
Synchronous Closing of Timed SDL Systems

for Model Checking

Natalia Sidorova Martin Steffen

Dept. of Math. and Computer Science

Eindhoven University of Technology

The Netherlands

Inst. für Informatik u. Prakt. Mathematik

Christian-Albrechts Universtität zu Kiel

Germany

VMCAI’02 – p.1

http://www.informatik.uni-kiel.de/~ms

Model checking

� pro: automatic (“push-button”) verification method

�
�

� con:

� state-space explosion

� how to obtain the model from a piece of software?

� additional techniques:
1. abstraction:

(a) data abstraction: replace concrete domains by
finite, abstract ones

(b) control abstraction, i.e., add non-determinism
2. system decomposition

VMCAI’02 – p.2

Model checking in theory (and
practice)

� in theory
1. cut out a sub-component
2. model its environment abstractly, i.e.,

� add an environment process which

� closes the sub-component

� shows more behavior than the real environment

� in extremis: add chaos-process
3. push the button � � �

� in practice

� components and interfaces might be large

� closing is tedious

� model checkers don’t often work with abstract data

VMCAI’02 – p.3

Specification Description Language
(SDL)

� standardized (in various versions)

� standard spec. language for telecom applications

� characteristics:

� control structure: communicating finite-state
machines

� communication: asynchronous message passing

� data: various basic and composed types

� timers and time-outs

� bells and whistles: graphical notation, structuring
mechanisms, OO, � � �

VMCAI’02 – p.4

Model checking open SDL systems

� three more specific problems
1. infinite data domains
2. asynchronous input queues: � state explosion
3. chaotic timer behavior

� three specific solutions
1. one-valued data abstraction

��� no external data
2. three-valued timer abstraction
3. no asynchronous communication with environment

VMCAI’02 – p.5

Goal

� yielding a closed system

� safe abstraction

� automatic transformation

VMCAI’02 – p.6

Roadmap

1. (sketch of) syntax

2. SO-semantics of SDL

(a) local and global rules
(b) semantics of timers

3. eliminating external data via data-flow analysis

4. dealing with chaotic timers

5. synchronous instead of asynchronous environment �

eliminating external queues

VMCAI’02 – p.7

Syntax: Example
RCM Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process RCM

TIMER T_RCM;

Idle

ACQUIRE_NEW_AP

SET (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle

VMCAI’02 – p.8

Syntax

� labelled edges

� � ���
��

connecting locations

� actions �:
input � �	�
��

output � � � ��
 ��� �

assignment � � �� � �

with guards �, signals � , processes

�

, channels �

VMCAI’02 – p.9

Semantics (local)

� straightforward operational small-step semantics

� interleaving semantics

� top-level concurrency

� channel queues between processes

� local process configuration:
1. location/control state
2. valuation of variables

� labelled steps between configurations, e.g.

� � ��� ��� � � �
�� � 	
��

INPUT
 ��

 � �� � � ��� � �

 ���
 � � � � � �

VMCAI’02 – p.10

Timers in SDL

� no real-time

� discrete-time semantics, as in [HP89] and as in the
DTSpin (“discrete time Spin”) model-checker
[BD98, DTS00]

� time evolves by ticking down (active) timer variables

� timer: active or deactivated

� timeout possible: if active timer has reached

�

� modelled by time-out guards (cf. [BDHS00])

VMCAI’02 – p.11

Syntax for timers

� guarded actions involving timers

set � � � � � �� � � (re-)activate timer for pe-
riod given by �.

reset � � � � � � � �

: deactivate

timeout ��� � � � � � � �
perform a timeout, thereby
deactivate

�

� note: timeout is guarded by “timer-guard” � � , i.e.,

� � �

VMCAI’02 – p.12

Parallel composition

� standard product construction

� message passing using the labelled steps

� note: tick step = counting down active timers:

� can be taken only when no other move possible
except input, i.e.,

� ��� ��� � � � � � � � � � � � � iff

	
 ��

�

 �

VMCAI’02 – p.13

What’s next

� goal:

� abstract data from outside: chaotic data value

� �

� only synchronous external communication

� side-condition

� verification with DTSpin model checker (tools):

� there are no abstracted data

� we cannot re-implement tick

� keep it simple

VMCAI’02 – p.14

The need for data-flow analysis

� abstractly: replace external � �	�
��

by receiving

� �

� better: remove communication parameters

� remove all variables (potentially) influenced by � , as
well (and transitively so)

�� forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking

VMCAI’02 – p.15

Data-flow analysis

� control-flow given by SDL-automata

� propagate

� �

through control-flow graph, via abstract
effect per action = node, e.g.:

�
 � �	�
��

� �

� � � � � � �

� � � � � � � � ��� � ��� � 	 �
 � �
 � � � � � � � �

� external
else

� constraint solving: minimal solution for

�� �� �

��
 � ���

��� �

��

��� �

��
 � �
�� �� �

�� �
�
�� �� �

in flow relation

�

VMCAI’02 – p.16

Worklist algo (pseudo-code)

input : the flow �graph of the program
output: � ����� � � ���� � � ;

� � � � � � � �� 	� � � � �

;
� � � � 	 �
 � � ��� � � �� � ��
 �� � � ��� ��

;

repeat
pick �

 �

;
let

� � � � �
 � � � � � � � 	�
 � � � � � ��� � � � � � ��
in

for all � �
 �

: � � � � � ��� �� � � � � � � �
;
� � �
� � � � �

;
until

� � �

;

� ����� � � � � � � � � �

;

� ��� � � � � � � ��
 � � � � � � �

VMCAI’02 – p.17

What about time?

� so far: we ignored timers

� timers can be influenced by external data

� chaotic timeout for an active timer:
1. it can happen now, or
2. eventually in the future

� remember: time steps (ticks) have least priority!

VMCAI’02 – p.18

Timer abstraction

� three abstract values:

1. arbitrarily active

2. active, but not

�

(no time-
out possible)

3. de-activated

�� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � � � � � � � �

� ��� �

XX

� arbitrary expiration time � non-deterministic setting
from ��
 � �

to � �
 � � �

.

VMCAI’02 – p.19

Transformation rules

� using result of the flow analysis

� inference rule(s) for each syntax construct, e.g.,

� � � � � � �
�

� �

T-NOTIMEOUT� � �
 �

�� �� �� � � � � �� �� � �

� � 	
��
�

� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � �� � � �

� ��� �

WW

� transformation yields a safe abstraction
VMCAI’02 – p.20

Conditions on the environment

� closing environment is an abstraction of the rest of the
system

� but: rest of the system is composed asynchronously

� Question: when is it safe (no behavior lost) to replace
asynchronous comm. with the environment by
synchronous one.

� environment process must be

� input enabled

� not reactive

� e.g., most abstract environment (“chaos”) is ok

VMCAI’02 – p.21

Conditions on the environment
(cont’d)

� � � �

-step only if all queues empty � restrictions apply
only per time slice

A run is tick-separated =

� it contains no zero-time cycle

� for every time slice of the run holds:

� no output action, or

� no input except input discard and no output over
two different channels.

� A process is tick-separated = all runs are
tick-separated

VMCAI’02 – p.22

Soundness result

Transformation of

�

into

� �

:
1. removing external data (using data-flow analysis)
2. making external communication synchronous

Theorem: The transformed system is closed, and a safe
abstraction of the original one.

� i.e.,

if
� �� � � then

�� � �

,

where � is an LTL-formula (which does not mention
chaotically influenced variables)

VMCAI’02 – p.23

Related work

� software testing

� VERISOFT, C, untimed [CGJ98]

� filtering [DP98] [Pas00]

� module checking:

� checking open systems

� e.g. MOCHA [AHM

�

98]

VMCAI’02 – p.24

References
[AHM � 98] Rajeev Alur, Thomas A. Henzinger, F.Y.C. Mang, Shaz Qadeer,

Sriram K. Rajamani, and Serdar Tasiran. Mocha: Modularity in

model checking. In Alan J. Hu and Moshe Y. Vardi, editors, Pro-

ceedings of CAV ’98, volume 1427 of Lecture Notes in Computer
Science, pages 521–525. Springer-Verlag, 1998.

[BD98] Dragan Bošnački and Dennis Dams. Integrating real time into
Spin: A prototype implementation. In S. Budkowski, A. Cavalli, and

E. Najm, editors, Proceedings of Formal Description Techniques
and Protocol Specification, Testing, and Verification (FORTE/P-

STV’98). Kluwer Academic Publishers, 1998.

[BDHS00] Dragan Bošnački, Dennis Dams, Leszek Holenderski, and Natalia
Sidorova. Verifying SDL in Spin. In S. Graf and M. Schwartzbach,

editors, TACAS 2000, volume 1785 of Lecture Notes in Computer
Science. Springer-Verlag, 2000.

[CGJ98] C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically clos-
ing of open reactive systems. In Proceedings of 1998 ACM SIG-

PLAN Conference on Programming Language Design and Imple-

mentation. ACM Press, 1998.

[DP98] M. B. Dwyer and C. S. Pasareanu. Filter-based model checking of

partial systems. In Proceedings of the 6th ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering (SIGSOFT ’98),

pages 189–202, 1998.

[DTS00] Discrete-time Spin. http://win.tue.nl/˜dragan/DTSpin.html,

2000.

[HP89] Gerard Holzmann and Joanna Patti. Validating SDL specifications:
an experiment. In Ed Brinksma, editor, International Workshop

on Protocol Specification, Testing and Verification IX (Twente, The
Netherlands), pages 317–326. North-Holland, 1989. IFIP TC-6

International Workshop.

24-1

[Pas00] Corina S. Pasareanu. DEAO kernel: Environment modeling us-

ing LTL assumptions. Technical Report SASA-ARC-IC-2000-196,
NASA Ames, 2000.

[SDL92] Specification and Description Language SDL, blue book. CCITT
Recommendation Z.100, 1992.

24-2

	Model checking
	Model checking in theory �romSlide {2}{(and practice)}
	Specification Description Language ({SDL })
	Model checking open SDL {} systems
	Goal
	Roadmap
	Syntax: Example
	Syntax
	Semantics (local)
	Timers in SDL
	Syntax for timers
	Parallel composition
	What's next
	The need for data-flow analysis
	Data-flow analysis
	Worklist algo (pseudo-code)
	What about time?
	Timer abstraction
	Transformation rules
	Conditions on the environment
	Conditions on the environment (cont'd)
	Soundness result
	Related work

