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Abstract 1 Introduction

Combining discrete state-machines with continuous be- Combining discrete state-machines with continuous be-
havior, hybrid systems are a well-established mathemati- havior, hybrid systems [2] have been successfully used to
cal model for discrete systems acting in a continuous en-model a large number of applications in areas such as real-
vironment. As a priorinfinite state systems, their computa- time software, embedded systems, and others. Basically,
tional properties are undecidable in the general model and it is a state-based formalism augmented by real-valued
the main line of research concentrates on model checkingvariables which may continuously evolve over time. The
of finite abstractions of restricted subclasses of the ganer discrete behavior is given as a labeled transition system,
model. In our work, we usgeductive methodgalling back typically in guarded-command notation, allowing shared-
upon the general-purpose theorem prover PVS. variable communication and synchronization over transi-

To do so we extend the classical approach for the verifi- tion labels. The continuous behavior — the activities, as
cation of state-based programs by developing an inductiveit is called — is typically specified per control-state by-dif
proof method to deal with the parallel composition of hybrid ferential (in-)equations.
systems. It covers shared variable communication, label- By its continuous part, hybrid automata are a priofi
synchronization, and especially the common continuous ac-finite state systems. Moreover, their computational prop-
tivities in the parallel composition of hybrid automata.-Be erties are undecidable in the general model (this is already
sides hybrid systems and their parallel composition, we for true for timed-automata, an important subclass). Depend-
malized their operational step semantics and a number ofing on various restrictions on the form of the invariants, th
proof-rules within PVS, for one of which we give also arig- guards, the activities, etc., a score of variants and sfimpli

orous completeness proof. Moreover, the theory is appliedcations of the general model have been investigated, espe-
to the verification of a number of examples. cially to obtain decidable and automatically checkable sub

classes of the general definition (cf. for instance [2] [#][1
Keywords: hybrid systems, deductive methods, machine-[12] [23]). The main line of research concentrated on model
assisted verification. checking of finite abstractions of restricted subclasses of
the general model. Besides the drawback of limited ex-
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deductive methodand falling back upon a general-purpose do the transitions of a hybrid system. Discrete change of
theorem prover. To assure rigorous formal reasoning, westate is captured by the edges of the graph: leading from
employ the interactive theorem prover PVS [22], based onone location to another, a transition changes the discrete
higher-order logic, extensive libraries of data-struesand part of the state; besides that, in going from one location
theories, powerful strategies to assist in routine vetifices  to the next, it may alter non-deterministically the valués o
tasks, and modularization facilities. the variables.

A classical approach for the verification of state-based To cater for synchronization between parallel compo-
programs is that ahductive assertiongto prove invariance  nents, the edges come decorated with a synchronization la-
of a property for all reachable states, it suffices to give an bel from a finite label seLab. The set of labels contains a
inductive proof, i.e., to prove initial satisfaction andper- specific stutter labet denoting internal moves, not eligible
vation under computational steps. To cope with the verifi- for synchronization. Each locatidiis assumed to be able to
cation of parallel systems, it is advantageous to expleit th perform astuttertransition labelled by. Such a transition
system’s parallel structure (cf. for instance [7] for an ex- stands, as usual, for a “do-nothing” step and denotes that
tensive monograph on the topic). In the present paper weother hybrid systems involved in the parallel composition
develop an inductive proof method to deal with the paral- take some discrete transitions. To distinguish between var
lel composition of hybrid systems, which we prove to be ables the component has under its control in a stutter transi
complete. The method covers the shared variable commu+ion and those it cannot actively influence, the variablésset
nication, label-synchronization, and especially the camm  split into control andnon-controlvariables. The distinction
continuous activities in the parallel composition of hybri is drawn per location by a functiofon : Loc — 2Vor.
automata. Besides hybrid systems and their parallel com-Stutter transitions leave the valuations for control Valga
position, we formalize the operational step semantics and aof the given location unchanged, while putting no reswicti
number of proof-rules within PVS, and apply the theory to on the effect concerning the non-control variables, as they
the verification of a number of examples. are considered as being influenced solely by the outside.

The rest of the paper is organized as follows. We  For the continuous part, the values of the variables may
start in Section 2, defining hybrid systems and their tran- evolve over time, where the corresponding behavior is de-
sition semantics. Section 3 develops a proof method forscribed, per location, by a set aftivities. An activity is a
verifying safety properties of hybrid systems, based on continuous function, describing the variables’ changd-sta
assertion networks. After defining the parallel compo- ing from the moment the location is entered. Since the spe-
sition of hybrid systems (Section 4), we generalize the cific entrance point in time should not influence the behav-
proof rules in Sections 5. Finally, in Section 6 we con- ior relative to that moment, the set of activities for a loca-
clude with related and future work. The library of PVS- tion is required to be insensitive against shift in time, or
theories formalizing the hybrid system model, together time-invariant.  LetF denote the set of all continuous
with the proof methods and the examples is available viafunctions inR>° — V. A setF C F of activities is

http://www.informatik.uni-kiel.de/ ~eab. calledtime-invariant if for all f € F andt € R, also
f +t € F,wheref + t denotes the function which assigns
2 Hybrid systems to eacht’ € R the valuef(t + t'). An invariantfinally

is attributed to each location, i.e., a predicate over thefse
valuationsV, where the system is allowed to enter or stay
in a location only as long as the invariant evaluates to true.
Before giving the formal definition of a hybrid system,
‘let us fix some notations. We writgl 4 : A’ — B for
the restriction of a functiorf : A — B to a sub-domain

Hybrid systems [2] are a well-known formal model for
discrete systems acting in a continuous environment. The
system’s discrete part is represented as a finite set of lo
cations or modeg.oc, connected by discrete transitions or

ed@_les- The cqntinuous partis given by a finite Bet of A' C A; the same notation is used for the extension of
variables ranging over the real nur_n_bé&s To be_ able 1o the restiction operator to sets of functions, as well. For
reason about the parallel composition of hybrid systems,f € R2®  V andz € Var, we denote by the function
the variable set/ar of a hybrid system is a finite subset ;| p>0 _, r sych thatf? (t’) — f(t)(z) forall t € R2.
of a common countably-infinite variable s€tr,. A map-
pingv : Var — R of variables to real values is called
a valuation the set of all valuations is denoted y. A
location-valuation pais = (I,v) € Loc x V constitutes a
stateof a hybrid system. LeE = Loc x V denote the set
of all states. A state sdii C X characterizes the initial
states of the system.

As states consist of a discrete and a continuous part, s

We call a functionf € R=% — V continuous, if for all

x € Var, f* is continuous. The following definition corre-
sponds to the one encoded in PVS; to avoid overly baroque
notation, we elide type declarations present in PVS within
the definitions in the paper, whenever the type can unam-
bigously be inferred from the context. This convention ap-
Oplies; to all the following definitions.



Definition 1 (Hybrid system) A hybrid systemH is a tu-
ple (Loc, Var, Con, Ini, Lab, Edg, Act, Inv), where Loc

is a finite, non-empty set ¢dcationsand Var a finite, non-
empty set ofvariables. The functionCon € Loc — 2Vor

defines thecontrol variablesn each state, the seti C

¥ = Loc x V theinitial states.Thetransitionsare given by
Edg C Loc x Lab x (2V,V — 2V) x Loc, whereLab de-
notes a finite set dfabelscontaining the stutter label. For

all ! € Loc thereis a stutter transitiofY, 7, (¢, f),1) € Edg

suchthaty = V and f(v) = {v' | v|con(t)y = V'[con() }-

The activities are given byAct : Loc — 27 such that Figure 1. Thermostat
Act(l) is time-invariant for each locatioh € Loc. The

functionInv : Loc — 2V specifies thénvariants.

~ Foradiscrete transitiofi,, a, (¢, f).l2) € Edg, ¢ CV  ways: either by time delay or by discrete transitions. Hence
is called theguardand f : V — 2V its effect Depend-  there are two kinds of transitions between statiese steps,
ing on various restrictions on the form of the invariants, th \ritten — /!, describe the evolution of the values of the
guards, the activities etc., a score of variants and simplifi variables in a given location and according to an activity in
cations of this model have been investigated, especially tothat location. An instantaneous, discrete step, writteh
obtain decidable and automatically checkable subclagses ofollows an edge(l;, o, (¢, f),l2) of the system, thereby
the general definition (cf. forinstance [2] [3] [18] [12] B3 moving from locationl; to I> and possibly changing the
As in this paper we are concerned with formulating a proof values of the variables according to, f). For both rela-
method within a deductive framework, we will stick to the ' tions, control may stay in a location (i.e., time can progres

general definition. o . in a location), resp. enter a location through a discrete sta

_Lets illustrate the definitions so far on a simple, well- change, only if the invariant is not violated. The resulting

tried example, the thermostat. transition semantics is summarized in the following defini-
tion.

Example 2 (Thermostat) The temperature: of a room is
controlled by a thermostat, which continuously senses the
temperature and turns a heater on and off if the threshold
valuesz™" and x™%® are reached, where™" < zma®
andz™", z™* ¢ R>0, When the heater is off, the temper-
ature decreases according to the functioft) = z¢e= K¢,
wherez, is the initial temperaturet, the time, and¢ € R>°

a room constant. With the heater turned on, the tempera-

Definition 3 (Step semantics)Let H = (Loc, Var, Con,
Ini, Lab, Edg, Act, Inv) be a hybrid system with set of
states¥ = Loc x V. For an activity f, a non-negative
time delayt, and a discrete transitiofly, a, (¢, f), l2), the
discrete step relatior+* C ¥ x 3 and the time step relation
—/tC ¥ x ¥ are given by the following two rules:

ture follows the functior:(t) = (2o — h)e™ Xt 4 h, where ve € f(r1) vi € Invu(lh) wva € Inv(la)
h > z™™" 4 z™e js a real-valued constant which depends (I, 0, (@, f),12) € Edg  ¢(v1) = true
on the power of the heater. The initial temperature 7&** (11, v1) =% (la, 1)

degrees and the heater is off initially. The two modes of
the thermostat are represented by two control locations,
log andl,,. In both locations, the time-invariant activity fO)=v1 f(t)=va YOLUt <t f(t')€ Inv(l)

sets are specified as differential equations. The invasiant teR>" fe Act(l)

represent the conditions concerning the extremal tempera- (L) =5 (1)

tures for each location. Together with the guards on the ) ) _

edges between the two locations, these invariants force the Theone-stegrelation — is defined by U =7 Arun
system two switch between the two modes iff. the extremaff the hybrid systerf is a (finite or infinite) sequenge=
temperatures are reached. Two variableand z serve to 00 — 01 — 03 — -+, With oo = (lo,0) € Ini and
record the duration of the time spent in the heating and the Yo € nv(lo). We denote the set of runs &f by [H]. A
non-heating mode. The resulting hybrid system is shownStateo € X is reachablen H, if there exists a rurp =
in Figure 1. By convention, trivial components of an edge 70 = 01 = 02 = --- = 0, Of H with ,, = 0. We write
(,a, (¢, f),1'), ., = 7, ¢ = true, or f = Id are not R(H) for the set of all reachable states Hf.

shown, and neither are stutter transitions. The same simpli
fication is done for trivial invariants in locations.

We use—", —* , and—* to denote respectively the
step relation, the reflexive-transitive closure, and thasr-
As mentioned before, a system’s state can change in twative closure of the one step relation.



The semantics allows a system to evolve by a arbitrarily cate overV, or equivalently a subset df, and arassertion
mixing discrete and continuous steps. It will sometimes be networkis a subset of the global SEt= Loc x V of states.
convenient later to assume a more constrained form of tra-For a given assertion networtk of H and a location, let
jectories, disallowing time steps of duration zero andldisa the assertio); C V be defined by); = {v | (I,v) € Q},
lowing two consecutive time steps. We will call such trajec- i.e.,v € @, iff. (I,v) € Q. Considering subsets of states
tories to be imormal form. Since discrete stutter steps are as predicates on or properties of the states, we&kdylds
always possible, for each trajectory there exists an egquiva for a valuationv, in casev € @;, and correspondingly for
lent one in normal form, i.e* = (—*—=/1>0 y so)*, states and assertion networks. By the same token, we will

Before giving an example, let us fix some conventions to speak of an assertion network implying a property etc. In
specify the components of the hybrid system. The standardconnection with the system’s transition semantics, anrasse
way to describe the activities is as solutions of differainti  tion network isinvariant, if it holds for all reachable states,
equations and differential inclusions. A differential @qu it is calledinductive,if it holds for the initial states and is
tion is writtenZ = ¢(Z), wheref = (z4,... ,z,) are vari- preserved under the transition relation.
ables from the variable sdtar of a given hybrid system,
and with g a function fromV to V. The solution set of  pefinition 4 An assertion networ) of H is calledinduc-

a differential equatiort = ¢(Z) is the set of all functions tjye, if
f € Fsuch that for alli € {1,...,n}, f is differen-
tiable andf®i(t) = g(f(t))(z;) for all t € R>°. Simi- 1. {(l,v) € Ini | v € Inv(1)} C Q,
larly, a differential inclusion is an expression of the form
# € g(&), whereg is a function fromV to 2V. The so-
lution set of a differential inclusio® € ¢(Z) is the set of
all functionsf € F such that for ali € {1,...,n}, f*
is differentiable angf®: (t) € g(f(t))(z;) forall t € R>°.
We will write subsets of valuation¥/, like the invariants of
the locations, in form of boolean predicates V' — Bool.
Such a predicate defines the set of all valuations such
thatp(v) = true. In such formulas we write shout for
the evaluation (z), wherex € Var. In atransition relation
(¢, f), the non-deterministic change of valuation associate
with an edge of the system expressed jowill be writ-
ten in the form of a simultaneous, non-deterministic assign
mentzy, ..., Ty, = g1,--- ,9n, Wherexy, ... x, € Var,
andgs, ... , g, are set-valued functions froi to 2%. The
relation f is then defined as the set of all valuation pairs
(v,v') € V?such that/(z;) € gi(v) foralli = 1,... ,n, _ _
andv(y) = v/ (y) forally € Var \{z1,... ,zn}. @—¢ Qinductivefor
R(H) = ¢

2. ifoc € Qando —* ¢', thens' € @), and

3. ifo € Q ando -7+t ¢', thend’ € Q,

for arbitrary statess andg’ from . We call@Q) aninvariant
of H,if R(H) C Q.

Obviously, each inductive network is invariant, while the
gconverse will, in general, not hold. Therefore, when in-
terested in verifying a property to hold for all reachable
states, one can do so by finding a stronger invariant, i.e., an
inductive assertion netwoid which impliesp. This proof
principle, known asnductive assertion methots summa-
rized in the following rule:

3 Inductive assertional proofs _ _
P It is standard to show that the rule is sound and complete.

We have to refer to the technical report [1] resp. the PVS-
code for details. We illustrate the approach, continuintpwi
the thermostat example.

Our approch and formalization to analyze the behaviour
of hybrid systems is based on Floydrgluctive assertion
method8]. In this classical state-based verification method
one associates an assertion, i.e., a predicate over the cur-
rent values of variables, with each control location of the Example 5 (Thermostat) The thermostat of Example 2 is
underlying program. This gives a finite number of veri- expected to keep the temperature betwe&tf andz™**
fication conditions to check for proving the given correct- degrees. Additionally, we show that at any point in time the
ness criteria of that program. While originally developedi sum of duration of the heating periods is less or equal than
the context of sequential programs, the inductive assertio the overall non-heating time, provided that> z™" +
method serves also as fundamental technique in the analz™**. The duration of the two periods is recorded in the
ysis of concurrent programs [7]. We extend the inductive two variablesy andz. Both requirements are expressed by

assertion method to hybrid systems. the following predicate:
Let (Loc, Var, Con, Ini, Lab, Edg, Act, Inv) be a hy- '
brid system. Arassertioron a locatiorl is a boolean predi- p=o"" <z <z Ay—22>0.



We define the networ® as follows: (@ a=a; =ay,0ra; = a ¢ Laby anday = T,
ora; =7 anda = as ¢ Lab,,

Ql,—,/—'f — min < T < pmaz
T (b) ¢(V) = (bl (V‘ Varl) A ¢2(V| Varg); and
ANy—z2 __1 wmaa:’ (C) Vo€ f(V), iff. VI‘Varl S fl(V|Var1) and
Qlon — xmln S T S xma‘z l/l‘va’l‘g € f2(l/|va7’2);
Ny a > —lln ™R (gmin _ p) 4. g € Act((l,15)), iff. for bothi = 1 andi = 2, there
y = K xmoz(p —h) existg; € Act;(l;), such that\t.g(t)| var, = 9i;

Since logarithms and exponentials are not predefined in 5, Inv((l1,12))| var, = Inv;(1;) fori =1,2.
PVS, we introduced axiomatically a number of algebraic
and mathematical facts about these. Note that by construction the set of activitidst((l1, I2))
for a composed location is time invariant, sindet; (I1)
4 The parallel composition of hybrid systems and Acta (12) are. It i§ routine_ al_beit tedious to shqw that
parallel composition is associative and commutative. For
Complex systems are often built from smaller compo- a parallel compositiorff; x ... x H”_ _W'th n >0 a_md
nents working in parallel. Before we can start to reason j € {1,...,n}, we call the composition system without
about the composition of systems, we need to introduce s the contextof H;. Let Xy denote the state space of
their parallel composition [2]. The parallel compositiohn o For the product systerl = H, x H,, and a state
two hybrid systemg7, andHs is given by a standard prod- 7 ~ ((l1,L2),v) of H, we writeo I, = (L, v|var,) and
uct construction and written a; x H,. Locations are o dm = (l2,v|var,) for the projections on the respective
paired and the set of variables combined. The two partners Lomponents; we will use the same notation for sets of states.
can take a common discrete step, either by synchronizing on Or8MUnp = ag —o 01 =1 02 > -+~ Of the product Sys-
the same label, or in that one of the contributors performs atemﬂ: the projectionp |, is the sequenceo —0 01 =4
discrete non-synchronizing transition while its partrtet-s o) 2 ,_where for alli =0, 1, 3 w o; = ‘,Tz.iHl’.and
ters. Besides synchronizing on the label in a common dis-' — IS @ time-step of the form: /%, then—; is a time-
crete step, the conjunction of the actions on the variables i step—>fz ' wheref; is defined byf; () = fi(t)| Var, for all
taken, i.e., a common step is possible only if both guards? € R=?, and if— is a discrete-step>** then—; is also a
are true and if the outcome on the variables coincides. Ondlscrete step+® wherea! = ; if a; € Lab, anda =7
variables it does not control, a component cannot block non-Otherwise. The DTOJECUODng is defined analogous
synchronizing transitions of its partner, since stuttansi- A basic property of the product system is that all runs of
tions, available at each location, don't restrict the barav ~ the product projected to one of the component systems are
of non-controlled variables. On control variables, on the "uns of that component system:
other hand, stuttering is allowed only without changing the
variables’ values. Time transitions of the composed sys-
tems are time transitions in both systems, i.e., the aiet#vit
of the composed system, restricted to the local variables,
are activities of the component systems. Invariants of the
composition finally are conjunctions of the component in-
variants.

Lemma 7 Let H = H; x H, be the parallel composition
of two hybrid system#&; and H,. Then[H] |, C [H;]
andR(H) lu, C R(H;),fori=1,2.

Example 8 (Thermostat revisited) We extend Example 2,
considering a finite number of heating systefs. . . , H,
running in parallel and sharing a common fuel tank. An
Definition 6 (Parallel composition) Let H; and H, be additional variableu; for each thermostat records its fuel

two hybrid systems of the forméLoc;, Var;, Con;, consumption; it is a control variable in both the on- and
Ini;, Lab;, Edg;, Act;, Inv;). The product H; x Hs is the off-locations, with values; = 0 in locationl,z and
the hybrid systemd = (Loc; x Locy, Vary U Vars, u; = ¢; in l,,, and where the constamt represents the
Con, Ini, Lab; U Labs, Edg, Act, Inv) such that for all ~ consumption per time unit. We abbreviate the system’s over-
l1,1} € Locy,lo,ly € Loca, e € Lab,p C V,f: V — 2V all fuel consumptior}_;__, u; by the variableu. Heating is
andg € T possible only as long as the tank is not empty and a heater
N , ] can be turned on only if there’s a certain amount of fuel in
1. (I, 12),v) € Iniiff. (Ii, v|var,) € Inij, fori =1,2; the tank, represented by the threshold vadue R>°. The
2. Con((l1,12)) = Coni(l1) U Cona(ls); discrete transitions and the invariants from Example 2 are
modified accordingly.
8. (i) —{y (h,ly) € FEdg, iff. there exist The fuel tankH ,.; is emptied by the heaters in their
l; —>( ) li € Edg;, such that on-mode, and can be refilled with a constant rdte keep



the filling levelv betweeriVol; andVol, with Voly, Vol, € variables must not constrain its continuous behavior: each

R>Y ande < Vol; < Vols. Initially, the tank is full at level ~ activity on the original variables must have a counterpart i

Vol,. We assume that the filling raté exceeds the sum the extended system and vice versa. To be compliant with

S, ¢ of the outflows in case of maximal heating, i.e., the definition of a hybrid system, the new set of activities in

when all heaters are on. The resulting composed system iach location must be closed under time-shift, i.e., be-time

shown in Figure 2. invariant. The invariants, finally, must not restrain thevne
variables at all.

5 Inductive assertional proofs for parallel Definition 9 (Augmented hybrid system) Given a set of

composition global variablesVar,, a hybrid systenfd = (Loc, Var,
Con, Ini, Lab, Edg, Act, Inv), and a set of fresh auxiliary
A first approach to the verification of the parallel com- variables Var,,; C Var,, i.e., Varg,, N Var = (.

position of hybrid systems is immediately given by the ob- We call ' an augmentatiorof H with Var ., if H' =
servation that the parallel composition of two hybrid sys- (Loc, Var', Con', Ini', Lab, Edg’, Act', Inv') with Var' =
tems as defined in Definition 6 results in a hybrid system Var U Var,,, and if the following conditions hold:
for which one can construct an inductive assertion network
again. The number of resulting verification obligations
turns out to reflect the state-explosion problem.
The basic idea for an improvement over the plain prod- 2 1 = {(1,v) | 3(1,1') € Ini'. v = V'| var };

uct of assertions for the classical programming concefts (c , .
to [7] for an exhaustive treatment) is a two-level approach, 3. Inv'(l) = {v' | V'|var € Inv(l)}, for all locations
where firstlocal assertion networks are checked for local l € Loc;
consistency, and then some.global consistency te;F re!ates @) for all (In,a, (¢, f),ls) € Edg there exists
these local networks, reducing the amount of verification | !

" ; . : a (li,a,(¢', f'),la) € Edg such that for all
conditions. In the sequel, we improve the inductive asser- , M f S o
. ; . . Ve V' ¢V |var) implies¢'(v') as well as
tion method for hybrid systems following those very ideas. £ var) C /0 var:
An important technique in this extension of the inductive Var) = Vars

1. Con(l) C Con'(l) and Con'(1) \ Con(l) C Var suz,
for all locationsl € Loc;

method is the introduction of new, otherwise unused vari- (b) for all (l,a,(¢', f'),l;) € Edg' exists
ables, which allow to speak about the peer processes of (h,a, (¢, f),12) € Edg such thatg'|va, C ¢,
a component. These variable are commonly cadaslil- and for all valuationsv’ € V', f'(v')|var C
iary variables The extension of a system by introducing fFW'[var);

(finitely many) auxiliary variables is calledugmentation. (c) for all locationsl € Loc there is a stutter transi-
Auxiliary variables allow the formulation of a sound and tion (1,7, (¢, f'),1) € Edg' such thaty’ = V'
complete proof rule for the parallel composition of hybrid and f = ' o VAN 0 Vi o) =
systems which we apply to the above example. V' con' (1)

5.1 Augmentation 5. for all locations! € Loc

(@) Act'(l) is time-invariant;

As auxiliary variables are added for the sole purpose of (b) forall f € Act(l) and’ € V' with /| vay
verification, their addition must not influence the system’s 7(0), there existsf' € Act'(l) such thatf
behaviour in any way, i.e., the unaugmented part of the At-f;(t)IVar'
system must be left untouched. The additional variables ) ' , )
may be control variables (per location) but the augmenta- (c) forall f" € Act'(1), there exists € Act(l) such
tion must not change the “control”-status of the old vari- that f = At.f'(t)| var -

ables. Furthermore, projected onto the domain belonging |, the following, we will write H' > H, whenH' is an
to the original set of variables, the state space and the Sehugmentation off. As the control flow and the activities
of initial states remains unchanged (the set of locations iS¢y, v ariables ofE are not influenced by the auxiliary vari-
not altered, anyway). As for the discrete transition, €ach gpjeg. the set of reachable states#frestricted toVar in

one in the original system is mirrored in the augmented ,q y4juation component equals the reachable states of the
one, and vice versa. Especially, the transition relatian fo original system.

each edge must result in the same change on the old vari-

ables and conversely as well: each transition from the orig-Lemma 10 Let H be a hybrid system with variable set
inal system must be reflected by some of the augmentedVar and H' an augmentation off by auxiliary variables
one. Analogously, augmenting the system with auxiliary Var .. ThenR(H') | v, = R(H).
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Figure 2. Thermostats with common fuel tank: H; x ... H, X Hpye

Thus, a property whose satisfaction does not depend on

the values for the auxiliary variables, holds for all reduba
states offf’, iff. it holds for all reachable states &f.

5.2 A complete proof method

Two hybrid systems running parallel are related by the
time. We allow to refer to the global time in the assertions
as a variable. Referring to the global time is equivalent to
having a common (auxiliary) variable in all hybrid systems
running in parallel, whose initial value § whose deriva-
tive is alwaysl, and whose is not affected by any transition.
Allowing to refer tot as a pre-defined common auxiliary
variable simplifies the verification.

Definition 11 Let H; and H, be hybrid systemsH =
H, x H, their parallel composition, and); and @), as-
sertion networks foF/; and H, respectively. We define the
composition of the local assertion networks@s x Q> =
{o €Xploln, € Qi Nol, € Qa}.

Note that@); x - is an assertion network di. So letH;
andH, be two hybrid systemd] = H, x H, with variable
set Var their parallel composition, and C Y. a predicate
on the set ofH’s states. Therp is an invariant ofH if
and only if there exists an auxiliary variable SEtr .,
hybrid systemsH| and Hj, such thatd’ = H| x Hj is
an augmentation off with Var .., and inductive assertion
networks@) and@), of H; and H), respectively, such that
Q={v)eZy |3 V) e QI xQsv="V"ve} Ceo.
With these conventions, we can formulate the proof rule to
deal with the parallel composition of systems.

Hi X Hé > H; x H>
Q' inductive for Hi Q% inductive for Hj
V(I v') : Bp. Q1 x Q5(Lv') = o, V| var)
R(H) = ¢

CompP

Proposition 12 The proof rule(ComP) is sound and com-
plete.

Proof sketch: Soundness is shown with the help of
Lemma 7 and Lemma 10 by a straightforward inductive ar-
gument. The soundness proof is formalized in PVS.

The proof of (semantical) completeness hinges on the
fact that for each trajectory there exists an equivalent one
in normal form (cf. Section 2). We introduce three auxil-
iary variablesVar; = Var;U{hs,h,,hs} to H; and Hs,
where h; measures the elapsed time, the history variable
h, records the sequence of past pairs of locations together
with the common sojourn times of the continuous part of the
transition steps, anlly is used to enforce the existence of
common continuous behaviour. These auxiliary variables
allow to constructd| and Hj forming a canonical aug-
mentation ofH; x H, which satisfies the requirements of
(CompP). Then the key step for completeness is to show
that the history variables record enough information to en-
sure that each state reachable separatel/ irand H, is
commonly reachable, as well, i.e.,

if o' “LHi € R(H{) ando’ ~LHé € R(Hé)
theno' € R(H; x H}).

For details we refer to the full technical report [1]. O



5.3 Examples seemingly routing task (for instance, type-checking tHe co
lected theorems). In those cases, rephrasing the formaliza

Besides formalizing the proof rules in PVS, we applied tion into a mathematically equivalent one but using differ-
the method to a number of examples, e.g., non-linear vari-ent data representations (e.g. using lists instead of ats)

ations of the water level monitor [2], or a modified clock Ccut down the times noticeably. The examples we analyzed
synchronization of the MPEG4 standard. in PVS demonstrate how to apply our mathematical frame-

work in praxis. Despite their relative small size, they poin

Example 13 (Thermostat) For the extended thermostat Out the relevance of our method for the verificatioradsi-
system of Example 8, we want to verify that the temperaturetrary hybrid systems (for instance hybrid systems with non-
of all rooms stays between the specified limits, and that thelinear properties or parameterized hybrid systems).

tank never gets below the minimum level needed for turning

a heateron, i.e., . .
As the main line of research on hybrid systems focuses

o=e<vA /\:nz’»’”" <z < Mo on model checking techniques f(_)r appropriamﬂytric_ted

. subclasses, there are less investigations on deductive met
ods for their verification. Closest in spirit to our work i§,[5
is establied invariant off; x . . . x H,, x Hy,¢; (cf. Figure 2). which embed timed automata into PVS and apply their ap-

k3

Using the proof method from abov€/°™ = u; < ¢ proach on the steam boiler example. The same example is
can be established as invariant &f;, and thus the paral- treated in [25], with the goal of deriving an implementation
lel compositionH satisfies the conjunctiof; Q™. Fur- of a real-time program in a number of refinement steps [16].
thermore, under the assumption that the contextHef.; The PVS theorem prover is also used in [14] in combination
satisfies the invariant < )", ¢;, the fuel systenf/,,.; en- with model checking using HMTECH [4] for the reachabil-

joys Qs = Voli < w as invariant. Finally, assuming ity analysis for various classes of linear hybrid automata.
the context ofd; satisfies the invarianQy,.;, the property  For the verification of safety properties of hybrid systems,
Qfem” = ™" < g; < 2™ js an invariant ofH;. Since [17] employ hybrid temporal logic HTL, an extension of in-
Qfuet N N\; Qfem” impliesy, the desired property holds terval temporal logic. They give a number of proof-rules
for the composed systefy x ... x H,, X Hyye. which they prove sound. Likewise building upon temporal
logic, [21] use the Stanford theorem prover STeP as proof
The PVS formalization of these examples and the veri- environment. See [19] for an overview over deductive and
fied properties is available on the web-site and in [1]. algorithmic approaches for verification of hybrid systems.

6 Conclusion For future work, we intend to apply our method to larger

case studies, especially to extend the control examplalbase

In this paper we present an assertional, deductive proofon MPEG4 of [6], and further a laser steering system for
method for the verification of hybrid systems. For the verifi- mass spectroscopy. For the verification of complex case
cation of composed systems, we give a complete proof rulestudies the addition of a tool which allows for a graphical
to reduce the complexity introduced by the parallel com- specification of hybrid systems is essential, as is a parser
position. To facilitate the tedious verification of hybrigks that automatically generates the PVS verification conalitio
tems without restricting the model artificially, we embedde for a given specification. This also allows for a clean separa
the proof system into the PVS theorem prover. tion between type checking (i.e., checking that the spekifie

Beside offering the full power of higher-order logic, a system isindeed a hybrid system) and the actual verification
further advantage of such a deductive verification environ- task. Moreover, the representation of the verification con-
ment is that it allows a straightforward rigorous formal- ditions for each control mode and each discrete transition
ization of the mathematical definitions, without the need as separate lemmas improves the structure of the proofs and
to resort to any specific logic. Furthermore, PVS comes increases the level of automation. To improve the specifica-
equipped with a wide range of automated proof-strategiestion structure of hybrid systems, the interface informatio
and heuristics. Also its modularization facilities aregfel can be extended, for instance separating the variabletset in
in structuring the work. input and output variables as in [20]. Such a cleaner sepa-

Of course, to perform the verification requires some ex- ration is a necessary prerequisite for the development of an
pertise in hybrid systems, PVS, and the nature of inductive assume-guarantee reasoning scheme (cf. [24] or in the con-
proofs, but the goal-directed manner of applying the proof- text of hybrid systems [13, 9]). Especially we expect that
methods and rules gives valuable guidance. Sometimes, thé¢he verification will benefit from an alternative semantics
theorem prover surprises the user by taking a long time forallowing for compositional proofs [11].
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