## Iterating transducers

Dennis Dams Yassine Lakhnech Martin Steffen

TU/e Eindhoven and

Verimag

Bell Labs, Lucent

Grenoble

Inst. für Informatik u. Prakt. Mathematik
CAU Kiel

#### **Overview**

- model checking and regular languages
- transducers
- iterating transducers
- conclusion

## Infinite state model checking

- specifically nasty instance of state explosion: infinite many states
- reasons: infinite data, infinite control (e.g. parameterized systems), time . . .
- scores of approaches:
  - use your own brain (and time ...): theorem proving
  - abstraction
  - symbolic techniques (many)

- 3 questions:
  - 1. how to represent infinite sets of states
  - 2. how to represent the transition relation?
  - 3. how to calculate the reachable states in a finite amount of time?

## Regular model checking

- very successful finite description/symbolic representation of infinite "objects": regular languages
- $\Rightarrow$  regular model checking (e.g., for parameterized systems  $P_1 \parallel P_2 \parallel \ldots$ , (cf. [JN00][ABJ98][KMM<sup>+</sup>97] ...
  - local states as letters of an alphabet
  - global states as linear arrangement of local ones = word
  - $\Rightarrow$  infinite sets of states = reg. language
  - ⇒ computation step, i.e., non-det. change of language = transduction

## **Example**

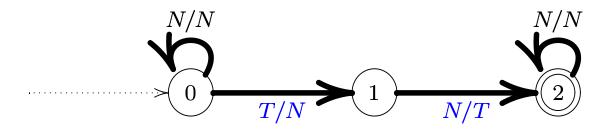
**Token array:** "Parameterized" processes: each one either has the token or not (states T and N). Token can be passed between neighbors from left to right, initially, the token is owned by the left-most process.

Initial configuration:  $TN^*$ 

one step:  $TN \rightarrow NT$ 

## Example (cont'd)

one-step reduction relation: captured by a transducer



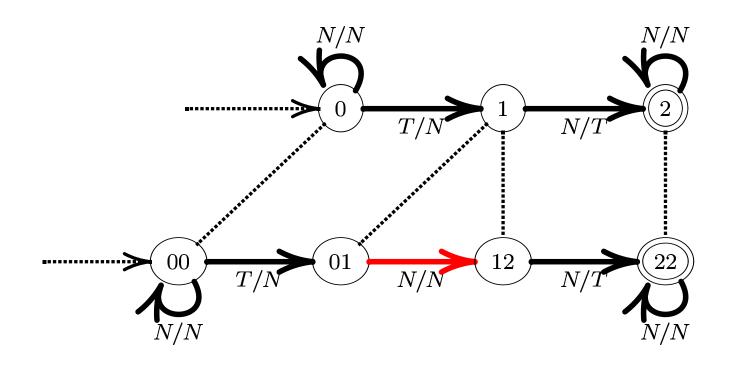
- e.g.:  $\mathcal{T}(NTNN) = \{NNTN\}$
- $\Rightarrow$  exploit for symbolic exploration:  $\mathcal{T}^n \circ \mathcal{A}$ 
  - =  $\{t' \in \mathcal{T}^n(t) \mid \text{and } t \text{ accepted by } \mathcal{A}\}$ =  $\{t' \mid t \rightarrow^n t', t \text{ accepted by } \mathcal{A}\}$

## Goal: iterating transducers

- assuming that you know how to calculate  $\mathcal{T}_1 \circ \mathcal{T}_2$  by a product construction:
  - calculate  $\mathcal{T}^*$  as fixpoint  $\mu X.\mathcal{T} \circ (X \cup \mathcal{T}_{id})$ ?
  - 1.  $\mathcal{T}^*$  may not be representable as finite transducer (e.g.: duplicating the number of letter a:  $q_0 a(x) \to aaq_0(x)$ )
  - 2. even if: iterating naïvely  $\mu X.\mathcal{T} \circ (X \cup \mathcal{T}_{id})$  will in general



## Example: first 2 iterations



## A finite representation for $\mathcal{T}^*$ ?

- a sound infinite representation  $\mathcal{T}^{<\omega}$  for  $\mathcal{T}^*$  is straightforward (using  $Q^*$  as set of states)
- $\Rightarrow$  for a finite representation: build a quotient  $\mathcal{T}_{/\sim}^{<\omega}$
- $\Rightarrow$  remains:

  - what to take for ≅?
     how to compute T<sup><ω</sup>?

## Key observation for quotienting

### Theorem 1 (Soundness) given $F, P \subseteq Q^*$

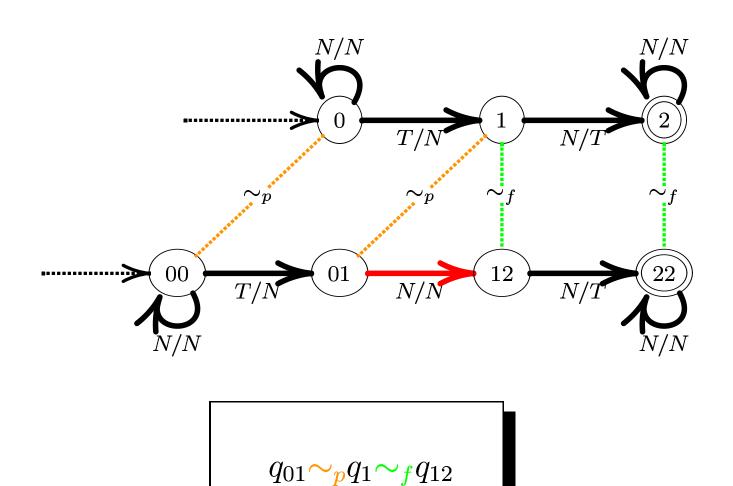
- F and P two bisimulations (future and past)
- F and P swap, meaning that

$$F; P = P; F$$

 $\Rightarrow$ 

$$\llbracket \mathcal{T}^{<\omega} 
rbracket = \llbracket \mathcal{T}^{<\omega}_{/_{\!F;P}} 
rbracket$$

## Example, revisited



# But still: how to compute $\mathcal{T}_{/_{F;P}}^{<\omega}$ ?

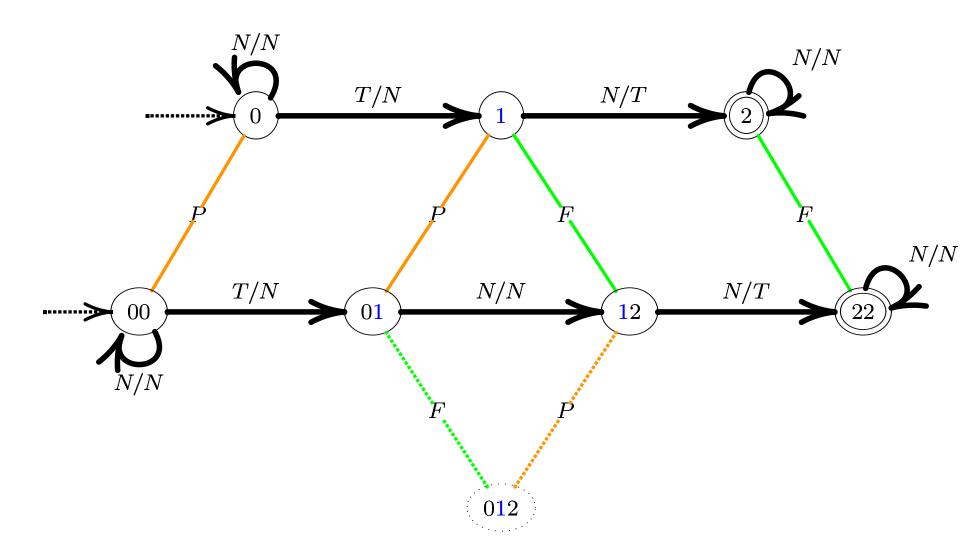
$$\mathcal{T}^{<\omega}$$
 is infinite! (for  $Q^*$  is)

- way out:
  - calculate bisim's P and F on finite approximations  $\mathcal{T}^{\leq n}$
  - "extrapolate" to  $\mathcal{T}^{<\omega}$
- how to extrapolate?

## Extrapolation

- $\Rightarrow$  use rewriting theory, replace P and F by  $\Leftrightarrow_P^*$  and  $\Leftrightarrow_F^*$ .
  - bisimulations are congruences wrt. to the monoid  $Q^{*}$
  - extrapolate swapping condition (for instance): if  $\leftrightarrow_P$  and  $\leftrightarrow_F$  are confluent and swap, then so are  $\leadsto_P^*$  and  $\leadsto_F^*$
- $\Rightarrow$  bisimulations found in finite  $\mathcal{T}^{\leq n}$  can be used to quotient  $\mathcal{T}^{<\omega}$

## **Example**



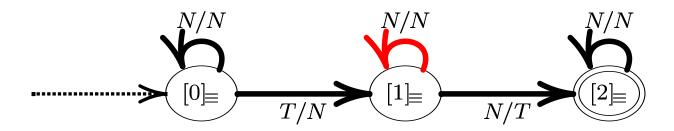
## **Algorithm**

$$\begin{split} & \text{input } \mathcal{T} = (Q, Q_i, Q_f, \Sigma, R) \\ \mathcal{X} := \mathcal{T}_{id}; \\ & \text{repeat} \\ & \mathcal{X} := (\mathcal{T} \circ \mathcal{X}) \cup \mathcal{T}_{id}; \\ & \text{determine bisimulations } F \text{ and } P \text{ on } \mathcal{X} \text{ s.t.} \\ & \leftrightarrow_F \text{and } \leftrightarrow_P \text{swap and each possess the diamond property;} \\ & \text{until } \mathcal{X}_{/\equiv} \sim_f (\mathcal{T} \circ \mathcal{X}_{/\equiv}) \cup \mathcal{T}_{id} \end{split}$$

## **Example**

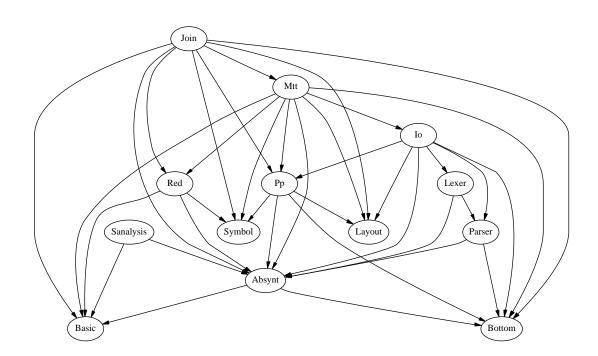
Rewrite system after 2 iterations:

i.e.



## *Implementation*

- library of transducer-operations (iteration, composition, transduction)
- in ocaml
- efficiency: sufficient for small examples



#### **Conclusion**

- characterize iterateable transducers, complexity?
- ε-transitions and weak bisimulation?
- Compare with
  - monadic string rewriting [BO93]
  - column-transducers of k-bounded depth [Nil00]
- specialize to:  $\mathcal{T}^{\leq n} \circ \mathcal{A}$ . benefits?
- more complicated examples, dynamic process creation
- implementation: efficiency, various optimizations
- further into the jungle of tree transducers ....

#### References

- [ABJ98] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. On-the-fly analysis of systems with unbounded lossy Fifo-channels. In Alan J. Hu and Moshe Y. Vardi, editors, *Proceedings of CAV '98*, volume 1427 of *Lecture Notes in Computer Science*, pages 305–318. Springer-Verlag, 1998.
- [BO93] Ronald Book and Friedrich Otto. *String Rewriting Systems*. Monographs in Computer Science. Springer-Verlag, 1993.
- [JN00] Bengt Jonsson and Marcus Nilsson. Transitive closures of regular relations for verifying infinite-state systems. In S. Graf and M. Schwartzbach, editors, *TACAS 2000*, volume 1785 of *Lecture Notes in Computer Science*. Springer-Verlag, 2000.
- [KMM<sup>+</sup>97] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich assertional languages. In Orna Grumberg, editor, *CAV '97, Proceedings of the 9th International Conference on Computer-Aided Verification, Haifa. Israel*, volume 1254 of *Lecture Notes in Computer Science*. Springer, June 1997.

[Nil00] Marcus Nilsson. Regular model checking, 2000. Licenciate Thesis of Uppsala University, Department of Information Technology.