
Verification of Hybrid Systems:
Formalization and Proof Rules in PVS�

Erika Ábrahám-Mumm
Inst. für Informatik und Praktische Mathematik

Christian-Albrechts-Universität zu Kiel
Preußerstraße 1–9

D-24105 Kiel, Germany

Ulrich Hannemann
Computing Science Department

University of Nijmegen
P.O. Box 9010

NL – 6500 GL Nijmegen, The Netherlands

Martin Steffen
Inst. für Informatik und Praktische Mathematik

Christian-Albrechts-Universität zu Kiel
Preußerstraße 1–9, D-24105 Kiel, Germany

E-mail:feab|ms g@informatik.uni-kiel.de,ulrichh@cs.kun.nl

Abstract

Combining discrete state-machines with continuous be-
havior, hybrid systems are a well-established mathemati-
cal model for discrete systems acting in a continuous en-
vironment. As a prioriinfinite state systems, their computa-
tional properties are undecidable in the general model and
the main line of research concentrates on model checking
of finite abstractions of restricted subclasses of the general
model. In our work, we usedeductive methods, falling back
upon the general-purpose theorem prover PVS.

To do so we extend the classical approach for the verifi-
cation of state-based programs by developing an inductive
proof method to deal with the parallel composition of hybrid
systems. It covers shared variable communication, label-
synchronization, and especially the common continuous ac-
tivities in the parallel composition of hybrid automata. Be-
sides hybrid systems and their parallel composition, we for-
malized their operational step semantics and a number of
proof-rules within PVS, for one of which we give also a rig-
orous completeness proof. Moreover, the theory is applied
to the verification of a number of examples.

Keywords: hybrid systems, deductive methods, machine-
assisted verification.�The work was supported by the technology foundation STW, project
EIF 3959, “Formal Design of Industrial Safety-Critical Systems” and fur-
ther by the German Research Council (DFG) within the specialprogram
KONDISK under grant LA 1012/5-1.

1 Introduction

Combining discrete state-machines with continuous be-
havior, hybrid systems [2] have been successfully used to
model a large number of applications in areas such as real-
time software, embedded systems, and others. Basically,
it is a state-based formalism augmented by real-valued
variables which may continuously evolve over time. The
discrete behavior is given as a labeled transition system,
typically in guarded-command notation, allowing shared-
variable communication and synchronization over transi-
tion labels. The continuous behavior — the activities, as
it is called — is typically specified per control-state by dif-
ferential (in-)equations.

By its continuous part, hybrid automata are a prioriin-
finite state systems. Moreover, their computational prop-
erties are undecidable in the general model (this is already
true for timed-automata, an important subclass). Depend-
ing on various restrictions on the form of the invariants, the
guards, the activities, etc., a score of variants and simplifi-
cations of the general model have been investigated, espe-
cially to obtain decidable and automatically checkable sub-
classes of the general definition (cf. for instance [2] [3] [18]
[12] [23]). The main line of research concentrated on model
checking of finite abstractions of restricted subclasses of
the general model. Besides the drawback of limited ex-
pressive power, fully-automatic approaches suffer from the
usual state-space explosion problem, when dealing with the
parallel composition of subsystems.

Hence in our work, we pursue an alternative route, using

1

deductive methodsand falling back upon a general-purpose
theorem prover. To assure rigorous formal reasoning, we
employ the interactive theorem prover PVS [22], based on
higher-order logic, extensive libraries of data-structures and
theories, powerful strategies to assist in routine verification
tasks, and modularization facilities.

A classical approach for the verification of state-based
programs is that ofinductive assertions:to prove invariance
of a property for all reachable states, it suffices to give an
inductive proof, i.e., to prove initial satisfaction and preser-
vation under computational steps. To cope with the verifi-
cation of parallel systems, it is advantageous to exploit the
system’s parallel structure (cf. for instance [7] for an ex-
tensive monograph on the topic). In the present paper we
develop an inductive proof method to deal with the paral-
lel composition of hybrid systems, which we prove to be
complete. The method covers the shared variable commu-
nication, label-synchronization, and especially the common
continuous activities in the parallel composition of hybrid
automata. Besides hybrid systems and their parallel com-
position, we formalize the operational step semantics and a
number of proof-rules within PVS, and apply the theory to
the verification of a number of examples.

The rest of the paper is organized as follows. We
start in Section 2, defining hybrid systems and their tran-
sition semantics. Section 3 develops a proof method for
verifying safety properties of hybrid systems, based on
assertion networks. After defining the parallel compo-
sition of hybrid systems (Section 4), we generalize the
proof rules in Sections 5. Finally, in Section 6 we con-
clude with related and future work. The library of PVS-
theories formalizing the hybrid system model, together
with the proof methods and the examples is available via
http://www.informatik.uni-kiel.de/ ˜ eab .

2 Hybrid systems

Hybrid systems [2] are a well-known formal model for
discrete systems acting in a continuous environment. The
system’s discrete part is represented as a finite set of lo-
cations or modesLo, connected by discrete transitions or
edges. The continuous part is given by a finite setVar of
variables ranging over the real numbersR. To be able to
reason about the parallel composition of hybrid systems,
the variable setVar of a hybrid system is a finite subset
of a common countably-infinite variable setVarg . A map-
ping � : Var ! R of variables to real values is called
a valuation; the set of all valuations is denoted byV . A
location-valuation pair� = (l; �) 2 Lo � V constitutes a
stateof a hybrid system. Let� = Lo � V denote the set
of all states. A state setIni � � characterizes the initial
states of the system.

As states consist of a discrete and a continuous part, so

do the transitions of a hybrid system. Discrete change of
state is captured by the edges of the graph: leading from
one location to another, a transition changes the discrete
part of the state; besides that, in going from one location
to the next, it may alter non-deterministically the values of
the variables.

To cater for synchronization between parallel compo-
nents, the edges come decorated with a synchronization la-
bel from a finite label setLab. The set of labels contains a
specific stutter label� denoting internal moves, not eligible
for synchronization. Each locationl is assumed to be able to
perform astuttertransition labelled by� . Such a transition
stands, as usual, for a “do-nothing” step and denotes that
other hybrid systems involved in the parallel composition
take some discrete transitions. To distinguish between vari-
ables the component has under its control in a stutter transi-
tion and those it cannot actively influence, the variable setis
split intocontrol andnon-controlvariables. The distinction
is drawn per location by a functionCon : Lo ! 2Var .
Stutter transitions leave the valuations for control variables
of the given location unchanged, while putting no restriction
on the effect concerning the non-control variables, as they
are considered as being influenced solely by the outside.

For the continuous part, the values of the variables may
evolve over time, where the corresponding behavior is de-
scribed, per location, by a set ofactivities. An activity is a
continuous function, describing the variables’ change start-
ing from the moment the location is entered. Since the spe-
cific entrance point in time should not influence the behav-
ior relative to that moment, the set of activities for a loca-
tion is required to be insensitive against shift in time, or
time-invariant. LetF denote the set of all continuous
functions inR�0 ! V . A set F � F of activities is
called time-invariant, if for all f 2 F andt 2 R�0 , alsof + t 2 F , wheref + t denotes the function which assigns
to eacht0 2 R�0 the valuef(t + t0). An invariant finally
is attributed to each location, i.e., a predicate over the set of
valuationsV , where the system is allowed to enter or stay
in a location only as long as the invariant evaluates to true.

Before giving the formal definition of a hybrid system,
let us fix some notations. We writef jA0 : A0 ! B for
the restriction of a functionf : A ! B to a sub-domainA0 � A; the same notation is used for the extension of
the restiction operator to sets of functions, as well. Forf 2 R�0 ! V andx 2 Var , we denote byfx the function
in R�0 ! R such thatfx(t) = f(t)(x) for all t 2 R�0 .
We call a functionf 2 R�0 ! V continuous, if for allx 2 Var , fx is continuous. The following definition corre-
sponds to the one encoded in PVS; to avoid overly baroque
notation, we elide type declarations present in PVS within
the definitions in the paper, whenever the type can unam-
bigously be inferred from the context. This convention ap-
plies to all the following definitions.

2

Definition 1 (Hybrid system) A hybrid systemH is a tu-
ple (Lo;Var ; Con ; Ini ; Lab;Edg ;At ; Inv), whereLo
is a finite, non-empty set oflocationsandVar a finite, non-
empty set ofvariables.The functionCon 2 Lo ! 2Var
defines thecontrol variablesin each state, the setIni �� = Lo�V theinitial states.Thetransitionsare given byEdg � Lo�Lab � (2V ;V ! 2V)�Lo, whereLab de-
notes a finite set oflabelscontaining the stutter label� . For
all l 2 Lo there is a stutter transition(l; �; (�; f); l) 2 Edg
such that� = V andf(�) = f�0 j �jCon(l) = �0jCon(l)g.
The activities are given byAt : Lo ! 2F such thatAt(l) is time-invariant for each locationl 2 Lo. The
functionInv : Lo ! 2V specifies theinvariants.

For a discrete transition(l1; �; (�; f); l2) 2 Edg , � � V
is called theguard andf : V ! 2V its effect. Depend-
ing on various restrictions on the form of the invariants, the
guards, the activities etc., a score of variants and simplifi-
cations of this model have been investigated, especially to
obtain decidable and automatically checkable subclasses of
the general definition (cf. for instance [2] [3] [18] [12] [23]).
As in this paper we are concerned with formulating a proof
method within a deductive framework, we will stick to the
general definition.

Let’s illustrate the definitions so far on a simple, well-
tried example, the thermostat.

Example 2 (Thermostat) The temperaturex of a room is
controlled by a thermostat, which continuously senses the
temperature and turns a heater on and off if the threshold
valuesxmin andxmax are reached, wherexmin < xmax
andxmin ; xmax 2 R>0 . When the heater is off, the temper-
ature decreases according to the functionx(t) = x0e�Kt,
wherex0 is the initial temperature,t the time, andK 2 R>0
a room constant. With the heater turned on, the tempera-
ture follows the functionx(t) = (x0 � h)e�Kt + h, whereh > xmin + xmax is a real-valued constant which depends
on the power of the heater. The initial temperature isxmax
degrees and the heater is off initially. The two modes of
the thermostat are represented by two control locations,lo� and lon . In both locations, the time-invariant activity
sets are specified as differential equations. The invariants
represent the conditions concerning the extremal tempera-
tures for each location. Together with the guards on the
edges between the two locations, these invariants force the
system two switch between the two modes iff. the extremal
temperatures are reached. Two variablesy andz serve to
record the duration of the time spent in the heating and the
non-heating mode. The resulting hybrid system is shown
in Figure 1. By convention, trivial components of an edge(l; �; (�; f); l0), i.e.,� = � , � = true, or f = Id are not
shown, and neither are stutter transitions. The same simpli-
fication is done for trivial invariants in locations.

As mentioned before, a system’s state can change in two

lo� lonx=xmaxy=z=0 //

GF ED

@A BC

_x = �Kx_y = 1; _z = 0x � xmin x=xmin
//

GF ED

@A BC

_x = �K(x� h)_y = 0; _z = 1x � xmaxx=xmaxoo

Figure 1. Thermostat

ways: either by time delay or by discrete transitions. Hence
there are two kinds of transitions between states:time steps,
written !f;t, describe the evolution of the values of the
variables in a given location and according to an activity in
that location. An instantaneous, discrete step, written!�,
follows an edge(l1; �; (�; f); l2) of the system, thereby
moving from locationl1 to l2 and possibly changing the
values of the variables according to(�; f). For both rela-
tions, control may stay in a location (i.e., time can progress
in a location), resp. enter a location through a discrete state
change, only if the invariant is not violated. The resulting
transition semantics is summarized in the following defini-
tion.

Definition 3 (Step semantics)Let H = (Lo;Var ;Con ;Ini ;Lab;Edg ;At ; Inv) be a hybrid system with set of
states� = Lo � V . For an activityf , a non-negative
time delayt, and a discrete transition(l1; �; (�; f); l2), the
discrete step relation!� � ��� and the time step relation!f;t� �� � are given by the following two rules:�2 2 f(�1) �1 2 Inv(l1) �2 2 Inv(l2)(l1; �; (�; f); l2) 2 Edg �(�1) = true(l1; �1)!� (l2; �2)f(0) = �1 f(t) = �2 80 � t0 � t: f(t0) 2 Inv(l)t 2 R�0 f 2 At(l)(l; �1)!f;t (l; �2)
Theone-steprelation! is defined by!� [!f;t. A run

of the hybrid systemH is a (finite or infinite) sequence� =�0 ! �1 ! �2 ! � � � , with �0 = (l0; �0) 2 Ini and�0 2 Inv(l0). We denote the set of runs ofH by [[H ℄℄. A
state� 2 � is reachablein H , if there exists a run� =�0 ! �1 ! �2 ! � � � ! �n of H with �n = �. We writeR(H) for the set of all reachable states ofH .

We use!n, !� , and!+ to denote respectively then-
step relation, the reflexive-transitive closure, and the transi-
tive closure of the one step relation.

3

The semantics allows a system to evolve by a arbitrarily
mixing discrete and continuous steps. It will sometimes be
convenient later to assume a more constrained form of tra-
jectories, disallowing time steps of duration zero and disal-
lowing two consecutive time steps. We will call such trajec-
tories to be innormal form.Since discrete stutter steps are
always possible, for each trajectory there exists an equiva-
lent one in normal form, i.e.,!� = (!�!f;t>0 [!�)�.

Before giving an example, let us fix some conventions to
specify the components of the hybrid system. The standard
way to describe the activities is as solutions of differential
equations and differential inclusions. A differential equa-
tion is written _~x = g(~x), where~x = (x1; : : : ; xn) are vari-
ables from the variable setVar of a given hybrid system,
and withg a function fromV to V . The solution set of
a differential equation_~x = g(~x) is the set of all functionsf 2 F such that for alli 2 f1; : : : ; ng, fxi is differen-
tiable and _fxi(t) = g(f(t))(xi) for all t 2 R>0 . Simi-
larly, a differential inclusion is an expression of the form_~x 2 g(~x), whereg is a function fromV to 2V . The so-
lution set of a differential inclusion_~x 2 g(~x) is the set of
all functionsf 2 F such that for alli 2 f1; : : : ; ng, fxi
is differentiable and_fxi(t) 2 g(f(t))(xi) for all t 2 R>0 .
We will write subsets of valuationsV , like the invariants of
the locations, in form of boolean predicates' : V ! Bool .
Such a predicate' defines the set of all valuations�, such
that'(�) = true. In such formulas we write shortx for
the evaluation�(x), wherex 2 Var . In a transition relation(�; f), the non-deterministic change of valuation associated
with an edge of the system expressed byf will be writ-
ten in the form of a simultaneous, non-deterministic assign-
mentx1; : : : ; xn := g1; : : : ; gn, wherex1; : : : ; xn 2 Var ,
andg1; : : : ; gn are set-valued functions fromV to 2R. The
relationf is then defined as the set of all valuation pairs(�; �0) 2 V 2 such that�0(xi) 2 gi(�) for all i = 1; : : : ; n,
and�(y) = �0(y) for all y 2 Var nfx1; : : : ; xng.

3 Inductive assertional proofs

Our approch and formalization to analyze the behaviour
of hybrid systems is based on Floyd’sinductive assertion
method[8]. In this classical state-based verification method
one associates an assertion, i.e., a predicate over the cur-
rent values of variables, with each control location of the
underlying program. This gives a finite number of veri-
fication conditions to check for proving the given correct-
ness criteria of that program. While originally developed in
the context of sequential programs, the inductive assertion
method serves also as fundamental technique in the anal-
ysis of concurrent programs [7]. We extend the inductive
assertion method to hybrid systems.

Let (Lo;Var ;Con ; Ini ;Lab;Edg ;At ; Inv) be a hy-
brid system. Anassertionon a locationl is a boolean predi-

cate overV , or equivalently a subset ofV , and anassertion
networkis a subset of the global set� = Lo�V of states.
For a given assertion networkQ of H and a locationl, let
the assertionQl � V be defined byQl = f� j (l; �) 2 Qg,
i.e., � 2 Ql iff. (l; �) 2 Q. Considering subsets of states
as predicates on or properties of the states, we sayQl holds
for a valuation�, in case� 2 Ql, and correspondingly for
states and assertion networks. By the same token, we will
speak of an assertion network implying a property etc. In
connection with the system’s transition semantics, an asser-
tion network isinvariant, if it holds for all reachable states,
it is called inductive,if it holds for the initial states and is
preserved under the transition relation.

Definition 4 An assertion networkQ ofH is calledinduc-
tive, if

1. f(l; �) 2 Ini j � 2 Inv(l)g � Q,

2. if � 2 Q and� !� �0, then�0 2 Q, and

3. if � 2 Q and� !f;t �0, then�0 2 Q,

for arbitrary states� and�0 from�. We callQ an invariant
ofH , if R(H) � Q.

Obviously, each inductive network is invariant, while the
converse will, in general, not hold. Therefore, when in-
terested in verifying a property' to hold for all reachable
states, one can do so by finding a stronger invariant, i.e., an
inductive assertion networkQ which implies'. This proof
principle, known asinductive assertion method,is summa-
rized in the following rule:Q! ' Q inductive forH

INDR(H)! '
It is standard to show that the rule is sound and complete.

We have to refer to the technical report [1] resp. the PVS-
code for details. We illustrate the approach, continuing with
the thermostat example.

Example 5 (Thermostat) The thermostat of Example 2 is
expected to keep the temperature betweenxmin andxmax
degrees. Additionally, we show that at any point in time the
sum of duration of the heating periods is less or equal than
the overall non-heating time, provided thath > xmin +xmax . The duration of the two periods is recorded in the
two variablesy andz. Both requirements are expressed by
the following predicate:' = xmin � x � xmax ^ y � z � 0:

4

We define the networkQ as follows:Qlo� = xmin � x � xmax^ y � z � � 1K ln xxmax ;Qlon = xmin � x � xmax^ y � z � � 1K ln xmin (xmin � h)xmax (x� h) :
Since logarithms and exponentials are not predefined in
PVS, we introduced axiomatically a number of algebraic
and mathematical facts about these.

4 The parallel composition of hybrid systems

Complex systems are often built from smaller compo-
nents working in parallel. Before we can start to reason
about the composition of systems, we need to introduce
their parallel composition [2]. The parallel composition of
two hybrid systemsH1 andH2 is given by a standard prod-
uct construction and written asH1 � H2. Locations are
paired and the set of variables combined. The two partners
can take a common discrete step, either by synchronizing on
the same label, or in that one of the contributors performs a
discrete non-synchronizing transition while its partner stut-
ters. Besides synchronizing on the label in a common dis-
crete step, the conjunction of the actions on the variables is
taken, i.e., a common step is possible only if both guards
are true and if the outcome on the variables coincides. On
variables it does not control, a component cannot block non-
synchronizing transitions of its partner, since stutter transi-
tions, available at each location, don’t restrict the behavior
of non-controlled variables. On control variables, on the
other hand, stuttering is allowed only without changing the
variables’ values. Time transitions of the composed sys-
tems are time transitions in both systems, i.e., the activities
of the composed system, restricted to the local variables,
are activities of the component systems. Invariants of the
composition finally are conjunctions of the component in-
variants.

Definition 6 (Parallel composition) Let H1 and H2 be
two hybrid systems of the forms(Loi;Var i;Con i;Ini i;Labi;Edg i;At i; Inv i). The productH1 � H2 is
the hybrid systemH = (Lo1 � Lo2;Var1 [Var2;Con; Ini ;Lab1 [Lab2;Edg ;At ; Inv) such that for alll1; l01 2 Lo1, l2; l02 2 Lo2, � 2 Lab, � � V , f : V ! 2V
andg 2 F :

1. ((l1; l2); �) 2 Ini iff. (li; �jVar i) 2 Ini i, for i = 1; 2;

2. Con((l1; l2)) = Con1(l1) [Con2(l2);
3. (l1; l2) �!�(�;f) (l01; l02) 2 Edg , iff. there existli �!�i(�i;fi) l0i 2 Edg i, such that

(a) � = �1 = �2, or �1 = � =2 Lab2 and�2 = � ,
or �1 = � and� = �2 =2 Lab1,

(b) �(�) = �1(�jVar1) ^ �2(�jVar2), and

(c) �0 2 f(�), iff. �0jVar1 2 f1(�jVar1) and�0jVar2 2 f2(�jVar2);
4. g 2 At((l1; l2)), iff. for both i = 1 andi = 2, there

existgi 2 At i(li), such that�t:g(t)jVar i = gi;
5. Inv((l1; l2))jVar i = Inv i(li) for i = 1; 2.

Note that by construction the set of activitiesAt((l1; l2))
for a composed location is time invariant, sinceAt1(l1)
andAt2(l2) are. It is routine albeit tedious to show that
parallel composition is associative and commutative. For
a parallel compositionH1 � : : : � Hn with n > 0 andj 2 f1; : : : ; ng, we call the composition system withoutHj the contextof Hj . Let �H denote the state space ofH . For the product systemH = H1 � H2, and a state� = ((l1; l2); �) of H , we write� #H1 = (l1; �jVar1) and� #H2 = (l2; �jVar2) for the projections on the respective
components; we will use the same notation for sets of states.
For a run� = �0 !0 �1 !1 �2 !2 � � � of the product sys-
temH , the projection� #H1 is the sequence�00 !00 �01 !01�02 !02 � � � , where for alli = 0; 1; 2; : : : , �0i = �i #H1 , and
if !i is a time-step of the form!fi;ti , then!0i is a time-
step!f 0i ;ti wheref 0i is defined byf 0i(t) = fi(t)jVar1 for allt 2 R�0 , and if!i is a discrete-step!�i then!0i is also a
discrete-step!�0i where�0i = �i if �i 2 Lab1, and�0i = �
otherwise. The projection� #H2 is defined analogous.

A basic property of the product system is that all runs of
the product projected to one of the component systems are
runs of that component system:

Lemma 7 LetH = H1 �H2 be the parallel composition
of two hybrid systemsH1 andH2. Then[[H ℄℄ #Hi � [[Hi℄℄
andR(H) #Hi � R(Hi), for i = 1; 2.

Example 8 (Thermostat revisited) We extend Example 2,
considering a finite number of heating systemsH1; : : : ; Hn
running in parallel and sharing a common fuel tank. An
additional variableui for each thermostat records its fuel
consumption; it is a control variable in both the on- and
the off-locations, with valuesui = 0 in location lo� andui = i in lon , and where the constanti represents the
consumption per time unit. We abbreviate the system’s over-
all fuel consumption

Pni=1 ui by the variableu. Heating is
possible only as long as the tank is not empty and a heater
can be turned on only if there’s a certain amount of fuel in
the tank, represented by the threshold value� 2 R>0 . The
discrete transitions and the invariants from Example 2 are
modified accordingly.

The fuel tankHfuel is emptied by the heaters in their
on-mode, and can be refilled with a constant rated to keep

5

the filling levelv betweenVol1 andVol2 with Vol1;Vol2 2R>0 and� < Vol1 < Vol2. Initially, the tank is full at levelVol2. We assume that the filling rated exceeds the sumPni=1 i of the outflows in case of maximal heating, i.e.,
when all heaters are on. The resulting composed system is
shown in Figure 2.

5 Inductive assertional proofs for parallel
composition

A first approach to the verification of the parallel com-
position of hybrid systems is immediately given by the ob-
servation that the parallel composition of two hybrid sys-
tems as defined in Definition 6 results in a hybrid system
for which one can construct an inductive assertion network
again. The number of resulting verification obligations
turns out to reflect the state-explosion problem.

The basic idea for an improvement over the plain prod-
uct of assertions for the classical programming concepts (cf.
to [7] for an exhaustive treatment) is a two-level approach,
where firstlocal assertion networks are checked for local
consistency, and then some global consistency test relates
these local networks, reducing the amount of verification
conditions. In the sequel, we improve the inductive asser-
tion method for hybrid systems following those very ideas.
An important technique in this extension of the inductive
method is the introduction of new, otherwise unused vari-
ables, which allow to speak about the peer processes of
a component. These variable are commonly calledauxil-
iary variables. The extension of a system by introducing
(finitely many) auxiliary variables is calledaugmentation.
Auxiliary variables allow the formulation of a sound and
complete proof rule for the parallel composition of hybrid
systems which we apply to the above example.

5.1 Augmentation

As auxiliary variables are added for the sole purpose of
verification, their addition must not influence the system’s
behaviour in any way, i.e., the unaugmented part of the
system must be left untouched. The additional variables
may be control variables (per location) but the augmenta-
tion must not change the “control”-status of the old vari-
ables. Furthermore, projected onto the domain belonging
to the original set of variables, the state space and the set
of initial states remains unchanged (the set of locations is
not altered, anyway). As for the discrete transition, each
one in the original system is mirrored in the augmented
one, and vice versa. Especially, the transition relation for
each edge must result in the same change on the old vari-
ables and conversely as well: each transition from the orig-
inal system must be reflected by some of the augmented
one. Analogously, augmenting the system with auxiliary

variables must not constrain its continuous behavior: each
activity on the original variables must have a counterpart in
the extended system and vice versa. To be compliant with
the definition of a hybrid system, the new set of activities in
each location must be closed under time-shift, i.e., be time-
invariant. The invariants, finally, must not restrain the new
variables at all.

Definition 9 (Augmented hybrid system) Given a set of
global variablesVarg , a hybrid systemH = (Lo;Var ;Con ; Ini ;Lab;Edg ;At ; Inv), and a set of fresh auxiliary
variablesVaraux � Varg , i.e., Varaux \ Var = ;.
We callH 0 an augmentationof H with Varaux , if H 0 =(Lo;Var 0;Con 0; Ini 0;Lab;Edg 0;At 0; Inv 0) withVar 0 =Var _[Varaux and if the following conditions hold:

1. Con(l) � Con 0(l) andCon 0(l) n Con(l) � Varaux ,
for all locationsl 2 Lo;

2. Ini = f(l; �) j 9(l; �0) 2 Ini 0: � = �0jVarg;

3. Inv 0(l) = f�0 j �0jVar 2 Inv(l)g, for all locationsl 2 Lo;

4. (a) for all (l1; a; (�; f); l2) 2 Edg there exists
a (l1; a; (�0; f 0); l2) 2 Edg 0 such that for all�0 2 V 0: �(�0jVar) implies�0(�0) as well asf(�0jVar) � f 0(�0)jVar ;

(b) for all (l1; a; (�0; f 0); l2) 2 Edg 0 exists(l1; a; (�; f); l2) 2 Edg such that�0jVar � �,
and for all valuations�0 2 V 0, f 0(�0)jVar �f(�0jVar);

(c) for all locationsl 2 Lo there is a stutter transi-
tion (l; �; (�0; f 0); l) 2 Edg 0 such that�0 = V 0
and f = ��0 : V 0:��̂0 : V 0:�̂0jCon0(l) =�0jCon0(l);

5. for all locationsl 2 Lo
(a) At 0(l) is time-invariant;

(b) for all f 2 At(l) and �0 2 V 0 with �0jVar =f(0), there existsf 0 2 At 0(l) such thatf =�t:f 0(t)jVar ;

(c) for all f 0 2 At 0(l), there existsf 2 At(l) such
thatf = �t:f 0(t)jVar .

In the following, we will writeH 0 � H , whenH 0 is an
augmentation ofH . As the control flow and the activities
for variables ofH are not influenced by the auxiliary vari-
ables, the set of reachable states ofH 0 restricted toVar in
the valuation component equals the reachable states of the
original system.

Lemma 10 Let H be a hybrid system with variable setVar andH 0 an augmentation ofH by auxiliary variablesVaraux . ThenR(H 0) #Var = R(H).
6

lio� lionxi=xmaxiui=0 //

GF ED

@A BC

_xi = �Kixi_ui = 0xi � xmini _v � � xi�xmini ^v��!ui:=i //

GF ED

@A BC

_xi = �Ki(xi � hi)_ui = 0xi � xmaxi ^v � 0xi=xmaxi _v=0!ui:=0oolnon�ll l�llv=Vol2
//

GF ED

@A BC

_v = �uv � Vol1 v=Vol1
//GF ED

@A BC

_v = d� uv � Vol2v=Vol2oo

Figure 2. Thermostats with common fuel tank: H1 � : : :Hn �Hfuel
Thus, a property whose satisfaction does not depend on

the values for the auxiliary variables, holds for all reachable
states ofH 0, iff. it holds for all reachable states ofH .

5.2 A complete proof method

Two hybrid systems running parallel are related by the
time. We allow to refer to the global time in the assertions
as a variablet. Referring to the global time is equivalent to
having a common (auxiliary) variable in all hybrid systems
running in parallel, whose initial value is0, whose deriva-
tive is always1, and whose is not affected by any transition.
Allowing to refer to t as a pre-defined common auxiliary
variable simplifies the verification.

Definition 11 Let H1 and H2 be hybrid systems,H =H1 � H2 their parallel composition, andQ1 andQ2 as-
sertion networks forH1 andH2, respectively. We define the
composition of the local assertion networks asQ1 �Q2 =f� 2 �H j� #H1 2 Q1 ^ � #H2 2 Q2g.

Note thatQ1 �Q2 is an assertion network ofH . So letH1
andH2 be two hybrid systems,H = H1�H2 with variable
setVar their parallel composition, and' � �H a predicate
on the set ofH ’s states. Then' is an invariant ofH if
and only if there exists an auxiliary variable setVaraux ,
hybrid systemsH 01 andH 02, such thatH 0 = H 01 � H 02 is
an augmentation ofH with Varaux , and inductive assertion
networksQ01 andQ02 of H 01 andH 02, respectively, such thatQ = f(l; �) 2 �H j 9(l; �0) 2 Q01�Q02: � = �0jVarg � '.
With these conventions, we can formulate the proof rule to
deal with the parallel composition of systems.

H 01 �H 02 � H1 �H2Q01 indutive for H 01 Q02 indutive for H 028(l; �0) : �H0 : Q01 �Q02(l; �0)! '(l; �0jVar)
COMPR(H)! '

Proposition 12 The proof rule(COMP) is sound and com-
plete.

Proof sketch: Soundness is shown with the help of
Lemma 7 and Lemma 10 by a straightforward inductive ar-
gument. The soundness proof is formalized in PVS.

The proof of (semantical) completeness hinges on the
fact that for each trajectory there exists an equivalent one
in normal form (cf. Section 2). We introduce three auxil-
iary variablesVar 0i = Var i _[fht; h�; hfg to H1 andH2,
whereht measures the elapsed time, the history variableh� records the sequence of past pairs of locations together
with the common sojourn times of the continuous part of the
transition steps, andhf is used to enforce the existence of
common continuous behaviour. These auxiliary variables
allow to constructH 01 andH 02 forming a canonical aug-
mentation ofH1 � H2 which satisfies the requirements of
(COMP). Then the key step for completeness is to show
that the history variables record enough information to en-
sure that each state reachable separately inH 01 andH 02 is
commonly reachable, as well, i.e.,

if �0 #H01 2 R(H 01) and�0 #H02 2 R(H 02);
then�0 2 R(H 01 �H 02):

For details we refer to the full technical report [1]. �
7

5.3 Examples

Besides formalizing the proof rules in PVS, we applied
the method to a number of examples, e.g., non-linear vari-
ations of the water level monitor [2], or a modified clock
synchronization of the MPEG4 standard.

Example 13 (Thermostat) For the extended thermostat
system of Example 8, we want to verify that the temperature
of all rooms stays between the specified limits, and that the
tank never gets below the minimum level needed for turning
a heater on, i.e.,' = � � v ^ î xmini � xi � xmaxi
is establied invariant ofH1�: : :�Hn�Hfuel (cf. Figure 2).
Using the proof method from above,Qonsi = ui � i
can be established as invariant ofHi, and thus the paral-
lel compositionH satisfies the conjunction

ViQonsi . Fur-
thermore, under the assumption that the context ofHfuel
satisfies the invariantu �Pi i, the fuel systemHfuel en-
joysQfuel = Vol1 � v as invariant. Finally, assuming
the context ofHi satisfies the invariantQfuel , the propertyQtempi = xmini � xi � xmaxi is an invariant ofHi. SinceQfuel ^ ViQtempi implies', the desired property' holds
for the composed systemH1 � : : :�Hn �Hfuel.

The PVS formalization of these examples and the veri-
fied properties is available on the web-site and in [1].

6 Conclusion

In this paper we present an assertional, deductive proof
method for the verification of hybrid systems. For the verifi-
cation of composed systems, we give a complete proof rule
to reduce the complexity introduced by the parallel com-
position. To facilitate the tedious verification of hybrid sys-
tems without restricting the model artificially, we embedded
the proof system into the PVS theorem prover.

Beside offering the full power of higher-order logic, a
further advantage of such a deductive verification environ-
ment is that it allows a straightforward rigorous formal-
ization of the mathematical definitions, without the need
to resort to any specific logic. Furthermore, PVS comes
equipped with a wide range of automated proof-strategies
and heuristics. Also its modularization facilities are helpful
in structuring the work.

Of course, to perform the verification requires some ex-
pertise in hybrid systems, PVS, and the nature of inductive
proofs, but the goal-directed manner of applying the proof-
methods and rules gives valuable guidance. Sometimes, the
theorem prover surprises the user by taking a long time for

seemingly routing task (for instance, type-checking the col-
lected theorems). In those cases, rephrasing the formaliza-
tion into a mathematically equivalent one but using differ-
ent data representations (e.g. using lists instead of sets)can
cut down the times noticeably. The examples we analyzed
in PVS demonstrate how to apply our mathematical frame-
work in praxis. Despite their relative small size, they point
out the relevance of our method for the verification ofarbi-
trary hybrid systems (for instance hybrid systems with non-
linear properties or parameterized hybrid systems).

As the main line of research on hybrid systems focuses
on model checking techniques for appropriatelyrestricted
subclasses, there are less investigations on deductive meth-
ods for their verification. Closest in spirit to our work is [5],
which embed timed automata into PVS and apply their ap-
proach on the steam boiler example. The same example is
treated in [25], with the goal of deriving an implementation
of a real-time program in a number of refinement steps [16].
The PVS theorem prover is also used in [14] in combination
with model checking using HYTECH [4] for the reachabil-
ity analysis for various classes of linear hybrid automata.
For the verification of safety properties of hybrid systems,
[17] employ hybrid temporal logic HTL, an extension of in-
terval temporal logic. They give a number of proof-rules
which they prove sound. Likewise building upon temporal
logic, [21] use the Stanford theorem prover STeP as proof
environment. See [19] for an overview over deductive and
algorithmic approaches for verification of hybrid systems.

For future work, we intend to apply our method to larger
case studies, especially to extend the control example based
on MPEG4 of [6], and further a laser steering system for
mass spectroscopy. For the verification of complex case
studies the addition of a tool which allows for a graphical
specification of hybrid systems is essential, as is a parser
that automatically generates the PVS verification conditions
for a given specification. This also allows for a clean separa-
tion between type checking (i.e., checking that the specified
system is indeed a hybrid system) and the actual verification
task. Moreover, the representation of the verification con-
ditions for each control mode and each discrete transition
as separate lemmas improves the structure of the proofs and
increases the level of automation. To improve the specifica-
tion structure of hybrid systems, the interface information
can be extended, for instance separating the variable set into
input and output variables as in [20]. Such a cleaner sepa-
ration is a necessary prerequisite for the development of an
assume-guarantee reasoning scheme (cf. [24] or in the con-
text of hybrid systems [13, 9]). Especially we expect that
the verification will benefit from an alternative semantics
allowing for compositional proofs [11].

8

References

[1] E. Ábrahám-Mumm, U. Hannemann, and M. Stef-
fen. Verification of hybrid systems: Formaliza-
tion and proof rules in PVS. Technical Report TR-
ST-01-1, Lehrstuhl für Software-Technologie, Institut
für Informatik und praktische Mathematik, Christian-
Albrechts-Universität Kiel, Jan. 2001.

[2] R. Alur, C. Courcoubetis, T. Henzinger, P. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems.Theoretical
Computer Science, 138:3–34, 1995. A preliminary
version appeared in the proceedings of 11th. Inter-
national Conference on Analysis and Optimization of
Systems: Discrete Event Systems (LNCI 199).

[3] R. Alur and D. Dill. A theory of timed automata.The-
oretical Computer Science, 126:252–235, 1994.

[4] R. Alur, T. A. Henzinger, and P. Ho. Automatic sym-
bolic verification of embedded systems. InProc. 14th
Annual Real-Time Systems Symposium, pages 2–11.
IEEE Computer Society Press, 1993.

[5] M. Archer and C. Heitmeyer. Verifying hybrid
systems modeled as timed automata: A case sudy.
In O. Maler, editor,Hybrid and Real-Time Systems
(HART’97), number 1201 in Lecture Notes in Com-
puter Science, pages 171–185. Springer-Verlag, 1997.

[6] J. B. de Meer and E.́Abrahám-Mumm. Formal meth-
ods for reflective system specification. In J. Grabowski
and S. Heymer, editors,Formale Beschreibungstech-
niken f̈ur verteilte Systeme, pages 51–57. Universität
Lübeck/Shaker Verlag, Aachen, Juni 2000 2000.

[7] W.-P. de Roever, F. de Boer, U. Hannemann,
J. Hooman, Y. Lakhnech, M. Poel, and J. Zwiers.Con-
currency Verification: Introduction to Compositional
and Noncompositional Proof Methods. Cambridge
University Press, 2001. to appear.

[8] R. W. Floyd. Assigning meanings to programs. In J. T.
Schwartz, editor,Proc. Symp. in Applied Mathematics,
volume 19, pages 19–32, 1967.

[9] G. F. Frehse, O. Stursberg, S. Engel, R. Huuck, and
B. Lukoschus. Modular analysis of discrete con-
trollers for distributed hybrid systems. 2001. Tech-
nical Report, submitted for publication.

[10] R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors.Hybrid Systems, volume 736 of
Lecture Notes in Computer Science. Springer-Verlag,
1993.

[11] U. Hannemann.Semantic Analysis of Compositional
Proof Methods for Concurrency. PhD thesis, Utrecht
Universiteit, Oct. 2000.

[12] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya.
What’s decidable about hybrid automata. In27th An-
nual ACM Symposium on Theory of Computing. ACM
Press, 1995.

[13] T. A. Henzinger, M. Minea, and V. Prabhu. Assume-
guarantee reasoning for hierarchical hybrid sys-
tems. In M. D. D. Benedetto and A. Sangiovanni-
Vincentelli, editors,Proceedings of the 4th Interna-
tional Wokrshop on Hybrid Systems: Computation
and Control (HSCC 2001), Rome, volume 2034 of
Lecture Notes in Computer Science, pages 275–290.
Springer-Verlag, 2001.

[14] T. A. Henzinger and V. Rusu. Reachability verification
for hybrid automata. In Henzinger and Sastry [15],
pages 190–204.

[15] T. A. Henzinger and S. Sastry, editors.Proceedings of
the First International Workshop on Hybrid Systems:
Computation and Control (HSCC’98), volume 1386
of Lecture Notes in Computer Science. Springer, 1998.

[16] J. Hooman. A compositional approach to the design of
hybrid systems. In Grossman et al. [10], pages 121–
148.

[17] A. Kapur, T. A. Henzinger, Z. Manna, and A. Pnueli.
Proving safety properties of hybrid systems. In
H. Langmaack, W.-P. de Roever, and J. Vytopil, ed-
itors, Formal Techniques in Real-Time and Fault-
Tolerant Systems 1994, volume 863 ofLecture Notes
in Computer Science, Kiel, Germany, September
1994. Springer-Verlag. 3rd International School and
Symposium.

[18] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Inte-
gration graphs: a class of decidable hybrid systems. In
Grossman et al. [10], pages 179–208.

[19] S. Kowalewski, P. Herrmann, S. Engell, H. Krumm,
H. Treseler, Y. Lakhnech, R. Huuck, and
B. Lukoschus. Approaches to the formal verifi-
cation of hybrid systems.at-Automatisierungstechnik.
Special Issue: Hybrid Systems II: Analysis, Modeling,
and Verification, 49(2):66–74, Feb. 2001.

[20] N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid
I/O automata revisited. InProceedings of HSCC’01,
2001. to appear.

[21] Z. Manna and H. B. Sipma. Deductive verification of
hybrid systems using STeP. In Henzinger and Sastry
[15].

9

[22] S. Owre, J. M. Rushby, and N. Shankar. PVS: A pro-
totype verification system. In D. Kapur, editor,Auto-
mated Deduction (CADE-11), volume 607 ofLecture
Notes in Computer Science, pages 748–752. Springer-
Verlag, 1992.

[23] O. Roux and V. Rusu. Uniformity for the decid-
ability of hybrid automata. In R. Cousot and D. A.
Schmidt, editors,Proceedings of SAS ’96, volume
1145 of Lecture Notes in Computer Science, pages
301–316. Springer-Verlag, 1996.

[24] N. Shankar. Lazy compositional verification. In W.-
P. de Roever, H. Langmaack, and A. Pnueli, editors,
Compositionality: The Significant Difference (Com-
pos ’97), volume 1536 ofLecture Notes in Computer
Science, pages 541–564. Springer, 1998.

[25] J. Vitt and J. Hooman. Assertional specification and
verification using PVS of the steam boiler system. In
Formal Methods for Industrial Applications: Specify-
ing and Programming the Steam Boiler Control Sys-
tem, volume 1165 ofLecture Notes in Computer Sci-
ence, pages 453–472. Springer, 1996.

10

