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Abstract. Model checking would answer all finite-state verification problems, if
it were not for the notorious state-space explosion problem. A problem of practi-
cal importance, which attracted less attention, is to close open systems. Standard
model checkers cannot handle open systems directly and closing is commonly
done by adding an environment process, which in the simplest case behaves
chaotically. However, for model checking, the way of closing should be well-
considered to alleviate the state-space explosion problem. This is especially true
in the context of model checking SDL with its asynchronous message-passing
communication, since chaotically sending and receiving messages immediately
leads to a combinatorial explosion caused by all combinations of messages in the
input queues.

In this paper we develop an automatic transformation yielding a closed system.
By embedding the outside chaos into the system’s processes, we avoid the state-
space penalty in the input queues mentioned above. To capture the chaotic timing
behaviour of the environment, we introduce a non-standard 3-valued timer ab-
straction. We use data-flow analysis to detect instances of chaotic variables and
timers and prove the soundness of the transformation, which is based on the result
of the analysis.
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1 Introduction

Model checking [10] is considered as method of choice in the verification of reactive
systems and is increasingly accepted in industry for its push-button appeal. To alleviate
the notorious state-space explosion problem, a host of techniques has been invented,
e.g., partial-order reduction [19, 37] and abstraction [28, 10, 13], to mention two promi-
nent approaches.

A problem of practical importance, which attracted less attention, is to close open
systems. Since standard model checkers, e.g., Spin [23], cannot handle open systems,
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one first has to transform the model into a closed one. This is commonly done by adding
an environment process that, in order to be able to infer properties for the concrete sys-
tem, must exhibit at least all the behaviour of the real environment. The simplest safe
abstraction of the environment thus behaves chaotically. When done manually, this clos-
ing, as simple as it is, is tiresome and error-prone for large systems already due to the
sheer amount of signals. Moreover, for model checking, the way of closing should be
well-considered to counter the state-space explosion problem. This is especially true
in the context of model checking SDL-programs (Specification and Description Lan-
guage) [33] with its asynchronous message-passing communication model. Sending
arbitrary message streams to the unbounded input queues will immediately lead to an
infinite state space, unless some assumptions restricting the environment behaviour are
incorporated in the closing process. Even so, external chaos results in a combinatorial
explosion caused by all combinations of messages in the input queues. This way of
closing is even more wasteful, since most of the messages are dropped by the receiver
due to the discard-feature of SDL-92.

Another problem the closing must address is that the data carried with the messages
coming from the environment is usually drawn from some infinite data domain. Since
furthermore we are dealing with the discrete-time semantics [22, 7] of SDL, special
care must be taken to ensure that the chaos also shows more behaviour wrt. timing
issues such as timeouts and time progress.

To solve these three problems, we develop an automatic transformation yielding
a closed system. (1) By embedding the outside chaos into the system’s processes, we
avoid the state-space penalty in the input queues mentioned above. (2) We use data
abstraction, condensing data from outside into a single abstract value

� �
to deal with

the infinity of environmental data. In effect, by embedding the chaos process and ab-
stracting the data, there is no need to ever consider messages from the outside at all.
Hence, the transformation removes the corresponding input statements. By removing
reception of chaotic data, we nevertheless must take into account the cone of influence
of the removed statements, lest we get less behaviour than before. Therefore, we use
data-flow analysis to detect instances of chaotically influenced variables and timers. (3)
To capture the chaotic timing behaviour, we introduce a non-standard 3-valued timer
abstraction.

Based on the result of the analysis, the transformation yields a closed system ���
which shows more behaviour in terms of traces than the original one. For formulas of
next-free LTL [32, 27], we thus get the desired property preservation: if � ��� ��� then
� � �	� .

The remainder of the paper is organized as follows. Section 2 introduces syntax
and semantics we use, modelling the communication and timed behaviour of SDL. In
Section 3 we present the data-flow algorithm marking variable and timer instances in-
fluenced by chaos. Section 4 then develops the transformation and proves its soundness.
Finally in Section 5 we conclude with related and future work.
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2 Semantics

In this section, we fix syntax and semantics of our analysis. Since we take SDL [33]
as source language, our operational model is based on asynchronously communicat-
ing state machines (processes) with top-level concurrency. A program

�������
is given

as the parallel composition ���	�
 �
� 	 of a finite number of processes. A process � is
described by a four-tuple ����� ������������������� �!��"$#��&%

, where ��� �
denotes a finite set of vari-

ables, and
�����

denotes a finite set of locations or control states. We assume the sets of
variables ��� � 	 of processes � 	 in a program

�'�(��� � ���	�
 �
� 	 to be disjoint. A map-
ping of variables to values is called a valuation; we denote the set of valuations by
���*),+-��� �/.10

. We assume standard data domains such as 2 , 3 �4� ) , etc., and write0
when leaving the data-domain unspecified, and silently assume all expressions to be

well-typed. 5 � �����,6 ����) is the set of states, where a process has one designated ini-
tial state

� ���4��� � �87 ���4��� � ����) ����� � %$9 5 . An edge of the state machine describes a change
of configuration resulting from performing an action from a set : �
;

of actions; the set"$#
�=<>�?�4�@6 : �
;�6A�����
denotes the set of edges.

As actions, we distinguish (1) input of a signal B containing a value to be assigned to
a local variable, (2) sending a signal B together with a value described by an expression
to a process �DC , and (3) assignments. In SDL, each transition starts with an input ac-
tion, hence we assume the inputs to be unguarded, while output and assignment can be
guarded by a boolean expression E , its guard. The three classes of actions are written asF BG�IH %

, EKJ �ML BN�8O %
, and EKJ/HA+ � O , respectively, and we use P , P CNQ
Q
Q when leaving the

class of actions unspecified. For an edge �I7 � P �SR7 %T9U"$#��
, we write more suggestively

7WV .YXAR7 .
Time aspects of a system behaviour are specified by actions dealing with timers.

Each process has a finite set of timer variables (with typical elements Z � Z C � � Q
Q�Q ) which
consist of a boolean flag indicating whether the timer is active or not, and a natural
number value. A timer can be either set to a value, i.e., activated to run for the designated
period, or reset, i.e., deactivated. Setting and resetting are expressed by guarded actions
of the form E,J\[
] ; Z^+ � O and EKJ � ]![!] ; Z . If a timer expires, i.e., the value of a timer
becomes zero, it can cause a timeout, upon which the timer is reset. The timeout action
is denoted by E`_aJ � ]![
] ; Z , where the timer guard E`_ expresses the fact that the action
can only be taken upon expiration.

As the syntax of a program is given in two levels — state machines and their parallel
composition — so is their semantics. In SDL’s asynchronous communication model, a
process receives messages via a single associated input queue. We call a state of a pro-
cess together with its input queue a configuration � �b�(c�%

. We write d for the empty queue;
�8B �feg% + + c denotes a queue with message �8B �feg%

(consisting of a signal B and a value
e
)

at the head of the queue, i.e., �hB ��e�%
is the message to be input next; likewise the queuec + +i�8B �feg%

contains �hB �feg%
most recently entered. The behaviour of a single process is then

given by sequences of configurations � � ����� � � d % � � �&jG��c
j4%^.Yk � � �
�(c

�
%^.Yk Q
Q�Q start-

ing from the initial one, i.e., the initial state and the empty queue. The step semantics. k <mln6o� �Np 6\l
is given as a labelled transition relation between configurations.

The labels differentiate between internal q -steps, “
;8rI��s

”-steps, which globally decrease
all active timers, and communication steps, either input or output, which are labelled
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���������
	���
�����������
INPUT� ������� ��� ���! #"$"&%' (��) � �������* �,+-�.
/ ��%& 

�0�1�����324	$��
�����5�6���87 �:9�;< �
DISCARD� ������� ��� �  #"$"&%' =��) � ���3�,�3%& 

�0���?>A@�B 2DC 	$�FE G�
 �� �H�6��� I I JLK KNM <PODQFR1S I I T:K KNM < �
OUTPUT� ��������%& =� B 2DC 	$�FE .:
 � ���������%& 

�U�HV
RECEIVE� ��������%' (�WBA�F	$�FE .:
 � ��������%X"$" ��� �3�! � 

�0��� >A@Y�'Z [,G ��0�5����� I I JLK K M <\ODQFR1S I I T:K K M < �
ASSIGN� ���3�,�]%' (� ) � �������* �,+-5.
/ ��%& 

�0��� >A@�^�_D`La�Z [AG �� �5�6�:� I I JLK K M <PODQFRbS I I T:K K M < �
SET� �������]%& (�c) � �������* a�+-ed�f&	$.:
g/ ��%' 

�0��� >A@6hD_N^�_i`ja ����5�6��� I I JLK KgM <\ODQFRbS
RESET� ���3�,�3%& (�c) � �������* a�+-kdglm/ ��%' 

�0��� >]n!@�hD_N^�_i`!a ��0�H�6��� I I o�K K M <qpsr �4t  
TIMEOUT� ���3�,�3%& =� ) � �������* a�+-edgl=/ ��%' 

� �0���?u5�� �������X7wv ;< J a1x Q�S
yzS
O o] I I o�K K M <{p|r �4t  
TDISCARD� ���3�,�3%& (�c) � ���]��* a:+-kdglm/ ��%' 

Table 1. Step semantics for process }

by a triple of process (of destination/origin resp.), signal, and value being transmitted.
Depending on location, valuation, the possible next actions, and the content of the input
queue, the possible successor configurations are given by the rules of Table 1, where
we assume a given set ~ r �(��� �

of signals exchanged with the environment.

Inputting a value means reading a value belonging to a matching signal from the
head of the queue and updating the local valuation accordingly (rule INPUT), where� 9 ���*) , and ��� �m����z� stands for the valuation equalling � for all � 9 ��� �

except for
H 9 �a� �

, where ��� �m��c�z� � H % � e
holds instead. A specific feature of SDL-92 is captured

by rule DISCARD: if the head of the input queue cannot be reacted upon at the current
control state, i.e., there is no input action originating from the location treating this sig-
nal, then the message is just discarded, leaving control state and valuation unchanged.
Unlike input, output is guarded, so sending a message involves evaluating the guard
and the expression according to the current valuation (rule OUTPUT). Assignment in
ASSIGN works analogously, except that the step is internal. Receiving a message by
asynchronous communication simply means putting it into the input queue where in the
RECEIVE-rule, � is the identity of the process.

Concerning the temporal behaviour, timers are treated in valuations as variables,
distinguishing active and deactivated timer. The [
] ;

-command activates a timer, setting
its value to a specified time,

� ] [
] ;
deactivates it; both actions are guarded (cf. rules SET
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� � �
��%

�
 =��B C 	$�
E .:
 � �� �

� �% �
 � � �

�3%
�
 (�WBA�F	$�
E .:
 � �� �

� �% �
 ��������$� _���`

COMM� � �
��%

�
 
	 � � �

��%
�
 =�c) � �� �

� �% �
 
	 � �� �

� �% �
 

� � �
��%

�
 =��� � �� �

� �% �
 
 <���� � }�� ��� �3�! 
� }�� ��� ���! �� � �����$� _���`��

INTERLEAVE� � �
��%

�
 �	 � � �

��%
�
 (��� � �� �

� �% �
 �	 � � �

�]%
�
 

��� p��! &S � � ��������%' 
TICK� ���3�,�]%' (� `#" $&% � ������* a:+- 	�a�' �


g/ ��%' 

Table 2. Parallel composition

and RESET). A timeout may occur, if an active timer has expired, i.e., reached zero (rule
TIMEOUT).

We assume for the non-timer-guards, that at least one of them evaluates to true for
each configuration.1

The global transition semantics for a program
������� � �\�	 
 � � 	 is given by a stan-

dard product construction: configurations and initial states are paired, and global transi-
tions synchronize via their common labels. The global step relation

. kM< l 6-� �Np 6@l
is given by the rules of Table 2.

Asynchronous communication between the two processes uses a system-internal
signal B to exchange a common value

e
, as given by rule COMM. As far as q -steps

and communication messages using external signals are concerned, each process can
proceed on its own by rule INTERLEAVE. Both rules have a symmetric counterpart,
which we elide. Time elapses by counting down active timers till zero, which happens
in case no untimed actions are possible. In rule TICK, this is expressed by the predicate
p!) �4��s ] # on configurations: p!) ����s ] # �&( %

holds if no move is possible by the system ex-
cept either a clock-tick or a reception of a message from the outside, i.e., if ( . k

for
some label ) , then ) � ;hrI��s

or ) � � F �8B �feg%
for some B 9 ~ r �=��� �

. In other words, the
time-elapsing steps are those with least priority. Note in passing that due to the discard-
ing feature, p!) �4��s ] # � �b��c�%

implies
c � d . The counting down of the timers is written� � _ ��+* _-, �!. � , by which we mean, all currently active timers are decreased by one, i.e.,�0/ �214365 % V75 � �0/ �21 %

, non-active timers are not affected. Note that the operation is
undefined for

�0/ �98 %
, which is justified by the following lemma.

Lemma 1. Let � be a system and �I7 � � ��c�% 9 l
a configuration. If �I7 � � ��c�% .U� �;:-<

�I7 � � C �(c�%
, then = = Z-> >&?4@� �A/ ��8 %

, for all timers Z .
In SDL, timeouts are often considered as specific timeout messages kept in the in-

put queue like any other message, and timer-expiration consequently is seen as adding
a timeout-message to the queue. We use an equivalent presentation of this semantics,
where timeouts are not put into the input queue, but are modelled more directly by

1 This assumption corresponds at the SDL source-language level to the natural requirement that
each conditional construct must cover all cases, for instance by having at least a default branch:
the system should not block because of a non-covered alternative in a case-construct.
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guards. The equivalence of timeouts-by-guards and timeouts-as-messages in the pres-
ence of SDL’s asynchronous communication model is argued for in [7]. The semantics
we use is the one described in [22, 7], and is also implemented in DTSpin [6, 15], a
discrete time extension of the Spin model checker.

3 Marking chaotically-influenced variable and timer instances

In this section, we present a straightforward dataflow analysis marking variable and
timer instances that may be influenced by the chaotic environment. The analysis forms
the basis of the transformation in Section 4.

The analysis works on a simple flow graph representation of the system, where
each process is represented by a single flow graph, whose nodes 1 are associated with
the process’ actions and the flow relation captures the intra-process data dependencies.
Since the structure of the language we consider is rather simple, the flow-graph can be
easily obtained by standard techniques.

The analysis works on an abstract representation of the data values, where
�

is
interpreted as value chaotically influenced by the environment and

�
stands for a non-

chaotic value. We write � X � � X
�

� Q�Q
Q for abstract valuations, i.e., for typical elements
from ���*)

X
� ��� �@.�� � � ���

. The abstract values are ordered
��� �

, and the order is
lifted pointwise to valuations. With this ordering, the set of valuations forms a complete
lattice, where we write ��� for the least element, given as ��� � H % � �

for all H 9 ��� �
,

and we denote the least upper bound of �
X

�
� Q
Q�Q � � X

� by 	 �	�
 �
� X	 (or by �

X
��
 � X

� in the
binary case).

Each node 1 of the flow graph has associated an abstract transfer function � � +
���*)

X . �a�*)
X

. The functions are given in Table 3, where P � denotes the action associ-
ated with the node 1 . The equations are mostly straightforward, describing the change
the abstract valuations depending on the sort of action at the node. The only case deserv-
ing mention is the one for

F BG� H %
, whose equation captures the inter-process data-flow

from a sending to a receiving actions. It is easy to see that the functions � � are mono-
tone.


 � � �&���  � �� u <�� � u * �,+-��A/
� u * �,+-���� * * G�/ / ����� u�� 2 [,>,@6B C �
	�G�


for some node � 2 / � � ���$� _���`
else
 � J x }�� �&� T| � �� u < � u
 � J x�� " < T| �� u < � u * �,+- * * G�/ / ��� /
 � J x yzS
O o " < T| �� u < � u * a�+-ed�fL	 * * G�/ / � ��
g/
 � J x Q]S
yzS
O o] �� u < � u * a�+-edgl=/
 � J a�x Q]S
yzS
O o] �� u < � u * a�+-edgl=/

Table 3. Transfer functions/abstract effect for process }

Upon start of the data-flow analysis, at each node, the variables’ values are assumed
to be defined, i.e., the initial valuation is the least one: �

X���4��� �21 % � �!� . This choice
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rests on the assumption that all local variables of each process are properly initialized.
We are interested in the least solution to the data-flow problem given by the following
constraint set:

� X
����� � �21 %�� � � � �

X
��� � �21 %�%

(1.1)
� X
��� � �21 %��
	 � � X

����� � �21 C % � �21 C � 1 %
in flow relation

�
(1.2)

For each node 1 of the flow graph, the data-flow problem is specified by two in-
equations or constraints. The first one relates the abstract valuation �

X
��� � before entering

the node with the valuation � X
����� � afterwards via the abstract effects of Table 3. The

least fixpoint of the constraint set can be solved iteratively in a fairly standard way by
a worklist algorithm (see e.g. [24, 21, 30]), where the worklist steers the iterative loop
until the least fixpoint is reached. The algorithm for our problem is shown in Fig. 1.

input : the flow
�

graph of the program
output :

� u� hD_ �]� u� d�^i` ;
� u �
�  < � u" f " ` �
�  

;��� <�� � �|v � < � �&���  
� � �4��� � _���` � ;
repeat

pick
� � ���

;
let � <�� � 9 � yFR � � �
�  �� 
 � � � u �
�  ;� � u �
� 9  �
in

for all
�A9 � � :

� u �
�,9  #" < 
 � � u �
�  � 
;��� " < ����� ��� � ;

until
��� <�� ;

� u� hD_ �
�  < � u �
�  
;� u� d�^i` �
�  < 
 � � � u �
�  � 

Fig. 1. Worklist algorithm

The worklist data-structure � �
used in the algorithm is a set of elements, more

specifically a set of nodes from the flow-graph, and where we denote by [�� ��� �21 %
the set

of successor nodes of 1 in the flow graph in forward direction. It supports as operation to
randomly pick one element from the set (without removing it), and we write � ��� 1 for
the worklist without the node 1 and � for set-union on the elements of the worklist. The
algorithm starts with the least valuation on all nodes and an initial worklist containing
nodes with input from the environment. It enlarges the valuation within the given lattice
step by step until it stabilizes, i.e., until the worklist is empty. If adding the abstract
effect of one node to the current state enlarges the valuation, i.e., the set � is non-empty,
those successor nodes from � are (re-)entered into the list of unfinished one. Since the
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set of variables in the system is finite, and thus the lattice of abstract valuations, the
termination of the algorithm is immediate.

Lemma 2 (Termination). The algorithm of Figure 1 terminates.

Proof. Immediate, for set of variables ��� �
in the program is finite and hence the lattice

���*)
X
� ��� �@.�� � � ���

is finite, as well.
��

With the worklist as a set-like data structure, the algorithm is free to work off the
list in any order. In praxis, more deterministic data-structures and traversal strategies
are appropriate, for instance traversing the graph in a breadth-first manner (see [30] for
a broader general discussion or various traversal strategies).

After termination the algorithm yields two mappings �
X
��� �S� � X

����� � +�� �4# ] . ���*)
X

.

On a location 7 , the result of the analysis is given by �
X

�I7 % � 	 � � X
����� � ���1 % � �1 � �7WV . X

7 � , also written as �
X
� . The definition is justified by the following observation:

Lemma 3. Given a location 7 and a node R1 from the flow graph such that R1 � 7WV .��XAR7 .
Then �

X
��� � � R1 % � 	 � � X

����� � ���1 % � �1 � �7 V . X 7 � .

4 Closing the system

The analysis marks instances of variables and timers potentially influenced by the
chaotic environment. Based on this information, we transform the given system into
a closed one, which shows more behaviour than the original. Since for model check-
ing, we cannot live with the infinity of data injected from outside by the chaotic en-
vironment, we abstract this infinity into one single abstract value

� �
. For chaotically

influenced timer values, we will need a more refined abstraction using 3 different val-
ues (cf. Section 4.1). Since the abstract system is still open, we close it in a second
step, also implementing the abstract values by concrete ones (cf. Section 4.2). With the
chaotic environment embedded into the now closed system, we remove, as optimiza-
tion for model checking, external signals from the input queues. Special care is taken to
properly embed the chaotic behaviour wrt. the timed behaviour.

4.1 Abstracting data

As mentioned, we extend the data domains each by an additional value
� �

, representing
data received from the outside, i.e., we assume now domains such as 2
	 	 � 2��� � � ���

,
3 �4� ) 	 	 � 3 ��� )
�� � � ���

, Q�Q
Q , where we do not distinguish notationally the various types
of chaotic values. These values

� �
are considered as the largest values, i.e., we introduce�

as the smallest reflexive relation with
e � � �

for all elements
e

(separately for each
domain). The strict lifting of a valuation � 	 	 to expressions is denoted by = = Q > > ?�� � , i.e.,
= = O > > ?�� � � � , if O contains a variable H such that � 	 	$�IH % � � .

The step semantics is given (as before) by the rules of Tables 1 and 2, except the
following differences.

� �
-valued guards behave as evaluating to

;h� � ] , i.e., they are re-
placed by �!= = E > > ? � � � ;h� � ] % 
 �!= = E > > ? � � � � � %

. For the TIMEOUT- and the TDISCARD-
rule, the premise concerning the timer remains = = Z-> > ? � � � �0/ �98 %

. The RECEIVE-rule is
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d�f&	 � �0
 )

��

)
||yy

y
y
y
y
y
y
y

dgl d�f&	 � � � 
`#"#$;%
\\

Fig. 2. Timer abstraction

replaced by I-RECEIVEINT and I-RECEIVEEXT for internal and external reception,
where the first one equals the old RECEIVE when B �9 ~ r �=��� �

, and the latter postulates
�I7 � � ��c�%@.���� *��	� 	 	 . �I7 � � ��c +�+ �8B � � � %f%

when B 9 ~ r �(��� �
. To distinguish notationally the

original system and its constituents from the intermediate one of this section, we write� 	 	 for an intermediate-level process, �
	 	 for an intermediate level system, etc.
The interpretation of timer variables on the extended domain requires special atten-

tion. Chaos can influence timers only via the [
] ;
-operation by setting it to a chaotic

value in the
�A/

-state. Therefore, the domain of timer values contains as additional
chaotic value

�0/ � � � %
. Since we need the intermediate system to show at least the be-

haviour of the original one, we must provide proper treatment of the rules involving�0/ � � � %
, i.e., the TIMEOUT-, the TDISCARD-, and the TICK-rule. As

�0/ � � � %
stands for

any value of active timers, it must cover the cases where timeouts and timer-discards
are enabled (because of

�A/ �98 %
) as well as disabled (because of

�0/ �21 %
with 1 � 5 ).

The second one is necessary, since the enabledness of the tick steps depends on the
disabledness of timeouts and timer discards via the blocked-condition.

To distinguish the two cases, we introduce a refined abstract value
�A/ � � ��
 %

for
chaotic timers, representing all

�0/
-settings larger or equal 5 . The non-deterministic

choice between the two alternatives — zero and non-zero — is captured by the rules
of Table 4. The order on the domain of timer values is given as smallest reflexive order
relation such that

�0/ �98 % � �A/ � � � %
and

�0/ �21 % � �0/ � � ��
 % � �0/ � � � %
, for all 1 � 5 . The

decreasing operation needed in the TICK-rule is defined in extension to the definition

I I o�K K M � � <qpsr ��
 
  
I-NONZERO� ����� � � ��% � �  =�c) � ����� � � * a�+-kd�f&	 � � � 
 / ��% � �  

�0�1� > n @ hD_N^�_i`ja ��m�H����� I I o�K K M � � <{p|r ��
 
  
I-ZERO-TIMEOUT� ����� � � �3%& (� ) � ����� � � * a�+-?dglm/ �3%& 

� �0�1�cu5����5�6���X7wv ;< J a1x Q]S
yzS
O o] I I o�K K M � � <{p|r ��
 
  
I-ZERO-TDISCARD� ����� � � ��% � �  (�c) � ����� � � * a�+-edgl=/ �]% � �  

Table 4. Non-determinism for psr ��
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on values from
�0/ �I2 %

on
� ��


by
�0/ � � ��
 % V 5 � �0/ � � � %

. Note that the operation is left
undefined on

� �
, which is justified by a property analogous to Lemma 1:

Lemma 4. Let �I7 � � 	 	 ��c 	 	 %
be a configuration of � 	 	 . If �I7 � � 	 	 ��c 	 	 % . � �;:-<

, then = = Z-> > ? � � �9���0/ � � � %!�4�A/ ��8 % �
, for all timers Z .

The intermediate system allows to state the soundness of the analysis: whenever a
variable at some location contains a

� �
-value, the analysis has marked it by

�
.

Theorem 5 (Soundness). Given a system � , its intermediate representation � 	 	 , and� X
as the result of the analysis. Assume ( 	 	j .�� ( 	 	 � �I7 � � 	 	 �(c 	 	 %

, where (�	 	j is
the initial configuration of �
	 	 . Then = = H > > ? � � � � � implies = = H > >&? �� � � , and = = Z-> > ? � � 9���0/ � � � %!�4�A/ � � � 
 % �

implies = = Z-> >&? �� � � .

Next we make explicit the notion of simulation we will use to prove soundness of
the abstraction. The new rule I-NONZERO introduces additional q -steps in the inter-
mediate system not present in the original behaviour. Hence, the simulation definition
must honour additional q -steps of �
	 	 preceding a

;hrI�(s
-step.

Definition 6 (Simulation). Given two processes � and � C with sets of configurationsl
and

l C . Assume further a relation
� < l 6 l C on configurations and a relation� < � �Np 6 � �Np C on labels, denoted by the same symbol. A relation

� < l 6ol C is
a simulation if

� < �
, and if ( ( � ( C and ( . k R( ) implies one of the following

conditions:

1. If )6@� ;8rI��s
, then ( C . k 2 R( C and R( � R( C , for some configuration R( C and for some

label ) C � ) .
2. If ) � q , then R( � ( C .
3. If ) � ;hrI��s

, then ( C � ( Cj .�� ( C� .�� Q
Q�Q .�� ( C�
. ���;:-< R( C for some 1 � 8 such

that R( � R( C and ( � ( C	 for all ( C	 .
We write ��� �DC , if there exists a simulation relation

�
such that ( ����� �	� ( C���4���

for
the initial configurations ( ���4���

and ( C����� �
of � resp. � C . The definition of simulation is

analogously used for systems.

The simulation definition is given relative to order relations on configurations and
on labels. To establish simulation concretely between � and � 	 	 , we define (in abuse
of notation) for labels

� <m� �`p 6\� �`p 	 	 as the smallest relation such that q � q , and
that

e � e 	 	 implies � F �8B �feg% � � F �hB ��e 	 	 %
as well as �ML �8B ��e�% � �ML �hB �fe 	 	 %

. We use
the same symbol for the pointwise extension of

�
to compare valuations, states, pairs

�8B �feg% � �hB �fe 	 	 %
, queues, and finally configurations.

Lemma 7. Let � and � 	 	 as well as
�

be defined as above. Then � � �
	 	 .

Proof sketch. It is straightforward to check on the rules of Table 1 that for single pro-
cesses �
� � 	 	 . For systems, prove the implication that � � � � 	 	� and � � � � 	 	�

implies � ��� � � � � 	 	� � � 	 	� , proceeding similarly by case analysis on the rules of
Table 2. There, for the case of TICK, use the fact that ( � ( 	 	 and p
) �4�(s ] # �&( %

implies
( 	 	 � (�	 	j . � (�	 	� . � Q
Q�Q . � ( 	 	� � R(�	 	 with p
) �4�(s ] # � R( 	 	 %

for some 1 � 8 and R(�	 	 ,
and where furthermore ( � ( 	 		 for all (�	 		 .

��

Lemma 8. Let systems � and � 	 	 and the relations
�

be defined as above. Then for all
formulas � from next-free LTL, � � � 	 	 and � 	 	 � � � implies � � � � .
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4.2 Transformation

Based on the result of the analysis, we transform the given system � into an optimized
one — we denote it by � � — which is closed, which does not use the value

� �
, and

which is in simulation relation with the original system.

In first approximation, the idea of the transformation is simple: just eliminate actions
whose effect, judging from the results of the analysis, cannot be relied on. The trans-
formation is given for each of the syntactic constructs by the rules of Table 5, where
we denote a do-nothing statement by [ s*r � . The set of variables ��� � � for � � equals the
original ��� �

, except that for each process � of the system, a fresh timer-variable Z � is
added to its local variables, i.e., ��� � �� � ��� � � �� � Z � �

.
The transformation rules embed the chaotic environment’s behaviour into a system.

We start with the part not interacting with the environment, i.e., the transformation con-
cerning the manipulation of variables and timers. Variable assignments are either left
untouched or replaced by [ s�r � , depending on the result of the analysis concerning the
left-hand value of the assignement (rules T-ASSIGN � and T-ASSIGN � ). A non-timer
guard E at a location 7 is replaced by

;8� � ] , if = = E�> > ? �� � � ; if not, the guard stays
unchanged for the transformed system. We use E � � = = E > >&? �� as shorthand for this re-
placement in the rules. For chaotic timers, we represent the abstract values

�A/ � � � %
and�0/ � � � 
 %

of the intermediate system by the concrete
�A/ ��8 %

and
�A/ �!5 % , respectively,

and directly incorporate the I-NONZERO-step of Table 4 by the transformation rule
T-NOTIMEOUT.

For communication statements, we distinguish between signals going to or coming
from the environment, and those exchanged within the system. Output to the outside ba-
sically is skipped (cf. rules T-OUTPUT � and T-OUTPUT � ). Input from outside is treated
similarly. However, just replacing input by unconditionally enabled [ s�r � -actions would
be unsound, because it renders potential

;8rI��s
-steps impossible by ignoring the situation

when the chaotic environment does not send any message. The core of the problem
is that with the timed semantics, a chaotic environment not just sends streams of mes-
sages, but “chaotically timed” message streams, i.e., with

;8rI��s
’s interspersed at arbitrary

points.
We embed the chaotic nature of the environment by adding to each process � a new

timer variable Z � , used to guard the input from outside.2 These timers behave in the
same manner as the old “chaotic” timers, except that we do not allow the new Z � timers
to become deactivated (cf. rules T-INPUT � and T-NOINPUT). Since for both input and
output, the communication statement using an external signal is replaced by a [ s�r � , the
transformation yields a closed system.

The relationship between the intermediate and the transformed program will again
be based on simulation (cf. Definition 6) but with different choices for the order rela-
tions on configurations and on labels. Based on the dataflow analysis, the transformation
considers certain variable instances as potentially chaotic and unreliable. Hence to com-
pare configurations of � 	 	 and � � , we have to take �

X
into account. So relative to a given

analysis �
X

, we define the relationship between valuations as follows: �
X
� � � 	 	 � � � ,

2 Note that the action
J a�� x Q]S
yzS
O o B�� yzS
O o B " < t

in rule T-INPUT � corresponds to the do-
nothing step

J a �Ux y- � � .
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�m�1� >A@��'Z [AG ��0�5����� � � I I T:K K M �� ;< 
 J � < I I JLK K M ��
T-ASSIGN ��0��� >��j@��'Z [,G ��0�H�6�:� �

�m�1� >A@��'Z [AG ��0�5����� � � I I T:K K M �� < 
 J � < I I JLK K M ��
T-ASSIGN ����1� >��!@Y^;% " � ���������� ��m�1�����
	$��
=����5�6�:� � � ���� ���$� _���`

T-INPUT ����������
	$��
=���������� �
���1� ���
	$��
 �� �H�6��� � � � � ��� � _;��`

T-INPUT ������ > n � @6hi_i^�_D`ja � �1� ^�_D`La � Z [�� ��0�5����� �
T-NOINPUT����� >]n � @6hi_i^�_D`ja�� �1� ^�_D`La��0Z [

�
�0�5����� �

�m�1�?>A@6B,2 C 	$�
E G�
#�� �5����� � � � ��4� � � _;��` J � < I I JLK K M ��
T-OUTPUT ������ >��!@YB 24C 	$�FE G�
 ��0�H�6��� �

�m�1�?>A@6B 2DC 	$�
E G�
#��0�5����� � � � �4� � � _;��` J � < I I JLK K M ��
T-OUTPUT ������ >��!@Y^;%�" � ��0�H�6��� ��m�1� >A@6^�_D`La�Z [,G ����5�6��� � � J � < I I JLK K M �� I I T:K K M �� ;< 

T-SET ��0��� >��j@6^�_i`ja�Z [,G ���������� �

�m�1� >A@6^�_D`La�Z [,G �� �5�6��� � � J � < I I JLK K M �� I I T:K K M �� < 

T-SET ����1� > � @6^�_i`!a�Z [�� ��0�5����� �

�m�1� >A@ hi_N^�_D`La �� �H�6��� � � J � < I I JLK K M ��
T-RESET����� >��!@�hD_N^�_i`!a ����5�6�:� �

�m�1� >]n!@6hi_N^�_D`ja ��0�5����� � � J �a < I I J a K K M ��
T-TIMEOUT�m�1� > �n @6hD_N^�_i`ja ��0�H�6�:� �

I I o�K K M �� < 

T-NOTIMEOUT����� >]n!@6hD_N^�_i`ja ��� ^�_i`ja�Z [

�
�0�H�6�:� �

Table 5. Transformed system
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iff for all variables H 9 ��� �
one of the two conditions hold: = = H > > ? � � � = = H > > ? � or

= = H > >&? �� � � . Note that nothing is required for the new timer variables Z � .
The set of observable input signals of a process � is defined as

~ r � � � � � � � B 9 ~ r � � ~ r �0��� � ��� � 7WV .���� �	� *��	� 
 . R7 Q = = O > > ? �� � ��� Q
The observable effect of input and output labels is given by the following equations:

� � F �8B �feg% � �

� � q if B 9 ~ r �m��� �

� F �8B ��e�%
if B 9 ~ r � � � � �� F �8B %
else

� �ML �8B �feg%�� �

� � q if B 9 ~ r �m��� �

�ML �8B ��e�%
if B 9 ~ r � � � � ��ML �8B %
else

For
;8rI��s

- and q -labels,
��� �

acts as identity. With this definition, we choose as order
relation on labels ) 	 	 � ) � if

� ) 	 	 � � � ) � � . In accordance with this definition, we
set

�
on the input queues of � 	 	 and � � inductively as follows: for empty queues

d � d . In the induction case �8B �fe 	 	 % +�+ c 	 	 � c � , if B 9 ~ r � ��� �
and

c 	 	 � c � . Otherwise,
�8B �fe 	 	 % +�+ c 	 	 � �8B �fe � % + + c � , if

c 	 	 � c � and furthermore
� �hB �fe 	 	 %�� � � �8B �fe � %�� , where��� �

for queue messages is defined in analogy to the definition for labels. This means,
when comparing the queues, the external messages are ignored for � � , while for the in-
ternal messages, the signals must coincide and the value component is compared on the
result of the analysis on the potential sending locations. The

�
-definitions are extended

in the obvious manner to expressions and configurations.

In order to have the transformed system exhibit only more behaviour than the inter-
mediate one, it must be guaranteed that whenever a guarded edge can be taken in � 	 	 ,
the corresponding guard for � � likewise evaluates to

;h� � ] , where we have to take into
account that in the intermediate level, guards with value

� �
enable the action, as well.

This property is an immediate consequence of the construction of the guards E � in � � .
Lemma 9. Assume two systems � 	 	 and � � and �

X
� � �I7 � � 	 	 % � �I7 � � � % .

1. Let E be a guard of an edge in �
	 	 originating at location 7 and E � its analogue in
� � . If = = E�> > ?�� � 9 �G;8� � ] � � ���

, then = = E � > > ? � � ;h� � ] .
2. If = = Z-> > ? � � 9 ���A/ ��8 %!�4�0/ � � � % �

, then = = Z-> > ? � � �A/ ��8 %
.

Lemma 10. Let (�	 	 � �I7 � � 	 	 �(c 	 	 %
be a configuration of �
	 	 . Then there exists an input-

edge starting from 7 , or an edge guarded by E and where = = E�> > ? � � � ;h� � ] or = = E > > ? � � � � � .

Lemma 11. Let (�	 	 and ( � be two configurations of �
	 	 and � � , such that �
X
� � (�	 	 �

( � . If p
) �4�(s ] # �2( 	 	 %
, then ( � � ( �j .�� ( �� .�� Q
Q�Q .�� ( �� � R( � for some configurations

( �	 and some 1 � 8 such that (�	 	 � ( �	 for all � , and p
) �4�(s ] # � R( � % .
Lemma 12. Let � 	 	 and � � as well as

�
be defined as above. Then � 	 	 � � � .

Proof sketch. With the help of Lemma 9, it is straightforward to check on the rules of
Tables 1 and 4 together with the transformation rules, that for single processes � 	 	 �� � . For systems, prove the implication that � 	 	� � � �� and � 	 	� � � �� implies � 	 	� �
� 	 	� � � �� � � �� , proceeding similarly by case analysis on the rules of Table 2. There,
for the case of TICK, use Lemma 11.

��
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Having established simulation between the two levels, we can proceed to the rela-
tionship we are really interested in, namely: the transformed systems must be a safe
abstraction as far as the logic is concerned. Being in simulation relation guarantees
preservation of LTL-properties as long as variables influenced by chaos are not men-
tioned. Therefore, we define as set of observable variables ��� � � � � � � H � � � 7 9
�?�4� Q = = H > > ? �� � ���

. Note that the additional timer variables Z � are unobservable.

Lemma 13. Let the relations
�

and ��� � � � � be defined as above. Then for all formulas
� from next-free LTL, � 	 	 � � � and � ��� �	� implies � 	 	 � �	� .

This brings us to the paper’s final result: as immediate consequence of the above
development, we obtain the desired property preservation:

Corollary 14. Let � , � � , and ��� � � � � be defined as before, and � a next-free LTL-
formula mentioning only variables from ��� � � � � . Then � � is closed and � ��� � � implies
� � �	� .

5 Conclusion

In this paper, we apply dataflow analysis to transform an open system into a closed, safe
abstraction, well-suited for model checking. The method of embedding chaos has been
successfully applied in the context of the Vires project (Verifying Industrial Reactive
Systems) [38]. To cope with the complexity of the project’s verification case study, an
industrial wireless ATM medium-access layer protocol (Mascara) [14, 39], we followed
a compositional approach, which immediately incurred the problem of closing the mod-
ules [34, 35].

Related work Closing open (sub-)systems is common for software testing. In this field,
a work close to ours in spirit and techniques is the one of [12]. It describes a dataflow
algorithm to close program fragments given in the C-language with the most general
environment and at the same time eliminating the external interface. The algorithm is
incorporated into the VeriSoft tool. Similar to the work presented here, they assume
an asynchronous communicating model, but do not consider timed systems and their
abstraction. Similarly, [18] consider partial (i.e., open) systems which are transformed
into closed ones. To enhance the precision of the abstraction, their approach allows
to close the system by an external environment more specific than the most general,
chaotic one, where the closing environment can be built to conform to given assump-
tions, which they call filtering [16]. As in our work, they use LTL as temporal logic and
Spin as model checker, but the environment is modelled separately and is not embedded
into the system.

A more fundamental approach to model checking open systems, also called reactive
modules [3], is known as module checking [26][25]. Instead of transforming the sys-
tem into a closed one, the underlying computational model is generalized to distinguish
between transitions under control of the module and those driven by the environment.
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MOCHA [5] is a model checker for reactive modules, which uses alternating-time tem-
poral logic [4] as specification language.

Slicing, a well-known program analysis technique, resembles the analysis described
in this paper, in that it is a data-flow analysis computing — in forward or backward
direction — parts of the program that may depend on the certain points of interest (cf.
for a survey [36]). The analysis of Section 3 computes in a forward manner the cone
of influence of all points of the system influenced from the outside. The usefulness of
slicing for model checking is explored in [29], where slicing is used to speed up model
checking and simulation for programs in Promela, Spin’s input language. However,
the program transformation in [29] is not intended to preserve program properties in
general. Likewise in the context of LTL model checking, [17] use slicing to cut away
irrelevant program fragments but the transformation yields a safe, property-preserving
abstraction and potentially a smaller state space.

Future work While chaos is useful as the most abstract approximation of the environ-
ment, one often can verify properties of a component only under assumptions or restric-
tions on the environment behaviour. For future work we plan to generalize the frame-
work to embed also environments given by timed LTL-formulas. For timers, a more
concrete behaviour than just using random expiration periods could be automatically
extracted from the sub-components by data-flow techniques, leading to more refined
timer abstraction.
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