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Abstract. Hybrid automata are a well-established mathematical model for dis-
crete systems acting in a continuous environment. We present assertion-based
proof methods for hybrid systems for inductive assertional proofs. The model
and the proof-methods are rigorously formalized within the PVS theorem-prover.
We validate the applicability of the approach on a number of examples.

Hybrid systems

Combining discrete state-machines with continuous behavior, hybrid systems [1] have
been successfully used to model a large number of applications in areas such as real-
time software, embedded systems, and others. Basically, its a state-based formalism
augmented by real-valued variables that may continuously evolve over time. The dis-
crete behavior is given as a label-transition system, typically in guarded-command no-
tation, allowing shared-variable communication and synchronization over transition la-
bels. The continuous behavior —the activities, as it is called— is typically specified
per control-state by differential (in—)equations. Based on [1], the full paper presents a
thorough cover of the model condensed in the following definition: A hybrid system is
atuple (Loc, Var, Con, Ini, Lab, Edg, Act, Inv) , where Loc is a finite non-empty set
of locations and Var a finite, non-empty set of variables. The function Con € Loc —
2Ver defines the control variables in each state, the set Ini C ¥ = Loc x V the ini-
tial states. The transitions are given by Edg C Loc x Lab x (2V,V — 2V) x Loc,
where Lab denotes a finite set of labels containing the stutter label 7. For all [ € Loc
there is a stutter transition (I, 7, (¢, f),l) € Edg suchthat ¢ = V and f(v) = {v' |
V| con(t) = V'|con@y }- The activities are given by Act : Loc — 27 such that Act(l) is
time-invariant for each location I € Loc. The function Inv : Loc — 2V specifies the
invariants. The parallel composition of two hybrid systems H; and H, is given by a
standard product construction and written as Hy x Ho.



A deductive approach

By its continuous part, hybrid automata are a priori infinite state systems. Moreover,
their computational properties are undecidable in the general model (this is already true
for timed-automata, an important subclass). Depending on various restrictions on the
form of the invariants, the guards, the activities etc., a score of variants and simplifi-
cations of the general model have been investigated, especially to obtain decidable and
automatically checkable subclasses of the general definition (cf. for instance [1] [2] [6]
[5] [8]). The main line of research concentrated on model checking of finite abstrac-
tions of restricted subclasses of the general model. Besides the drawback of limited
expressive power, fully-automatic approaches suffer from the usual state-space explo-
sion problem, when dealing with the parallel composition of subsystems.

Hence in our work, we pursue an alternative route, using deductive methods and
falling back upon a general-purpose theorem prover. To assure rigorous formal reason-
ing, we employ the interactive theorem prover PVS [7], based on higher-order logic,
extensive libraries of data-structures and theories, powerful strategies to assist in rou-
tine verification tasks, and modularization facilities.

A classical approach for the verification state-based programs are inductive asser-
tions: to prove the satisfaction of a property for all reachable states, it suffices to prove
a weaker, inductive property, i.e., to prove the initial satisfaction and preservation under
computational steps. To cope with the verification of parallel systems, it is advantageous
to exploit the system’s parallel structure, i.e., to use compositional proof techniques (cf.
for instance [3] for an extensive monograph on the topic). In the paper we develop a
compositional proof method to deal with the parallel composition of hybrid systems.
The methods cover shared variable communication, label-synchronization, and espe-
cially the common continuous activities in the parallel composition of hybrid automata.
The corresponding sound and complete proof rule is given below. Thus to prove a prop-
erty ¢ to hold for all reachable states Reach(H) of a hybrid system H = H; x H,
involves finding inductive assertion networks (Q; for the two components of H, where
additional auxiliary variables may be used, and establishing a combined assertion net-
work Q] x Q% that implies the desired property (the primed versions H; denote the
systems augmented by auxiliary variables, and the relation > captures sound augmen-
tation).

H] x Hy > H; x H Q' inductive for Hy Q% inductive for H}
V(0" Zgr.Q x Q51 v') = (1, v | var)
Reach(H) — ¢

CompP

Machine-assisted verification

Besides hybrid systems and their parallel composition, we formalized the operational
step semantics and a number of proof-rules similar to rule ComPp of above within PVS,
and applied the theory to the verification of a number of examples. Figure 1 sketches
one of the examples we dealt with. It’s an extension of the well-tried thermostat ex-
ample, consisting of n separate heating systems H; running in parallel and emptying a



common, refillable fuel tank. For the complete examples we have again to refer to the
full paper.
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Fig. 1. Thermostats with common fuel tank: Hy x ... Hyp X Hjyel

The library of PVS-theories and the examples is available at ftp:/ftp.informatik.uni-
kiel.de/pub/kiel/softtech/eab/.

Acknowledgements The work was supported by the technology foundation STW,
project EIF 3959, “Formal Design of Industrial Safety-Critical Systems” and further
by the German Research Council (DFG) within the special program KONDISK (Anal-
ysis and Synthesis of Technical Systems with Continuous-discrete Dynamics) under
grant LA 1012/5-1.

References

1. R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138:3—
34,1995. A preliminary version appeared in the proceedings of 11th. International Conference
on Analysis and Optimization of Systems: Discrete Event Systems (LNCI 199).

2. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:252—
235, 1994.

3. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.
Concurrency Verification: Introduction to Compositional and Noncompositional Proof Meth-
ods. Cambridge University Press, 2001. to appear.



. R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems, volume 736
of Lecture Notes in Computer Science. Springer-Verlag, 1993.

. T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid au-
tomata. In 27th Annual ACM Symposium on Theory of Computing. ACM Press, 1995.

. Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Integration graphs: a class of decidable hybrid
systems. In Grossman et al. [4], pages 179-208.

. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In D. Kapur,
editor, Automated Deduction (CADE-11), volume 607 of Lecture Notes in Computer Science,
pages 748-752. Springer-Verlag, 1992.

. 0. Roux and V. Rusu. Uniformity for the decidability of hybrid automata. In Radha Cousot
and D. A. Schmidt, editors, Proceedings of SAS ’96, volume 1145 of Lecture Notes in Com-
puter Science, pages 301-316. Springer-Verlag, 1996.



