
Embedding Chaos

NATALIA SIDOROVA MARTIN STEFFEN

Dept. of Mathematics and Computer Science
Eindhoven University of Technology

Inst. für Informatik u. Prakt. Mathematik
Christian-Albrechts Universtität zu Kiel

June 2001
AG Informatik, Logik und Mathematik

June 2001 Embedding Chaos

Motivation & starting point

� Verification/model checking of Mascara

– wireless industial ATM medium-access protocol for LANs
– developed within Wand industrial board
– given in SDL

Layer Control
Protocol

Message
Encapsulation Unit

MASCARA
Control

Control Segmentation &
Reassembly

Wireless Data Link Control

MAC Data Pump

ATM Layer

Physical Medium Dependent Layer

MASCARA Layer

ICC

1

June 2001 Embedding Chaos

Model checking

+ “automatic” (“push-button”) program verification method

� ��
�

�

– state-space explosion

– How to obtain the model from a piece of software?

2

June 2001 Embedding Chaos

SDL

� “Specification Description Language” [SDL92, 1992]

� standardized (in various versions)

� standard spec. language for telecom applications

� language characteristics:

� control structure: communicating finite-state machines

� communication: asynchonous message passing

� data: various basic and composed types

� timers and time-outs �

� bells and whistles: graphical notation, structuring mechanisms, OO, � � �

� no real-time, not uncontroversial

3

June 2001 Embedding Chaos

Model checking SDL

� Various aggravations

1. it’s about software (data)
2. it’s about large � software
3. it’s about open systems

� approaches:

1. abstraction:
(a) data abstraction:replace concrete domains by finite, abstract ones
(b) control abstraction, i.e., add non-determinism

2. decompose system along SDL-blocks

� well, depends

4

June 2001 Embedding Chaos

Model checking SDL in theory (and in practice)

� in theory

1. cut out a sub-component
2. model it’s environment abstractly, i.e.,

� add an enviroment process which
– closes the sub-component
– shows more behavior than the real environment � in extremis: add

chaos-process
3. push the button � � �

� in practice

– components and interfaces might be large
– closing is tedious
– SDL-tools (or others) don’t often work with abstract data

5

June 2001 Embedding Chaos

Model checking open SDL systems

� three more specific problems

1. asynchronous input queues
2. (infinite data domains)
3. chaotic timer behavior

� three specific practical solutions

1. no external chaos process

“embedding chaos”

2. one-valued data abstraction (= no external data)
3. three-valued timer abstraction

6

June 2001 Embedding Chaos

Goal

� Transformation

� automatic

� yielding a closed system

� safe abstraction

� executable with standard SDL-semantics � source code transformation.

7

June 2001 Embedding Chaos

Roadmap

1. (sketch) of syntax

2. SO-semantics of SDL

(a) local rules
(b) parallel composition

3. semantics of timers

4. closing the system via data-flow analysis

5. dealing with chaotic timers

8

June 2001 Embedding Chaos

Syntax: Example

RCM Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process RCM

TIMER T_RCM;

Idle

ACQUIRE_NEW_AP

SET (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle

9

June 2001 Embedding Chaos

Syntax

� guarded, labelled edges � � � �
� � connecting locations

� actions � : (with guards �)

– input:� � 	�
 �

– output: �� �� � 	�� �

– assignment: ��
 ��� �

10

June 2001 Embedding Chaos

Semantics (local)

� straightforward operational small-step semantics

– interleaving semantics
– top-level concurrency

� local (= 1 process) configuration:

1. location/control state
2. valuation of variables
3. content of input-queue

� labelled steps between configuations

11

June 2001 Embedding Chaos

Semantics cont’d (local rules)

� � � � � ��� �
	 �
� �

INPUT

� � � � � ��� ��� ��� � � � � � �
	 � � �� �� �� � � � �

� � � � � � ��� �
	 �
� � "! � � #%$ �

DISCARD

� � � � � ��� � �� � � � � � � � � � � � �

� � � &' (�) � � *+ �
	 �
� � , ,- . . / $ 012 3 , ,�4 . . / $ �

OUTPUT

� � � � � � � � (�) � � *� � �
	 � � � � � �

�
5

RECEIVE

� � � � � � � � (� � � *� � � � � � � � � � ��� � � � �

� � � &' �67 + 	 �
� � , ,- . . / $ 012 3 , ,�4 . . / $ �

ASSIGN

� � � � � � � � � �
	 � � �� �� � � � � � �

12

June 2001 Embedding Chaos

Timers in SDL

� no real-time

� discrete-time semantics, as in the DTSpin (“discrete time Spin”) model-
checker [Bošnački and Dams, 1998, DTSpin2000, 2000]

� time evolves by ticking down (active) timer variables

� timer: active or deactivated

� timeout possible: if active timer has reached �

� modelled by time-out guards (cf. [Bošnački et al., 2000])

13

June 2001 Embedding Chaos

Syntax for timers

� 3 (guarded) actions involving timers

set � � �� � ��� � (re-)activate timer for period given by� .

reset � � � � �� � : deactivate

timeout �� � � � �� � performing a timeout, thereby deactivate �

� Note: timeout is guarded by “timer-guard” � �

14

June 2001 Embedding Chaos

Semantics cont’d (local timer rules)
� � � & ' � �� �67 + 	 �
� � , ,- . . / $ 0 12 3 , ,4 . . / $ �

SET

� � � � � � � � � �
	 � � �� �� � � � �� � � � � �

� � � &' � � � �� �
	 �
� � , , - . . / $ 0 12 3

RESET

� � � � � � � � � �
	 � � �� �� � � � � � � �

� � � & �' � � � � � �
	 �
� � , ,	� . . / $
� �� �

TIMEOUT

� � � � � � � � � �
	 � � �� �� � � � � � � �

� � � � �
	 �
� � "! � #%$ - �� 1 3� 3 0 � � , , � . . / $
� �� �

TDISCARD

� � � � � � � � � � � � �� �� � � � � � � �

15

June 2001 Embedding Chaos

Parallel composition

� standard product construction

� message passing using the labelled steps

� Note: Tick step = counting down active timers:

– can be taken only when no other move possible

� tick step has least priority!

��
 �� 3 � � � � � � � �

TICK

� � � � � � � � � ��� � � � �� �� � � ��� 	 � � � � �

16

June 2001 Embedding Chaos

Parallel composition (rules)
��� 	 � � 	 � � () � � *� � �	 � 	 �	 � 	 � ��� � � � � � � (� � � *� � �	 � � �	 � � � � �
 �� �� �

COMM

��� 	 � � 	 � � ��� � � � � � � � �	 � 	 �	 � 	 � � �	 � � �	 � � �

�� 	 � � 	 � � � �	 � 	 �	 � 	 � 	 $
�� �� � �� � � � �� � ��� ��� �� �
 � � �� ��

INTERLEAVE

��� 	 � � 	 � � ��� � � � � � � � �	 � 	 �	 � 	 � � ��� � � � � �

��
 �� 3 � � � � � � � �

TICK

� � � � � � � � � �� � � � � �� �� � � ��� 	 � � � � �

17

June 2001 Embedding Chaos

What’s next

� status: semantics for open systems = chaotic signal-exchange with
environment

� goal:

– no external communication
– abstract data from outside: chaotic data value � �

� side-condition

– use official/implemented SDL-semantics (tools!):

� there are no abstracted data in SDL

� we cannot re-implement tick
– keep it simple

18

June 2001 Embedding Chaos

The need for data-flow analysis

� abstractly: replace external� � 	�
 � by receiving � �

� better:

remove external reception actions (= replace it by � -actions �)

� But: transformation may lead to less behavior

� Unsound!

� remove all variables (potentially) influenced by
 , as well (and transitively so)

�
� � forward slice/cone of influence

� In SDL: NONE-transitions

19

June 2001 Embedding Chaos

Closing the program

� two steps:

1. Data-flow analysis: mark all variable instances potentially influenced by
chaos

2. transform the program, using that marking

20

June 2001 Embedding Chaos

Data-flow analysis

� forward analysis

� control-flow (almost) directly given by SDL-automata

� modelling the abstract effect/transfer functions per action = node, e.g.:

� 	� � 	�
 � �� � � � � ��� �� � �

� � ��� �� 	
 � ��� � � / � � � ��� �� �� � � � � for some node � � �

� � �� � ���

else

� 	 � �� � 	�� � �� � � � �

� 	 �
 ��� � �� � � � � � � �� � ��� � � / � �

� constraint solving: minimal solution for

� �
�! " � 	$# �% � � 	� �
�!& � 	$# � � (1.1)

� �
�!& � 	$# �% ' � �
�! " � 	$# (�) 	 # (* # � in flow relation + (1.2)

21

June 2001 Embedding Chaos

Worklist algo (pseudo-code)

input : the flow � graph of the program
output :� �

� & � * � �
�! " � ;

� � 	$# � � � ��� �� 	$# � ;

�� � ' #) � � � � � 	
 � * � � �� � ��� + ;

repeat
pick # � �� ;
let � � ' # (� ��� � 	 # �) � � 	� � 	 # ��� � � 	$# (� +
in

for all # (� � :� � 	 # (� ��� � 	� � 	$# � � ;

� � ��� �� 	 #
 � ;
until � � � � ;

� �
�!& � 	$# � � � � 	 # � ;

� �
�! " � 	 # � � � � 	� � 	$# � �

22

June 2001 Embedding Chaos

What about time?

� chaotic environment also means: chaotic timed behaviour

� so far: we ignored timers

� Remember: time steps (ticks) have least priority!

� new � steps make ticks impossible!

� chaos = at arbitrary points
1. sending any possible value, +
2. refusing to send something (lest to get less ticks and thus less

timeouts)

23

June 2001 Embedding Chaos

Timer abstraction

� Three abstract values:

– de-activated
– arbitrarily active
– active, but not � (no time-out possible)

� arbitrary expiration time � non-deterministic setting from �� 	 � � � to �� 	 � � � � .
 � � � � �

�
!!

�

}}zz
z
z
z
z
z
z
z
z
z
z
z
z
z
z

 � � � � ��� �

� ���
aa

� embedding the timer: one additional timer � � per process

24

June 2001 Embedding Chaos

Transformation of timers (in SDL)

process timer_before 1(1)

S A

M T1

SET
(Now+y,T1)

y is a vari−
able instance
influenced by
the environment

‘series of
actions’

Q B

process timer_after 1(1)

S A

M T1

SET
(Now,T1) ‘expir−

ation?’
non−determ.
decision

Q

‘series of
actions’

SET
(Now+1,T1)

B A

’now’ ’later’

25

June 2001 Embedding Chaos

Transformation rules

� e.g.: input � .

� � � � � ��� �
	 �
� � � � �
 � � �� �

T-INPUT �� � � &�� ' �� � �
	 �
� � �

T-NOINPUT

� � � & � (' � �� � (6 7 	 �
� � �

� e.g.: assignement

� � � & ' �6 7 + 	 �
� � � � , ,�4 . . / �
�

$ � - � $, ,- . . / �
� T-ASSIGN �� � � &�� ' �� � �

	 �
� � �

� T-INPUT 	 and T-ASSIGN 	 do “nothing”

26

June 2001 Embedding Chaos

Transformation of inputs (in SDL)

process exinput_before 1(1)

S

A
/* input
from en−
vironment */

B
 /* input
from en−
vironment */

C
 /* input
from within
 */

’further
A actions’

’further
B actions’

’further
C actions’

process exinput_after 1(1)

S

T_P
 /* timer added
 for process P */

C
/* from within
 the system */

’further
C actions’‘non−determ.

 decision’

SET
(Now,T_P)

SET
(Now,T_P)

SET
(Now+1,T_P)

’further
A actions’

’further
 B actions’

S

’imitate an
input of A’

’imitate an
input of B’

’no signals from
the environment within
the current time slice’

27

June 2001 Embedding Chaos

Transformation
� � � & ' �67 + 	 �
� � � � , ,4 . . / �

� #%$ � - � $, ,- . . / �
� T-ASSIGN 	� � � &�� ' �67 +

	 �
� � �

� � � &' �67 + 	 �
� � � � , ,4 . . / �
�

$ � - � $, , - . . / �
� T-ASSIGN �� � � &�� ' �� � �

	 �
� � �

� � � � � ��� �
	 �
� � � � � �
 �� �� �

T-INPUT 	� � � � � ��� �
	 �
� � �

� � � � � ��� �
	 �
� � � � �
 �� �� �

T-INPUT �� � � & � (' � � � � � � (� � � �� � (67 �
	 �
� � �

T-NOINPUT

� � � & � (' � � � � � � (� � � �� � (67 	 �
� � �

� � � &' (�) � � *+ �
	 �
� � � � � �
 �� �� � - � $, , - . . / �

� T-OUTPUT 	� � � &�� ' (�) � � *+ �
	 �
� � �

28

June 2001 Embedding Chaos
� � � &' (�) � � *+ �

	 �
� � � � �
 �� �� � - � $, , - . . / �
� T-OUTPUT �� � � &�� ' �� � �

	 �
� � �

� � � &' � �� �67 + 	 �
� � � � - � $, ,- . . / �
� , ,4 . . / �
� #%$ �

T-SET 	� � � &�� ' � �� �67 +
	 �
� � �

� � � &' � �� �67 + 	 �
� � � � - � $, ,- . . / �
� , ,4 . . / �
�

$ �

T-SET �� � � &�� ' � �� �67 �
	 �
� � �

� � � &' � � � �� �
	 �
� � � � - � $, ,- . . / �

� T-RESET

� � � &�� ' � � � �� �
	 �
� � �

� � � & �' � � � � � �
	 �
� � � � - �

� $, , - � . . / �
� T-TIMEOUT

� � � &� �' � � � �� �
	 �
� � �

, , � . . / �
�

$ �

T-NOTIMEOUT

� � � & �' � � � �� � � � � �� �6 7 	 �
� � �

29

June 2001 Embedding Chaos

Soundness result

Theorem. The transformed system is closed and a safe abstraction of the
original one

� safe abstraction, i.e.,

if � �)� � then �)� �

,

where � is an LTL-formula �

Proof:

� transformed system and original in simulation relation

� � � shows more behavior than � , i.e., it has more traces.

� which does not mention chaotically influenced variables.

30

June 2001 Embedding Chaos

Related work

� software testing

� e.g. [Colby et al., 1998] VERISOFT, C, untimed

� [Dwyer and Pasareanu, 1998]: filtering = “refined” chaos, but external

� Module checking:

– checking open systems
– e.g. MOCHA [Alur et al., 1998]

31

June 2001 Embedding Chaos

Future work

� implementation

� “refined” chaos

– specified properties by LTL
– arbitrarly chaotic timer exporation � calulated by data-flow analysis

32

June 2001 Embedding Chaos

References

[Alur et al., 1998] Alur, R., Henzinger, T. A., Mang, F., Qadeer, S., Rajamani, S. K., and Tasiran,
S. (1998). Mocha: Modularity in model checking. In Hu, A. J. and Vardi, M. Y., editors,
Proceedings of CAV ’98, volume 1427 of Lecture Notes in Computer Science, pages 521–
525. Springer-Verlag.

[Bošnački and Dams, 1998] Bošnački, D. and Dams, D. (1998). Integrating real time into
Spin: A prototype implementation. In Budkowski, S., Cavalli, A., and Najm, E., editors,
Proceedings of Formal Description Techniques and Protocol Specification, Testing, and
Verification (FORTE/PSTV’98). Kluwer Academic Publishers.

[Bošnački et al., 2000] Bošnački, D., Dams, D., Holenderski, L., and Sidorova, N. (2000).
Verifying SDL in Spin. In Graf, S. and Schwartzbach, M., editors, TACAS 2000, volume
1785 of Lecture Notes in Computer Science. Springer-Verlag.

[Colby et al., 1998] Colby, C., Godefroid, P., and Jagadeesan, L. J. (1998). Automatically
closing of open reactive systems. In Proceedings of 1998 ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM Press.

[DTSpin2000, 2000] DTSpin2000 (2000). Discrete-time Spin.
http://win.tue.nl/˜dragan/DTSpin.html.

[Dwyer and Pasareanu, 1998] Dwyer, M. B. and Pasareanu, C. S. (1998). Filter-based model
checking of partial systems. In Proceedings of the 6th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SIGSOFT ’98), pages 189–202.

33

June 2001 Embedding Chaos

[SDL92, 1992] SDL92 (1992). Specification and Description Language SDL, blue book. CCITT
Recommendation Z.100.

[Sidorova and Steffen, 2001a] Sidorova, N. and Steffen, M. (2001a). Embedding chaos. To
appear in the Proceedings of the 8th International Static Analysis Symposium (SAS’01),
Paris, 2001.

[Sidorova and Steffen, 2001b] Sidorova, N. and Steffen, M. (2001b). Verifying large SDL-
specifications using model checking. In Reed, R. and Reed, J., editors, Proceedings of
the 10th International SDL Forum SDL 2001: Meeting UML, volume 2078 of Lecture Notes
in Computer Science, pages 399–416. Springer-Verlag.

[VIRES, 2000] VIRES (1998-2000). Verifying industial reactive systems (VIRES), Esprit long-
term research project LTR-23498. http://radon.ics.ele.tue.nl/˜vires/.

34

