informal description [3] of the protocol
for a more detailed explanation of the various entities.)

To determine that an association has gone for good, MT and AP
must act independently and rely on their local timers, since if indeed the
connection is lost, no further communication is possible in the worst case.
Indeed, the functionality of Mascara’s control entities investigated here is
the part of the protocol which for the reasons just mentioned, relies most
heavily on timers in complex ways. This was one of the reasons we chose
the current setup for experiments concerning timed behavior of Mascara.

In determining the loss of connection, an important safety requirement
is, that “never the access point gives up the association before the mobile
terminal does”. The reason for this requirement is that in case the AP
gives up the association, it is free to reuse the various addresses allocated
to that association for possible new associations from a different MT. If

38

ATI Thu Apr 27 06:21:49 2000

mss_ass.pr View: 12 / Page: 19

process ATI
/* AP TIP Agent */

/* Identifies when any MT goes incommunicado
and when it comes back. It informs accordingly
the Data Pump (scheduler) and AIA.
The scheduler may accept or not. */

SYNONYM ON = True;
SYNONYM OFF = False;

/*NEWTYPE Toggle_ARRAY Array(MT_MAC_Addr_type, Boolean);
ENDNEWTYPE;*/
DCL i integer := 0;
DCL toggle Toggle_ARRAY; /* Initialised with ON ? */
/* Meaning of toggle ? To prevent a TIP to start
before another one is not finished ? */

DCL MT_MAC_Addr MT_MAC_Addr_type;
DCL type_of_tip tip_type;

Idle

ATI_Active

MPDU_TIP
(MT_MAC_Addr, type_of_tip)

/* MTI */

The MT requires to
get incommunicado

type_of_tip

start_tip

toggle(MT_MAC_Addr)

OFF

-

ON

’imitation of
the ASC decision’

’allowed to go
 incommunicado’

MPDU_TIP_ACK
(MT_MAC_Addr)

/* MTI */

AP informs MT
that it can get
incommunicado

MT_SLEEP
(MT_MAC_Addr)

/* AIA */

toggle(MT_MAC_Addr):=OFF

’not allowed’

-

end_tip

toggle(MT_MAC_Addr)

OFF

MT_WAKE_UP
(MT_MAC_Addr)

/* AIA */

toggle(MT_MAC_Addr):=ON

-

ON

’error’

Idle

none
/* ASG */

st_cycle

i = MT_MAX_ACTIF

TRUE

i := 0

ATI_Active

FALSE

toggle(i) := ON

i := i + 1

st_cycle

ATI Thu Apr 27 06:23:37 2000

mss_ass.pr View: 13 / Page: 20

process ATI
/* AP TIP Agent */

/* Identifies when any MT goes incommunicado
and when it comes back. It informs accordingly
the Data Pump (scheduler) and AIA.
The scheduler may accept or not. */

SYNONYM ON = True;
SYNONYM OFF = False;

DCL MT_MAC_Addr MT_MAC_Addr_type;
DCL type_of_tip tip_type;

Idle

ATI_Active

MPDU_TIP
(MT_MAC_Addr, type_of_tip)

/* MTI */

The MT requires to
get incommunicado

type_of_tip

start_tip

’imitation of
the ASC decision’

’allowed to go
 incommunicado’

MPDU_TIP_ACK
(MT_MAC_Addr)

/* MTI */

AP informs MT
that it can get
incommunicado

MT_SLEEP
(MT_MAC_Addr)

/* AIA */

’not allowed’

-

end_tip

MT_WAKE_UP
(MT_MAC_Addr)

/* AIA */

-

Idle

none
/* ASG */

ATI_Active

Fig. 16. Start and end of tip in ATI

it then happens that the MT still clambers to reactivate the temporarily
broken connection and indeed succeeds in doing so, the same addresses
will be in use for 2 different MT’s, leading to errors.

In order to avert this unsafe behavior, the minimal time for the AP
to give up the association must be larger than the maximal time for the
MT to do so. The following set of timers and constants influence these
times:

side timer program constant process entity

AP-side T IAA poll period MAXTIMEPERIODS AIA
T framestart period IAAMAX AIA

MT-side T GPD period MAXCELLERRORS GDP
T RCM period MAXAPINDEX MTC
Table 4. Parameters for the timed property

The minimal amount it takes for the AP-side to give up is

ϕAP = (Max Time Periods + 1) ∗ Tiaa poll + (IAA Max − 1) ∗ Tframe start

39

and the maximal time for the mobile terminal is

ϕMT = (Max Cellerrors) ∗ TGDP period + Trcm ∗ (Max AP Index + 1)

Property (1) holds, if the following inequation is satisfied:13

ϕAP > ϕMT (2)

We checked satisfaction and violation of the property for various combi-
nation of values, especially for some border-cases. The exact settings can
be found at the web-pages.

6 Discussion and evaluation

6.1 Significance

For signalling is a complex task in mobile ATM networks, trying to verify
Mascara-control is challenging, and, neglecting the pure data transfer
functionality, covers much of the most complicated behavior of Mascara
in the higher layers, i.e., above data-pump and WDLC. Furthermore, in
contrast to some parts in the lower layers of the protocol, this portion
of the specification [11] [3] was relatively complete and, as we believe,
rather faithful to the specification used in industry, at least as far as the
control-part was concerned. This increases the chance, that errors found
in our model have some relevance, indicating errors or proving properties
of the actual design.

Besides being just large, Mascara-control seemed an excellent touch-
stone for our tools, since it contains all complications we set out to deal
with in the project. Being responsible for the signalling aspects, it con-
tains a wealth of non-trivial data structures. Used for signalling, the data-
structures are used to administer the behavior of Mascara and thus in-
terfere with the reactive behavior of the protocol. The control part is
especially responsible for the mobility features of Mascara, and related to
that, the dynamic aspects of process creation. To perform its task, MCL

13 The discrete nature of DTSpin’s time model makes the exact values for the inequa-
tion above a little subtle, hence the increments +1 and decrements −1 at various
places. For instance, one has to take into account, that, for particular combination
of values, timers may expire at the same clock tick, in which non-deterministically
one of them expires first. The inequation is further muddied by the obscure style
of programming in the components, as the for-loops representing the number of at-
tempts are given by goto’s, and the number of iterations is sometimes less or equal
than the nominal upper bound and sometimes strictly less.

40

relies on various, non-standard protocols, which interact with each other
and heavily rely on timers. Thanks to the layered design of the protocol,
the control part can cleanly be isolated from the lower layers. Even if
the exact specification for the lower layers was not available for us, they
could thus be abstracted away and replaced by reasonable and standard
assumptions about their behaviour (like lossy or non-lossy Fifo-channels).

The verification results and the errors detected have been all obtained
using various abstractions of the Vires protocol model [3], so the question
is, to which extent conclusions can be drawn wrt. to the global model and
to the industry’s specification or even the real product. Of course, for each
error we compared the abstraction with our global specification to sort
out false negatives; the relation to the industry’s code is more speculative.
Nevertheless, in this section we try to put the result into perspective.

The properties verified resp. the errors found are rather different in
nature, where the most interesting (and complex) are the ones concerning
the timed behavior of the complete Mascara-configuration.

Quite a number of errors discovered were “just” programming er-
rors, including such classics as uninitialized variables (even uninitial-
ized variables due to a typo), forgotten branches in case distinction,
mal-considered limit cases in loops (which in Mascara take the form of
goto’s...) and much more. And obviously by far not all such errors are
reported here, since we started this series from a model, where we wanted
those silly errors out of the way, and much manual debugging had been
done prior to the verification effort. The amount of repair nevertheless
necessary —cf. the remarks in the respective sections— is in accordance
with the experiences of other groups.

As for this kind of error, better support from the modeling tools would
be rather desirable. ObjectGeode detects quite a number of such vio-
lations, but experience tells, not all and not under all circumstances, and
the way it does or does not is not transparent to us. At any rate, model-
checking is just a much too costly way of debugging things which could
and should have been caught by static analysis or similar techniques.

For this category of bugs, we cannot be sure that the same error also
occurs in the “real” Mascara-protocol, sometimes they had been even
introduced in the abstraction, but we do think it is fair to say that similar
bugs occur or will have occurred there, and the experiences, we expect,
will in principle carry over.

For the various untimed properties (other than the trivial ones), the
errors found in the abstracted model here constitute real errors in the

41

Vires’ global model [11]. Depending on how much insight into the actual
SDL-specification had been collected on the collaboration visits to Intra-
com, there is a good chance that the errors indicate problems with the
specification used for the implementation of the Wand-protocol.

Looking at the timed property discussed for the combined model, it is
obvious that it reflects behavior of the concrete protocol, since we included
all the timers in our current abstracted version. It is likewise clear that,
since we abstracted away from the lower layers and additionally we don’t
have the real values of the timers in the concrete model, we can only make
relative statements about the behavior and point to potential problems.
We expect that in the implementation, the timer values and constants
chosen (for example guided by experience, by experimenting and testing,
or by simply thinking) are such that the erroneous behavior will not occur.

So here the significance, as we see it, is in demonstrating, that our
tools can in principle verify timed properties of a model as complex as
shown.

6.2 On the use of various tools

SDL and ObjectGeode In principle, model-checking the listed prop-
erties was comparatively quite easy, once the model was prepared. Even
neglecting the (long) time it took, to come up with the overall Mascara
model in the specification part of Vires, most of the time for checking
the above shrink-to-fit models actually was spent in isolating a closed
SDL model of the dynamic control, even if this task involved nothing
more complicated than cutting out relevant parts of the overall model,
deleting the unused parts, adapting the interface, and closing it with the
appropriate environment (programming the environment, indeed, was the
shortest of the things to do here). That the seemingly simple task takes
such an unproportional time indicates, as we feel, that SDL together with
the editing tools are not ideal handling complex specifications in a mod-
ular way. This is necessary, however, if one want to constantly feed back
the verification results into the overall model and especially if one models
various aspects of the protocol at different levels of abstraction.

Another aspect concerns the consistency-checking abilities of Ob-
jectGeode. Considering the huge number of different signals in a proto-
col of this size14 and errors like “unspecified-reception” and “ambiguous-
receiver” are hard to detect and very tedious to debug. Even if it is

14 [3] contains over 100 signals almost 150 signallists (all named similar to
MAMA2MMMA MPDU. . .).

42

consoling that by model-checking and analysing the resulting erroneous
behavior, one can find them, it is clear that model-checking is a too heavy
tool for this task. it would be preferable instead, if the tools informed the
user reliably about this type of error, the more so as similar inconsistencies
are being reported by ObjectGeode, and actually the sdl2if -translator
provides information also in the above situations.

Model-checking with Spin and DTSpin As to the final stage of
the verification, namely pressing the button, the general observation is
rather positive: some strange effects also in Spin and gcc notwithstanding,
once an abstract model had been obtained and after the translators had
swallowed the model and produced Promela-code, the phase of pushing
the proverbial button went in general smooth. In the later, more complex
models and properties, we sometimes had problems with the state space
where we had to fiddle still with the model, but those where minor in
comparison. The reason, we assume, is that we chose the abstractions not
only with respect to interesting properties by also with a prospective eye
to the state space, so we never even tried brute-force state-exploration
without throwing out as much data-structures as possible.

The translation process The gap between the modeling language SDL
and Promela we used for model-checking was bridged by two transla-
tors under heavy development during the verification period. Since each
of the translator only handled (and handles) a subset of its input lan-
guage, it was wise to model the the protocol with the restrictions in
mind, but did not help in speeding up the verification. The three levels
of languages additionally imposed rather an amount of overhead in the
specify-modelcheck-repair feed-back loop.

On the other hand, stretching the tools and translations while they
are still being developed, exercising them for the verification of a protocol
of the size of Mascara no doubt gave valuable feedback to this part of the
project and helps to straighten out a number of rough edges.

6.3 Time consumption

Let’s finally, rough and ready, collect the time-effort for the series of exper-
iments on Mascara control, classified according to various tasks involved
(cf. Table 5). The verification reported here was done by one resp. two
experienced people who had been using the tools involved before and are
familiar with Mascara, so no “warm-up” time is counted. The time is the

43

absolute time in days, not scaled with the number of persons (nor the
length of the working days. . .).

The starting point had been either the global, overall Mascara-model
where the isolated and cleaned-up models for steady-state and dynamic
control developed and tested before. Not counted here is —of course—
the considerable time it took to model and understand Mascara in a
whole. In case of the latter two series of experiments, we could already
start with separated, abstracted and cleaned versions of steady-state and
dynamic control in isolation and the time there refers only the the effort
to combine the separately developed abstract models back into a single
abstract version and seal it off with a common environment (in the last
case we started from a ready-to-use model).

The sequential ordering of the work from 1 to 6 is of course idealized
in the sense for instance, that in case of manifest errors (at least those
with intelligible cause) the necessary corrections had to be fed back into
the model and that changes in the model revealed new rough edges in the
tools, etc. But the basic modelling (especially isolating a set of entities,
abstracting the rest appropriately, and sealing it off with a suitable en-
vironment) had to be done only once for each series of experiments, the
corrections necessary in the course of the verification, once an error had
been found and understood, were minor in comparison.

task time in days

DC MT-only MT+AP
(1 person) (2 persons) (2 persons)

1. discussing possible properties to check for both
entities in combination

– 1 1/2

2. produce a model an appropriate common environ-
ment

4 1/2 0

3. getting the model “through the tools” 3 4 1/2
4. getting the model small enough for state-space

enumeration
0 0 1 1/2

5. finding errors of various kinds 2 1 3
6. collecting, cleaning up, categorizing the results 1 2 1

Σ 10 8 1/2 6 1/2
Table 5. Time consumption

The point of “discussing properties” applies to the last two verification
series from Section 4 and 5 only, since they consisted in combining the
two separately modelled sub-entities DC and SSC of Mascara-control into

44

a global model, and by comparing and discussing the mutual assumptions
concerning the respective partial models, to come up with properties that
should or should not hold for the combined one. Half a day or one day
for discussing the properties may seem relatively long, but we wanted
properties that were within the reach of verification, that concerns both
entities together (and preferably with timed-properties).

The point “getting it through the tools” refers to the effort it took to
massage the model that it not only matched our logical understanding of
the entities involve, but also to convince the tools to accept our model.
Reasons for the comparatively long time were,

1. the number of tools involved, some of them under development, thus
increasing the “friction” between the translations and

2. a couple of errors and unexpected behaviors of the tools detected
during the course of the development.

The unexpected behaviours of the tools were caused by (small) er-
rors in the tools which went unnoticed first. Often the results led to a
corrected, new version of the tool involved. As small as the glitches had
been in almost each case,15 they were nevertheless time-consuming for
the verification task, since they were revealed (for us) sometimes only in
trying to model-check the resulting code and encountering unexplainable
results. When no solution was readily to be expected, we in a few cases
decided to change the model to go on with the specification without fur-
ther delay. Note that when mentioning unexpected behavior of the tools,
this also and especially includes rather mature tools like ObjectGeode,
Spin, and in one case even gcc (!). We had the impression that the number
of strange and unexpected behaviors considerably decreased in the later
series.16

As for the “verification” entries in the list, most effort (especially in
the last column) went into the verification, refutation, and repair of the
timed properties, which turned out to be complex (cf. Section 5). Time-
consuming was neither finding the desired property nor formulating the
property as LTL-formula, but repairing on the way various errors (some
unexpected) in the protocol and understanding more closely the interplay
of the timers to be able to come up with meaningful counterexamples or
interpretable results for various timer settings. More complex than in the

15 Once it was a file ending with an (invisible) newline-character that made one of the
tools in the chain choke. . .

16 Each series had been carried out each in one concentrated effort, with some weeks
pause in between the series.

45

other experiments here was additionally to get the model small enough
to get it through Spin.

The time for collecting the results basically refers the time to fill in a
preliminary version of the corresponding web-pages, it does not include
the time to write this part of the verification deliverable.

6.4 Perspective and lessons learned

Besides developing new tools and enhancing existing technology, one of
the goals of Vires was to apply formal techniques, especially model-
checking, to an industrial protocol. Hence, besides the theoretical aspects
of model-checking and verification and issues of tool development, a few
more down-to-earth remarks in hindsight about the use of model-checking
on a piece of software of this size are in place, as trivial as some observa-
tions may appear

On finding properties One of the minor problems in the effort is, in
our experience, finding properties to verify. First of all, one can achieve
already a lot checking simple properties such as finding dead code and
illegal termination. For instance, we found it helpful routinely checking
reachability of crucial control-points in the expected behaviors.17 Sec-
ondly, a good understanding of the protocol, and after working on the
specification for a while, one cannot help having a fairly good under-
standing, easily gives scores of properties to check: The functionality of
each entity or each group of entities can often be understood as a set of
services offered either to a communication peer or to some upper layer,
and thus safety properties like “each acknowledgment must be caused
by a previous request” and liveness properties like “each request will
eventually lead to an answer”. Especially fruitful for finding errors and
unexpected reactions are verifying such properties under interferences of
various protocols.

Software-engineering aspects In many of the verification experiments
investigating Mascara, we used our model-checking tools as advanced de-
bugging facility. This is in accordance with the bottom-up methodology,
starting from smaller entities and, after verifying a number of properties,

17 Indeed, we started to do so after a “proving” a sophisticated property only to learn
later, that the premise of the implication was rather unexpectedly false, since un-
reachable.

46

thereby debugging and cleaning them up, putting them together to larger
ones.

If employed in this way, the abstraction/model-check/repair loop should
be supported with much greater ease. While in principle, it is not compli-
cated to trace back errors found by model-checking that final Promela-
model to the original SDL-model, in case it corresponds to a real error,
to repair it and start anew, a simple thing which would make life easier is
that an error spotted in the translated code would be approximately found
in the original SDL-model. In the straightforward abstractions we used,
this seems not unsurmountable (again a question of tool-integration).
Another simple things is that errors, warnings, informations, that ap-
pear “only” due to the fact that in an experiment one chooses to ignore
parts of the behavior must be suppressed: the error reporting facilities of
ObjectGeode are usable (but not perfect), spotting and repairing fair
amounts of errors. When confronted with hundreds of pieces of informa-
tions, where most are just artifacts of choosing an abstraction, they tend
to get ignored.

More effort on specification Looking at the amount of time in the
project alloted to and expended on the specification task, recommending
more time might seem paradoxical or exaggerated. We don’t think so.

Looking at the overall specification of Mascara, as far as available
to us, the global structure, the modularization into subentities was well-
designed and clear. The fact, that Mascara enjoys a well-thought-of de-
sign, with layering of services, clear division of functionality, etc., was
of course invaluable for dealing with parts of the model in separation,
replacing others by abstract representations, and still be able to draw
reasonable, if not completely formal, in most cases, conclusions about the
global model. The positive remarks about clearness apply to the actual
SDL-code to a lesser extent. The SDL-specification used for the verifica-
tion is in principle detailed enough to describe an actual implementation
of the protocol, except that some parts were not accessible to us, most
notably the scheduler and many data implementations. Much of the SDL-
code suffered from a certain unstructuredness, which did not facilitate the
the understanding of the protocol.18 Often, one would have wished to just
re-specify this part or the other, but it would have been difficult to jus-

18 Graphical or not, sometimes we came to suspect that SDL does not much to dis-
courage a certain unstructuredness. This goes as far as at a number of places, goto’s
jump right into the middle of a single transition; the only excuse we could think of is
that it spares the specifier from the effort of drawing the picture of the code again.

47

tify that we had found errors in the “real” protocol. So for most of the
experiments we did, it was chosen to bite the bullet, take the code as it
was at some point, and go ahead as far as possible.

On the use of abstraction The size of the protocol rendered any direct
attempt of model-checking out of question, and one of the main general
tools of our methodological arsenal was abstraction. In this series of ex-
periments, this amounted to choose a part of Mascara of interest and
manually abstract away from the rest, condensing it into an appropriate
abstract version of an environment. Guided by the understanding of the
protocol and the already proven —or by at least reasonable— assump-
tions about the environment and the lower layers, may seem ad-hoc. It
was largely driven by the decision to keep as close as possible to the ac-
tual code of the specification, so as to find errors in the “real protocol”
or at least in our version of it [3]. The module structure of the whole
protocol and the general responsibility of each entity, as said before, is
quite clear and well-organized, which helped much to consider single en-
tities and groups of entities while representing the rest in an abstract
way. On the other hand, the code of the single processes is often, say,
obscure, hence to find manually a justifiably sound abstraction (and pos-
sibly a cleaned-up one) of an entity was in most case not attempted,
since the gap between a redesigned, cleaned-up abstract version of an en-
tity (or even the complete Mascara) and the concrete code would have
been even more time-consuming and, worse still, seemed simply to call
for new sources of errors. The only abstraction we did routinely here was
to simplify the data-structures as much as possible,19 while leaving the
control-structure untouched.

Another positive effect of choosing straightforward abstractions is,
that transferring verification results, from the abstract version to the
concrete level, are not too hard to obtain. Especially in case of negative
answers from the model-checker, tracing the scenarios back to the global
model is straightforward.

The previous series of experiments demonstrates, as we hope, that
proceeding this straightforward way one can obtain significant results
about Mascara as a whole, basically debugging the code step by step,
and with enough time and manpower one could doubtlessly continue in
this style repairing more errors and verifying further parts of Mascara. In

19 Not always, of course, is it possible to remove data altogether. Depending on the
experiment and the entity, some simplified, abstract data domain has to remain.

48

should be noted, that, though the strategy we followed currently is rather
time consuming and tedious, the reasons for it are more mundane than
of theoretical or principal nature.

One silly but important reason is, that it is already quite time-consuming
to produce an abstract model from the complex original one by doing
nothing else than ignoring parts of the protocol and replacing them by a
simple environment. The effort is not even to find an environment or an
abstract version of an entity, but is caused by the sheer amount of signals
in the original protocol: throwing out parts of the model means, that the
tools start to complain about non-fitting parameter lists, unsent signals,
signals without receivers and the like. Consequently, much time is spent
to clean up —or at least check for significance— lists of literally hun-
dreds of warnings, informations, and errors until the abstracted model is
accepted again by theObjectGeode and the translators. What is worse:
the time in cleaning-up the abstracted model does in no way contribute
to the understanding of the protocol or enhancing it. And, needless to
mention, for each abstraction, the effort has to be repeated.

As we stressed above, time spent on proper and clean modelling is
hardly ever lost. We doubt, though, that industry , working under stricter
time-pressure20 as we did, would be willing to accept any technology that
forces the developer to spent effort on routine tasks, which neither help
the understanding of the problem nor enhance the product.

Perspective As mentioned a few times afore, the number of various
tools, partly under development, caused some friction between the tools.
Of course, a tighter integration of the various tools involved is indis-
pensable. If model-checking and abstraction is to become routine in the
software development process, routine tasks as above must be supported
routinely, which means automatically, if it should not end up as shelved
technology.

As for a perspective, all of this is good news rather than bad, for none
of the problems seems particularly intractable. Not that seamless tool-
integration is in any way a trivial task, but it is not an enterprise alien
to industry either, and good software engineering and enough manpower
will do the job. Our experiences on Mascara are encouraging enough to
warrant the effort.

20 Or at least a different time pressure in the sense, that some abstractions alone, as
safe and verified as they might be, do not constitute a final product.

49

Acknowledgements

We gratefully acknowledge VERILOG for giving us access to their Ob-
jectGEODE SDL environment [14].

References

1. Bernard Boigelot, Dragan Bošnački, Dennis Dams, Susanne Graf, Leszek Holen-
derski, Guoping Jia, Natalia Sidorova, and Martin Steffen. Verifying the Mascara
protocol. Vires Deliverable R.123, Vires Project.

2. Dragan Bošnački and Dennis Dams. Integrating real time into Spin: A prototype
implementation. In Proceedings of Formal Description Techniques and Protocol
Specification, Testing, and Verification (FORTE/PSTV’98). Kluwer, 1998.

3. Dennis Dams, Susanne Graf, Guoping Jia, Natalia Sidorova, Martin Steffen, and
Diana Tourko. SDL-specification of the Mascara protocol. Available electronically
at www.informatik.uni-kiel.de/~seriv/Deliv/Spec/, November 1999.

4. Dennis Dams, Susanne Graf, Guoping Jia, Martin Steffen, and Diana Tourko.
Understanding the Mascara protocol: An informal specification. Technical report,
Vires Project, April 1999.

5. Ioannis Dravapoulos, Nikos Pronios, Anastasia Andristou, Ioannis Piveropoulos,
Nikos Passas, Dimitris Skyrianoglou, Geert Awater, Jan Kruys, Neda Nikaein,
Alain Enout, Stephane Decrauzat, Thomas Kaltenschnee, Thorsten Schumann,
Jürg Meierhofer, Stefan Thömel, and Jouni Mikkonen. The Magic WAND, Deliv-
erable 3D5, Wireless ATM MAC, Final Report, August 1998.

6. Ioannis Dravapoulos, Nikos Pronios, Spyros Denazis, Nikosd Passas, Dimitris Skyr-
ianoglou, Geert Awater, Neda Nikaein, Alain Enout, Stephane Decrauzat, Thomas
Kaltenschnee, Thorsten Schumann, Jürg Meierhofer, and Stefan Thömel. The
Magic WAND, Deliverable 3D2, Wireless ATM MAC, September 1997.

7. Discrete-time Spin. http://win.tue.nl/~dragan/DTSpin.html, 2000.
8. Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice Hall,

1991.
9. Gerhard Holzmann. Spin. http://netlib.bell-labs.com/netlib/spin, 1999.

10. Translator if2pml. http://www.ics.ele.tue.nl/~natalia/Vires/if2pml.html,
2000.

11. Florence Pagani. A tentative specification of the Mascara protocol. Circulated
within the Vires-project, 1998. Version of October 26.

12. Nikos Pronios, Ioannis Dravapoulos, Ioannis Pavlidis, Ioannis Marias, Nikos Pas-
sas, Geert Awater, Martin Janssen, Jürg Meierhofer, Beat Keusch, Adrew Lunn,
and Frederic Bauchot. The Magic WAND, Deliverable 3D1, Wireless ATM MAC
Overall Description, December 1996.

13. Translator sdl2if. http://www-verimag.imag.fr/DIST SYS/IF, 2000.
14. Verilog. ObjectGEODE SDL Simulator - Reference Manual.

http://www.verilogusa.com/solution/pages/ogeode.htm, 2000.
15. Working groups at Intracom Ascom, UoA and Eurecom. Message sequence charts

for the Mascara-protocol. distributed electronically for internal use, 1998.

