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Abstract. In this paper we propose a methodology for model-checking
based verification of large SDL specifications. The methodology is il-
lustrated by a case study of an industrial medium-access protocol for
wireless ATM. To cope with the state space explosion, the verification
exploits the layered and modular structure of the protocol’s SDL spec-
ification and proceeds in a bottom-up compositional way. To make a
compositional approach feasible in practice, we develop a technique for
closing SDL components with a chaotic environment without incurring
the state-space penalty of considering all possible combinations of values
in the input queues. The compositional arguments are used in combina-
tion with abstraction techniques to further reduce the state space of the
system. With debugging the system as the prime goal of the verification,
we corrected the specification step by step and validated various untimed
and time-dependent properties until we built and verified a model of the
whole control component of the medium-access protocol. The significance
of the case study is in demonstrating that verification tools can handle
complex properties of a model as large as shown.

Keywords: SDL model checking; abstraction; compositional, bottom-up
verification; verification case study.

1 Introduction

Formal methods, most notably model checking, are increasingly accepted as im-
portant part of the software design process [6]. There is a clear tendency to
provide validation facilities in the commercial SDL-design tools like OBJECT-
GEODE [18] and SDT [22]. Currently, these tools allow to validate SDL speci-
fications by means of exhaustive testing. Due to the high cost of errors in the
telecommunication system design, however, complementary ways of debugging



and verification are needed. In this paper, we describe the verification method-
ology we applied to a large industrial software product, namely the control layer
of the wireless ATM communication protocol Mascara [24].

Formal verification of SDL-specifications via model checking [5] is an area
of active investigation [3,10,11,8,23] (notably, the last two mentioned works
are developments of the telecommunication industry itself). Responsible for the
increasing acceptance of model checking by industry is its “push-button” appeal,
i.e., its promise to allow for fully automatic checking of a program or a system —
the model — against a logical specification, typically a formula of some temporal
logic. As model checking is based on state-space exploration, the size of a system
that can be checked is limited and it is often held that only relatively small
systems can be verified with a model checker.

The limitations of model checking by the system size implies that verifica-
tion is possible only using abstractions and/or compositional techniques. These
techniques allow to construct a verification model whose state space is smaller
than the one of the original system. However, providing a formal proof of cor-
rectness for each abstraction or composition step is prohibitively costly. Aiming
primarily at debugging, performing these steps at a semi-formal level does not
cause troubles as spotted errors can easily be validated afterwards and checked
against the concrete model by the designers and spurious errors can be detected.
But in case a property holds for the verification model, one can not claim that
the property holds for the system under consideration as well, although the ob-
tained result argues in favour of correctness of the system design. Therefore, we
see the primary goal of verification not in proving the overall correctness of the
product, but in advanced debugging, finding potential errors in its design and
thus increasing its reliability.

For the verification of Mascara, we use the Vires tool-set on the SDL spec-
ification, automatically translating the SDL-code into the input language of a
discrete-time extension of the well-known Spin model-checker. As Mascara is
too large to be verified by any existing verifier as a whole, we exploit the proto-
col’s layered structure and perform a bottom-up, compositional verification. In
a number of cases, the proved correctness requirements of a component form the
basis of its abstraction. This abstraction replaces the real component at the next
step when a slice at an upper hierarchical level of the protocol is considered for
verification. Doing so we were able to reach the point where the whole control
entity of Mascara together with a simple abstraction of the rest of the protocol
was taken into account.

The rest of the paper is organised as follows: In Sections 2 and 3 we shortly
survey the protocol and the set of design and model check tools we used in the
case study. In Section 4 we present the methodology and the techniques applied
in the verification, and in Section 5 we highlight results of the investigation. We
conclude in Section 6 by evaluating the results and discussing related work.



2 Mascara: a wireless ATM medium-access protocol

Located between the ATM-layer and the physical medium, Mascara is a medium-
access layer or, in the context of the ISDN reference model, a transmission con-
vergence sub-layer for wireless ATM communication [1][14] in local area net-
works. It has been developed within the WAND! project [24], a joint European
initiative by various telecommunication companies to specify and implement a
wireless access system for ATM-LANs.

Besides the standard transmission convergence sub-layer tasks such as cell
delineation, transmission frame adaptation, header error control, cell-rate de-
coupling, etc., operating over radio-links, i.e., over a necessarily shared physi-
cal medium, adds to the complexity of the protocol. Mascara has to arbitrate
medium access to the radio environment of a variable number of mobile ATM-
stations,? provide enhanced error detection and correction mechanisms at var-
ious levels to counter the comparatively high bit-error rate of air-borne data-
transmission. Last but not least, it has to cater for mobility features, allowing a
mobile terminal to switch its association with an access point in a handover.

2.1 Overall structure

From the perspective of verification, Mascara is a large protocol.® It is itself
composed of various protocol layers and sub-entities (cf. Fig. 1).

The layer control protocol together with the message encapsulation unit as-
sists in various ways the information exchange between the Mascara layer and en-
tities located within the upper layers. The segmentation and reassembly unit does
exactly what its name implies: cutting peer-to-peer control messages (also called
MPDUs) into ATM-cell size and putting them together upon reception. All three
mentioned top-level entities are comparatively unsophisticated and straightfor-
ward, as they mainly perform data transformations. The WDLC-layer, oper-
ating already on cell-level, is reminiscent to conventional (non-ATM) data-link
protocols and responsible, per virtual channel, for error- and flow-controlled cell-
transmission. The lowest level of Mascara is the data-pump including a real-time
scheduler, which forms a large portion of the protocol’s code-size. Despite its
raw size, the functionality offered to the Mascara-layers above is rather simple:
the data-pumps of two communicating stations act as duplex, lossy Fifo-buffer.
The other large part of Mascara, making up almost half of the SDL-code, is its
control entity, on which we concentrate here. For a more thorough coverage of
Mascara’s structure and internals, consult the specification material provided by
the Wand consortium [24].

! Wireless ATM Network Demonstrator.

2 Hence the acronym “Mobile Access Scheme based on Contention and Reservation
for ATM”.

% Over 300 pages of (graphical) SDL.
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Fig. 1. Top-level functional entities

2.2 Mascara control

As the name suggests, the Mascara control entity (MCL) is responsible for the
protocol’s control and signalling tasks. It offers its services to the ATM-layer
above while using the services of the underlying segmentation and reassembly
entity, the sliding-window entities (WDLC’s), and in general the low-layer data-

pump.

Being responsible for signalling, MCL maintains and manages associations
linking access points with mobile terminals, and connections, i.e., the basic data
and signalling transfer channels, corresponding to ATM virtual channels. Mas-
cara control falls into four sub-entities, each divided in various sub-processes
themselves. The two important and complex ones are the dynamic control (DC)
and the steady-state control (SSC). The division of work between the dynamic
and the steady-state control is roughly as follows: SSC monitors in various ways
current associations and the quality of the radio environment in order to en-
sure an optimal transmission quality, to keep informed about alternative access
points, and to initiate in time change of associations, so-called handovers. The
dynamic control’s task, on the other hand, is to set-up and tear down the as-
sociations and connections while managing the related administrative work like
address management, resource allocation, etc. Of minor complexity are the radio
control entity (RCL, with the radio control manager RCM as its most important
process) and the generic Mascara control (GMC).



3 Model checking environment

Dealing with a protocol of Mascara’s size, formal validation results with accept-
able effort are possible only with appropriate tool support including editing and
specification, validation, and of course model checking support.

The tool-set we use for the verification experiments on Mascara is a combi-
nation of well-established tools and a number of tools developed within Vires
(cf. Fig. 2). Since developing a state-of-the-art model checker from scratch is a
daunting task, it was decided to use a powerful model checker as starting point
rather than to design a new one. The model checker was enhanced with the
ability to deal with time, for Mascara relies heavily on timers.

design of the SDL-specification, syntax checking,
debugging using the ObjectGeode simulator facilities

ObjectGeode
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Fig. 2. Tool-set for Mascara verification

The tool-set we used especially features:

— OBJECTGEODE, [18], a Telelogic tool-set for analysis, design, verification,
and validation through simulation, as well as C/C*T" code generation and
testing of real-time and distributed applications. Targeted especially for
telecommunication software and safety-critical systems, OBJECTGEODE in-
tegrates complementary object-oriented and real-time approaches based on
SDL [19] and MSCs [17], and recently UML.

— sdl2if and if2pml, which are the chain of translators rendering SDL into the
Intermediate Format IF [4], a language for timed asynchronous systems, and
IF into DT Promela [2] — a discrete-time extension of Promela (the input
language of the model checker Spin), respectively. Both tools were developed
within Vires.

— LIVE [16], used to optimise IF specifications by static-analysis techniques. It

Y

transforms an IF specification into a semantically equivalent one by adding



systematic resets of non-live variables. The transformation preserves the be-
haviour while reducing dramatically the global state space (and further, the
exploration time). In our experiments, LIVE reduced the state space of the
models by a factor of 8 on the average.

— Spin, a software package for the specification and verification of concurrent
systems [12]. The core of Spin is a state-of-the-art enumerative on-the-fly
model checker, which can be used to report unreachable code, deadlocks,
unspecified receptions, race conditions, and the like. Correctness properties
can be specified as system or process invariants (using assertions) or as gen-
eral linear-time temporal logic requirements, either directly in LTL-syntax
or indirectly as Biichi automata (called never claims).

— DTSpin [2], a discrete-time extension of Spin, intended for model check-
ing concurrent systems that depend on timing parameters. It is completely
compatible with the standard, untimed version of Spin.

4 Methodology

This section describes the methodological aspects of the verification process. The
size of the protocol renders any direct, brute-force attempt of model checking
out of question. To achieve the main goal, namely debugging the given real-life
Mascara protocol, we faced a number of problems, where the most important
had been: How to break-up the complex program into smaller entities and how
to proceed in verifying them? How to close the smaller components in order to
feed them into the model checker environment? And how to simplify and abstract
them further in case the components are too large to be accepted by the model
checker. We address these questions in turn.

4.1 Bottom-up compositional verification

Our prime goal was to apply formal methods, foremost model checking, to in-
dustrial protocols, Mascara in this case. With the given overall protocol spec-
ification in SDL-92 (Specification and Description Language) [19] as starting
point we choose to proceed bottom-up to be able to debug and clean up the sin-
gle smaller entities with relative ease before proceeding to composed and larger
ones. The layered and structured design of Mascara with blocks of processes
greatly facilitated this compositional, bottom-up approach to verification.

We started with relatively small blocks of processes from the global specifi-
cation. First, a model has to be closed by adding an environment specification.
This environment should be an abstraction of the rest of the protocol. Construct-
ing this abstraction is discussed later. After debugging and verifying a number
of properties for simple components, we proceed with considering blocks com-
posed from the verified ones (or their abstractions). Conceptually, the approach
corresponds to the rely/guarantee or assumption/commitment paradigm of com-
positional verification, where the abstractions take the role of the assumptions
about the environment.



Using a bottom-up approach in the verification, one gains a lot. Even some
magical model checker that allows to feed the whole protocol to it and get the
result by just pressing the proverbial button would be of limited use, for it
is very well possible, for instance, that some components of the system under
consideration are deadlocked, but not the whole system. The model checker tells
then that the system is deadlock-free and one should remember to check that
no component of the system is deadlocked. The formulation of such a property
is not straightforward and involves fairness restrictions and other non-trivial
conditions. Going bottom-up, one detects such deadlocks at the very first steps
without much effort — the model checker just finds them automatically.

4.2 Closing the model

Sub-models cut out of a global model cannot be verified as stand-alone processes,
since they are not self-contained, i.e., the specification of a sub-model relies on
the cooperation of the rest of the protocol. It should be noted that Mascara
itself, like many other protocols, is an open model in sense that it relies on the
existence of an environment whose behaviour is not specified in the protocol. To
model-check an open model the user must first transform it into a closed one.
Closing models is often performed for exhaustive testing open systems, where
processes are introduced within the model to feed it with signal inputs. The way
inputs are sent to the model is controlled by these processes and then superfluous
or non-significant inputs sequences can be avoided [15,9].

Adding chaos For the purpose of model checking, the way the model is closed
should be well-considered to alleviate the state-space explosion problem: adding
even a simple process increases unavoidably the state vector and, worse still, in
general the state space. Basically, there are two extreme options how to imple-
ment an “outside” environment. One is to construct a simple process behaving
chaotically, i.e., sending and receiving arbitrary signals in arbitrary order. In
the context of verification of SDL with its asynchronous message-passing com-
munication model, this immediately leads to a combinatorial explosion caused
by considering all combinations of messages in the input queues, even if most of
them can’t be dealt with by the processes and they are discarded. Another option
is to tailor the environment process in such a way that it sends the “relevant”
signals only, i.e., the ones to which the model under investigation can possibly
react. While easing the state-space explosion in the input-queues, it can make
the environmental process itself rather complicated and large, multiplying thus
the overall state space. At least as detrimental from a practical point of view is
that a tailor-made environment requires insight into the model, analysing when
and when not it can handle messages. This takes time and is error-prone for
large systems such at the components of Mascara.

To avoid both problems, we chose an alternative way: we model the environ-
ment as simple chaos but not a separate process external to the model. Instead,
the chaotic environment is embedded into the model itself by a simple SDL source



code transformation. The main idea is quite simple. Since we assume the environ-
ment to be chaotic, we must assure that whenever a process is in a state where
it can take an input from the environment, it must have a possibility to take
this branch. That can be done by replacing this input by the unconditionally
enabled None input (thereby abstracting from the sent data at the same time).
Outputs to the environment are just removed. For input, the replacement with
None effectively removes the (chaotic) data reception from the input action, in
this way influencing variable instances in the process appearing as input param-
eters in those inputs. Therefore, the actions potentially influenced by reception
from outside and variable instances whose values consequently cannot be relied
on must be eliminated, too. This is done by data-flow analysis of the model (cf.
[21] for the semantical underpinning of the approach).

Chaotic timers When closing a component, not only all non-deterministic be-
haviour wrt. to signal exchange must be captured, but also all timed behaviour,
which plays a crucial role in telecommunication protocols. The time semantics
chosen for Mascara uses discrete-valued timer variables [3]. Ordinary transitions
are instantaneous, i.e., they take zero time, and time can progress by incre-
menting all active timers only when all input queues are empty and there is no
None-input enabled.*

Now closing the component by adding all possible signal-exchanges renders
input from the outside continuously enabled. Especially by incorporating the
chaos as sketched above, the branches input-guarded by the newly introduced
None-inputs are unconditionally enabled, which means that time may not pass
in this situation any longer, for the enabled input actions take priority over the
time progress. So due to adding just chaotic sending and receiving of messages,
time-outs possible in the original system may not occur after the transformation,
in which case time can never pass, a so-called zero-time loop occurs. In other
words, the simple approach of replacing environment-inputs by None-inputs fails
to respect the discrete time semantics of SDL.

In order to preserve the timed behaviour, we must take into account that
in any state time the new None-inputs don’t forestall potential time-progress.
For this purpose, one additional timer is introduced for every process receiving
messages from the environment and at every process state, an input from this
timer may be taken. This timer takes values Now or Now + 1, where Now means
that the timer transition is enabled and messages from the environment may
arrive, and Now + 1 means that no messages from the environment will come
until the next time slice starts. The decision to set the timer to Now + 1 is taken
non-deterministically — the time-out may occur after an arbitrarily many “inputs
from the environment”. Hence all the behaviour of the original specification is
preserved. The pattern of the transformation is shown in Fig. 3.

Another issue concerns the influence of chaotic data received from the outside
to the values of timers. Like ordinary variables, timer variables can be influenced

4 More precisely, to allow timer increments, all queues must be empty except saved
messages.
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Fig. 3. Transformation of inputs: before (left) and after (right) the transformation

by the reception of chaotic data from outside, but unlike ordinary data variables,
we cannot just remove timers whose exact values cannot be relied on. Timers
instantiated to an undefined “chaotic” value can expire at an arbitrary moment
in time. Therefore, they are treated similar to the ones for inputs from the envi-
ronment. The operation of setting a timer to an undefined value is transformed
into setting it to the Now + 1 value, and correspondent inputs of timer messages
are transformed into timer expiration after which a choice is made either to set
this timer to Now + 1 and return to the same process state, delaying the timer
expiration, or to take the sequence of actions following the actual timer expira-
tion according to the specification. The transformation is shown schematically
in Fig. 4.

4.3 Abstraction

One of the main tools of our methodological arsenal was abstraction. Abstraction
is a rather general technique; intuitively it means replacing one semantical model
by an abstract, in general simpler, one. To allow transfer of verification results
from the abstract model to the concrete one, both must be related by a safe
abstraction relation. The concept of safe abstraction is well-developed and has
applications in many areas of semantics, program analysis, and verification (cf.
[7] for the seminal, original contribution). For safety properties in linear-time
temporal logic, often paraphrased as “never something bad will happen”, the
abstract system must at least show all the traces of the concrete one to be used
as a safe abstraction. To find safe abstractions of a reactive, parallel system such
as a protocol, it is helpful to distinguish between the data of a program, i.e.,
the values stored and transmitted, and its control, i.e., the control flow within
the processes and their communication behaviour, and, resp., between data and
control abstractions. A third abstraction we routinely used is timer abstraction.
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Data abstraction Often, the behaviour of a program does not depend on the
specific values of its data. In this case, many properties of the program stated
over the full, often infinite, data domain can be equivalently expressed over
finite domains of enough elements. For instance, being interested in a proof that
an entity of Mascara handles addresses of mobile terminals correctly and does
not give away the same address twice, a two-valued domain of addresses would
suffice. This approach is known as data independence technique [26].

Control abstraction Given the amount of various entities and processes of the
protocol, using data abstraction alone will not yield. The processes of the speci-
fication are given in great detail, to serve as the basis for an implementation, and
they often possess internally non-obvious behaviour (for instance loops, jumps,
conditions depending on data-values, and the like). To deal with this complex-
ity we used a specific type of control abstraction. After a whole-sale entity has
being verified against a set of its requirements in the chaotic environment, we
replace this entity with an abstraction which was the simplest entity for which
this requirements holds.

We illustrate this technique on a simple entity of Mascara, the radio control
(RCL). Seen from the outside, RCL builds Mascara-control’s interface with the
lower-layer physical radio modem. Its task is to operate the modem to tune into
the terminal with a known frequency upon request, if possible. A property the
RCL should guarantee can be phrased as the following simple response property:

“Whenever, after initialisation, the radio control manager receives a
request Acquire New_AP(newchannel), the RCM-process responds either
positively or negatively (Acquire New_AP_ok or Acquire New_AP ko). More-
over, the answer is sent in a given amount of time after getting the
request.”
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ACQUIRE_NEW_AP

The entity must be ready to react upon requests at any time, so it was
closed in a chaotic environment. To reduce the state space of the verification
model, we used data independence limiting the data domain of the parameter
newchannel with 2 values. We checked the model for absence of zero-time cycles
first, afterwards the proper initialisation of the component was checked. Coding
the above property in LTL, we could finally verify that the concrete RCL satisfied
the property.

Since initialisation of RCL is a confirmed service, and the other entities are
initialised only after the initialisation confirmation has been received from radio
control, we can abstract away from the initialisation phase in radio control.

After having verified the above LTL-property, one can exploit in the follow-
ing experiments an abstract variant of RCL which is just one process, radio
control manager (Fig. 5). The more sophisticated decisions of the concrete radio
control ® are captured in the manually given, abstract version simply by a non-
deterministic choice between a positive or negative decision and the abstraction
contains all the information the other components need to in order be verified.

Timer abstraction Another abstraction we apply to cope with the state-space
explosion is timer abstraction. A timer whose value is expected to have no in-
fluence on the truth of the property can be abstracted by assuming that it can
take any value, i.e., it becomes a timer of “chaotic nature” (cf. Section 4.2).
Operations on this timer are replaced according to the patterns described for
the chaotic timer.

It would seem obvious to verify all non-timed properties with an abstracted-
time model and the timed ones with a concrete model, but our experiments show
that abstracting the timers may be ambivalent, both with respect to the state

® RCL, a small part of Mascara control, takes 9 SDL-pages of the specification.
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space and concerning the ability to transfer results from the abstract model to
the concrete protocol.

First, the experiments shows that often the state space of the abstracted
model is larger than the one of the concrete model when small values for timer
delays are taken. In case the behaviour of the protocol strongly depends on
timers, abstracting the values of timers may add much behaviour and thus po-
tentially results in a larger state space. But of course, investigating the protocol
for various timer settings will require the checking of infinite many combinations
of timer settings, and moreover, even when restricting to “representative cases”,
choosing larger timer setting may in many cases increase the state space beyond
the tractable limits. Using just abstract timers, the state space often happened
to be manageable for the model checker.

Second, if some functional property is proved with the abstracted-time model,
it is shown for all possible values of timers. On the other hand, if the property is
disproved or a deadlock in the model is found, the next step is to check whether
the erroneous trace given by Spin is a real error in the system or a spurious error
caused by adding erroneous behaviour either by abstracting from time or by a
too abstract environment specification. It can happen that the property fails to
hold for the concrete model, however the erroneous trace given by Spin is one of
the added behaviour. This behaviour cannot be reproduced for the SDL model
with SDL simulation tools and we cannot conclude whether the property holds or
not. In such a situation one should just redo the experiment using DTSpin: one
cannot force Spin to give the trace from the non-added behaviour, but DTSpin
guarantees that timers are expiring in the correct order. In our experiments we
encountered several cases when using DTSpin instead of Spin, gave a chance to
get a real erroneous trace and disprove the property.

5 Verification results

In this section we shortly survey the verification results. Following the bottom-
up, compositional approach sketched above, we obtained a number of results
about Mascara control. Starting from MT target cell (MTC, an important part
of the steady-state control), we proceeded investigating the steady-state control
and the dynamic control, the two largest sub-blocks of Mascara-control (cf. Sec-
tion 2.2), in isolation, and finally, we verified properties of a model of the whole
Mascara control.

Dealing with the various set-ups, we basically follow a bottom-up approach
not only proceeding from smaller entities to larger, combined ones, but also ad-
vancing from simpler to more complex properties. After a number of reachability
checks, we use the built-in Spin features for finding deadlocks and livelocks. The
Message Sequence Charts, which are given by Spin and which corresponds to
erroneous traces, are analysed on the original model with the help of the OB-
JECTGEODE simulator. After correcting discovered structural errors, we proceed
to more advanced properties, like safety, liveness, and response properties.
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5.1 Reachability checks

Enumerating the whole state space, the Spin model checker reports on unreach-
able code and we use this report as a guideline for formulating reachability
properties to check. The report of Spin tells which code is unreachable, but it
gives no hint why this code is unreachable. Analysing the unreachable code al-
lows to find a reachable point in the specification suspected as the predecessor
of an unreachable state. The reachability checks are easily done by just checking
assertion violations where assertions are inserted at the reachable predecessors
of unreachable states. Running Spin with an assertion-violation check gives the
trace which can be used to look at this reachable state, scrutinising the values
of different parameters, states of other processes, etc., to get a clue of what
is wrong with the specification. In this way, we found a number of “obviously
reachable” states being unreachable and thus a couple of unexpected errors of
various kinds.

The reachability checks ensure that the more complicated LTL-properties
investigated later are not trivially satisfied.® Depending on the entity, typical
properties checked were:

successful /unsuccessful association is possible
— termination of association is possible
successful connection set-up is possible

— incommunicado cycle is successfully completed.

Used in this way, reachability checking is employed as a sophisticated debug-
ging facility with the assertions used to steer the checker to the critical points of
the system. Besides weeding-out errors, we found it likewise very helpful, to use
assertion checking (or, a little more complicated, checking LTL-formulas) in a
dual way: marking the property of interest as “undesirable” while hoping for its
satisfaction — the corresponding “error trace” is useful illustrating characteris-
tic desired scenarios. They can be compared with the scenarios provided during
the specification phase, thus giving a better understanding of the behaviour of
the protocol, and thus enhancing the confidence in the specification.

5.2 Errors Found

Quite a number of errors discovered in Mascara were “just” programming errors,
including such classics as uninitialised variables (even uninitialised variables due
to a typo), forgotten branches in case distinctions, mal-considered limit cases in
loops, and the like. Concerning the communication behaviour, we encountered
most commonly

— race conditions,
— ambiguous receiver,

b Indeed, we started to perform reachability checks regularly after “proving” a so-
phisticated property only to learn later, that the premise of the implication of this
property was unexpectedly false, since unreachable.
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— unspecified reception, and
— variables out of range

as general errors at each stage of the verification process. Some of the found
error turned out to be false errors caused by the too abstract environment. In
this case, the experiment was redone with a more refined version of environment.
Reproducing the erroneous trace on the original version of the protocol in the
OBIECTGEODE simulator, those errors confirmed to be real errors in the protocol
design, were reported to the developers of Mascara.

Race conditions denote a situation where two signals are sent to an entity “at
the same time” such that, due to SDL’s asynchronous communication model, the
order of reception is undetermined; here we mean more specifically that an unex-
pected reception order results in an error. Especially prone for this type of error
turned out to be the initialisation phases of processes: often, the initialisation
signals are given as unconfirmed messages. When a number of processes is asyn-
chronously spawned, initialised, and starts communicating under the assumption
that the rest of the processes is ready as well, messages may get lost.

Unspecified reception means that a process receives a message in a state
where no such message is foreseen; the default reaction in SDL-92 then is to dis-
card the message. The discarding feature is often used on purpose in Mascara’s
specification, since it saves code, but in some cases the discard is caused by
unforeseen behaviour. Given the amount of asynchronous communication activ-
ities in the protocol, resulting errors are very hard to detect by code inspection.
Signals in the specification with more than one potential receiving process (“am-
biguous receiver”) also had been a significant source of errors in MCL.

After constructing a small verification model (small compared to the overall
specification), we witnessed in several cases state-space explosion without obvi-
ous reasons. It turned out that the specification contained some variable that
could infinitely decrease or grow. For instance, being informed about deassocia-
tion of the same mobile terminal twice — from two different sources — an access
point may (under some circumstances) decrease the counter of associated mo-
bile terminals by two instead of one. Thus, the number of associated terminals
may become negative. We found it helpful to regularly check that all variables
in the model are bounded (their bounds are usually known or can be easily
determined).

Besides quite a number of instances of these general errors at each level and
besides spurious property violations due to abstraction, errors more specific to
Mascara-control model were found and corrected. To exclude “false negatives”,
each erroneous behaviour was checked against the full SDL-specification by sim-
ulation or at least by code inspection and reported to the developers. In the
following section, we show one of the more complex properties we verified.

5.3 Time-dependent safety property: unique MAC-addresses

To illustrate up to which extent we could go with the verification, we describe
one of the most involved properties verified. It concerns the cooperation of the
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complete control entity (MT- and AP-side), the interaction of various indepen-
dently working protocols — notably association handover, the incommunicado
protocol, and the “I’'m-alive” protocol — and it takes into account the settings
of several timers. To maintain an established association between a mobile ter-
minal and an access point, it is important to determine when the association
breaks down (as opposed to terminating an association properly by deassoci-
ating). Driven by various timers, both sides continuously check whether their
current association is still functioning.

To determine that an association has gone for good, a mobile terminal and
an access point must act independently and rely on their local timers, since if the
connection is lost, no further communication is possible in the worst case. An
important safety requirement here is that “never the access point relinquishes
an association before the mobile terminal does”. This requirement is important
for the correct working of Mascara control, especially the correct management
of addresses by the dynamic control entity, for if the AP gives up the asso-
ciation, its dynamic control is free to reuse the various addresses allocated to
that association for new ones. MT still clambers to reactivate the temporarily
broken connection and if it succeeds in doing so, the same addresses will be
in use for two different MT’s, leading to errors. The property as LTL-formula
reads O(@mi—1ost —> Pap—1iost), Where proposition @m:_jost describes sending the
signal MT_Lost, whereby AP’s I'm-alive-agent entity gives-up the association.
Similarly, ¢ap—10st captures all situations where the mobile terminal gives up
the association by signalling AP_Lost or HO_ind, both from the MHI-entity.

We established this safety property, if the inequation min(r4p) > max(rTayr)
is satisfied, where 74p and 7ps7 are the respective times for the two sides of the
association. The two times are bounded according to the following two inequa-
tions.

Tap > (Maz_Time_Periods + 1) % Tjqq_pou + (IAA_Maz — 1) * Tjrame_start
T < (Max_Cellerrors) « Tapp_period + (Max_AP_Index + 1) % Trer,

In the inequations, Tiaa_poiis T frame_start, TGDP_period, and Tyem, are the values of 4
timers determining the behaviour of the above-mentioned protocols, the remain-
ing parameters are program constants of the responsible processes (especially
loop bounds). It should be noted that the inequations are not immediate from
the SDL-code of MCL: while it is comparatively easy to identify the timers that
can influence satisfaction of the property by looking at the processes involved,
what makes it complicated is the interference of the timed reactions: the activ-
ities of the various protocols can especially suspend other processes temporarily
and thus postpone expiration of other timers. With Spin/DTSpin it is not pos-
sible to automatically derive the equations. Therefore, we verified satisfaction of
the safety requirement, resp. checked its violation, for various combinations of
values according to the inequations, especially for a number of border-cases, to
validate our intuition about the correct interplay of the timers involved.
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6 Conclusion

With SDL as the language of choice for the design of telecommunication applica-
tions, there is a growing need for formal verification techniques targeted towards
SDL and of course corresponding integrated tool support. Currently, most of
the work in the field relies on testing and/or validating the design via simula-
tion. For instance in [20], an ATM user-to-network interface is validated using
the SDT tool set [22]. The state space is explored by so called bit-state hashing
and by random walk traversal. In our work, on the contrary, we use the full
state space exploration of the Spin model checker, but abstraction techniques
instead to deal with the state-space explosion problem. Similarly, [9] explores
a number of heuristics or state-saving techniques, especially partial-order tech-
niques, to counter the complexity of state exploration of SDL-specifications, but
in the context of simulation. With similar goals and facing similar problems,
[13] uses the SDL reachability analyser Emma for model-checking telecommu-
nication software. Their tool is based on Petri-nets and it uses (as Spin does)
partial-order techniques. Unlike our approach, where we rely on the discrete-time
semantics as implemented in DTSpin, in the work of Husberg and Manner time
is modeled by complete non-determinism; so time-dependent properties as the
one shown in Section 5.3, cannot be treated. Similarly, the works in [11, 23], also
using the Spin model-checker, doesn’t deal with timing aspects.

A major part of the verification effort expended can be seen as debugging
the specification. A rightful question then is why to use model checking instead
of simulation if model checking is not directly applicable to a large-size model
while simulation is. We believe that both methods have their place and well
complement each other. Indeed, at the first stage of debugging it is easier and
better to use simulation, not model checking. The simple error situations like
getting deadlocked already at the initial phase of functioning can be quickly
detected by simulation. However, after a number of errors that can be found
by simulation are corrected, the model checker shows its strength. For instance,
model checker reports about unreachable code which immediately indicates the
area of potential problems. Next, the erroneous trace given by a simulator can
be very long, and one can not force a simulator to give a shortest one; with a
model checker, one can (as most model checkers include a “shortest trail” option).
These options significantly simplify the analysis of the cause of an error. Another
argument is that only quite a restricted set of temporal properties can be verified
via simulation. Model checking enlarge the facilities of debugging in this sense.

One conclusion to draw from our experience of working on the Mascara proto-
col is that by using state-of-the-art model checking support together with quite a
simple methodological approach, one can already achieve a lot. The straightfor-
ward approach of using a chaotic closing together with rather simple abstractions
has a number of methodological and practical advantages. First, allowing all pos-
sible traces by the non-deterministic environment, the safety of the abstraction
is immediate. Secondly, closing the model by an environment process takes time;
closing it with a more or less chaotic environment can be done fast and routinely.
Thirdly, leaving the structure of the entity under investigation untouched allows
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fast spotting of potential errors, in case the model checker finds a property vio-
lation on the abstract level. Moreover, only when retaining the internal process
structure it is possible to detect errors concerning the internal loops, conditions,

etc.,

at all. Used in this way, model checking can provide valuable support in

increasing the software reliability. As for future work, we expect that the pro-
cess of verification will greatly benefit from automating some of the routine, but
tedious tasks.
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