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Abstract

Regular languages have proved useful for the symbolic state exploration of infinite
state systems. They can be used to represent infinite sets of system configurations;
the system’s transitional semantics consequently can be modeled by finite-state
transducers. A standard problem for infinite state systems is how to explore all
states in a finite amount of time. When the initial states of a system are represented
by a finite-state automaton A and the one-step transition relation by a finite-state
transducer 7, this problem amounts to effectively computing an appropriate finite-
state representation 7* o A for the transduction of A under 7’s transitive closure.

In this paper we give a partial algorithm to compute a finite-state transducer 7*
for a general class of transducers. The construction builds a quotient of an underlying
infinite-state transducer 7<%, using a novel behavioural equivalence based on past
and future bisimulations on finite approximations of 7<%. The extrapolation to 7 <“
of these finite bisimulations capitalizes on the structure of the states of 7<%, which
are strings of states of 7. We show how this extrapolation may be rephrased as
a problem of detecting confluence properties of rewrite systems that represent the
bisimulations. Thus, we can draw upon techniques from the area of rewriting.

A prototype implementation has been successfully applied to various examples.
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1 Introduction

Finite-state automata are omnipresent in computer science, providing a power-
ful tool for representing and reasoning about certain infinite phenomena. They
are commonly used to capture dynamic behaviours, in which case an automa-
ton’s nodes model the states, and its edges the possible state transitions of a
system. More recently, finite-state automata have also been applied to reason
about infinite-state systems, in which case a single automaton is used to repre-
sent an infinite set of system states. In regular model-checking [15, 49, 1, 48, 3],
regular sets of states of the system to be verified are represented by finite-state
automata. For instance, consider a parameterized linear network of finite-state
processes with the states of the processes modeled by the symbols of a finite
alphabet. Then for every value of the parameter, i.e., for every fixed length of
the network, a global configuration is represented by a word over the alphabet.
A set of similar configurations corresponding to different values of the param-
eter, and hence to different network sizes, can then be modelled by a regular
set. Or, in a system with data structures like unbounded message buffers, in-
finitely many buffer contents may be represented by an automaton. To reason
about the dynamic behaviour of such a system, its transition relation is lifted
to operate on such symbolically represented sets of states. A natural choice to
represent the lifted transition relation are finite-state transducers.

Taking finite-state automata and transducers to describe infinite sets of states
and their operational evolution is, in general, not sufficient when doing state
exploration. To capture all reachable states, one needs to characterize the
effect of applying a transducer an arbitrary number of times, in other words,
one needs to compute 7* o A, where A characterizes the initial states and
T* the transitive closure of 7. In this paper, we consider the slightly more
general problem of calculating the transducer 7* instead of the automaton
representing 7* o A. In general, 7* is not finite-state anymore (and neither
T* o A). Indeed, it is undecidable whether the iteration of a given transducer
is regular. This follows from Corollary 3.11 in [51], which shows (roughly)
that iterated transducers are comparable to context-sensitive grammars. This
is then to be combined with the fact that it is undecidable whether a given
context-sensitive grammar is regular (see e.g. [44]).

Nonetheless, for length-preserving transducers, partial algorithms have been
developed that, if they terminate, produce the closure in the form of a finite-
state transducer [15, 48]. These algorithms can be explained in terms of the
in general infinite-state transducer 7<* = ;c, 7", the union of all finite

* This work has been supported by the Esprit-LTR project Vires. A short version
appeared in the Proceedings of the 13th Conference on Computer Aided Verification
(CAV’01).



compositions of 7. Conceptually, they attempt to construct a finite quotient
of 7<% by identifying states that are equivalent in some way. For example, in
[15, 48], the partial procedure for computing a finite quotient of 7<% is based
on a subset construction applied to a transducer whose states are words over
the states of 7. This infinite transducer realizes 7<“. To make the subset
construction converge in more cases than it would do, the constructed states,
which are rational languages over the states of 7, are saturated according to
an equivalence relation.

In this paper, we employ a different quotient construction to render 7 <“ finite,
resulting in an algorithm whose application is not a-priori limited to length-
preserving transducers. It works by computing successively the approximants
TS = Upcicn T for n = 0,1,2,3,..., while attempting to accelerate the
arrival at a fixpoint by collapsing states. This quotienting is based on a novel
behavioural equivalence defined in terms of past and future bisimulations. This
equivalence has to be infinite to collapse the infinite-state transducer 7<% to
a finite one. Therefore, one is faced with the problem of effectively computing
and representing a suitable infinite equivalence. To solve this problem, we first
identify sufficient conditions on an approximant 7<" for its states (which are
also states of 7<“) to be equivalent as states of 7<“. Then we show that the
equivalence of two states of 7<" induces the equivalence of infinitely many
states of T<v.

We illustrate the underlying intuition on a small example in which sets of
unbounded natural numbers are represented as automata over the symbols 0
and succ. The transitions we consider are given by the function o, defined
inductively by a(0) = even and a(succ(z)) = =(a(x)). It computes the parity
even or odd of a number; — is a function that toggles parities. Consider the
transition relation — that corresponds to a single step in the evaluation of
this recursive definition. Fig. 1(a) gives a transducer, 7,, that represents this
transition relation. The slash (/) is used to separate the input symbol from the
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Fig. 1. Left (a): The transducer Ta. Right (b): Its product 72.

output symbols; € denotes the empty string. Note that by the self-loop on state
0, the transducer leaves any leading occurrences of the symbol = unchanged,
and similarly for the trailing occurrences of succ before the final 0.

! Note that we use the quotient construction in cases in which the underlying
equivalence is not necessarily a bisimulation.



To start approximating 7%, consider the product transducer 7.2 shown in
Fig. 1(b): It moves the symbol o over one more occurrence of succ, while
turning it into a —, as reflected by the edge from state 01 to 12. In every next
product transducer 7.2, 7.2,..., an additional such succ /—-edge will appear.
Clearly, the limit transducer 7,~, the union of all approximants, is going to
have infinitely many states. On the other hand, the combined effect of the
ever-growing sequence of succ /—-edges would be captured by a simple loop if
states 01 and 12 were identified. Collapsing 7,~“ in this way, we can hope for
a finite quotient. To do so, we need to address the following questions: First,
how can we justify equating pairs of states like 01 and 12, which are obviously
semantically different in that they realize different transductions, i.e., what
is the equivalence notion on 7, employed for quotienting. Secondly, how to
compute the quotient without prior calculation of the infinite 7,°“?

As for the first point, we must ensure that identifying states in the quotient
does not introduce transductions not already present in 7,~“. Equating 01 with
12 in the above example, consider the run through the “collapsed” transducer
that goes from 00 to 01 (or rather to the new state obtained by collapsing 01
and 12) and then continues from this state as if continuing from 12. Exploiting
the equation 01 = 12, this run is introduced by the collapse. Even though the
states 01 and 12 are semantically different, as observed above, identifying
them does not change the overall semantics of 7,°, as there exists another
state that “glues” together the past of 01 and the future of 12, namely state
1 of 74. Another class of runs that are introduced by the collapse are those
that go from 00 to 12 and then continue as if continuing from 01. But also in
this case, there is a state in 7.~ that glues (this time) the past of 12 to the
future of 01, although it has not been constructed when considering 7,52. This
state is 012 and would enter the scene as part of 7.2, when constructing the
next approximant. We formalize these ideas as follows: States ¢; and g may be
identified if there exists a past bisimulation P and a future bisimulation F' such
that the pair (g1, g2) is both in the composed relation P; F' and in F'; P, thus
ensuring the existence of both “gluing” states. Indeed, we will require that the
bisimulations swap, i.e., F'; P=P; F. So it will be enough to show that (g1, ¢2)
is in either one of the composed relations. The situation is sketched in Fig. 2,
containing 7, and 72 and where the state 012 of the not-yet-constructed 72
is drawn by a dotted circle.

The second question is how to detect equivalent states in some approximant
T.5", i.e., how do we know that there exists a state somewhere in T,°* that is
past-bisimilar to one and future-bisimilar to the other? To this end we exploit
the structure of 7,<“’s states, namely that they are sequences of states from
To- It is easily seen that bisimulations are congruences under juxtaposition of
such sequences. In the example above, we can conclude the existence of an
appropriate state without actually having to construct 72: By looking at 7 =2
only, we see that 1 and 12 are future bisimilar, whence by congruence also 01
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Fig. 2. To and T2 with past and future bisimulations

and 012. Similarly, past bisimilarity of 12 and 012 can be inferred from 1 and
01. Again, the inferred pairs (01,012) € F and (012,12) € P are indicated by
dotted lines in Fig 2. Furthermore, exploiting the congruence property allows
to extrapolate the quotienting relation found on a finite 7,=" to the whole 7,
and thus to obtain a finite quotient of 7,“, without calculating the limit first.

The remainder of the paper is organized as follows. After introducing notation
and the relevant preliminary definitions in the next section, Section 3 will
formalize the criterion for a sound quotient. An algorithm based on this and
profiting from results of rewriting theory is the topic of Section 4, where we
will also report on the results obtained from our prototype implementation.
Sections 5 and 6 conclude with related and future work.

2 Preliminaries

In this section we introduce word transducers and pieces of string rewrite
theory pertinent for the later development.

2.1 Finite state word transducers

A transducer T = (Q,Qi, Qf, (X1,22), R) consists of a set ) of states, sets
Qi, @y C Q of initial resp. final states, a signature (X;,%) specifying the
input and output symbols, and a set R of rules. As usual, given a set X,
>* denotes the monoid of words over Y, where we write word concatenation
by juxtaposition and the pointwise lifting of concatenation to languages is
written the same way. The empty word is written as €. A rule of 7 has the
form ga — wq' with ¢,¢' € @, a € X1 U {e}, and w € 3%, specifying that
when in state ¢ and reading input symbol a € 3; (or reading no input in case



a = €), the transducer produces the output word w and assumes ¢’ as its new
state. A transducer whose sets of states and rules are both finite is also called
reqular or rational. The operation of a transducer is captured by the reduction
relation — 5 on strings consisting of symbols and a state (where € has its usual
meaning as neutral element of concatenation), defined as follows: For ¢; € X}
and to € 335, tigaty — ptiwq'ts iff g —wq’ € R. For this and other arrows
we use common notations like —~! for inverse, —* for reflexive-transitive
closure, and == for symmetric closure. The transduction realised by a state ¢
of T, denoted [g] or simply [g] if T is clear, is the function from =} to 2(%2)
defined by t; € [g]/(t1) iff there exists ¢; € Q such that gt;—%taqs. The
semantics of T is the function [7]: ¥% — 2(*2) defined by ¢, € [T](t1) iff there
exist ¢; € Q; and ¢y € @ such that ¢;t;—}t2qr. We will use the notation
— synonymously for the rewrite relation — 5. We write 7 : ¥; — X, if T
realizes a transduction from words over ¥; to words over Ys. In case ¥; = Yo,

we write 7 shorter as (Q, Qs, Qf, X, R).

In the informal presention in Section 1, we represented the transducers graph-
ically (cf. Fig. 1): States are given as nodes of a graph, the initial states are
marked by an ingoing dotted arrow, the final states by using a double circle.
The edges of the graph represent the rules are labelled by the pair of the input
symbol (or €) and the output word of the rule.

Transducers 77 : ¥; — Yo and 75 : ¥y — Y3 can be composed into 75 o 77
by a standard product construction, where the rules R of the composition are

defined by 2

! * !
gja —>Rvq; GV = W
J 2" CowmpP

gijo —wq;; € R

In ComP, R, and R, are the rules of the two constituent transducers, and g;;
is a short-hand for the tuple of ¢; and ¢;. Note that multiple steps of 7, may
be needed for ¢; to “move through” v (or none, if v = €). This construction
captures the semantical composition, i.e., [To] o[T1] = [Tz o T1]- An example for
the composition of two transducers is shown in Fig. 1(b).

Being interested in equality only up-to isomorphism, associativity of com-
position justifies the notation 7™ : ¥ — ¥ for an n-fold composition of a
transducer 7 : ¥ — X with itself. By the same token we will use Q" as the set
of states of 7", when () is the set of states of 7. Typical elements from Q" —
and later from @*, as well — will be denoted q,, g5, ¢y ..., and sometimes
even «, 3, 7 ..., if the meaning is clear from the context. Also we identify

2 Tt should go without saying that in the definition — and for all comparable
situations for the rest of the paper — we will silently assume that the sets of states
of the different transducers are disjoint, so as to obviate accidental confusion.



notationally the state g,gg with g,3. Besides composition, we will later need
the union of two transducers. By 7; U 7T, for two transducers over the same
signature we simply mean the transducer over the same signature, given by
the union of states, of initial states, of final states, and the union of rules,
respectively. Note that finite union preserves finiteness. For n < w we define
T<" = Up<i<cn T* Union can be easily extended to the union of countably
many transducers; we define 7<“ = (J;c,, T°. Using Q* for the set of states
of T<¥ we denote the empty sequence of states by ¢., which represents the
neutral element wrt. concatenation, i.e., ¢, = ¢o = ¢uq.- With this conven-
tion, we can define the zeroth iteration 7° of a transducer 7 : ¥ — ¥ as
({q}, {gc}, {gc}, X, 0). Under the conventions for g, the transducer 7° clearly
realizes the neutral element wrt. transduction composition, i.e., [T°] = Idyx:.

2.2  Bisimulations and quotienting

To obtain a finite-state transducer from an a priori infinite 7<%, we will have
to identify certain states. The notion of equivalence used to this end will be
based on bisimulation equivalences [63, 57| on states. Besides the standard
future bisimulation we need the past variant as well. Note that we require
bisimulations to be equivalences. This is because we need them to quotient
transducers.

Definition 1 (Bisimulation) Let T = (Q, Qs, Qr, (X1,%2),R) be a trans-
ducer. An equivalence relation F' C @ X @ is a future bisimulation on T if for
all pairs (q1,q2) of states, ¢1 F qo implies:

If 1 € Qy, then g2 € Qy, and for every a,w, q; such that ¢a —;wq], there
exists g such that g.a —;wg, and q; F g5.

An equivalence relation P C Q X @ is a past bisimulation on T, if for all
pairs (qy, q5) of states, ¢ P ¢, implies:

If ¢ € Qi, then g5 € Q;, and for every a,w, g such that ¢1a —;wq;, there
exists go such that g0 —rwg, and ¢ P go.

We call g1 and g, (future) bisimilar, written ¢ ~; qo, if there exists a future
bisimulation F' with ¢ F' qo; and ¢ ~, g2 denotes two past bisimilar states,
defined analogously. For transducers, we write T; ~y Ty, if there exists a future
bisimulation F C @ X @ such that for all g1 € Q;, there exists qo € Q; such
that g1 F' q9, and conversely for all go € Q; there exists ¢ € Q; such that

q F qo.

In correspondence with the rules of the transducer, bisimulation is defined to
preserve the relationship after consuming one symbol of the input alphabet.



Later we will need the generalization to the case where the transducer does
more than just one basic step. In the following we denote by R the homomor-
phic lifting of a relation R on states () to a relation on words from X7QX5.

Lemma 2 Let T = (Q, @i, Qy, (X1,%2), R) be a transducer, and further F C
QX Q and P C Q X Q a future and a past bisimulation.

(1) If ty IT to and t1—%t), then to—%1t, and t} lf’ th, for some tb.
(2) Ift\ Pty and ti—%t}, then to—>%t, and t; P ty, for some t,.

Above, the words t1,ts,t), and t, are from 35Q37.
The bisimulation relations enjoy the following properties ([57]):

Lemma 3 Let 71 : X1 — X9 and Ty : Yo — X3 be two transducers with state
sets Q1 and Qo respectively.

(1) The identity relation Id C Q1 X Q1 is a future bisimulation.

(2) If F1 C Q1 X Q1 and F5 C Q1 X Q1 are future bisimulations, then so is
(Fl, F2 U FQ, Fl)*

(8) If F1 C Q1 x Q1 and Fy C Qy X Qo are future bisimulations on T; and Ty
resp., then F' C (Q2 X Q1) X (Q2 X Q1) defined by qaq1 F' G2 iff 1 F1 G
and g F5 Gs 1s a future bisimulation on T o T7.

The same holds correspondingly for past bisimulations.

The second point basically states that bisimulations are closed under relational
composition, but because we require bisimulations to be equivalence relations,
we need to take the symmetric-transitive closure. For the same reason, we
need to take the transitive closures of the unions in the following.

Lemma 4 Given a transducer T = (Q, Q;, Q¢, (X1, X2), R).

(1) If F1, Fy, C Q % Q are future bisimulations, then so is (F1 U Fy)*.
(2) If P, P, C Q x Q are past bisimulations, then so is (P, U Py)*.

PROOF. We show only the forward case, the past one is analogous. Let F
abbreviate (F; U Fy)*. Since F; and Fy are symmetric, so is their union, and
hence F' is an equivalence.

For the condition on initial states, assume ¢q; F'gs and ¢; € @;. By induction
on the length of ¢ (Fy U Fy)*qs, also go € Q;. For preservation under steps,
assume ¢; F'g; and ¢a —wq) for some a € £; U {e} and some word w € X3.
Proceed by induction on ¢ (F; U Fy)*qy. The base case, k = 0, is immediate.
For k > 0, there exists a state g3 € Q with ¢;(F) U F3) g3 (F} U F»)*~1qy. We
distinguish, whether ¢; F g3 or ¢, F5q3. Since F7 is a future bisimulation, we get



in the first case that there exists a state ¢§ € @ with ¢ F1¢; and gsa = wgs.
By induction, we get a state ¢}, with g;a —;wgj, and ¢ F ¢5. With F; C F
and transitivity of F', also ¢; F' ¢,. The case where ¢; F; g3 is symmetric. O

Lemma 5 Let T be a transducer with state set Q). The relation ~; on @) is a
future bisimulation, ~, is a past bisimulation.

It is standard to show that future bisimilarity implies semantical equality,
i.e., Ti ~; T2 implies [T1] = [T3], and that the two relations ~, and ~ are
congruences on Q*, the free monoid over of 7’s set @) of states: If @ ~; o' and
B~y B, then aff ~; &/f', for all o, o/, 3,5 € Q*, and similarly for ~,. We
will exploit this property in Section 4.

Lemma 6 Given a transducer T, the relations ~, and ~; are congruences
on Q*, the free monoid over the set Q) of states of T.

The definition of a quotient is fairly standard: Its states are given as equiva-
lence classes wrt. the quotienting relation, the initial resp. final states are the
classes containing an initial resp. a final state of the original transducer, and
a rule connects a left-hand and a right-hand side in the quotient if there exist
two corresponding terms forming a rule of the original transducer.

Definition 7 (Quotient) Let T = (Q,Qi, Qf, X, R) be a transducer and =
C @%Q an equivalence relation. T, is defined as the transducer (Q ., {[gk | q €
Qi} {la g € Qf}, 3, RL), where Q. is the set of =-equivalence classes
of @ and [ql~ the =-equivalence class of q. The rules of T, are given by
jga —wq € R, iff there exist ¢ and q' such that § = [ql~, ¢’ = [¢']=, and
ga —wq € R.

2.8 Rewrite systems

Here, we briefly recall some notions and results from (string) rewriting, which
we will need in Section 4. A more thorough treatment of the field can be found
e.g. in [7, 26] or, for string rewrite systems, in [13]. Given a finite alphabet 3,
a string rewriting system R on Y, sometimes also called semi-Thue system,
is a subset of X* x X*. Each pair («, 5) € R is called a rule and states that,
in any context, the string o may be replaced by 3. This is formally captured
by the rewrite relation generated by R, — g, defined by oyfa, — pauf'c, iff
(8,8") € R and oy, o, € ¥*. The relation — j is said to be terminating (also
called strongly normalizing or Noetherian) if it allows no infinite sequences of
rewrite steps. The congruence closure of R, also known as Thue congruence,
over the monoid ¥* of strings over ¥ is <=}. Note in passing that the semantics
of a word transducer with signature (X3;,Y5) is given by a string rewriting
system where rules are drawn specifically from Q(X; U {e}) x X3Q.



The rewrite relation given by R is a priori non-deterministic in that — ,
neither prescribes an order among the rules nor to which substring a rule is
applied. That the non-determinism of — j is inessential is captured by con-
fluence? | a key concept of reduction systems in general and rewrite systems
specifically: At any point, the outcomes of two different choices can be recon-
ciled by subsequent reduction. We will also need the corresponding notion for
pairs of relations, known as commutation.

Definition 8 (Confluence and commutation) Let — ; and — , be two
relations. The relations —, and —, are said to enjoy the commuting diamond
property, if, for all s, t, and u, s =t and s —,u implies t —,v and u —,v
for somev. The two relations are said to locally commute, if s —,t and s —,u
implies t—3v and u—3v for some v. They are strongly commuting, iof s — ¢
and s —,u implies t —5 v and u—*v for some v. The two relations are said
to commute, if s—7t and s—=3u implies t—3v and u—73v. The definitions are
summoarized in the diagrams below.

s s s s
AN, AN, AN, N

S S e o s
v v v v

In case — | = —,, the notion of (local) commutation is called (local) con-
fluence; instead of satisfying the commuting diamond property, the relation is
said to satisfy the diamond property.

A standard topic in rewrite theory is reducing properties of a many-step
rewrite relation to properties of the one-step relation, which are simpler to
establish. We will need the following standard result, reducing commutation
to the commuting-diamond property, respectively the property of strong com-
mutation.

Lemma 9 Let —, and —, be two relations.

(1) If —, and — 5 have the commuting-diamond property, then they com-
mute.
(2) If =, and —, strongly commute, then they commute.

To check the commuting-diamond property or strong commutation, still “re-
joinability” of infinitely many pairs of elements — the elements ¢ and « in the
above diagrams — needs to be checked. Rejoining u and ¢ is obviously possible
in case they were derived from s by replacement of non-overlapping substrings

3 Confluence is sometimes phrased equivalently as Church-Rosser-property [22, 59].
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of s. This observation gives rise to the definition of critical pairs [50] (we show
the variant for checking commutation in case of string rewriting):

Definition 10 (Critical pair) Let R and S be string rewriting systems on
Y. Consider rewrite rules (ag, fr) € R and (ag, Bs) € S such that ag overlaps
with ag in the following way: either yiar = agys with |v1| < |as|, or ag =
Y152, for some 1,72 € X*. Then the corresponding critical pair is defined
as (18R, Bsy2) in the first case and (Br,v1Bs72) in the second.

Now, in order to check whether — , and — ¢ have the commuting-diamond
property, it suffices to check, for every critical pair (dg,ds), whether there
exists a 0 such that 6zrS6, and d0sRd6. There is a similar condition in case
strong commutation is used. So, in case that R and S are finite, there are also
only finitely many critical pairs to check.

Rewrite theory offers several answers to the question whether strings s and
t are congruent under some system R, i.e. whether s<=%3t. The first answer
is: If this system is confluent and terminating, then strings are congruent iff
they rewrite to the same normal form. This obviously gives a procedure to
determine congruence. Being a special case of commutation, confluence of R
can be checked using Lemma 9, by inspecting critical pairs. In case R turns
out to be not confluent, still not all hope is lost. The next, more advanced
technique offered by rewrite theory is to try to turn the rewrite system R into
an equivalent rewrite system that is confluent, using so-called Knuth-Bendix
completion [50]; we refer to [7] for details.

3 Sound Quotienting of 7<%

Next we formalize the equivalence relation used to quotient 7<% and show the
correctness of the construction. As illustrated in Section 1, the key intuition
behind a sound quotient is that, whenever identifying states ¢; and ¢o, there
must exist a state realizing ¢;’s future and ¢,’s past, and a state realizing ¢;’s
past and ¢o’s future. “Having the same future resp. past” will be captured
by being future resp. past bisimilar. To ensure the existence of both required
states, we will restrict our attention to swapping future and past bisimulations:

Definition 11 (Swapping) Two relations R and S over the same set swap

.

(or: are swapping), if R; S = S; R, where “” denotes relational composition.

In order to prove soundness of the construction, i.e., preservation of the trans-
duction semantics, we need to characterize the reductions realized by a quo-
tient of 7<¥. As 75“ is given by identifying states of 7<* while retaining

the reduction relation of 7<¢ (modulo the collapsing of states), the possible

11



reductions steps of 7;5“’ are either reduction steps from 7<% or steps replacing

~

a word by a =-congruent one.

Lemma 12 Let T = (Q,Q;,Q;, X, R) : ¥ — ¥ be a finite-state transducer
and furthermore, = a congruence on Q*. In abuse of notation we use the
same symbol for the homomorphic lifting of = to words over ¥X*Q*¥*. Then

[tl]g—>;-/<w[t2]g iff t1 (<o U 2)* 1o, for all words t1,t, € *Q*E*.

Note that in the definition of 7<" as Up<;<, 7", the unions are all disjoint, if
Q@ # (. In this case, it is straightforward to see that the construction is indeed
sound (without further mention, we will assume @ # () for the rest of the

paper):

Lemma 13 Let T = (Q,Q;,Q;, X, R) be a finite-state transducer. Then for
all t1,ty € X%,

(1) ty € [T<"|(t1) iff there exists a k < n such that ty € [T*](t1), and
(2) ty € [T<¥|(t1) iff there exists a k € w such that ty € [T*](t,).

We are now ready to formulate the section’s central result, which allows to
collapse the infinite 7<% to a possibly finite transducer without changing its
semantics. In general, identifying states allows more derivations. In order to
obtain a finite quotient, we need to collapse states with different transduction
semantics, or here more loosely states not being future bisimulation equiv-
alent. Note again that identifying two states ¢; and ¢, realizing a different
transduction semantics, will individually lead to more transductions, i.e., the
equivalence class into which two different states are collapsed shows in general
more derivations than the two states individually. In Fig. 2, for instance, the
states 01 are 12 realize different transductions and the state obtained by iden-
tifying them obviously shows more behaviour. The crucial point is that overall
the quotient of 7<% does not show more bevaviour, since requiring 01 F; P 12
and 01 P; F' 12 assures that there exists states that realize the behaviour of
the collapsed state.

Theorem 14 Let T be a transducer, and F and P a swapping pair of a future
and a past bisimulation on T<“. Then the quotient /:“; of T<% under F; P

is well-defined and preserves the transduction relation, i e., [77:‘?]] = [T<Y].

PROOF. First note that F'; P is a congruence, thus the quotient 77;‘2 is
well-defined. In the following we will write more suggestively =p.p for this
congruence; likewise we will use =r and =p for F' and P.

For semantical equality, we need to show that ' € [T<*](¢) iff #' € [T2* ](¢),
for all words t and ¢’ from ¥*. The “only-if”-direction is immediate: by identi-
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fying states, the quotient ’T<“’ can at least derive everything 7<% can. For the

“if” -direction, assume t' € [’77<‘“ 1(2), i.e. qut—>T<w t' for some words ¢ and
—F P
¢ and a natural number k. By Lemma 12, this means ggct (—7<. U =p;p)* t'.

We generalize the proof obligation to:

for all ¢,ty € E*Q*E*. if tl( <o U =p.p)* o, then there exist words ¢}
and t5 such that t|—7%<.t5, and furthermore ¢, =p,p t| and ty =p,p t5,

and proceed by induction on the length of the reduction ¢; (—;<. U =p;p)* to.

Base step: t1 =ty
Immediately by t; —%<.t; =t and using reflexivity of =p,p.

Induction step: t1(—7<u U =p.p) t3 (—7<w U =p;p)* o

By induction, there exist words t; and t; such that tj—%..?,, and where
furthermore t3 =p.p t3 and t, =p.p t,,. Depending on the first step from ¢,
to t3, we distinguish two subcases. The first one where t; =p,p t3 follows
straightforwardly with transitivity of =p,p.

Subcase: t1 —r<ut3

In the following, we will silently use the fact that the properties of the relations
=p, =p, and =p,p carry over when lifted onto words. By t5 =p,p t} there exists
a word t§ such that t3 =p t§ =p t} (remember that =5 and =p are assumed
to be swappable). Since =p is a past bisimulation, there exists a word ¢} such
that ¢t} — <.t} and t; =p t]. From t§ =p t}, we obtain with Lemma 2 that
ts—"<.ty for some word t5 with ¢t =g t,,. By reflexivity of =p and =p on
words, we further get t; =p,p ] and t2 =p,p ty, which finally implies with
transitivity of =p,p on words that t, =p,p t3:

t t - t
1 T<w 3 T U=Fr;p 2
.{ ,
! n * n
1 g<w t3 T<w t2
F '{

!
3 7~<wt

To see that the theorem follows from the property proven, use Lemma 13 and
specialize t; resp. t to oty resp. 1?2qf where #,,%, € ©* and where furthermore
Q@ € Qi and g; € Q;. For t} we know ¢, = qot; =p,p t;, which means t| = q,t}
for some state g, € @* and #, € ¥*. Since @ = F:P qa, the equivalence class
[¢a)=» is an initial state of 77:;’10 The argument for ty = toq; =p.p th is

analogous. 0O
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Note that the theorem covers collapsing 7 < with respect to ~ or else with
respect to ~, as special cases, since the identity relation on )* is a past as
well as a future bisimulation and moreover, as neutral element of relational
composition, swaps with every relation. Using both future and past bisimu-
lation in combination is more general and allows for a smaller quotient than
using any of the relations in isolation.

4 An On-the-fly Algorithm for Quotienting 7 <“

The previous result explains under which conditions quotienting 7<% is sound,
but does not give guidance how to find the bisimulations nor how to algorithmi-
cally determine the quotient 77:;’10 To make algorithmic use of the quotienting
result, we must be able to effectfvely compute and represent swapping bisim-
ulation relations on the infinite 7<“. In this section, we show how to obtain
these by extrapolating from information established on a finite approximant

T<", and exploiting the structure of 7<* = T° U T(T°) U T(T(T°) U....

To apply Theorem 14 we must extrapolate two properties: 1) the (future or
past) bisimulation requirement, and 2) the property of swapping. In order to
do the extrapolation, we will view the relations F' and P on Q<" as rewriting
systems on Q*, indeed a restricted form of ground (i.e., without variables)
rewriting systems on strings.

We start with the first question from above. As mentioned in Section 2.1, the
future and past bisimulations are congruences over the monoid @Q*. This allows
to extend bisimulations F' and P from a finite approximant to 7 <%.

Lemma 15 Let T be a finite-state transducer with states Q, and F and P C
Q<" x Q<" be a future and a past bisimulation on T<", with n > 0. Then the
relation <=7, resp. <=%, is a future, resp. a past, bisimulation on T <.

Indeed, we can tighten Lemma 15 by loosening the requirements for the rela-
tions F' and P on T <" It suffices that their congruence-closure, projected on
the finite approximant 7<", are bisimulations. This allows for smaller repre-
sentations for the bisimulation relations in the algorithm.

Lemma 16 Let T be a finite-state transducer with states @), and F' and P C
Q=" X Q=" two string rewriting systems such that =% N (Q<" x Q<") and
=5 N (Q=" x Q") is a future resp. a past bisimulation on T<". Then the
relation <=7 (resp. =% ) is a future (resp. a past) bisimulation on T <.

Having extended the finite bisimulations F' and P to 7<“ by congruence
closure, the second question is whether <=7 and <=} additionally enjoy the
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swapping requirement. Note that the notion of swapping of relations from Def-
inition 11 is closely related to that of commutation and clearly two symmetric
relations R and S commute iff R* and S* swap. This together with Lemma 9
implies:

Lemma 17 Let F and P be two relations on Q<™ x Q<.

(1) If < r and <= p have the commuting diamond property, then <=% and
<5 swap.
(2) If <= and <=p strongly commute, then <7} and <% swap.

To effectively identify cases where the (infinite) relations <= and <= p have
the commuting-diamond property, one can restrict attention to the critical
pairs, of which there are only finitely many as the rewrite systems F' and P
are finite.

Lemma 15 and Lemma 17 together allow now to apply the quotienting Theo-
rem 14 and do the desired extrapolation.

Corollary 18 (Soundness) Let T be a transducer with states @@, and F and
P C Q<" x Q=" a future resp. a past bisimulation on T<", withn > 0. If <=p
and <= p have the commuting-diamond property (or they strongly commute),

then [T<“]= [T

< <% ]I
P’ F

To make notation a little less heavy-weight, we will for the rest use = to

abbreviate the congruence relation <=4 ;<=5p.

Let us illustrate the ideas so far on the transducer from Fig. 1. On the ap-
proximant 7% (i.e. the union of the transducers in parts (a) and (b) of
Fig. 1), one pair of a future and a past bisimulation (represented as rewrit-
ing systems) is F' = {(12,1),(1,12),(22,2),(2,22)} U Id{o,,. 22y and P =
{(00,0), (0,00), (01,1), (1,01)} U Id,,... 20}, where Idg denotes the “identity
rewrite system” on S. Indeed, these bisimulations are the largest possible
choices. It can be easily checked that the corresponding rewrite relations <=
and <= p have the commuting-diamond property. For example, the overlapping
pair consisting of state 1 from the rule (1,12) of F' and state 1 from the rule
(1,01) of P opens a diamond that may be closed again by rewriting both 12
and 01 to 012 (using the same rules).

Now, without actually attempting to fully compute the relation =, we can al-
ready detect several equivalences between states. Most importantly, the states
1, 01, and 12 belong to the same equivalence class. Furthermore, we have
00 = 0 and 22 = 2. Quotienting 7,52 by this equivalence gives the transducer
of Fig. 3, where only the relevant part is shown (i.e., the equivalence classes
[10), [11], [20)z, and [21] are left away). It can be checked that the construc-
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Fig. 3. Transducer 7,

tion stabilizes at this point, so we have arrived at 7. Note that quotienting
7.5 using ~, or ~ in isolation does not give a finite quotient.

The algorithm based on these ideas is sketched in pseudo-code in Fig. 4. Given
a transducer 7 = (Q,Q;, Q;, %, R), the until-loop iteratively calculates, in
variable X, the approximations 7<". On each approximation, bisimulations
F and P are computed by a partition refinement algorithm [62, 34].

input 7 = (Qa Qi’ Qfa %, R)
X = Tig;
repeat
X = (T o X)U T
determine bisimulations F' and P on X s.t.
<>r and <=p swap and each possess the diamond property;
until X/E ~f (T o X/E) U Tig

Fig. 4. Calculating T*

Note that in the termination condition, the approximant transducer X is quo-
tiented using the whole equivalence = = <=};<=%, and not just by those
identifications that happen to be directly detectable on X', as suggested in the
example above. The ability to do so relies again on techniques from rewrite
theory. First, it can be shown that <=%; <5 = (<= pU <=p)* = <=} p. So, the
question is when strings are congruent under the rewrite system F' U P. For
this, we would like to have a confluent and terminating system. Confluence of
F U P can be checked by inspecting critical pairs. In practice, we can avoid
duplicating work by the following standard result.

Lemma 19 If <= p and <= p commute, then <= U <= p is confluent if each
of == r and <=p in separation is confluent.

So, if commutation of <= r and <= p has already been checked when deter-
mining whether <=}, and <=} swap, then it suffices to check confluence of
the individual relations. In case <= p U <= p turns out to be not confluent,
Knuth-Bendix completion might be needed.

As for checking termination — it is clear that the relations F' and P in sepa-
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ration are already non-terminating, as they are reflexive and symmetric. But
also in this case, there is the possibility of turning F' U P into an equivalent
system that does terminate. Because of the very simple form of this rewrit-
ing system —ground rewriting on strings— it is easy to capture <=} p by a
terminating one: Just order pairs lexicographically and remove the “reflexive”
part Idg<n. In our example, the quotienting relation = can in this way be
represented by the four rules {(00,0), (01, 1), (21, 1), (22,2)}, where the right-
hand side of each rule is strictly smaller than the corresponding left-hand side
in lexicographic order.

A few points concerning the implementation deserve mention. For once, the
naive iteration as sketched in the pseudo-code can be optimized in a number of
ways, especially by reusing information collected from the lower approximants
when treating 7<"*1. For instance, in case one knows already that (00,0) are
past bisimilar after investigating the first two levels, as in our example, there is
no need to check (000, 00) for past-bisimilarity at the third (if at all it would be
needed to construct that level). Another, more tricky point is that the search
for bisimulations F' and P under the additional requirements of swapping and
confluence, adds an element of non-determinism to the process. Namely, it
may be that bisimulations as they are found do not swap or are not confluent,
but that smaller bisimulations would in fact satisfy these requirements. In
such a case we would have to choose which pairs of states to delete from
the bisimulation relations. However, in the examples we tested, the largest
bisimulations ~; and ~,, as given by the partition refinement, always worked.

We tested our implementation on various examples, for instance the one of
Fig. 1 and the token array example of [48]. In all but one case, the transitive
closure was computed in a short time on a standard desktop workstation. In
the remaining case, a ring configuration of the token array, the computation
took too long. We expect that by implementing some additional optimizations
(see below), larger transducers can be successfully handled.

5 Related Work

5.1 Transductions and their iteration

Regular or rational transductions were introduced by Elgot and Mezei in [31]
as a natural extension of regular languages and used to represent and rea-
son about computations. Much of the theory of rational transductions has
been developed by Schiitzenberger ([66]), Eilenberg ([30]), and Nivat ([61]);
overviews can be found in [30, 8]. [30] contains results, presented in an al-
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gebraic setting, that relate transducers to concepts such as rational relations
and the (generalized) sequential machines (GSM) and GSM mappings of [39].
Other closely related devices are Mealy machines ([56]) and Moore machines
([58]). Closure properties of classes of languages under GSM mappings have
been studied, see e.g. [44]. [30] also contains several properties of the class
of length-preserving rational relations. One result worth mentioning is that
any length-preserving rational relation can be realized by a “letter-to-letter”
transducer or nondeterministic Mealy machine.

In research on the iteration of transducers (transductions, GSMs), two direc-
tions can be distinguished. One class of papers studies the results of closing
classes like free monoids and regular languages under the iterated application
of transducers. For example, [71] shows that every recursively enumerable lan-
guage can be obtained by iterating a so-called GSM relation (corresponding
to some nondeterministic machine) on a singleton language — thus demon-
strating the power of iteration. In [51], the restriction to length-preserving
transductions is considered, and it is shown (among other things) that the
iteration of length-preserving rational transductions on a free monoid yields
essentially a context-sensitive language. [54] shows that the number of states
of a transducer used to iterate in this way can be limited to 4: Additional
states do not add extra expressiveness of the iteration, while each number
smaller than 4 gives rise to known subclasses. An interesting related develop-
ment suggested by DNA computing is “computing by carving” ([54]).

5.2 Regular model checking

Often interested in language-theoretic expressiveness results and clarifying the
connections between various classes and their computational models, the pa-
pers mentioned above focus on characterizing the smallest classes of languages
closed under iterations of transducers or similar devices. Partly inspired by
using regular languages and their transductions for symbolic model checking,
another class of papers aims to identify restricted forms of transducers whose
iteration on a regular language is still regular. The corresponding symbolic
form of state exploration, sometimes called reqular model checking, has re-
cently attracted attention in the context of verification of various classes of
infinite state systems. Examples are [49, 2, 60, 48, 15] and this paper. Other
related papers include [64, 37, 29, 21, 67]. The work in [36] goes beyond the
framework of regular languages and transductions by considering context-free
grammars. See also [14] for a recent survey of the use of regular languages and
rewriting for model checking.

Closest to our work is [15] which presents an algorithm for the iterated effect
of a length-preserving transducer using standard determinization and mini-
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mization techniques from automata theory. As in our work, the key of the
construction is to collapse 7 <, called column transducer in [15], into a hope-
fully finite quotient. Minimizing (and determinizing) this infinite transducer
gives rise to a smaller one whose states are languages of states of 7. More
specifically, states are regular languages and since 7’s edges are labeled by
Yl x ¥, its transitions transform regular languages into regular languages. The
additional identifications can be seen as assuming a static, predefined set of
equations on the words of @Q*. Starting from the initial state of 7<%, which
can be represented by the regular language ¢, the algorithm tries to com-
pute the states of 7<% performing a forward symbolic reachability analysis
(this is the determinization) while relaxing the condition stating when a state
has already been visited. This relaxation (called saturation in their work) as-
sumes a fixed set of equivalences between states of 7<“. In contrast, our algo-
rithm tries do discover such equations dynamically as it proceeds to higher n’s
when exploring 7=". The restriction to length-preserving transductions and
the static nature of their saturation process allow Bouajjani et al. to provide
sufficient conditions on the form of the transducer to guarantee termination
of the construction. The work has recently be extended to deal with regular
tree languages in [3].

In [16], the notion of alphabetic pattern constraints is identified as a subclass of
regular languages. The class is effectively closed under permutation rewriting,
a restricted form of rewriting or transduction. [38] considers the closure of
regular tree languages under general term rewriting. Also related is the work
of [52], where the closure of a set of process-algebra terms under iterated
predecessor and successor operations is considered and where the sets of terms
are viewed as a regular tree language (also see [33]).

A common source of infinity in the state space are various forms of data types
like stacks [35], message queues [12, 10, 11], or integers [9]. The regularity
of these data structures and the restricted form of transitions can often be
exploited by symbolic methods based on regular languages and their transfor-
mation. See [70] for a survey of various approaches in this direction. To explore
the symbolically represented infinity of states in a finite amount of steps, often
the effect of single steps or cycles needs to be accelerated, i.e., all iterations
of a loop are explored at once in a so-called meta-transition. In contrast, our
procedure approximating 7 < achieves an accelerating affect by identifying
states in a finite prefix 7<". Through the cycles introduced by identifying
states which are semantically not equivalent within 7<", the procedure (if it
halts) allows to explore the effect of the infinite limit 7<% in a finite amount
of steps.

Future and past simulations including their combinations have been exten-

sively studied in [53]. We are not aware of any work that considers the com-
position of swapping such relations as is done in this paper.
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6 Conclusions and Future Work

We have presented a partial algorithm for computing the transitive closure
of regular word transducers. This algorithm allows to reason about the ef-
fect of iterating transduction relations an unbounded number of times. Such
relations are used, for instance, in regular model checking where they rep-
resent the transition relation of an infinite-state system. Given a transducer
T, our algorithm is based on quotienting, w.r.t. the composition of a future
and a past bisimulation, the possibly infinite-state transducer 7<%, the union
of all finite compositions of 7. To be able to develop our algorithm, we pre-
sented sufficient conditions that allow to exploit bisimulations discovered on
a finite approximant 7 <", and hence, to avoid constructing 7<¢. Though
our prototype implementation can be improved in several ways, we obtained
encouraging results on the examples we have considered.

In order to compute 7*(S) for a given regular set S, our results specialize to
automata, allowing to accelerate the computation of 7<9(S), T<!(S), T=2(S),
... This problem, where the set of initial configurations is also a parameter of
the algorithm, can be solved in more cases than the general case.

A vpair of swapping bisimulations played a crucial role in our development.
As the concept is a rather general, we work on applying it in other contexts
than transducers, as well. Furthermore, properties of swapping bisimulations
deserve a study in their own right.

A natural question is whether our heuristic constitutes a semi-algorithm: In
those cases that [T <] is representable as a finite-state transducer, will our
algorithm find such a transducer in a finite amount of time? This is not the
case, since the equivalence used for the quotient construction, being based
on bisimulations, is finer than the language equivalence (or, stricly speaking,
transduction equivalence) that is ultimately needed for semantic equivalence.

Besides the improvements mentioned in Section 4 and implementation im-
provements like using BDDs [18, 55, 19] to represent transducers, we believe
that there are variations of our algorithm that are worth studying. One such
variation consists in computing at each iteration of the algorithm the com-
position of 7 with the quotiented transducer obtained up to that iteration.
This would reduce the number of states of the transducers that occur as in-
termediate results of the algorithm. A similar idea underlies what is called
compositional model-checking, e.g. [41]. The difficulty in our context lies in
the generalization of the computed bisimulations to 7 <%.

The construction presented in this paper and the notion of bisimulation is
rather general. Hence it is worthwhile to study, whether and how the results
can be transferred to more general classes of transducers, for instance prefix
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recognizable transducers [20], or even to other models of computation, for
instance communicating processes. We are currently extending our results to
the case of tree transducers. Here, in the general case, one is confronted with
negative results from tree transducer theory, the main one being that regular
tree transducers are not closed under composition. To avoid this problem, we
restrict ourselves to linear tree transducers. A preliminary account, which also
provides the full proofs for the word case, can be found in [24].
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