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Model checking

� pro: automatic (“push-button”) verification method

�
�

� con:

� state-space explosion

� how to obtain the model from a piece of software?

� additional techniques:
1. abstraction:

(a) data abstraction: replace concrete domains by
finite, abstract ones

(b) control abstraction, i.e., add non-determinism
2. system decomposition
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Model checking in theory (and
practice)

� in theory
1. cut out a sub-component
2. model its environment abstractly, i.e.,

� add an environment process which

� closes the sub-component

� shows more behavior than the real environment

� in extremis: add chaos-process
3. push the button � � �

� in practice

� components and interfaces might be large

� closing is tedious

� model checkers don’t often work with abstract data
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Specification Description Language
(SDL)

� standardized (in various versions)

� standard spec. language for telecom applications

� characteristics:

� control structure: communicating finite-state
machines

� communication: asynchronous message passing

� data: various basic and composed types

� timers and time-outs

� bells and whistles: graphical notation, structuring
mechanisms, OO, � � �
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Model checking open SDL systems

� three more specific problems
1. infinite data domains
2. asynchronous input queues: � state explosion
3. chaotic timer behavior

� three specific solutions
1. one-valued data abstraction

��� no external data
2. three-valued timer abstraction
3. no asynchronous communication with environment
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Goal

� yielding a closed system

� safe abstraction

� automatic transformation
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Roadmap

1. (sketch of) syntax

2. SO-semantics of SDL

(a) local and global rules
(b) semantics of timers

3. eliminating external data via data-flow analysis

4. dealing with chaotic timers

5. synchronous instead of asynchronous environment �

eliminating external queues
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Syntax: Example
RCM  Tue May 30 08:18:18 2000

/scratch2/sidorova/rcm_abstr.pr View: 2 / Page: 2

process  RCM

TIMER  T_RCM;

Idle

ACQUIRE_NEW_AP

SET  (NOW +k, T_RCM)

busy

busy

T_RCM

’non-deterministic choice’

’success’

ACQUIRE_NEW_AP_OK

’failure’

ACQUIRE_NEW_AP_KO

Idle
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Syntax

� labelled edges

� � ���
��

connecting locations

� actions �:
input � �	� 
�� 


output � � � �� 
 ��� � 

assignment � � �� � �

with guards �, signals � , processes

�

, channels �
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Semantics (local)

� straightforward operational small-step semantics

� interleaving semantics

� top-level concurrency

� channel queues between processes

� local process configuration:
1. location/control state
2. valuation of variables

� labelled steps between configurations, e.g.

� � ��� ��� � � �
�� � 	 
��

INPUT
 �� 
 
 � �� � � ��� � �

 ��� 
 � � � � � �
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Timers in SDL

� no real-time

� discrete-time semantics, as in [HP89] and as in the
DTSpin (“discrete time Spin”) model-checker
[BD98, DTS00]

� time evolves by ticking down (active) timer variables

� timer: active or deactivated

� timeout possible: if active timer has reached

�

� modelled by time-out guards (cf. [BDHS00])
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Syntax for timers

� guarded actions involving timers

set � � � � � �� � � (re-)activate timer for pe-
riod given by �.

reset � � � � � � � �

: deactivate

timeout ��� � � � � � � �
perform a timeout, thereby
deactivate

�

� note: timeout is guarded by “timer-guard” � � , i.e.,

� � �
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Parallel composition

� standard product construction

� message passing using the labelled steps

� note: tick step = counting down active timers:

� can be taken only when no other move possible
except input, i.e.,

� ��� ��� � � � � � � � � � � � � iff

	
 �� 

�

 
 � 
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What’s next

� goal:

� abstract data from outside: chaotic data value

� �

� only synchronous external communication

� side-condition

� verification with DTSpin model checker (tools):

� there are no abstracted data

� we cannot re-implement tick

� keep it simple
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The need for data-flow analysis

� abstractly: replace external � �	� 
�� 


by receiving

� �

� better: remove communication parameters

� remove all variables (potentially) influenced by � , as
well (and transitively so)

�� forward slice/cone of influence

eliminating external data

1. data-flow analysis: mark all variable instances
potentially influenced by chaos

2. transform the program, using that marking
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Data-flow analysis

� control-flow given by SDL-automata

� propagate

� �

through control-flow graph, via abstract
effect per action = node, e.g.:

� 
 � �	� 
�� 
 
 
� �


� � � � � � �


� � � � � � � � ��� � ��� � 	 � 
 � � 
 � � � � � � � �

� external
else

� constraint solving: minimal solution for


�� �� �

�� 
 � ���

 
��� �

�� 
 



��� �

�� 
 � � 
�� �� �

�� � 
� 
�� �� � 


in flow relation

�
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Worklist algo (pseudo-code)

input : the flow �graph of the program
output: � ����� � � ���� � � ;

� � � � � � � �� 	� � � � �

;
� � � � 	 � 
 � � ��� � � �� � ��
 �� � � ��� ��

;

repeat
pick � 
 
 �

;
let

� � � � � 
 � � � � � � � 	� 
 � � � � � ��� � � � � � ��
in

for all � � 
 �

: � � � � � ��� �� � � � � � � �
;
� � � 
� � � � �

;
until


� � �

;

� ����� � � � � � � � � �

;

� ��� � � � � � � �� 
 � � � � � � �
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What about time?

� so far: we ignored timers

� timers can be influenced by external data

� chaotic timeout for an active timer:
1. it can happen now, or
2. eventually in the future

� remember: time steps (ticks) have least priority!
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Timer abstraction

� three abstract values:

1. arbitrarily active

2. active, but not

�

(no time-
out possible)

3. de-activated

�� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � � � � � � � �

� ��� �

XX

� arbitrary expiration time � non-deterministic setting
from �� 
 � � 


to � � 
 � � � 

.
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Transformation rules

� using result of the flow analysis

� inference rule(s) for each syntax construct, e.g.,

� � � � � � �
�

� �

T-NOTIMEOUT� � � 
 �

�� �� �� � � � � �� �� � �

� � 	 
��
�

� � � � �

�

��

�

����
�
�
�
�
�
�
�
�

� � �� � � �

� ��� �

WW

� transformation yields a safe abstraction
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Conditions on the environment

� closing environment is an abstraction of the rest of the
system

� but: rest of the system is composed asynchronously

� Question: when is it safe (no behavior lost) to replace
asynchronous comm. with the environment by
synchronous one.

� environment process must be

� input enabled

� not reactive

� e.g., most abstract environment (“chaos”) is ok
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Conditions on the environment
(cont’d)

� � � � 


-step only if all queues empty � restrictions apply
only per time slice

A run is tick-separated =

� it contains no zero-time cycle

� for every time slice of the run holds:

� no output action, or

� no input except input discard and no output over
two different channels.

� A process is tick-separated = all runs are
tick-separated
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Soundness result

Transformation of

�

into

� �

:
1. removing external data (using data-flow analysis)
2. making external communication synchronous

Theorem: The transformed system is closed, and a safe
abstraction of the original one.

� i.e.,

if
� �� � � then

�� � �

,

where � is an LTL-formula (which does not mention
chaotically influenced variables)
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Related work

� software testing

� VERISOFT, C, untimed [CGJ98]

� filtering [DP98] [Pas00]

� module checking:

� checking open systems

� e.g. MOCHA [AHM

�

98]
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