Verification for Java’s
Reentrant Multithreading Concept

January 21, 2002

Erika Abrahdm-Mumm!, Frank S. de Boer?,
Willem-Paul de Roever!, and Martin Steffen!

! Christian-Albrechts-Universitit zu Kiel, Germany
eab,wpr,msQinformatik.uni-kiel.de
? Utrecht University, The Netherlands frankb@cs.uu.nl

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model offers coordina-
tion via lock-synchronization, and communication by synchronous mes-
sage passing, including re-entrant method calls, and by instance variables
shared among threads.

To reason about multithreaded programs, we introduce in this paper an
assertional proof method for Javaur (“Multi-Threaded Java”), a small
concurrent sublanguage of Java, covering the mentioned concurrency is-
sues as well as the object-based core of Java, i.e., object creation, side
effects, and aliasing, but leaving aside inheritance and subtyping.

1 Introduction

The semantical foundations of Java [15] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [4,29,12]). The research
concerning Java’s proof theory mainly concentrated on various aspects of se-
quential sublanguages (see e.g. [20,33,27]). This paper presents a proof system
for multithreaded Java programs. Concentrating on the issues of concurrency,
we introduce an abstract programming language Javayr, a subset of Java fea-
turing object creation, method invocation, object references with aliasing, and
specifically concurrency. Threads are the units of concurrency and are created
as instances of specific Thread-classes.

As a mechanism of concurrency control, methods can be declared as syn-
chronized, where synchronized methods within a single object are executed by
different threads mutually exclusive. A call chain corresponding to the execu-
tion of a single thread can contain several invocations of synchronized methods
within the same object. This corresponds to the notion of re-entrant monitors
and eliminates the possibility that a single thread deadlocks itself on an object’s
synchronization barrier.

The assertional proof system for verifying safety properties of Javayr is for-
mulated in terms of proof outlines [24], i.e., of annotated programs where Hoare-
style assertions [14,18] are associated with every control point. Soundness and
completeness of the proof system is shown in [3].

Recall that the global behaviour of a Java program results from the concur-
rent execution of method bodies, that can interact by shared-variable concur-
rency, synchronous message passing for method calls, and object creation. In
order to capture these features, the proof system is split into three parts.

The execution of a single method body in isolation is captured by local cor-
rectness conditions that show the inductiveness of the annotated method bodies.

Interaction via synchronous message passing and via object creation cannot
be established locally but only relative to assumptions about the communicated
values. These assumptions are verified in the cooperation test. The communica-
tion can take place within a single object or between different objects. As these
two cases cannot be distinguished syntactically, our cooperation test combines
elements from similar rules used in [8] and in [22] for CSP.

Finally, the effect of shared-variable concurrency is handled, as usual, by the
interference freedom test, which is modeled after the corresponding tests in the
proof systems for shared-variable concurrency in [24] and in [22]. In the case
of Java it additionally has to accommodate for reentrant code and the specific
synchronization mechanism. To simplify the proof system we reduce the potential
of interference by disallowing public instance variables in Javapr.

The assertion language consists of two different levels: The local assertion
language specifies the behaviour on the level of method execution, and is used to
annotate programs. The global behaviour, including the communication topology
of the objects, is expressed in the global language used in the cooperation test.
As in the Object Constraint Language (OCL) [34], global assertions describe
properties of object-structures in terms of a navigation or dereferencing operator.

This paper is organized as follows: Section 2 defines the syntax of Javayr
and sketches its semantics. After introducing the assertion language in Section 3,
the main Section 4 presents the proof system. In Section 5, we discuss related
and future work.

2 The programming language Javayr

In this section we introduce the language Javayr (“Multi- Threaded Java”). We
start with highlighting the features of Javayr and its relationship to full Java,
before formally defining its abstract syntax and sketching its semantics.

Javayr is a multithreaded sublanguage of Java. Programs, as in Java, are
given by a collection of classes containing instance variable and method decla-
rations. Instances of the classes, i.e., objects, are dynamically created and com-
municate via method invocation, i.e., synchronous message passing. As we focus
on a proof system for the concurrency aspects of Java, all classes in Javayr are
thread classes in the sense of Java: Each class contains a start-method that can
be invoked only once for each object, resulting in a new thread of execution.
The new thread starts to execute the start-method of the given object while the
initiating thread continues its own execution.

All programs are assumed to be well-typed, i.e, each method invoked on
an object must be supported by the object, the types of the formal and actual

parameters of the invocation must match, etc. As the static relationships between
classes are orthogonal to multithreading aspects, we ignore in Javayr the issues
of inheritance, and consequently subtyping, overriding, and late binding. For
simplicity, we also do not allow method overloading, i.e., we require that each
method name is assigned a unique list of formal parameter types and a return
type. In short, being concerned with the verification of the run-time behavior,
we assume a simple monomorphic type discipline for Javay;r-

2.1 Abstract syntax

Similar to Java, the language Javayr is strongly typed. We use t as typical
element of types. As built-in primitive types we restrict to integers and booleans.
Besides the built-in types Int and Bool, the set of user-definable types is given by
a set of class names C, with typical element c. Furthermore, the language allows
pairs of type t1 X t2 and sequences of type listt. Methods without a return value
will get the type Void.

For each type, the corresponding value domain is equipped with a standard
set F' of operators with typical element f. Each operator f has a unique type
t1 X --- X t, = t and a fixed interpretation f, where constants are operators
of zero arity. Apart from the standard repertoire of arithmetical and boolean
operations, F' also contains operations on tuples and sequences like projection,
concatenation, etc.

Since Javay is strongly typed, all program constructs of the abstract syntax
are silently assumed to be well-typed. In other words, we work with a type-
annotated abstract syntax where we omit the explicit mentioning of types when
no confusion can arise.

For variables, we notationally distinguish between instance and local vari-
ables, where instance variables are always private in Javayr. They hold the
state of an object and exist throughout the object’s lifetime. Local variables
play the role of formal parameters and variables of method definitions. They
only exist during the execution of the method to which they belong and store
the local state of a thread of execution.

The set of variables Var=IVar U TVar with typical element y is given as
the disjoint union of the instance and the local variables. Var® denotes the set of
all variables of type t, and correspondingly for IVar® and TVart. As we assume
a monomorphic type discipline, Var’ N Var' =0 for distinct types t and t'. We
use as typical elements z,z',21,... for IVar and u,u',u1,... for TVar.

Table 1 contains the abstract syntax of Javapr. Since most of the syntax is
standard, we mention only a few salient constructs and restrictions. We distin-
guish between side-effect-free expressions e € Ezpz and those with side effects
sexp € SExp’, where c is the class in which the expression occurs and t is its
type. We will use similar conventions concerning sub- and superscripts for other
constructs. Methods can be declared as non-synchronized or synchronized. The
body of a method m of class ¢ we denote by body,, .. As mentioned earlier, all
classes in Javapyr are thread classes; the corresponding start- and run-methods

are denoted by methsary and meth,,,. The main class classmain contains as entry
point of the program execution the specific method methmain with body body .-

To simplify the proof system, we make the following additional restrictions:
Method invocation and object creation statements may not refer to instance
variables. We also disallow assignments to formal parameters. For methods, we
assume that their bodies are terminated by a single return statement.

exp == x | u | this | nil | f(ezp,...,exp) e€Ezp expressions
sexp = new® | exp.m(exp, ..., exp) sexp€ SETp side-effect exp
stm = sexp | x 1= exp | u := exp | u := sexp
| €| stm; stm | if ezxp then stm else stm
| while ezp do stm. .. stme Stm statements
modif ::= nsync | sync modifiers
rexp ::= return | return ezxp
meth = modif m(u,...,u){ stm; rexp} meth€ Meth ~ methods
methwn = modif run(){ stm;return } methwn € Meth run-meth.
methsare ::= nsync start(){ this.run(); return } methsiart € Meth start-meth.
methmain ::= nsync main(){ stm;return } methmain € Meth main-meth.
class = c{meth...meth methwun methsar } classe Class class defn’s
classmain := c{meth...meth methwn methsar Methmain} classmain € Class main-class
prog == {class. ..class classmain) programs

Table 1. Javauyr abstract syntax

2.2 Semantics

States and configurations For each type ¢, Val® denotes its value domain,
where Val is given by J, Valt. Specifically, for class names ¢ € C, the set Val®
with typical elements a, 3,... denotes an infinite set of object identifiers, where
the domains for different class names are assumed to be disjoint. For each class
name ¢, the constant nil® ¢ Val® defines the value of nil of type ¢. In general
we will just write nil when c is clear from the context. We define Val;; as
Val® U {nil°}, and correspondingly for compound types; the set of all possible
values Val,,;, is given by J, Val’,,.

A local state T € Xjoc of type TVar U {this} — Val,; holds the values of
the local variables. Especially it contains a reference this € dom(7) to the object
in which the corresponding thread is currently executing. A local configuration
(1, stm) specifies, in addition to a local state, the point of execution. A thread
configuration £ is a non-empty stack (7o, stmo) (71, stmy) ... (Tn, stmy,) of local
configurations, representing the chain of method invocations of the given thread.
An instance state o§,,, € Xinst of type IVar — Val,, assigns values to the
instance variables of class ¢. In the following we write o,,,, when the class ¢

mnms
is clear from the context. A global state o € X is a partial function of type

(Ueec Val®) = Zins and stores for each currently existing object a € Val® its
object state o}, ;. The state of an existing object a in a global state o is given by
o(a). The set of existing objects of type c in a state o is given by dom®(c). We
define dom'"t(a)zlnt and domB°°'(a):Boo|, and correspondingly for compound
types, where dom (o) = |, dom'(c). We write domS,; (c) = dom®(c) U nil.
For compound types t the set dom!, is defined analogously, and dom (o) is
given by J, dom' ;. A global configuration (T,o) consists of a set T of thread
configurations describing the currently executing threads, and a global state o
describing the currently existing objects.

Operational semantics Computation steps of a program are represented by
transitions between global configurations. In the informal description we con-
centrate on the object-oriented constructs and those dealing with concurrency.
The formalization as structural operational semantics is given in [3]. Executing
u:=new° creates a new object of type ¢ and initializes its instance variables, but
does not yet start the thread of the new object. This is done by the first invo-
cation of the start-method, thereby initializing the first activation record of the
new stack. Further invocations of the start-method are without effect.

The invocation of a method extends the call chain by creating a new local
configuration. After initializing the local state, the values of the actual param-
eters are assigned to the formal parameters, and the thread begins to execute
the body of the corresponding method. Synchronized methods of an object can
be invoked only if no other threads are currently executing any synchronized
methods of the same object. This mutual exclusion requirement is expressed in
terms of a predicate on a set of thread configurations. This way, the semantics
abstracts from any particular implementation of the synchronization mechanism.

When returning from a method call, the callee evaluates its return expression
and passes it to the caller which subsequently updates its local state. The execu-
tion of the method body then terminates and the caller can continue. Returning
from a method without return value is analogous. Returning from the body of
the main-method or of a start-method is treated differently in that there does
not exist an explicit local configuration of the caller in the stack.

The initial configuration (T, 00) of a program satisfies the following: To =
{(Tnit , b0dy sin) }, Where c is the type of the main class, @ € Val®, and 7, is the
initial local state assigning « to this, and nil, 0, and false to class-typed, inte-
ger, and boolean variables, and correspondingly for composed types. Moreover,
dom(o¢)={a} and oo(a)=0m", where o7, is the initial object state assign-
ing initial values to variables as in 7,; . We call a configuration (T, o) reachable
iff there exists a computation (Ty,o9) —* (T,), where (Tp,00) is the initial
configuration and —* is the reflexive transitive closure of —».

3 The assertion language

In this section we define two different assertion languages. The local assertion
language is used to annotate methods directly in terms of their local variables and

of the instance variables of the class to which they belong. The global assertion
language describes a whole system of objects and their topology, and will be
used in the cooperation test.

In the assertion language, we introduce as usual a countably infinite set LVar
of well-typed logical variables disjoint from the instance and the local variables
occurring in programs. We use z as typical element of LVar, and write LVar?
when specific about the type. Logical variables are used as bound variables in
quantifications and, on the global level, to represent the values of local variables.
To be able to argue about communication histories, we add the type Object as
the supertype of all classes into the assertion language.

Table 2 defines the syntax of the assertion language. Local expressions exp; €
LEa:pi of type t in class ¢ are expressions of the programming language possibly
containing logical variables. In abuse of notation, we use e, €’... not only for
program expressions of Table 1, but also for typical elements of local expressions.
Local assertions ass; € LAss. in class ¢, with typical elements p, ¢, and r, are
standard logical formulas over local expressions, where unrestricted quantifica-
tion 3z(p) is only allowed for integer and boolean domains, i.e., z is required
to be of type Int or Bool. Besides that, 3z € e(p), resp., Iz C e(p) assert the
existence of an element denoted by 2z € LVar?, resp., a subsequence z € LVar'stt
of a given sequence e € LEmp'c's”, for which a property p holds. Restricted quan-
tification involving objects ensures that the evaluation of a local assertion indeed
only depends on the values of the instance and local variables.

Global expressions exp, € GExp® of type t with typical element E are con-
structed from logical variables, nil, operator expressions, and qualified references
E.z to instance variables x of objects E. Global assertions ass, € GAss, with
typical elements P, @, and R, are logical formulas over global expressions. Dif-
ferent to the local assertion language, quantification on the global level is allowed
for all types. Quantifications 3z(P) range over the set of existing values only,
i.e., the set of objects domy; (o) in a global configuration (T,). The semantics
of the assertion languages is standard and omitted (cf. [6]).

exp; :=z | = | u | this | nil | f(ezp,;,... , ezp;) e € LEzp local expressions
ass; = exp; | ~ass; | assi A ass;
| Jz(assi) | Az € ezp;(assi) | Iz C exp,(ass;) p € LAss local assertions

exp, =z | nil | f(ezp,,... ,exp,) | exp,.x E € GEzp global expressions
assg = exp, | nassy | assg A assy | Iz(assy) P € GAss global assertions

Table 2. Syntax of assertions

The verification conditions defined in the next section involve the follow-
ing substitution operations: By p[€/#] we denote the standard capture-avoiding
substitution. The effect of assignments to instance variables is expressed on the

7

global level by the substitution P[E /z.Z], which replaces in P the instance vari-
ables Z of the object referred to by z by the global expressions E. To accom-
modate properly for the effect of assignments, though, we must not only syntac-
tically replace the occurrences z.x; of the instance variables, but also all their
aliases E'.x;, when z and the result of the substitution applied to E' refer to the
same object. As the aliasing condition cannot be checked syntactically, we define
the main case (E'.z;)[E/z.i] of the substitution by the conditional expression
if E'[E/z.#]=z then E; else (E'[E/z.&).z; fi [6]. We also use P[E/z.7] for ar-
bitrary variable sequences ¥, where local variables are untouched. To express on
the global level a property defined by a local assertion p, we define the substi-
tution p[z, E/ this, @], where the logical variable z is assumed to occur neither in
p nor in E, by simultaneously replacing in p all occurrences of the self-reference
this by z, transforming all occurrences of instance variables x into qualified refer-
ences z.x, and substituting all local variables u; by the given global expressions
E;. For unrestricted quantifications (32’ (p))|[z, E/this, @] the substitution applies
to the assertion p. Local restricted quantifications are transformed into global
unrestricted ones where the relations € and C are expressed at the global level
as operators. For notational convenience, we sometimes view the local variables
occurring in p[z/this] as logical variables. Formally, these local variables should
be replaced by fresh logical variables.

4 Proof system

This section presents the assertional proof system for reasoning about Javapr
programs, formulated in terms of proof outlines [24,13], i.e., where Hoare-style
pre- and postconditions [14, 18] are associated with each control point. The proof
system has to accommodate for shared-variable concurrency, aliasing, method
invocation, synchronization, and dynamic object creation.

To reason about multithreading and communication, first we define a pro-
gram transformation by introducing new communication statements that model
explicitly the communication mechanism of method invocations, then augment
the program by auxiliary variables, and, finally, introduce critical sections.

4.1 Program transformation

To be able to reason about the communication mechanism of method invo-
cations, we split each invocation u:=eg.m(€) of a method different from the
start-method into the sequential composition of the communication statements
e0-m(€) and receive u. Similarly for methods without a return value, eyg.m(€) gets
replaced by eg.m(€); receive.

Next, we augment the program by fresh auziliary variables. Assignments can
be extended to multiple assignments, and additional multiple assignments to
auxiliary variables can be inserted at any point. We introduce the specific auxil-
iary variables callerobj, id, lock, critsec, and started to represent information about
the global configuration at the proof-theoretical level. The local variables callerobj

and id are used as additional formal parameters of types Object and Object X Int,
resp. The parameter callerobj stores the identity of the caller object, where id
stores the identity of the object in which the corresponding thread has begun its
execution, together with the current depth of its stack. Each statement ey.m(€)
gets extended to ep.m(this, callee(id), €), where callee(a,n)=(a,n + 1). If m is
the start-method, the method call statement is extended to ey.m(this, (e, 0), €),
instead. The formal parameter lists get extended correspondingly. The variables
callerobj and id of the thread executing the main-method in the initial configu-
ration are initialized to nil and (a,0), resp., where « is the initial object. The
auxiliary instance variable lock of the same type Object x Int is used to rea-
son about thread synchronization: The value (nil,0) states that no threads are
currently executing any synchronized methods of the given object; otherwise,
the value (a,n) identifies the thread which acquired the lock, together with the
stack depth n, at which it has gotten the lock. The auxiliary variable lock will
be only used to indicate who owns the lock, i.e., it is not used to implement
the synchronization mechanism (e.g. by means of semaphores and the like). The
meaning of the boolean auxiliary instance variable critsec will be explained after
the introduction of critical sections. The boolean instance variable started states
whether the object’s start-method has already been invoked.

Finally, we extend programs by critical sections, a conceptual notion, which is
introduced for the purpose of proof and, therefore, does not influence the control
flow. Semantically, a critical section (stm) expresses that the statements inside
are executed without interleaving with other threads. To make object creation
and communication observable, we attach auxiliary assignments to the corre-
sponding statements; to do the observation immediately after these statements,
we enclose the statement and the assignment in critical sections. The formal re-
placement of communication and object creation statements, and method bodies
is defined in Table 3.

Replace each statement of the form by
e0.m(€) {e0.m(€); g1:=¢1
method body stm; rezp (F2:=82); stm; (rexp; §3:=8€3)
receive u (receive u; §a:=2s)
receive (receive; gJa:=8€1)
u:=new (u:=new; §:=€)
new {new; ;=€)

Table 3. Critical sections

Critical sections of method call and return statements, representing the send-
ing parts of communication, contain the assignments critsec:=(ey=this) and
critsec:=(callerobj=this), resp. Correspondingly for the receiver part, the criti-
cal sections at the beginning of method bodies and that of receive statements
include the assignment critsec:=false. L.e., critsec states whether there is a thread

currently communicating within the given object, i.e., executing some self-calls
or returning from a method within the object, such that the observation of the
sender part is already executed but not yet that of the receiver part. Criti-
cal sections at the beginning of start-methods contain additionally the assign-
ment started:=true; in case of a synchronized method, ¢>:=¢é and §3:=¢€3 in-
clude the assignments lock:=getlock(lock, id) representing lock reservation and
lock:=release(lock, id) representing lock release, where getlock(lock, id) is given by
lock if lock#(nil,0) and id, otherwise; correspondingly, release(lock, id) equals
lock if lock#id and (nil,0), otherwise. The vectors ¥, 41, ... ,¥4 from above are
auxiliary variable sequences; the values of the auxiliary variables callerobj, id,
lock, critsec, and started are changed only in the critical sections, as described.

As auxiliary variables do not change the control flow of the original program,
we can schedule the execution order of the augmented program as follows: For
method call statements, after communication of the parameters, first the auxil-
iary assignment of the caller and then that of the callee is executed. Conversely,
for return, the communication of the return value is followed by the execution of
the assignment of the callee and then that of the caller, in this order. Note that
these three steps for method invocation and return may not be interleaved by
other threads. Control points within a critical section and at the beginning of a
method body, which we call non-interleaving points, do not change the program
behaviour. All other control points we call interleaving points.

To specify invariant properties of the system, the transformed programs are
annotated by attaching local assertions to all control points. Besides that, for
each class ¢, the annotation defines a local assertion I. called class invariant,
which refers only to instance variables, and expresses invariant properties of
the instances of the class. Finally, the global invariant GI € GAss specifies
the communication structure of the program. We require that for all qualified
references E.x in GI with E € GEzp°®, all assignments to z in class ¢ are enclosed
in critical sections. An annotated transformation of prog, denoted by prog’, is
called a proof outline. For annotated programs, we use the standard notation
{p} stm {q} to express that p and ¢ are the assertions in front of and after the
statement stm. We call pre(stm)=p and post(stm)=q the pre- and postconditions
of stm.

4.2 Proof system

The proof system formalizes a number of verification conditions which ensure
that in each reachable configuration all preconditions are satisfied, and that the
class and global invariants hold. To cover concurrency and communication, the
verification conditions are grouped into local correctness conditions, an interfer-
ence freedom test, and a cooperation test.

Before specifying the verification conditions, we first fix some auxiliary func-
tions and notations. Let InitValue : Var — Val be a function assigning an initial
value to each variable, that is nil, false, and 0 for class, boolean, and integer
types, respectively, and analogously for composed types, where sequences are
initially empty. For each class ¢, let IVar, be the set of instance variables in

10

class ¢, and let Init(z) denote the global assertion A, ¢y, z.z=InitValue(z),
for all z € LVare®, expressing that the object denoted by z is in its initial object
state. The predicate samethread((a1,n1), (az,n2)), defined by ay=as, charac-
terizes the relationship between threads. Similarly, the relation < of the same
type is given by (a1,n1) < (a2,n2) iff a;=as and n; < ns.

Initial correctness Initial correctness means that the precondition of the main
statement is satisfied by the initial object and local states, where id=(this, 0) and
all other variables have their initial values. Furthermore, the global invariant is
satisfied by the first reachable stable configuration, i.e., by the global state after
the execution of the critical section at the beginning of the main-method.

Definition 1. A proof outline prog’ is initially correct, if

= pre(body,,.i.) [(this, 0) /id][Init Value () /4], (1)
Eg Jz(2#nil A Init(z) AVZ'(2'=nil v z=z')) — 2 (GI[&/z.41]), (2)

—~

where body i, =(¥1:=€1); stm is the body of the main-method, § are the variables
occurring in pre(body ..i.), z is of the type of the main class, and z' € LVarObiect,

Local correctness A proof outline is locally correct, if the usual verification con-
ditions [7] for standard sequential constructs hold: The precondition of a multiple
assignment must imply its postcondition after the execution of the assignment.
For assignments occurring outside of critical sections, —critsec expresses the en-
abledness of the assignment. Furthermore, all assertions of a class are required
to imply the class invariant. Inductivity for statements involving object creation
or communication are verified on the global level in the cooperation test.

Definition 2. A proof outline is locally correct, if for each class ¢ with class
invariant I., all multiple assignments §:=€ and ¥rit:=€qrit occurring outside
and inside of critical sections, resp., and all statements stm in class c,

= pre(§:=€) A —critsec — post(y:=€)[€/] (3)
IZL bre (gcrit:zécrit) — pOSt(gcrit::Ecrit)[Ecrit/yCTit] (4)
= (pre(stm) = I.) A (post(stm) — I.). (5)

The interference freedom test In this section we formalize conditions that
ensure the invariance of local properties of a thread under the activities of other
threads. Since we disallow public instance variables in Javap, we only have to
deal with the invariance of properties under the execution of statements within
the same object. Containing only local variables, communication and object
creation statements do not change the state of the executing object. Thus we
only have to take assignments §:=¢€ into account.

Satisfaction of a local property of a thread at an interleaving point may
clearly be affected by the execution of assignments by a different thread in the

11

same object (Eq. (6)). If, otherwise, the property describes the same thread that
executes the assignment, the only interleaving points endangered are those wait-
ing for a return value earlier in the current execution stack, i.e., we have to show
the invariance of preconditions of receive statements (Eq. (7)). Since an object
can call a method of itself, the preconditions of method bodies and the post-
conditions of receive statements, representing non-interleaving points, must be
proven interference free, as well: For method invocation, after communication,
the caller executes the assignment of its critical section (eo m(€); §1: =€), which
may affect the precondition of the body of the called method (Eq. (8)). Like-
wise when returning from a method, after communicating the return value, first
the callee executes the multiple assignment of its critical section (rezp;¥3:=&s),
which can affect the postcondition of the receive statement of the caller (Eq. (9)).

Definition 3. A proof outline is interference free, if for all classes ¢ the follow-
ing conditions hold, where we denote by p' the assertion p with each local variable
u different from this replaced by a fresh one denoted by u':

— For all statements §j:=€ in a critical section and aoll assertions p representing
an interleaving point in class ¢, if not both the statement and the assertion
occur in a synchronized method, then

Ec ' A pre(§:=€) A ~samethread(id’,id) — p'[€/7]. (6)

For statements §j:=¢ in critical sections we have the additional antecedent
—critsec.

— For all statements :=¢€ in a critical section and all assertions p in c, if p is
the precondition of a receive statement, then

Ec p Apre(§:=¢) Aid' <id — p'[€/7]. (7)

If i:=¢€ occurs outside of critical sections, we have the additional antecedent
—critsec.

— For all statements (eg.m(@); §-=€) in ¢ with ey € Ezp:, if p is the precondi-
tion of the body of m#start in c, then

Ec ' A pre(§:=€) A eg=this A id'=callee(id) — p'[¢/ 7). (8)

If m=start, then id'=(this, 0) replaces id'=callee(id).

— For all statements (rexp; §:=¢€) in a method m of ¢, if p is the postcondition
of a receive statement preceded by a critical section invoking method m of
eo € Expt, then

Ec ' A pre(§:=€) A ej=this A id=callee(id") — p'[¢/ 7). 9)

Note that we have to replace the local variables different from this occurring
in p to avoid name clashes with those in §:=¢ and its associated precondition.

12

The cooperation test Whereas the verification conditions associated with
local correctness and interference freedom cover the effects of assigning side-
effect-free expressions to variables, the cooperation test deals with method call
and object creation. Since different objects may be involved, it is formulated in
the global assertion language. We start with the cooperation test for method
invocations.

In the following definition, the logical variable z denotes the object calling
a method and 2z’ refers to the callee. The cooperation test assures that the
local assertions at both ends of the communication hold, immediately after the
values have been communicated. When calling a method, the postcondition of
the method invocation statement and the precondition of the invoked method’s
body must hold after passing the parameters (Eq. (10)). In the global state
prior to the call, we can assume that the global invariant, the precondition of the
method invocation at the caller side, and the class invariant of the callee hold. For
synchronized methods, additionally the lock of the callee object is free, or the lock
has been acquired in the call chain of the executing thread. This is expressed by
the predicate isfree(z’.lock, id) defined as z'.lock=(nil, 0) vV z’.lock < id, where id is
the identity of the caller. Equation (11) works similarly, where the postconditions
of the corresponding return- and receive-statements are required to hold after the
communication when returning from a method. Note that we rename the local
variables of the callee in order to avoid name clashes with that of the caller.

The global invariant GI, which describes invariant properties of a program,
is not allowed to refer to instance variables whose values are changed outside of
critical sections. Consequently, it will be automatically invariant over the execu-
tion of statements outside of critical sections. For the critical sections themselves,
however, the invariance must be shown as part of the cooperation test. A differ-
ence between the treatment of the local assertions and the global invariant is,
that the latter does not necessarily hold immediately after communication, but
only after the accompanying assignments to the auxiliary variables of both the
caller and callee have been completed. This is reflected in the two substitutions
applied to the global invariant on the right-hand sides of the implications.

Invoking the start-method of an object whose thread is already started, or
returning from a start-method or from the first execution of the main-method
does not have communication effects; Equations (12) and (13) take care about
the validity of the postconditions and the invariance of the global invariant.

Definition 4. A proof outline satisfies the cooperation test for communication,

if for all classes ¢ and statements {eg.m(€); J1:=¢€1); (receive v; §4:=¢€y) in ¢ with
eo € Expl , where method m of ¢’ with formal parameter list @ is synchronized

13

with body,, .=(f2:=8); stm; (return e,e;; §3:=83),

Eg GI A pre(eg.m(€))[z/this] A I.[2'/this] A eg[z/this|=2" A isfree(z.lock, id)
— post(eg.m(&))[z/this] A pre' (body,, .)[2', E /this, @] A
GI[Ey 2 B [240] (10)
=g GI A pre!(return e,;)[2', E /this, @ A pre(receive v)[z/this] A eo[z/this|=2"
— post! (return e,e)[2', E /this, @] A post(receive v)[z, Byt /this, v] A
GI[Es/z4u][Es/2 5], (11)

where z € LVar® and z' € LVar® are distinct fresh logical variables, and id is the
auziliary local variable of the caller viewed as logical variable on the global level.
The assertion pre'(body,, .) is pre(body,, .) with every local variable except
the formal parameters and this, of class, boolean, or integer type replaced by nil,
false, or 0, respectively, and correspondingly for composed types; pre' (return ert),
post' (return eret), and e}, denote the given assertions and expressions with every
local variable except the formal parameters and this replaced by o fresh one. Fur-
thermore, Elzél[z/this], Ejzéj[z',ﬁ/this,ﬁ] for j=2,3, E4=€4[Z,Eret/this, v],
where E=élz/this| and En; = el,,[2', E/this,i]. For the invocation of non-
synchronized methods, the antecedent isfree(z'.lock,id) is dropped. The verifica-
tion conditions for methods without return value are analogous. For invocations
of start-methods, only (10) applies with the additional antecedent —z'.started. For
the case that the thread is already started,

Eg GI A pre(eg.start(€))[z/this] A I:[2' /this] A e[z /this]|=z" A 2’ .started
— post(eg.start(2))[z/this| A GI[E; /2.7 (12)

have to be satisfied. Finally, for statements (return; §3:=8&3) in the main-method
or in a start-method,

Eg GI A pre(return)[z’ /this] Aid=(z',0)
— post(return)[2'/this| A GI[Es/ 2" .ijs). (13)

The substitution of @ by E in the condition pre’ (body)[2', E /this, @] reflects
the parameter-passing mechanism, where E are the actual parameters € repre-
sented at the global assertional level. This substitution also identifies the callee,
as specified by its formal parameter id. Note that the actual parameters do not
contain instance variables, i.e., their interpretation does not change during the
execution of the method body. Therefore, E can be used not only to logically
capture the conditions at the entry of the method body, but at the exit of the
method body, as well, as shown in Equation (11).

Furthermore, the cooperation test needs to handle critical sections of object
creation taking care of the preservation of the global invariant, the postcondition
of the new-statement, and the new object’s class invariant. The extension of the
global state with a freshly created object is formulated in a strongest postcon-
dition style, using existential quantification to refer to the old, changed value,

14

i.e., ' of type LVar'stObiect represents the existing objects prior to the extension.

Moreover, that the created object’s identity is fresh and that the new instance
u is properly initialized is captured by the global assertion Fresh(z',u) defined
as u#nil Au & 2' A Init(u) AVo(v € 2' V v=u), where z' € LVar'stObect and
Init(u) is as defined in Section 4.2. To have quantifications on the left-hand side
of the implication to refer to the set of existing objects before the new-statement,
we need to restrict any existential quantification to range over objects from z’,
only. For a global assertion P we define its restriction P | 2’ by replacing all
quantifications 3z(P’') in P by 3z(z € 2’ AP"), when z is of type ¢ or Object, and
by 3z(z C 2’ A P'), when z is of type list ¢ or list Object, and correspondingly for
composed types.

Definition 5. A proof outline satisfies the cooperation test for object creation,
if for all classes ¢’ and statements {u:=new®; §:=€) in ¢':

g 32 (Fresh(z',u) A (GI A Fu(pre(u:=new®)[z/this])) | z') (14)
— post(u:=new®)[z/this| A I[u/this] A GI[E /2.7,
with fresh logical variables z € LVar® and z' € LVar'™tO%t and E=¢lz/this].
Theorem 1. The proof method is sound and relative complete.

The soundness of our method is shown by a standard albeit tedious induction on
the length of the computation. Proving its completeness involves the introduction
of appropriate assertions expressing reachability and auxiliary history variables.
The details of the proofs can be found in [3].

5 Conclusion

In this paper we introduce an assertional proof method for a multithreaded sub-
language of Java. In [2] the basic ideas have been introduced for proof outlines
by means of a modular integration of the interference freedom and the cooper-
ation test for a more restricted version of Java. The present paper offers such
an integration for a more concrete version of Java by incorporating Java’s reen-
trant synchronization mechanism. This requires a non-trivial extension of the
proof method by a more refined mechanism for the identification of threads. Its
soundness and completeness is proved in [3]. As such, our paper presents a first
assertional proof method for reasoning about threads in Java which is complete
in the sense that it forms a basis for extending our proof method to more specific
Java-synchronization methods, such as wait(), notify(), and notifyAll(), and the
important feature of exception handling [20].

Most papers in the literature focus on sequential subsets of Java [28, 10, 26,
27,11, 31,1, 32, 33]. Formal semantics of Java, including multithreaded execution,
and its virtual machine in terms of abstract state machines is given in [29]. A
structural operational semantics of multithreaded Java can be found in [12].

Currently we are developing in the context of the European Fifth Frame-
work RTD project Omega and the bilateral NWO/DFG project MobilJ a front-
end tool for the computer-aided specification and verification of Java programs
based on our proof method. Such a front-end tool consists of an editor and a
parser for annotating Java programs, and of a compiler which translates these
annotated Java programs into corresponding verification conditions. A theorem
prover (HOL or PVS) is used for verifying the validity of these verifications con-
ditions. Of particular interest in this context is an integration of our method
with related approaches like the LOOP project [17,23].

More in general, our future work focuses on including more features of mul-
tithreading, inheritance, and polymorphic extensions involving behavioral sub-

typing [5].

Acknowledgment This work was partly supported by the bilateral NWO/DFG
project MobiJ. We also thank the reviewers for their helpful comments.

References

1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Bidoit and
Dauchet [9], pages 682-696.

2. E. Abrahdm-Mumm and F. de Boer. Proof-outlines for threads in Java. In
Palamidessi [25].

3. E. Abrahd4m-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification for
Java’s reentrant multithreading concept: Soundness and completeness. Technical
Report TR-ST-01-2, Lehrstuhl fiir Software-Technologie, Institut fiir Informatik
und praktische Mathematik, Christian-Albrechts-Universitat Kiel, 2001.

4. J. Alves-Foss, editor. Formal Syntaz and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer, 1999.

5. P. America. A behavioural approach to subtyping in object-oriented programming
languages. Technical report 443, Phillips Research Laboratories, 1989.

6. P. America and F. Boer. Reasoning about dynamically evolving process structures.
Formal Aspects of Computing, 6(3):269-316, 1993.

7. K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transact. on Progr.
Lang. and Syst., 3(4):431-483, 1981.

8. K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transact. on Progr. Lang. and Syst., 2:359-385, 1980.

9. M. Bidoit and M. Dauchet, editors. Theory and Practice of Software Development,
Proc. of the 7th Int. Joint Conf. of CAAP/FASE, TAPSOFT’97, volume 1214 of
LNCS. Springer, 1997.

10. R. Breu. Algebraic Specification Techniques in Object Oriented Programming En-
vironments. PhD thesis, Universitit Passau, 1991. See also Springer LNCS 562.

11. P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor classification. ACM Computing
Surveys, 27(1):63-107, 1995.

12. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [4].

13. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

16

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.
31.

32.

33.

34

R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19-32, 1967.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

C. Hankin, editor. Programming Languages and Systems: Proc. of ESOP ’98, Held
as Part of ETAPS 98, volume 1381 of LNCS. Springer, 1998.

J. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In Hankin [16].

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. Also in [19].

C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

H. Hussmann, editor. Fundamental Approaches to Software Engineering, volume
2029 of LNCS. Springer, 2001.

G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281-302, 1981.

The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/-bart/LOOP/, 2001.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

C. Palamidessi, editor. CONCUR 2000, volume 1877 of LNCS. Springer, 2000.
A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
Technische Universitdt Minchen, 1997. Habilitationsschrift.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
Swierstra [30], pages 162-176.

B. Reus, R. Hennicker, and M. Wirsing. A Hoare calculus for verifying Java real-
izations of OCL-constrained design models. In Hussmann [21], pages 300-316.

R. Stark, J. Schmid, and E. Borger. Java and the Java Virtual Machine. Springer,
2001.

S. Swierstra, editor. Proc. of ESOP ’99, volume 1576 of LNCS. Springer, 1999.
D. von Oheimb. Axiomatic sematics for Java"" in Isabelle/HOL. In
S. Drossopoulo, S. Eisenbach, B. Jacobs, G. Leavens, P. Miiller, and A. Poetzsch-
Heffter, editors, Formal Techniques for Java Programs, number 269, 5/2000 in
Technical Report. Fernuniversitat Hagen, 2000.

D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency — Practice
and Experience, 2001. To appear.

D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side
effects and virtual methods revisited. Submitted for publication, 2002.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With Uml. Object Technology Series. Addison-Wesley, 1999.

