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Abstract. Standard model checkers cannot handle open reactive sys-
tems directly. Closing the system is commonly done by adding an en-
vironmental process. However, for model checking, the way of closing
should be well-considered to alleviate the state-space explosion problem.
This is especially true in the context of model checking SDL with its
asynchronous message-passing communication because of a combinato-
rial explosion caused by all combinations of messages in the input queues.

In this paper we investigate a class of environmental processes for which
the asynchronous communication scheme can safely be replaced by a
synchronous one. Such a replacement is possible only if the environment
is constructed under rather a severe restriction on the behavior, which
can be partially softened via the use of a discrete-time semantics. We
employ data-flow analysis to detect instances of variables and timers
influenced by the data passing between the system and the environment.

1 Introduction

Model checking [7] is well-accepted for the verification of reactive systems. To
alleviate the notorious state-space explosion problem, a host of techniques has
been invented, including partial-order reduction [11,25] and abstraction [19,7,
9].

As standard model checkers, e.g., Spin [14], cannot handle open systems,
one has to construct a closed model, and a problem of practical importance is
how to close open systems. This is commonly done by adding an environment
process that must exhibit at least all the behavior of the real environment.
However, the way of closing should be well-considered to counter the state-space



explosion problem. This is especially true in the context of model checking SDL-
programs (Specification and Description Language) [22] with its asynchronous
message-passing communication model — sending arbitrary message streams to
the unbounded input queues would immediately lead to an infinite state space,
unless some assumptions restricting the environment behavior are incorporated
in the closing process. Even so, adding an environment process may result in
a combinatorial explosion caused by all combinations of messages in the input
queues.

A desirable solution would be to construct an environment that communi-
cates to the system synchronously. In [23] such an approach is considered for
the simplest safe abstraction of the environment, the chaotically behaving en-
vironment: the outside chaos is embedded into the system’s processes, which
corresponds to the synchronous communication scheme. Though useful at a first
verification phase, the chaotic environment may be too general. In the framework
of the assume-guarantee paradigm, the environment should model the behavior
corresponding to the verified properties of the components forming the environ-
ment. Here, we investigate for what kind of processes, apart from the chaotic one,
the asynchronous communication can be safely replaced with the synchronous
one. To make such a replacement possible, the system should be not reactive
— it should either only send or only receive messages. However, since we are
dealing with the discrete-time semantics [13,3] of SDL, this requirement can be
softened in that the restrictions are imposed on time slices instead of whole runs:
in every time slice, the environmental process can either only receive messages,
or it can both send and receive messages under condition that inputs do not
change the state of the environment process.

Another problem the closing must address is that the data carried with the
messages are usually drawn from some infinite data domains. For data abstrac-
tion, as in [23], we condense data exchanged with the environment into a single
abstract value T to deal with the infinity of environmental data. We employ data-
flow analysis to detect instances of chaotically influenced variables and timers
and remove them. Based on the result of the data flow analysis, the system S
is transformed into a closed system S* which shows more behavior in terms of
traces than the original one. For formulas of next-free LTL [21, 18], we thus get
the desired property preservation: if S* = ¢ then S = ¢.

The rest of the paper is organized as follows. In Section 2 we fix syntax
and semantics of the language. In Section 3 we describe under which condi-
tion the asynchronous communication with the environment can be replaced by
synchronous one. In Section 4 we abstract from the data exchanged with the
environment and give a data-flow algorithm to over-approximate the behavior.
In Section 5 we discuss future work.

2 Semantics

In this section, we fix syntax and semantics of our analysis. As we take SDL
[22] as source language, our operational model is based on asynchronously com-



municating state machines with top-level concurrency. The communication is
done via channels and we assume a fixed set Chan of channel names for each
program, with ¢,c’,... as typical elements. The set of channel names is parti-
tioned into Chan; and Chan,, and we write ¢;,c,... to denote membership
of a channel to one of these classes. A program Prog is given as the parallel
composition IT}2, P; of a finite number of processes. A process P is described
by a tuple (P, (in, out), Var, Loc, 0, Edg), where (in, out) are the finite sets
of input resp. output channel names of the process, Var denotes a finite set of
variables, and Loc denotes a finite set of locations or control states. We assume
the sets of variables Var; of processes P; in a program Prog = II}; P; to be
disjoint. For a process P; in a parallel composition, we write P for its environ-
ment, i.e., all processes except P. A mapping from variables to values is called a
valuation; we denote the set of valuations by Val = Var — D. We assume stan-
dard data domains such as N, Bool, etc., where we write D when leaving the
data domain unspecified, and we silently assume all expressions to be well-typed.
X7 = Loc x Val is the set of states, where each process has one designated initial
state oinit = (Linit, Niniz) € X. An edge of the state machine describes a change
of state by performing an action from a set Act; the set Fdg C Loc x Act x Loc
denotes the set of edges.

As untimed actions, we distinguish (1) input over a channel ¢ of a signal s
containing a value to be assigned to a local variable, (2) sending over a channel ¢ a
signal s together with a value described by an expression, and (3) assignments. In
SDL, each transition starts with an input action, hence we assume the inputs to
be unguarded, while output and assignment are guarded by a boolean expression
g, its guard. The three classes of actions are written as c?s(z), gr> cls(e), and
gDz = e, respectively, and we use a, o' ... when leaving the class of actions
unspecified. For an edge (I, a,l) € Edg, we write more suggestively | —, I. We
assume for the non-timer guards, that at least one of them evaluates to true in
each state. This assumption corresponds at the SDL source language level to
the natural requirement that each conditional construct must cover all cases,
for instance by having at least a default branch: The system should not block
because of a non-covered alternative in a case-construct.

Time aspects of a system behavior are specified by actions dealing with
timers. Each process has a finite set of timer variables (with typical elements
t,t1,...), where each timer variable consists of a boolean flag indicating whether
the timer is active or not, together with a natural number value denoting its ex-
piration time. A timer can be either set to a value, i.e., activated to run for the
designated period, or reset, i.e., deactivated. Setting and resetting are expressed
by guarded actions of the form g > set ¢t := e and g > reset t. If a timer expires,
i.e., the value of a timer becomes zero, it can cause a timeout, upon which the
timer is reset. The timeout action is denoted by g; I> reset t, where the timer
guard g; expresses the fact that the action can only be taken upon expiration.

The behavior of a single process is described by sequences of states o, =
0p —x 01 —) ... starting from the initial one. The step semantics —) C
Y x Lab x X' is given as a labeled transition relation between states. The labels
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Table 1. Step semantics for process P

differentiate between internal 7-steps, “tick”-steps, which globally decrease all
active timers, and communication steps, either input or output, which are la-
beled by a triple of channel name, signal, and transmitted value. Depending on
location, valuation, and the potential next actions, the possible successor states
are given by the rules of Table 1.

Inputting a value means reading a value belonging to a matching signal from
the channel and updating the local valuation accordingly (rule INPUT), where
n € Val, and 1z —v] stands for the valuation equaling 7 for all y € Var except
for x € Var, where nz—v](x) = v holds instead. A specific feature of SDL-92
is captured by rule DISCARD: If the input value cannot be reacted upon at the
current control state, i.e., if there is no input action originating from the loca-
tion treating this signal, then the message is just discarded, leaving control state
and valuation unchanged. Unlike input, output is guarded, so sending a message
involves evaluating the guard and the expression according to the current valu-
ation (rule OUTPUT). Assignment in ASSIGN works analogously, except that the
step is internal.

Concerning the temporal behavior, timers are treated in valuations as vari-
ables, distinguishing active and deactivated timer. The set-command activates
a timer, setting its value to the specified time, reset deactivates it; both actions
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Table 2. Step semantics for a queue

are guarded (cf. rules SET and RESET). A timeout may occur, if an active timer
has expired, i.e., reached zero (rule TIMEOUT).

Time elapses by counting down active timers till zero, which happens in case
no untimed actions are possible. In rule TICK, this is expressed by the predicate
blocked on states: blocked (o) holds if no move is possible except either a clock-
tick or a reception of a message, i.e., if ¢ — for some label A, then \ = tick or
A = ¢?(s,v). In other words, the time-elapsing steps are those with least priority.
The counting down of the timers is written 7[t—(¢t—1)], by which we mean, all
currently active timers are decreased by one, i.e., on(n + 1) — 1 = on(n), non-
active timers are not affected. Note that the operation is undefined for on(0),
which is justified later by Lemma 1.

In SDL, timeouts are often considered as specific timeout messages kept in
the input queue like any other message, and timer-expiration consequently is seen
as adding a timeout-message to the queue. We use an equivalent presentation of
this semantics, where timeouts are not put into the input queue, but are modeled
more directly by guards. The equivalence of timeouts-by-guards and timeouts-as-
messages in the presence of SDL’s asynchronous communication model is argued
for in [3]. The time semantics chosen here is not the only one conceivable (see
e.g. [5] for a broader discussion of the use of timers in SDL). The semantics we
use is the one described in [13, 3], and is also implemented in DTSpin [2,10], a
discrete time extension of the Spin model checker.

In SDL’s asynchronous communication model, a process receives messages
via a single associated input queue. We write € for the empty queue; (s,v)::q
denotes a queue with message (s, v) (consisting of a signal s and a value v) at the
head of the queue, i.e., (s,v) is the message to be input next; likewise the queue
q::(s,v) contains (s,v) most recently entered. To facilitate the comparison of the
asynchronous with the synchronous behavior of the environment, we model the
queues implementing asynchronous channels explicitly as separate entities of the
form (c, q), consisting of the channel name together with its queue content. In
abuse of notation and to allow a uniform presentation of parallel composition
below, we use the symbol ¢ not only for typical element of process states, but
also for states (c, q) of queues. We require for the input and the output channel
names of a queue that in(c) = {c,} and out(c) = {c¢;}. The operational rules for
queues are shown in Table 2.
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In analogy to the tick-steps for processes, a queue can perform a tick-step iff
the only steps possible are input or tick-steps, as captured again by the blocked-
predicate (cf. rule Tick). Note that a queue is blocked and can therefore tick
exactly if it is empty. Note further that a queue does not contain any timers.
Hence, the counting down operation [t —(¢t—1)] has no effect and is therefore omit-
ted in the rule TiICKg of Table 2.

The semantics for parallel composition of processes or queues is given by the
rules of Table 3. We call the parallel composition of one or more local states
(either of processes or queues) a configuration and write v,v] ... € I" for typical
elements. This means, 7 is a vector of states of the participating processes or
queues. Since we assumed that the variable sets of the components are all dis-
joint, we write y(z) for the value 7(z), for one state o = (I,7) being part of +;
analogously, we use the notation [e], for the value of e in v. The énitial config-
uration of a parallel composition of components is given by the array of initial
process states together with empty queues. We call a sequence of configurations
Yinit = Y0 =X Y1 = - .. starting from the initial configuration v, a run.

Communication between two partners is done by exchanging a common signal
s and value v over a channel name ¢, as given by rule CoMM. Note that by our
conventions, ¢ € out(oy) as well as ¢ € in(o2). Note further that by the syntactic
restrictions on the use of input and output channel names, only synchronization
between one process and a queue can happen. As far as 7-steps and non-matching
communication messages are concerned, each process can proceed on its own
by rule INTERLEAVE. Each rule has a symmetric counterpart, which we elide.
Finally, two components can perform a tick-step if both are able to do so.

By connecting processes with queues, the above semantics describes asyn-
chronous communication. Synchronous communication for a channel name c is
characterized similarly by identifying the names ¢, and ¢; such that the two pro-



cesses directly communicate with each other. Furthermore, synchronous channels
are not represented as queues in the system configuration.

Lemma 1. Let S be a system and v € I' a configuration.

1. If v =tick ', then [t], # on(0), for all timers t.
2. If v =tick, then for all queue states (c,q) in I', g = €.

Proof. If, for part (1), [t], = on(0) for a timer ¢ in a process P, then either
TiMEOUT or TDISCARD of Table 1 allow a 7-step for P. Hence, P is not blocked
and therefore cannot do a tick-step. Consequently, the system cannot perform
a tick-step. Part (2) follows from the fact that a queue can only perform a tick-
step exactly when it is empty. O

The following lemma, expresses, that the blocked predicate is compositional
in the sense that the parallel composition of processes is blocked iff each process
is blocked.

Lemma 2. For a configuration v, blocked(vy) iff blocked (o) for all states o part
of v.

3 Replacing asynchronous with synchronous
communication

In this section we specify under which conditions we can safely replace the asyn-
chronous communication with an outside environment process, say E, by syn-
chronous communication.

A general condition an asynchronously communicating process satisfies is
that the process is always willing to accept messages, since the queues are un-
bounded. Hence, the environment process must be at least input enabled: it must
always be able to react to messages, lest the synchronous composition will lead
to more blockings. Thanks to the DISCARD-rule of Table 1, SDL-processes are
input enabled, i.e., at least input-discard steps are possible, which throw away
the message and do not changed the state of the process. Another effect of an
input queue is that the queue introduces an arbitrary delay between reception of
a message and the future reaction of the receiving process to this message. For
an output, the effect is converse. This implies that the asynchronous process can
be replaced by the analogous synchronous process as long as there are either only
input actions or else only output actions, so the process is not reactive.! This is
related to the so-called Brock-Ackerman anomaly, characterizing the difference
between buffered and unbuffered communication [6].

! A more general definition would require that the process actions satisfy a confluence
condition as far as the input and output actions are concerned, i.e., doing an input
action does not invalidate the possibility of an output action, and vice versa. Also
in this case, the process is not reactive, since there is no feed-back from input to
output actions.



Disallowing reactive behavior is clearly a severe restriction and only mod-
erately generalizes completely chaotic behavior. One feature of the timed se-
mantics, though, allows to loosen this restriction. Time progresses by tick-steps
when the system is blocked. This especially means that when a tick happens, all
queues of a system are empty (cf. Lemma 1). This implies that the restrictions
need to apply only per time slice, i.e., at the steps between two ticks,? and not for
the overall process behavior. Additionally we require that there are no infinite
sequences of steps without a tick, i.e., there are no runs with zero-time cycles.
This leads to the following definition.

Definition 3. A reduction sequence is tick-separated iff it contains no zero-
time cycle, and for every time slice of the sequence one of the following two
conditions holds:

1. the time slice contains no output action;
2. the time slice contains no output over two different channels, and all locations
in the time slice are input-discarding wrt. all inputs of that time slice.

We call a process tick-separated, if all its runs are tick-separated.

Given a synchronous and an asynchronous versions of a process and two cor-
responding configurations 75 = o5 and v, = (04, (¢i,¢), (¢, q1),- .- , (ck, qr)).
Then define > as v, > s, if 0, = 0,. Comparing the observable behavior of
an asynchronous and a synchronous process, we must take into account that
the asynchronous one performs more internal steps when exchanging messages
with its queues, hence the comparison is based on a weak notion of transitions,
ignoring the 7-steps: so define =) as =f—,—> when A # 7, and as —} else.
Correspondingly, X denotes a sequence of weak steps with labels from the se-
quence A.

Lemma 4. Assume a synchronous and an asynchronous version P; and P, of
a process and corresponding configurations vs and v, with v, > s, where the
queues of v, are all empty. If v, =5 v, by a tick-separated reduction sequence,

where X does not contain a tick-step, and where the queues of ), are empty, then
there exists a sequence vs =5 v, with v, > ;.

Proof. We are given a sequence v, = ¥ =, Y&-.- 2ra,_y 72 = 7., with the
queues of 7§ and 2 empty. According to the definition of tick-separation, we
distinguish the following two cases:

Case 1: \; ¢ {tick,c!(s,v)}, for all ¢

To get a matching reduction sequence of the synchronous system starting at -3,
we apply the following renaming scheme. Input actions v, —c2(s,0) 7, into the
queue are just omitted (which means, they are postponed for the synchronous
process). T-steps v, — 75, inputting a value from the queue into the process,
i.e., T-steps justified by rule INPUT where the process does a step 0 —.7(5,4) 0’
and the queue the corresponding output step by rule OuT, are replaced by a

2 A time slice of a run is a maximal subsequence of the run without tick-steps.



direct input step s —c2(s,s) Vs Process internal 7-steps of the asynchronous
system are identically taken by the synchronous system, as well. 7-steps caused
by output actions from the process into a queue need not be dealt with, since
the sequence from 7§ to v2 does not contain external output from the queues,
and the queues are empty at the beginning and the end of the sequence.

It is straightforward to see that the sequence of steps obtained by this trans-
formation is indeed a legal sequence of the synchronous system. Moreover, the
last configurations have the same state component and, due to the non-lossiness
and the Fifo-behavior of the input queue, both sequences coincide modulo 7-
steps.

Case 2: no output over two different channels, input discarding locations

Similar to the previous case, the synchronous system can mimic the behavior of
the asynchronous one adhering to the following scheme: 7-steps v, — 7., feed-
ing a value from the process into the queue, i.e., 7-steps justified by rule OuTPUT
where the process does a step o —.i(s,) 0 and the queue the corresponding in-
put step by rule IN, are replaced by a direct output step vs —>ci(s,s) V- Input
actions v, —¢7(s,v) Va into the queue are mimicked by a discard-step. Output
steps from the queue of the asynchronous system are omitted, and so are 7-steps
caused by internal communication from the input-queue to the process. All other
internal steps are identically taken in both systems. The rest of the argument is
analogous to the previous case. O

Note that v, > 7. means that 7, is blocked whenever «., is blocked.
Theorem 5. If a process P is tick-separated, then [P;]wtrace = [Pa]wtrace-

Proof. There are two directions to show. [Ps]wtrace € [Pa]wtrace is immediate:
each communication step of the synchronous process Ps; can be mimicked by the
buffered P, adding an internal 7-step for the communication with the buffer.

For the reverse direction [P,]wtrace € [Ps]wtrace we show that P, is simulated
by P, according to the following definition of simulation, which considers as basic
steps only tick-steps or else the sequence of steps within one time slice. A binary
relation R C I x I3 on two sets of configurations is called a tick-simulation,
when the following conditions hold:

1. If v1 R 2 and y1 —tick 771, then 2 —icr v4 and v R 5.
2. If vy R v2 and y; =5 v for some y; with blocked(y;) where A does not
contain tick, then vy, =5 v5 for some vy with blocked(7y3).

We write 71 <yer 72 if there exists a tick simulation R with v R 72, and
similarly for processes, Py =y P if their initial configurations are in that
relation.

We define the relation R C I, x I'y as (s, ns, ((ci, q0), (ck,q1),- -, (c¥,qr))) R
(Is,ns) iff (Is,ns) = (la,ma) and ¢; = € for all queues. To show that R is indeed
a tick-simulation, assume vy, = (1,7, ((ci,€), (c},€),...,(ck,€))) and v, = (I,7)
with v, R 7s. There are two cases to consider.
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Case: o —tick Vh
where v, = 7,4t —(t—1)]. By the definition of the tick-step, blocked(v,) must hold,
i.e., there are no steps enabled except input from the outside or tick-steps. Since
immediately blocked(vs), also ys = tick Yslt —(t—1)], which concludes the case.
Case: va =3 Ve
where blocked(+") and X does not contain a tick-label. The case follows directly
from Lemma 4 and the fact that v, > . where «, is blocked implies that also
. is blocked.

Since clearly the initial configurations are in relation R as defined above, this
gives P, <ucr Ps. It can be shown by a standard argument, that this implies
[[Pa]]wtrace g [[Ps]]wtrace7 as reqUired' o

4 Abstracting data

In this section, we present a straightforward dataflow analysis marking variable
and timer instances that may be influenced by the environment. It is a minor
adaptation of the one from [23], taking care of channel communication.

4.1 Dataflow analysis

The analysis works on a simple flow graph representation of the system, where
each process is represented by a single flow graph, whose nodes n are associated
with the process’ actions and the flow relation captures the intra-process data
dependencies. Since the structure of the language we consider is rather simple,
the flow-graph can be easily obtained by standard techniques.

The analysis works on an abstract representation of the data values, where T
is interpreted as value chaotically influenced by the environment and L stands
for a non-chaotic value. We write n,n{,... for abstract valuations, i.e., for
typical elements from Val® = Var — {T, L}. The abstract values are ordered
1 < T, and the order is lifted pointwise to valuations. With this ordering, the set
of valuations forms a complete lattice, where we write 7, for the least element,
given as 7 (z) = L for all z € Var, and we denote the least upper bound of
ng,...,n2 by Vi, n® (or by n¢ V n¢ in the binary case).

Each node n of the flow graph has associated an abstract transfer function
fn: Val®* — Val®, as given in Table 4, where «,, denotes the action associated
with the node n of process P. The equations are mostly straightforward, de-
scribing the change the abstract valuations depending on the sort of action at
the node. The only case deserving mention is the one for ¢;?s(x), whose equa-
tion captures the inter-process data-flow from a sending to a receiving actions
(using ¢; and ¢,, we assume asynchronous communication in the analysis). In
the equation P stands for the environment of P, i.e., the rest of the system. Tt
is easy to see that the functions f,, are monotone.

Upon start of the analysis, at each node the variables’ values are assumed to
be defined, i.e., the initial valuation is the least one: 1%,,,(n) = 7. This choice
rests on the assumption that all local variables of each process are properly
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Table 4. Transfer functions/abstract effect for process P

initialized. We are interested in the least solution to the data-flow problem given
by the following constraint set:

Mpost (1) 2 Fr(Mpre (1))

7o (n) > \/ {0 (') | (n',m) in flow relation} g
For each node n of the flow graph, the data-flow problem is specified by two
inequations or constraints. The first one relates the abstract valuation 7y, before
entering the node with the valuation 7y, afterwards via the abstract effects of
Table 4. The least fixpoint of the constraint set can be solved iteratively in
a fairly standard way by a worklist algorithm (see e.g., [15,12,20]), where the
worklist steers the iterative loop until the least fixpoint is reached (cf. Fig. 1).

input : the flow-graph of the program

outPUt : ngre) T]gost H

n*(n) = N (n);
WL ={n|ar,=7s(x),s € Sig.;};

repeat
pick n € WL;
let S = {n’ € suce(n) | fo(n®(n) £ 1°(n')}
in

for all n' € S: n*(n') := f(n*(n));
WL := WL\n U S;
until WL = (;

Npre (M) = 1*(N);
ngast (n) = fn (na (n))

Fig. 1. Worklist algorithm
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The worklist data-structure WL used in the algorithm is a set of elements,
more specifically a set of nodes from the flow-graph, and where we denote by
succ(n) the set of successor nodes of n in the flow graph in forward direction.
It supports as operation to randomly pick one element from the set (without
removing it), and we write WL\n for the worklist without the node n and U for
set-union on the elements of the worklist. The algorithm starts with the least
valuation on all nodes and an initial worklist containing nodes with input from
the environment. It enlarges the valuation within the given lattice step by step
until it stabilizes, i.e., until the worklist is empty. If adding the abstract effect of
one node to the current state enlarges the valuation, i.e., the set S is non-empty,
those successor nodes from S are (re-)entered into the list of unfinished one.
Since the set of variables in the system is finite, and thus the lattice of abstract
valuations, the termination of the algorithm is immediate.

With the worklist as a set-like data structure, the algorithm is free to work off
the list in any order. In praxis, more deterministic data-structures and traversal
strategies are appropriate, for instance traversing the graph in a breadth-first
manner (see [20] for a broader discussion or various traversal strategies). After
termination the algorithm yields two mappings 75,., s : Node — Val®. On a
location I, the result of the analysis is given by n®(I) = \/{ng,s(7) | 7 = J—
[}, also written as 7.

Lemma 6 (Correctness). Upon termination, the the algorithm gives back the
least solution to the constraint set as given by the equations (1), resp. Table 4.

4.2 Program transformation

Based on the result of the analysis, we transform the given system S = P || P
into an optimized one, denoted by S*, where the communication of P with its
environment P is done synchronously, all the data exchanged is abstracted, and
which is in a simulation relation with the original system.

The transformation given as a set of transformation rules for each process P,
similar to the ones from [23]. As the transformation here is simpler (since it does
not embed the environment process P by incorporating its effect directly into
P) we omit the full set of rules. The transformation is straightforward: guards
potentially influenced by the environment are taken non-deterministically, i.e., a
guard g at a location [ is replaced by true, if [g],» = T. Assignments of expres-
sions whose value may depend on data from the environment are omitted. For
timer guards whose value is indeterminate because of outside influence, we work
with a 3-valued abstraction: off when the timer is deactivated, a value on(T)
when the timer is active with arbitrary expiration time, and a value on(T¥) for
active timers, whose expiration time is arbitrary except immediate timeout; the
latter two abstract values are represented by on(0) and on(1), respectively, and
the non-deterministic behavior of the timer expiration is captured by arbitrarily
postponing a timeout by setting back the value of the timer to on(1). This is
captured by adding edges according to:
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As the transformation only adds non-determinism, the transformed system S*
simulates S (cf. [23]). Together with Theorem 5, this guarantees preservation of
LTL-properties as long as variables influenced by P are not mentioned. Since we
abstracted external data into a single value, not being able to specify properties
depending on externally influence data is not much of an additional loss of
precision.

Lemma 7. Let P, and P; be the asynchronous resp. synchronous variant of a
process, and S be given as the parallel composition of a P, || P, where P is the
environment of P. Furthermore, let S* = P! || P be defined as before, and ¢ a
next-free LTL-formula mentioning only variables from {z | =3l € Loc. [z],= =
T}. Then S* = ¢ implies S | .

5 Conclusion

In this paper, we extended earlier work from [23] describing how to close an
open, asynchronous SDL-process by a timed chaotic environment while avoid-
ing the combinatorial state-explosion in the external buffers. The generalization
presented here goes a step beyond complete arbitrary environmental behavior,
using the timed semantics of the language and separating, more or less, input
and output.

In the context of software-testing, [8] describes an a dataflow algorithm to
close program fragments given in the C-language with the most general envi-
ronment. The algorithm is incorporated into the VeriSoft tool. As in our paper,
the assume an asynchronous communicating model and abstract away external
data, but do not consider timed systems and their abstraction. As for model-
checking and analyzing SDL-programs, much work has been done, for instance
in the context of the Vires-project, leading to the IF-toolset [4]

A fundamental approach to model checking open systems is known as module
checking [17][16]. Instead of transforming the system into a closed one, the un-
derlying computational model is generalized to distinguish between transitions
under control of the module and those driven by the environment. MOCHA [1]
is a model checker for reactive modules, which uses alternating-time temporal
logic as specification language.

For practical applications, we are currently extending the larger case study
[24] using the chaotic closure to this more general setting. In the experiments,
we are using a JAVA-implementation of the automatic closing and the data-
flow algorithm for concrete SDL-92 resp. a discrete-time extension of the Spin
model checker which we use in the verification. We proceed in the following way:
after splitting an SDL system into subsystems following the system structure,
properties of the subsystems are verified being closed with an embedded chaotic
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environment. Afterwards, the verified properties are encoded into an SDL pro-
cess, for which a tick-separated closure is constructed. This closure is used as
environment for other parts of the system. As the closure gives a safe abstraction
of the desired environment behavior, the verification results can be transferred
to the original system.
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