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Abstract. Model checkers like Spin can handle closed reactive systems,
only. Thus to handle open systems, in particular when using assume-
guarantee reasoning, we need to be able to close (sub-)systems, which
is commonly done by adding an environment process. For models with
asynchronous message-passing communication, however, modelling the
environment as separate process will lead to a combinatorial explosion
caused by all combinations of messages in the input queues.

In this paper we describe the implementation of a tool which automati-
cally closes DTPromela translations of SDL-specifications by embedding
the timed chaotic environment into the system. To corroborate the use-
fulness of our approach, we compare the state space of models closed by
embedding chaos with the state space of the same models closed with
chaos as external environment process on some simple models and on a
case study from a wireless ATM medium-access protocol.

Keywords: model checking, SDL, DTSpin, open communication sys-
tems, abstractions.

1 Introduction

Model checking is becoming an increasingly important part of the software design
process [10]. Modern commercial SDL design tools like OBJECTGEODE [30] and
the TAU SDL suite [1] allow validation of SDL specifications through simulation
and testing. Since errors in telecommunication systems are expensive, there is a
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need for additional ways of verification and debugging, and model checking of
SDL specifications is an area of active research, cf. e.g. [19, 6,4, 21,22,18, 35].

Despite all algorithmic advances in model checking techniques and progress
in raw computing power, however, the state explosion problem limits the appli-
cability of model-checking [8,31,9] and thus decomposition and abstraction are
indispensable when confronted with checking large designs. Following a decom-
positional approach and after singling out a subcomponent to check in isolation,
the next step often is to close the subcomponent with an environment, since
most model checkers cannot handle open systems.

Closing is generally done by adding an overapproximation of the real envi-
ronment in the form of an external process. To allow the transfer of positive
verification results from the constructed closed model to the real system, the
environment process must be a safe abstraction [12,13] of the real environment,
i.e., it must exhibit at least all the behaviour of the real environment. In the
simplest case this means the closing environment behaves chaotically.

In an asynchronous communication model, just adding an external chaos pro-
cess will not work, since injecting arbitrary message streams to the unbounded
input queues will immediately lead to an infinite state space, unless some re-
strictions on the environment behaviour or on the maximal queue length are
imposed in the closing process. Even so, external chaos results in a combinato-
rial explosion caused by all combinations of messages in the input queues.

In [32], we describe a simple approach which avoids the state-space penalty
in the queues by “embedding” the external chaos into the component under
consideration. We use data abstraction, condensing data from outside into a
single abstract value to deal with the infinity of environmental data. By removing
reception of chaotic data, we nevertheless must take into account the cone of
influence of the removed statements, lest we get less behaviour than before.
Therefore, we use data-flow analysis to detect instances of chaotically influenced
variables and timers. Furthermore, since we are dealing with the discrete-time
semantics [22, 4] of SDL, special care must be taken to ensure that the chaos also
shows more behaviour wrt. timing issues such as timeouts and time progress.
Using the result of the analysis, the transformation yields a closed system which
is a safe abstraction of the original one in terms of traces.

Based on these earlier theoretical results, the main contribution of this paper
is the description of a tool implementing the embedded closing ideas and the pre-
sentation of experimental results that corroborate the usefulness of the approach.
The implementation is targeted towards the verification with DTSpin, a discrete
time extension of the well-known Spin model checker, therefore we chose to close
DTPromela translations of SDL specifications. The experiments performed with
DTSpin confirmed that the proposed method leads to a significant reduction of
the state space and the verification time.

The rest of the paper is organized as follows. In the following Section 2, we
sketch the formal background of the method. Afterwards, in Sections 3 and 4,
we present the toolset we use, its extension, and the experimental results of a



few smaller examples as well as the results on a larger case study. We conclude
in Section 5 with discussing related work.

2 Embedding chaos

In this section, we recapitulate the ideas underlying the program transformation
to yield a closed system. A more detailed account of the underlying theory can
be found in [32]. We start with fixing syntax and semantics and proceed with
program transformation and data-flow analysis required for the transformation.

2.1 Semantics

Our operational model is based on asynchronously communicating state ma-
chines (processes) with top-level concurrency. Since we take SDL as a source
and DTPromela as target language, the operational model gives the semantics
of a subset of SDL that does not allow procedure calls and dynamic process
creation, and also suits as semantics for a subset of DTPromela that is a target
of translation from IF to DTPromela.

A program Prog is given as the parallel composition II]* ; P; of a finite number
of processes. A process P is described by a four-tuple (Var, Loc, o, Edg),
where Var denotes a finite set of variables, and Loc denotes a finite set of locations
or control states. We assume the sets of variables Var; of processes P; in a
program Prog = II*,P; to be disjoint. A mapping of variables to values is
called a valuation; we denote the set of valuations by Val : Var — D. We
assume standard data domains such as N, Bool, etc., and write D when leaving
the data-domain unspecified, and silently assume all expressions to be well-typed.
) = Loc x Val is the set of states, where a process has one designated initial
state oinit = (Linit, Valinit) € X. An edge of the state machine describes a change
of configuration resulting from performing an action from a set Act; the set
Edg C Loc x Act x Loc denotes the set of edges.

As actions, we distinguish (1) input of a signal s containing a value to be
assigned to a local variable, (2) sending a signal s together with a value described
by an expression to a process P, and (3) assignments. In SDL, each transition
starts with an input action, hence we assume the inputs to be unguarded, while
output and assignment can be guarded by a boolean expression g, its guard.
The three classes of actions are written as ?s(z), g> Pls(e), and g>z := e,
respectively, and we use a, o' ... when leaving the class of actions unspecified.
For an edge (I,a,l) € Edg, we write more suggestively | —, (.

Time aspects of a system behaviour are specified by actions dealing with
timers. In SDL, timeouts are often considered as specific timeout messages kept
in the input queue like any other message, and timer-expiration consequently is
seen as adding a timeout-message to the queue. We use an equivalent presen-
tation of this semantics, where timeouts are not put into the input queue, but
are modelled more directly by guards. The equivalence of timeouts-by-guards



and timeouts-as-messages in the presence of SDL’s asynchronous communica-
tion model is argued for in [4]. The time semantics chosen here is not the only
one conceivable (see e.g. [7] for a broader discussion of the use of timers in SDL).
The semantics we use is the one described in [22,4], and is also implemented in
DTSpin [3,14].

Each process has a finite set of timer variables (with typical elements ¢, ¢}, ...)
which consist of a boolean flag indicating whether the timer is active or not, and
a natural number value. A timer can be either set to a value on(v) (rule SET),
i.e., it is activated to run for the designated period, or deactivated (rule RESET)),
i.e., it has a value off. Setting and resetting are expressed by guarded actions of
the form g > set t := e and g > reset t. If a timer expires, i.e., the value of a timer
becomes zero, it can cause a timeout, upon which the timer is reset. The timeout
action is denoted by g; I> reset t, where the timer guard g; expresses the fact that
the action can only be taken upon expiration (rule TIMEOUT). A possible discard
of a timeout signal is imitated by analogous action (rule TDISCARD).

In SDL’s asynchronous communication model, a process receives messages
via a single associated input queue. We call a state of a process together with
its input queue a configuration (o,q). We write e for the empty queue; (s,v):: ¢
denotes a queue with message (s, v) (consisting of a signal s and a value v) at the
head of the queue, i.e., (s,v) is the message to be input next; likewise the queue
q::(s,v) contains (s, v) most recently entered. The behaviour of a single process is
then given by sequences of configurations (oinit,€) = (00,q0) = (01,q1) = ---
starting from the initial one, i.e., the initial state and the empty queue. The
step semantics —y C I' x Lab x I' is given as a labelled transition relation
between configurations. The labels differentiate between internal 7-steps, “tick”-
steps, which globally decrease all active timers, and communication steps, either
input or output, which are labelled by a triple of process (of destination/origin
resp.), signal, and value being transmitted. Depending on location, valuation, the
possible next actions, and the content of the input queue, the possible successor
configurations are given by the rules of Table 1.

An input of a signal is enabled if the signal at the head of the queue matches
signal expected by the process. Inputting results in removing the signal from the
head of the queue and updating the local valuation according to parameters of
the signal. In rule INPUT 5 € Val, and 5[z — ] stands for the valuation equalling
n for all y € Var except for z € Var, where njz— +)(z) = v holds instead. The
rule DISCARD captures a specific feature of SDL92: if the signal from the head of
the queue does not match any input defined as possible for the current (input)
location, the signal is removed from the queue without changing the location and
the valuation. Unlike input, output is guarded, so sending a message involves
evaluating the guard and the expression according to the current valuation (rule
OutpuT). In QuTPUT, P’ stands for the process identity of the destination and
P is the identity of the sender. Assignment in ASSIGN works analogously, except
that the step is internal. Receiving a message by asynchronous communication
simply means putting it into the input queue where in the RECEIVE-rule, P
is the identity of the process and P’ is the identity of a sender. We assume



Table 1. Step semantics for process P

) ie Edg I —25 ) ie Edg= s #s

— INPUT DISCARD
(m, (s,0) = @) =+ (I, Nl 1, q) (L, (s52) @) =+ (I,m,9)
I —g5 Prigs,e) le Edg 9], = true le]l, =v
= OutrpuT
(l7 m, q) —P"P(s,v) (l7 m, q)
veEeD
RECEIVE
(lv m, q) _>P?P'(s,v) (lu n,.q: (3) U))
Il —gp o= i € Edg lgln = true [e]ln =v
= AssigN

(l, 7, Q) —r (la Nz — v], Q)

l —gp set ti=e [ € Edg [gln = true [e]ln =v
= SET

(m,q) =+ (it on(o)], )

l —gpresett L € Eflg lgln = true RESET
(Lm, @) = (Lmit— off1,q)
l —)gt [> reset t lAE Edg [[t]]n = On(O)
— TIMEOUT
(l: m, q) —r (la N[t — off], q)
(I —o 1 € Bdg = o # gt reset t) [t]» = on(0)
TDISCARD

(l: 7, q) —r (la Nt — off], fI)

for the non-timer guards, that at least one of them evaluates to true for each
configuration.

The global transition semantics for a program Prog = II | P; is given by a
standard product construction: configurations and initial states are paired, and
global transitions synchronize via their common labels. The global step relation
—x CI' x Lab x I is given by the rules of Table 2.

Asynchronous communication between the two processes uses signal s to
exchange a common value v, as given by rule CoMmM. As far as 7-steps and non-
matching communication steps are concerned, each process can proceed on its
own by the interleaving rules; each of these rules has a symmetric counterpart,
which we elide.

Time elapses by counting down active timers till zero, which happens in
case no untimed actions are possible. In rule TICKp, this is expressed by the
predicate blocked on configurations: blocked (o) holds if no move is possible by
the system except either a clock-tick or a reception of a message from the outside.
Note in passing that due to the discarding feature, blocked(o,q) implies g = e.
The counting down of the timers is written 7t —(t—1)], by which we mean, all
currently active timers are decreased by one, i.e., on(n + 1) — 1 = on(n), non-



Table 2. Parallel composition of P; and P

(01,q1) = Py1py(s,0) (61,41)  (02,42) = Py2Py(s,0) (62,G2) Con

(01,q1) X (02,92) —+7 (81,41) X (62,42)
(01,q1) = py2pi(sw) (61,41) Py # P
2
(01,q1) X (02,42) = py2py(s,0) (01,G1) X (02,2)
(01,01) =2 ppipy (o) (01,41)  Po#P»

(01,q1) X (02,92) = py1py (s,0) (61,41) X (02, q2)

INTERLEAVE1

INTERLEAVE>

(01,q1) =+ (61,41)
INTERLEAVE,

(o1,q1) X (02,92) =7 (61,41) X (02,92)

blocked (o) T
ICKp

O —Ftick O[t—(t—1)]

active timers are not affected. Note that the operation is undefined for on(0),
since a configuration can perform a tick only if not timer equals on(0).

2.2 Abstracting data

Next we present a straightforward dataflow analysis marking variable and timer
instances that may be influenced by the environment.

The analysis uses a simple flow graph representation of the system, where
each process is represented by a single flow graph whose nodes n are associated
with the process’ actions and the flow relation captures the intra-process data
dependencies. Since the structure of the language we consider is rather simple,
the flow-graph can be easily obtained by standard techniques.

The analysis works on an abstract representation of the data values, where T
is interpreted as value chaotically influenced by the environment and L stands
for a non-chaotic value. We write n%,n¢,... for abstract valuations, i.e., for
typical elements from Val® = Var — {T, L}. The abstract values are ordered
1 < T, and the order is lifted pointwise to valuations. With this ordering, the
set of valuations forms a finite complete lattice, where we write 7, for the least
element, given as 1 (z) = L for all z € Var, and we denote the least upper
bound of nf,... ,n% by Vi, n.

Each node n of the flow graph has associated an abstract transfer function
fn : Val®* — Val®. The functions are given in Table 3, where a,, denotes the
action associated with the node n. The equations describe the change of the
abstract valuations depending on the sort of the action at the node. The only
case deserving mention is the one for ?s(x), whose equation captures the inter-
process data-flow from a sending to a receiving actions and where Sig,, are the



signals potentially sent by the environment. It is easy to see that the functions
fn are monotone.

Table 3. Transfer functions/abstract effect for process P

- .
° a_ %=~ s € Sig.,
f( ’ S(:IJ))’I’] { na [z = V{[el,a|a,r=g > P!s(e) for some node n’] else

f(g> Pls(e))n* = n®
flg>z :=e)n® = Nz —lelya]
flg> set t :=e)n® = N[t on(lelpa)]
F(g> reset t)n™ = N[t off]
f(ge > reset t)n* = %[t off]

Upon start of the analysis, at each node the variables’ values are assumed
to be defined, i.e., the initial valuation is the least one: n%,,(n) = n.. We are
interested in the least solution to the data-flow problem given by the following
constraint set:

Mpost (1) 2 Fr(1pre (1))

7% (n) > \/{n%u (') | (n',m) in flow relation} g
For each node n of the flow graph, the data-flow problem is specified by two
inequations or constraints. The first one relates the abstract valuation 7y, before
entering the node with the valuation 7y, afterwards via the abstract effects of
Table 3. The least fixpoint of the constraint set can be solved iteratively in
a fairly standard way by a worklist algorithm (see e.g., [24,20,29]), where the
worklist steers the iterative loop until the least fixpoint is reached (cf. Fig. 1).
The algorithm starts with the least valuation on all nodes and an initial work-
list containing nodes with input from the environment. It enlarges the valuation
within the given lattice step by step until it stabilizes, i.e., until the worklist is
empty. If adding the abstract effect of one node to the current state enlarges
the valuation, i.e., the set S is non-empty, those successor nodes from S are
(re-)entered into the list of the unfinished one. After termination the algorithm
yields two mappings np,.., 7p,s; : Node — Val®. On a location [, the result of the

analysis is given by n%(I) = \/{ng,s (1) | i = [ —4 1}, also written as 7.

2.3 Program transformation

Based on the result of the analysis, we transform the given system S into an
optimized one, denoted by S*, which is closed, which does not use the value T,
and which is in a simulation relation with the original system.



input : the flow-graph of the program

output : U?re, ’r]?ost 5

n*(n) = Nie(n);
WL ={n|a, =7s(x),s € Sig.;};

repeat
pick ne WL;
let S = {n' € succ(n) | fa(n®(n) £ 1* ()}
in

for all n' € S: ne (n') = f(n*(n));
WL := WL\nU S;
until WL = 0;

Mpre (1) = N%(n);
Npost (1) = fn(n™(n))

Fig. 1. Worklist algorithm

The transformation is given as a set of transformation rules (see Table 4)
for each process P. The transformation is straightforward: guards potentially
influenced by the environment are taken non-deterministically, i.e., a guard g
at a location [ replaced by true, if [g],» = T. Assignments of expressions are
either left untouched or replaced by skip, depending on the result of the anal-
ysis concerning the left-hand value of the assignment (rules T-AssIGN; and
T-ASSIGN3). For timer guards whose value is indeterminate because of outside
influence, we work with a 3-valued abstraction: off, when the timer is deacti-
vated, a value on(T) when the timer is active with arbitrary expiration time,
and a value on(TT) for active timers whose expiration time is arbitrary except
immediate timeout: the latter two abstract values are represented by on(0) and
on(1), respectively, and the non-deterministic behaviour of the timer expiration
is captured by arbitrary postponing a timeout by setting back the value of the
timer to on(1) according to T-NOTIMEOUT.

We embed the chaotic nature of the environment by adding to each process
P a new timer variable tp, used to guard the input from outside.* These timers
behave in the same manner as the “chaotic” timers above, except that we do
not allow the new tp timers to become deactivated (cf. rules T-INPUTy and
T-NoINpPuUT). Since for both input and output, the communication statement
using an external signal is replaced by a skip, the transformation yields a closed
system. Outputs to the environment are just removed (rule T-OUTPUTy).

4 Note that the action g;, > reset tp; set tp := 0 in rule T-INPUT2 corresponds to the
do-nothing step g:, > skip.



Table 4. Transformation rules

l _)gbx::e ie EdgT |I€]]7]la # T g‘:t = I[g]]'r]l"‘
gl > ai=e ie Evdgﬁ
[ —rgpzi=e le EdgT [[e]]ﬂla =T gi:t = |[g]]"lf‘

T-ASSIGN;

I —

T-ASSIGN2

l _)gﬂ > skip iE E'dg‘:t
Il —25(2) le Edg" s €& Sig..

= T-INPUT;
| —25(a) | € Edg"

l —>2s(z) [E EdgT s € Sigmt

~ T-INPUT:
l —Fgip D> reset tp 7 set tp:=0 l € Edg

T-NoINPUT

l —>9tp > reset tp —set tp:=1 l c Edg'i

| —gp prise) L € BdgT  s¢ Sig,,,  g*=Ilglye

f ﬂ T-OuTPUT
l —>gﬂ > P'I(s,e) le Edg

I —. o le Edg™  se Sig,, b= [glup

gD> P'l(s,e) 9 _ 9 ext 9 ﬂg]]m T-OuTPUT2
l —)gﬂ > skip le Edgu

A s b _

l —Fg D> set ti=e le Edg 9 A_ ﬂg]lnl: I[e]]'r]l“‘ 7& T T-SET:
l gl > set t:1=e I € Edg
~ ™ u _ J—

L —gpurte € BT g =lglyp by =T

l —>gu > set t:=0 l € Edgu

| — g0 reset ¢ L € Edg " f =[],
g D reset ¢ g g [[9]]nl T-RESET

L~ gt o resct | € Edg*

l —>gi > reset t ZE EdgT gg = I[gt]]nl"‘

— 7 T-TIMEOUT
l _>gf b reset ¢ l € Edg
[tlop =T

T-NoTIMEOUT

l —>gt > reset t—)set t:=1 l € Edgﬂ
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3 Extending the Vires toolset

The Vires toolset was introduced for verification of industrial-size communi-
cation protocols. Its architecture is targeted towards the verification of SDL
specifications and it provides an automatic translation of SDL-code into the in-
put language of a discrete-time extension of the well-known Spin model-checker.
Design, analysis, verification, and validation of SDL specifications is supported
by OBJECTGEODE, one of the most advanced integrated SDL-environments.
OBJECTGEODE also provides code generation and testing of real-time and dis-
tributed applications.

ObjectGeode

pmli2pml

Spin/DT Spin

Fig. 2. Toolset components

Spin [23] is a state-of-the-art, enumerative model-checker with an expressive
input-language Promela. In an extensive list of industrial applications, Spin and
Promela have proven to be useful for the verification of industrial systems. Spin
can be used not only as a simulator for rapid prototyping that supports random,
guided and interactive simulation, but also as a powerful state space analyzer
for proving user-specified correctness properties of the system. As standard Spin
does not deal with timing aspects of protocols, DTSpin, a discrete time extension
of Spin has been developed [3, 14], that can be used for verification of properties
depending on timing parameters. The extension is compatible with the standard
untimed version of the Spin validator, except for the timeout statement, which
has different semantics and its usage is no longer allowed (nor necessary) in
discrete-time models.

IF [5] bridges the gap between OBJECTGEODE and Spin/DTSpin. It contains
a translator, SDL2IF of SDL specifications into the intermediate representation IF.
A static analyzer Live [27] performs optimization of IF-representation to reduce
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the state space of the model. IF-specifications can be translated to DTPromela
models with the help of IF2PML-translator [4] and verified by DTSpin.

The pPML2PML-translator takes care of the automatic closing of a subcom-
ponent and implements the theory presented before. The tool post-processes
the output from the translation from the SDL-specification to Promela, where
the implementation covers the subset of SDL described abstractly in Section 2.
The translator works fully automatic and does not require any user interaction,
except that the user is required to indicate the list of external signals. The ex-
tension is implemented in Java and requires JDK-1.2 or later. The package can
be downloaded from http://www.cwi.nl/~ustin/EH.html.

4 Experimental results

Before we present the results on a larger example — the control-part of a
medium-access protocol — we show the effect of the transformation on the state
space using a few artificial, small examples.

4.1 Simple motivating examples

In this subsection we take some simple open systems modelled in DTPromela,
close them with chaos as separate process and illustrate how the state space
grows with the buffer length and with the number of signals involved into the
communication with the environment.

First, we construct a DTPromela model of a process that receives signals a,
b, and ¢ from the outside, and reacts by sending back d, e, and f, respectively.

proctype proc(){

start: goto q;

q: atomic{ if
:: envch?a -> proch!d; goto q;
:: envch?b -> proch'e; goto q;
:: envch?c -> proch!f; goto q; fi;
}

}

A closing environment will send the messages a, b, and ¢ to the process, and
conversely receive d, e, and f in an arbitrary manner. As explained in Section 2,
the environment must behave chaotically also wrt. the timing behaviour. There-
fore, in order to avoid zero-time cycles, the sending actions are guarded by a
timeout and an extra clause is added when no more signals are to be sent in the
current time slice. A specification of such an environment process is given below:

s: atomic{ if
:: expire(t) -> set(t, 1); goto s; /* stop sending
signals until the next time slice */
:: expire(t) -> envchl!a; set(t, 0); goto s;
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:: proch?f -> goto s;
fi}
}

The queues in the verification model, however, have to be bounded. There
are two options in Spin for handling queues. The first one is to block a process
attempting to send a message to a full queue until there is a free cell in the
queue. With this option, our “naive” closing leads to a deadlock caused by an
attempt of a process to send a message to the full queue of the environment while
the environment is trying to send a message to the full process queue. Another
option is to lose new messages in case the queue is full. In this case large number
of messages gets lost (see Table 5). Many properties cannot be verified using this
option. Moreover, there is a large class of systems where messages should not get
lost, for this would lead to non-realistic behaviour of the system. Still, even when
this option is applicable, time and memory consumption grow tremendously fast
with the buffer size, as shown in Table 5.

Table 5. Different buffer sizes, unlimited number of signals per time slice

|option||buffer| states | transitions |lost messages|memory (MB)| time |
block 3 deadlock
loose 3 3783 13201 5086 2.644 00.24 s
loose 4 37956 128079 47173 3.976 01.97 s
loose 5 357015 |1.18841e+06 428165 18.936 20.49 s
loose 6 |3.27769e+06(1.08437e+07| 3.86926e+06 170.487 4 min 04.74 s

We can avoid the deadlock in the system above if we limit a number of
messages sent by the environment per a time slice. For this purpose we introduce
an integer variable n set to the queue size and modify the options of the if
statement in such a way that sendings are enabled only if n is positive; n is
counted down with every message sent and n is revived every time before a new
time slice starts.

(n>0 && expire(t)) -> envchl!a; n = n-1; set(t, 0); goto ea;

:: expire(t) -> set(t, 1); n= BUFFSIZE; goto ea;

Verification results for the system closed in such a way are shown in Table
6. And again, though more slowly than in the previous example, the number of
states, transitions, memory usage, and time required for the verification grow
with the queue length very fast.

Next we fix the length of the queue at 4 and vary the number of different
messages sent from the process to the environment and from the environment
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Table 6. Different buffer sizes (4 signals per time slice)

|option||buffer|states|transitions|nemory (MB)| time |

block || 3 328 770 2.542 00.06 s
block | 4 |1280 3243 2.542 00.10 s
block 5 4743 | 12601 2.747 00.24 s
block | 6 |[16954| 46502 3.259 00.78 s

to the process. Table 7 shows the experimental results. Note that the growth of
the state space of the system is now caused by the combinatorial explosion in
the queues. (The maximal number of messages that can be sent per a time slice
is still equal to the length of the queue.)

Table 7. Different numbers of message types

|n-messages|[states|transitions|memory (MB)][ time |

4 3568 9041 2.644 00.22 s
5 8108 | 20519 2.849 00.42 s
6 16052| 40569 3.156 00.75 s
7 28792| 72683 3.771 01.36 s
8 47960 120953 4.590 02.45 s
9 75428 190071 5.819 03.86 s

In the experiments for the same process with the environment embedded
and not external, the number of states is constant for all the cases considered
and equal to 4. As one might have expected, closing system by a separate en-
vironment process behaving chaotically, leads to a state space explosion even
for very simple small systems. Tailoring the environment process such that only
“relevant” messages can be sent makes the environment process large and com-
plicated, which can also cause the growth of the state space or lead to errors
caused by mistakes in the environment design.

4.2 Case study: a wireless ATM medium-access protocol

To validate our approach, we applied the PML2PML-translator in a series of
experiments to the industrial protocol Mascara [36].

Located between the ATM-layer and the physical medium, Mascara is a
medium-access layer or, in the context of the ISDN reference model, a trans-
mission convergence sub-layer for wireless ATM communication in local area
networks. A crucial feature of Mascara is the support of mobility. A mobile ter-
minal (MT) located inside the area cell of an access point (AP) is capable of
communicating with it. When a mobile terminal moves outside the current cell,
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it has to perform a so-called handover to another access point covering the cell
the terminal has move into. The handover must be managed transparently with
respect to the ATM layer, maintaining the agreed quality of service for the cur-
rent connections. So the protocol has to detect the need for a handover, select a
candidate AP to switch to, and redirect the traffic with minimal interruption.

Composed of various protocol layers and sub-entities, Mascara is a large pro-
tocol. With the current state-of-the-art in automatic verification it is not possible
to model check it as a whole — the compositional approach and abstractions
are necessary. Since the model of Mascara is not trivial, already the state space
of the obtained submodels with only several processes is large.

This protocol was the main case study in the Vires project; the results of
its verification can be found e.g. in [4, 19, 33]. Here, we are not interested in the
verification of Mascara’s properties but in the comparison of the state space of
a model of the Mascara control entity (MCL) at the mobile terminal side when
closed with the environment as a separate chaotic process and the state space
of the same entity closed with embedded chaos.

The Mascara control entity is responsible for the protocol’s control and sig-
naling tasks. It offers its services to the ATM-layer above while using the services
of the underlying segmentation and reassembly entity, the sliding-window enti-
ties, and in general the low-layer data-pump. It carries out the periodical mon-
itoring of the current radio link quality, gathering the information about radio
link qualities of its neighbouring access points to be able to handover to one of
them quickly in the case of deterioration of the current association link quality,
and switching from one access point to another in the handover procedure.

In [33] we were closing MCL by embedding the chaotic environment manually.
Not surprisingly, verifying properties of MCL closed with chaos yielded false
negatives first in many cases — the completely chaotic environment was too
abstract. Therefore, the traces leading to these false negatives were analyzed,
which resulted in a refined environment. The refinement was done by identifying
signals that could not be exchanged chaotically lest the verification property
was violated, then constructing a specific environment process handling only
these signals, and finally closing the obtained still open system by embedding
the residual chaos. The conditions imposed on sending the detached signals are
in fact the conditions imposed on the behaviour of the rest of the protocol, which
formed later the verification properties for the other protocol entities. Thus, by
constructing the environment process we only produce an abstraction of the real
environment, keeping it as abstract as possible and leaving the whole model still
open, which means that the environment prescribes the order of sendings and
receivings for a part of signals, only. In this way, we could still benefit from
embedding the chaos into the process.

Of course, closing the system manually is time-consuming and error-prone.
With the implemented translator, it became possible to reproduce the same se-
ries of experiments quickly, without looking for typos and omissions introduced
during the manual closing. Moreover, we performed the same experiments for
MCL closed with the chaotic environment modelled as a process. In our exper-
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iments we used DTSpin version 0.1.1, an extension of Spin 3.3.10, using the
partial-order reduction and compression options. All the experiments were run
on a Silicon Graphics Origin 2000 server on a single R10000/250MHz CPU with
8GB of main memory. Our aim was to compare the state space and resource
consumption for the two closing approaches. Therefore, we did not verify any
LTL properties.

Table 8. Model checking MCL with chaos as a process and embedded chaos

[bs|| states [transitions] mem. | time || states [transitions| mem. | time |

2(| 9.73e+05| 3.64e+06 | 40.842| 15:57|/300062| 1.06e+06 | 9.071| 1:13
3|| 5.24e+06| 2.02e+07 | 398.933| 22:28|/396333| 1.85e+06 | 11.939| 1:37
4|| 2.69e+07| 1.05e+08 | 944.440| 1:59:40|| 467555| 2.30e+-06 | 14.499| 2:13

Table 8 gives the results for the model checking of MCL with chaos as ex-
ternal process on the left and embedded on the right. The first column gives
the buffer size for process queues. The other columns give the number of states,
transitions, memory and time consumption, respectively. As one can see, the
state space as well as the time and the memory consumption are significantly
larger for the model with the environment as a process, and they grow with the
buffer size much faster than for the model with embedded chaos. The model
with embedded environment has a relatively stable state-space size and other
verification characteristics.

5 Conclusion

In this paper we described the implementation of a tool which allows to auto-
matically close DTPromela translations of SDL-specifications by embedding the
timed chaotic environment into the system. Our experiments performed on the
Mascara case study show the efficiency of the chaos closing method.

Closing open (sub-)systems is common for software testing. In this field, a
work close to ours in spirit and techniques is the one of [11]. It describes a
dataflow algorithm for closing program fragments given in the C-language with
the most general environment, eliminating the external interface at the same
time. The algorithm is incorporated into the VeriSoft tool. Similar to the work
presented here, they assume an asynchronous communicating model, but do
not consider timed systems and their abstraction. Similarly, [17] consider par-
tial (i.e., open) systems which are transformed into closed ones. To enhance the
precision of the abstraction, their approach allows to close the system by an
external environment more specific than the most general, chaotic one, where
the closing environment can be built to conform to given assumptions, which
they call filtering [15]. A more fundamental approach to model checking open
systems is known as module checking [26,25]. Instead of transforming the system
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into a closed one, the underlying computational model is generalized to distin-
guish between transitions under control of the module and those driven by the
environment. MOCHA [2] is a model checker for reactive modules, which uses
alternating-time temporal logic as specification language.

In the context of the IF-toolset [5], live variable analysis has been proven use-
ful [27] to counter the state explosion. Slicing, a well-known program analysis
technique, which resembles the analysis described in this paper, is explored in
[28] to speed up model checking and simulation in Spin. Likewise in the context
of LTL model checking, [16] use slicing to cut away irrelevant program frag-
ments but the transformation yields a safe, property-preserving abstraction and
potentially a smaller state space.

For the future, we will extend the subset of SDL our translator can handle,
including complex data types, procedures and process creation. Based on the re-
sults from [34], another direction for future work is to the extend the PML2PML
implementation to handle environments more refined than just chaos with build-
ing an environment process communicating to the system synchronously.
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