INSTITUT FUR INFORMATIK UND PRAKTISCHE MATHEMATIK
LEHRSTUHL FUR SOFTWARETECHNOLOGIE

Verification for Java’s
Reentrant Multithreading Concept:
Soundness and Completeness

Erika Abrahdm-Mumm
Frank S. de Boer
Willem-Paul de Roever
Martin Steffen
Bericht Nr. TR-ST-02-01

15 Marz 2002

CHRISTIAN-ALBRECHTS-UNIVERSITAT ZU KIEL

Verification for Java’s
Reentrant Multithreading Concept:
Soundness and Completeness
March 15, 2002

Erika Abrahdm-Mumm!, Frank S. de Boer?,
Willem-Paul de Roever!, and Martin Steffen!

! Christian- Albrechts-University Kiel, Germany
2 Utrecht University, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-
variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.

To reason about multithreaded programs, we introduce in this paper
an assertional proof method for safety properties for Javaur (“Multi-
Threaded Java”), a small concurrent sublanguage of Java, covering the
mentioned concurrency issues as well as the object-based core of Java,
i.e., object creation, side effects, and aliasing, but leaving aside inheri-
tance and subtyping. We show soundness and relative completeness of
the proof method.

ss g

Table of Contents

Introduction. e 3
The programming language Javayr ... oooveeiiinn i 4
2.1 Introductionouiiiin e 4
2.2 ADbStract SyNtax e 5
2.3 SemantiCs e 7

2.3.1 States and configurations L. 7

2.3.2 Operational semantics 10
The assertion languagec.cooiiinin i 11
0 11 7= 11
3.2 Semantics 13
The proof system e 17
4.1 Proofoutlines......... ... i 17
4.2 Proof system e 23

4.2.1 Initial cOrrectness ittt 24

4.2.2 Local Correctnessiiniinr it 24

4.2.3 The interference freedom test 25

4.2.4 The cooperation test 26
Soundness and completeness. e 29
5.1 SOUNANESS . .ottt et e 30
5.2 ComPletenessttt e 31
ConclUuSIONttt e 34
Semantics of transformed programs oL 38
Proofs 41
B.1 Properties of substitutions i, 41
B.2 Soundnessi e 43

B.2.1 Invariant propertiesci i 43

B.2.2 Soundness of the proof-conditions 49

B.2.3 Inductive soundness proof 58
B.3 Completenesst 62
Notationo e e 88

Exampleo e 90

Introduction 3

1 Introduction

The semantical foundations of Java [17] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [4,31,14]). The research
concerning Java’s proof theory mainly concentrated on various aspects of se-
quential sublanguages (see e.g. [22,36,29]). This paper presents a proof system
for multithreaded Java programs. Concentrating on the issues of concurrency, we
introduce an abstract programming language Javay T, a subset of Java, featuring
dynamic object creation, method invocation, object references with aliasing, and
specifically concurrency. Threads are the units of concurrency. They are created
as instances of specific thread-classes and share the instance variables of objects.

As a mechanism of concurrency control, methods can be declared as syn-
chronized, where synchronized methods within a single object are executed by
different threads mutually exclusive. A call chain corresponding to the execu-
tion of a single thread can contain several invocations of synchronized methods
within the same object. This corresponds to the notion of re-entrant monitors
and eliminates the possibility that a single thread deadlocks itself on an object’s
synchronization barrier.

The assertional proof system for verifying safety properties of Javayr is for-
mulated in terms of proof outlines [26], i.e., of programs augmented by auxiliary
variables and with Hoare-style assertions [16, 20] associated with every control
point.

The behavior of a Javayr program results from the concurrent execution of
method bodies, that can interact by

— shared-variable concurrency,
— synchronous message passing for method calls, and
— object creation.

In order to capture these features in a modular way, the assertional logic and
the proof system are formulated in two levels, a local and a global one. The local
assertion language describes the internal object behavior. The global behavior,
including the communication topology of the objects, is expressed in the global
language. As in the Object Constraint Language (OCL) [37], properties of object-
structures are described in terms of a navigation or dereferencing operator.

The local level treats internal computations affecting a single object, but
excluding communication. The execution of a single method body in isolation is
captured by standard local correctness conditions that show the inductiveness
of the annotated method bodies.

To support a clean interface between internal and external behavior, Javayr
does not allow qualified references to instance variables. As a consequence,
shared-variable concurrency is caused by simultaneously execution within a sin-
gle object, but not across object boundaries, and can therefore be handled on the
local level, as well. A further healthy effect of disallowing references to external
instance variables is that it reduces the potential of interference considerably,
which means much less proof obligations generated by the proof system. The

4 The programming language Javayr

interference freedom test [26,24] formulates the corresponding verification con-
ditions. It has especially to accommodate for reentrant code and the specific
synchronization mechanism.

Affecting more than one instance, synchronous message passing and object
creation can be established locally only relative to assumptions about the com-
municated values. These assumptions are verified in the cooperation test on the
global level. The communication can take place within a single object or between
different objects. As these two cases cannot be distinguished syntactically, our
cooperation test combines elements from similar rules used in [8] and in [24] for

CSP.

Overview This paper is organized as follows. Section 2 defines the syntax of
Javayr, Section 2.3 its operational semantics. After introducing the assertion
language in Section 3, the main Section 4 presents the proof system. Soundness
and completeness of the proof system is shown in Section 5. In Section 6, we
discuss related and future work. The proofs of the results are included in the
appendix.

2 The programming language Javayr

In this section we introduce the language Javayr (“Multi-Threaded Java”). We
start with highlighting the features of Javayr and its relationship to full Java,
before formally defining its abstract syntax and semantics.

2.1 Introduction

Javayr is a multithreaded sublanguage of Java. Programs, as in Java, are given
by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate
via method invocation, i.e., synchronous message passing. As we focus on a proof
system for the concurrency aspects of Java, all classes in Javayr are thread
classes in the sense of Java: Each class contains a start-method that can be
invoked only once for each object, resulting in a new thread of execution. The
new thread starts to execute the start-method of the given object while the
initiating thread continues its own execution.

As a mechanism of concurrency control, methods can be declared as synchro-
nized. The execution of synchronized methods within a single object by different
threads is mutually exclusive, whereas non-synchronized methods do not require
such coordination. Note that in a single call chain recursive invocations of syn-
chronized methods on the same object are allowed, as they are executed by the
same thread. This corresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., each method invoked on
an object must be supported by the object, the types of the formal and actual
parameters of the invocation must match, etc. As the static relationships between
classes are orthogonal to multithreading aspects, we ignore in Javayr the issues

The programming language Javayr)

of inheritance, and consequently subtyping, overriding, and late-binding. For
simplicity, we neither allow method overloading, i.e., we require that each method
name is assigned a unique list of formal parameter types and a return type. In
short, being concerned with the verification of the run-time behavior, we assume
a simple monomorphic type discipline for Javayr.

2.2 Abstract syntax

Similar to Java, the language Javayr is strongly typed and supports class types
and primitive, i.e., non-reference types. As built-in primitive types we restrict
to integers and booleans, denoted by Int and Bool. Besides the built-in types,
the set of user-definable types is given by a set of class names C, with typical
element c. Furthermore, the language allows pairs of type t1 Xt and sequences of
type list¢t. Side-effect expressions without a value, i.e., methods without a return
value, will get the type Void. Thus the set of all types 7 with typical element ¢
is given by the following abstract grammar:

t::=Void | Int | Bool | ¢ | ¢t x t | list¢

For each type, the corresponding value domain is equipped with a standard
set F' of operators with typical element f. Each operator f has a unique type
t1 X---xt, — t and a fixed interpretation f, where constants are operators of zero
arity. Apart from the standard repertoire of arithmetical and boolean operations,
the set F' of operators also contains operations on tuples and sequences like
projection, concatenation, etc.

Since Javayr is strongly typed, all program constructs of the abstract syntax
—variables, expressions, statements, methods, classes— are silently assumed to
be well-typed. In other words, we work with a type-annotated abstract syntax
where we omit the explicit mentioning of types when no confusion can arise.

For variables, we notationally distinguish between instance and local vari-
ables. Instance variables are always assumed to be private in Javayrr. They hold
the state of an object and exist throughout the object’s lifetime. Local variables
are stack-allocated; they play the role of formal parameters and variables of
method definitions and only exist during the execution of the method to which
they belong.

The set of variables Var = I'Var U TVar with typical element y is given as
the disjoint union of the instance and the local variables. Var® denotes the set of
all variables of type t, and correspondingly for IVar® and TVar'. As we assume
a monomorphic type discipline, Vart N Var =) for distinct types t and t'.
We use z,z',1,... as typical elements from [Var, and u,v,u’, vy, ... as typical
elements from TVar.

Besides using instance and local variables, side-effect free expressions e € Ezp
are built from this, nil, and from subexpressions using the given operators. We use
Ea;pim to denote the set of well-typed expressions of type ¢t in method m € M
of class ¢ € C, where M is an infinite set of method names containing main,

6 The programming language Javayr

start, and run. The expression this is used for self-reference within an object,
and nil is a constant representing an empty reference. Expressions with side-
effects sexp € SExp contain clauses for object creation and method invocation.
By SEz‘pfm . we denote the set of side-effect expressions of type ¢ in method m of
class c. The expression new® stands for the reference to a new instance of class
¢. An invocation of a method with name m on object ey with actual parameters
el,-.. e, is written as eg.m(er, ..., en).

Besides the mentioned simplifications on the type system, we impose for
technical reasons the following restrictions: We require that method invocation
and object creation statements contain only local variables, i.e., that none of the
expressions eg, ... , e, contains instance variables, and that formal parameters
do not occur on the left-hand side of assignments; this restriction implies that
during the execution of a method the values of the actual and formal parameters
are not, changed. Finally, the result of an object creation or method invocation
statement may not be assigned to instance variables. This restriction allows for
a proof system with separated verification conditions for interference freedom
and cooperation. It should be clear that it is possible to transform a program to
adhere to this restrictions at the expense of additional local variables and thus
new interleaving points.

Statements stm € Stm are built from side-effect expressions and assignments
of the form = := e, u := e, and u := sexp by using standard control constructs
like sequential composition, conditional statements, and iteration, to form com-
posite statements. Especially, we will use € to denote the empty statement. We
refer by Stm,, . to the set of statements in method m of class c.

A method definition modif m(uy,... ,u,){ stm;rexp } € Meth consists of a
method name m, a list of formal parameters w1, ... ,u,, and a method body
body,y, . of the form stm;rezp. The set Meth. contains the methods of class c.
To simplify the proof system we require that method bodies are terminated by a
single return statement, either giving back a value using return e, or not, written
as return. Additionally, methods are decorated by a modifier modif distinguishing
between non-synchronized and synchronized methods.> We use sync(c,m) to
state that method m in class ¢ is synchronized. In the sequel we also refer to
statements in the body of a synchronized method as being synchronized. A class
c{meth; ... meth, methsgarmethyn} is defined by its name ¢ and its methods,
whose names are assumed to be distinct. As mentioned earlier, all classes in
Javayr are thread classes; all classes contain a start-method methgx and a run-
method meth,,, without return values. A program (class: ... classyclassmain),
finally, is a collection of class definitions having different class names, where
classmain is the entry point of the program execution. This class specifically
contains a main-method methmain without return value. We call its body, written
as body ,.in, the main statement of the program.

The set of instance variables I'Var, of a class ¢ is implicitly given by the set
of all instance variables occurring in that class. Correspondingly for methods,

% Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

The programming language Javayr 7

the set of local variables T'Var,, . of a method m in class c is given by the set
of all local variables occurring in that method.

The syntax is summarized in Table 1.

erp =z | u | this | nil | f(ezp,..., ezp) e€Exp expressions
sexp ::= new® | exp.m(exp, ..., exp) sexp € SErp side-effect exp
stm = sexp | x = exp | u = exp | u := sexp
| €| stm;stm | if exp then stm else stm
| whileezpdostm... stme Stm statements
modif ::= nsync | sync modifiers
rezp ::= return | return ezp
meth ::= modif m(u,...,u){ stm;rexp} meth€ Meth methods
methwn ::= modif run(){ stm;return } methwn€Meth run-meth.
methsar ::= nsync start(){ this.run(); return } methstart € Meth start-meth.
methmain ::= nsync main(){ stm;return } methmain € Meth main-meth.

class ::= c{meth...meth methwun methsar } class€ Class class defn’s
classmain ::= c{meth...meth methun methsar methmain} classmain€ Class main-class
prog ::= (class. . .class classmain) programs

Table 1. Javaur abstract syntax

2.3 Semantics

In this section, we define the operational semantics of Javayr, especially, the
mechanisms of multithreading, dynamic object creation, method invocation, and
coordination via synchronization. After introducing the semantic domains, we
describe states and configurations in the following section. The operational se-
mantics is presented in Section 2.3.2 by transitions between program configura-
tions.

2.3.1 States and configurations To give semantics to the expressions, we
first fix the domains Val® of the various types ¢. Thus Val'™ and Val®*® denote
the set of integers and booleans, Val™t! are finite sequences over values from Val’,
and Val'' " stands for the product Val* x Val®>. For class names ¢ € C, the set
Val® with typical elements «, (3, ... denotes an infinite set of object identifiers,
where the domains for different class names are assumed to be disjoint. For each
class name ¢, nil® ¢ Val® represents the value of nil in the corresponding type.
In general we will just write nil, when ¢ is clear from the context. We define
ValS,; as Val® U {nil°}, and correspondingly for compound types. The set of all

possible non-nil values J, Val' is written as Val, and Val,; denotes U, Val®,,.

The configuration of a program is characterized by the configurations of all
currently executing threads together with the set of existing objects and the

8 The programming language Javayr

values of their instance variables. Before formalizing the global configurations of
a program, we define local states and local configurations. In the sequel we in
general identify the occurrence of a statement in a program with the statement
itself.

A local state T € X)o. of a thread holds the values of its local variables
and is modeled as a partial function of type TVar U {this} — Val,,;. We will
maintain as invariant, that the local state contains a reference to the object in
which the corresponding thread is currently executing, i.e., this € dom/(7) with
7(this) # nil. For a class ¢ and a method m of ¢ we use the notation 7™¢ for
local states with domain TVar,, , U {this} such that 7™°(this) € Val‘, i.e.,
7™ describes the local state of a thread executing method m of an instance of

class ¢. We denote by 7,,,, or by 7,2 local states which assign to each class-

nit
typed local variable of type ¢’ from dom(7)\{this} the value of nil®, to each
boolean variable the value false, and to each integer variable the value 0. Pairs

are initialized correspondingly; sequences are initially empty.

A local configuration (r,stm) of a thread executing within an object 7(this)
specifies, in addition to its local state, its point of execution represented by
the statement stm. A thread configuration £ is a stack of local configurations
(10, stmo) (71, stm1) . .. (Tn, Stmy,), representing the chain of method invocations
of the given thread. We write & o (7, stm) for pushing a new local configuration
onto the top of the stack.

The state of an object is characterized by its instance state o,,,, € Xinst
of type IVar — Val,, which assigns values to its instance variables. For a
class ¢ we write o7, ., to denote instance states assigning values to the instance
variables of class c, i.e., 0§, is of type IVar, — Val, ;. The initial instance
state o or """ assigns to each of its instance variables of type ¢’ the value
m’lcl, to each of its boolean instance variable the value false, and to each integer
variable the value 0. Pairs are initialized correspondingly; sequences are initially
empty. A global state o € X stores for each currently existing object its instance
state and is modeled as a partial function of type (U, ¢ Val®) = Yinst. The set
of existing objects of type ¢ in a state o is given by dom®(c), and doms,;, (o)
is defined by dom®(c) U {nil®}. For the built-in types Int and Bool we define
dom!® and domf”-l, independently of o, as the set of pre-existing values Val'™
and Val®°®, respectively. For compound types, dom’ and dom!, are defined
correspondingly. We refer to the set |J, dom’ by dom(c); domui (o) denotes
U, dom?;,. The instance state of an object a € dom(c) is given by o(a). We
call an object a € dom (o) existing in o, and we throughout require that, given
a global state, no instance variable in any of the existing objects refers to a
non-existing object, i.e., o(a)(z) € domy; (o) for all @ € dom®(o). This will be
an invariant of the operational semantics of the next section.

A global configuration (T,c) consists of a set T of thread configurations of
the currently executing threads, together with a global state o describing the
currently existing objects. Analogously to the restriction on global states, we
require that local configurations (7, stm) in (T, c) do not refer to non-existing

object identities, i.e., 7(u) € dom i (o) for all variables u from the domain of 7,

The programming language Javayr 9

and again this will be an invariant of the operational semantics. In the following
we write (7, stm) € T if there exists a local configuration (7, stm) within one of
the execution stacks of 7.

Expressions e € Ealcpfn,C are evaluated with respect to an instance local state
(65,56, T™C) € Xinst X Xioe, Where, as mentioned, the local state defines the
object 7™¢(this) in which the thread is currently executing and the values of the
current local variables of the thread, and o§,,, defines the values of the instance
variables of 7™¢(this). This means, the semantic function []z : (Zinst X Zioc) —
(Ezp — Val,;) shown in Table 2 evaluates in the context of an instance local
state (0,,.,7T) expressions containing only variables from dom(o,,;) U dom(7):
Instance variables z and local variables u are evaluated to o,,,(z) and 7(u),
respectively. The value of this refers to the object in which the expression is
evaluated, nil has the undefined value nil. Finally, the evaluation of compound

expressions are defined by homomorphic lifting.

Hm]]gmgt"" = Oinst (ZE)
|Iu]];in.st‘r = T(u)
[this] 2™ = r(this)

[nil]z*" = nil

[f(er,. .- en)]Z™ 7 = F(Ia]F™,.. . [eald™)

Table 2. Expression evaluation

For a local state 7, a local variable u of type t, and val € Val’,,, we denote by

T[u+ val] the local state which assigns val to v and agrees with 7 on the values
of all other variables. The semantic update o,, [z +> val] of instance states is
defined analogously. Correspondingly for global states, o[a.z — val] denotes the
global state resulting from o by assigning val to the instance variable x of object
a. We use these operators analogously for simultaneously setting the values of a
vector of variables. We use 7[7+] also for arbitrary variable sequences, where
instance variables are untouched, i.e., 7[§+ 0] is defined by 7[i@ > ¥,,], where @ is
the sequence of the local variables in § and ¥, the corresponding value sequence.
Similarly, for instance states, o;,,[§— U] is defined by o, [Z+> ¥,] where &
is the sequence of the instance variables in § and ¥, the corresponding value
sequence. The semantics of o[a.§— 7] is analogous. Finally for global states,
ola of,.,] equals o except on «; note that in case a ¢ dom“(o), the operation
extends the set of existing objects by «, that has its instance state initialized to

c
Oinst-

10 The programming language Javayr

2.3.2 Operational semantics Computation steps of a program are repre-
sented by transitions between global configurations. The operational semantics
of Javayr is given inductively by the rules of Table 3.

Rule AsS;,s: states that assigning e to the instance variable z executed in
an object o updates the instance state of the respective object with a new
value of = as given by evaluation of the expression in the respective instance
local state. Assignments to local variables are handled correspondingly by rule
AsS,c, where the local state is updated. Executing u := new®, as shown in rule
NEW, creates a new object of type ¢, initializes its instance variables, but does
not yet add a new execution stack to the global configuration.* This is done
by the first invocation of the start-method (cf. rule START), thereby initializing
the first activation record of the new stack. Only the first invocation of the
start-method has this effect. This is captured by the predicate started which
holds for a global configuration 7" and an instance « iff there exists a stack
(10, 8tmy) . . . (Tn, stmy,) € T such that 7o(this) = a. Further invocations of the
start-method are without effect (cf. rule START g)."

Invoking a method extends the call chain by a new local configuration (cf. rule
CALL for methods with return value). After initializing the local state, the values
of the actual parameters are assigned to the formal parameters and the thread
begins to execute the method body. We introduce the statements receive and
receive u to denote that the execution of a configuration is suspended until the
invoked method terminates, where the return value, if any, will be stored in the
variable u. Note that these statements are not part of the syntax of Javayrr.
Statements stm in the operational semantics are assumed to be program state-
ments possibly containing receive statements. An analogous rule not shown here
takes care of method invocation without return value.

Different threads execute synchronized methods mutually exclusive on a given
object. This is expressed by the condition sync(c,m) — isfree(T, 8), where isfree
is a predicate over a set of stacks and an object such that isfree(T, 3) is true iff
no stack in T' contains any local configuration (7, stm) with 7(this) = 8 and stm
synchronized. This means, a synchronized method of an object can be invoked
if and only if currently no other thread executes any synchronized methods of
this object.

When returning from a method call (cf. rule RETURN) the callee evaluates its
return expression and passes it to the caller which subsequently updates its local
state. The method body terminates its execution and the caller can continue.
An analogous rule, not shown in the table, deals with returning from a method
without return value. Returning from the initial invocation of the main-method
or from a start-method is specific in that there is no caller configuration in the
stack (cf. rule TERMINATE). The worked-off local configuration (7,¢) is kept in
the global configuration to ensure that the thread of 7(this) cannot be started
twice.

* The statement new® is handled similarly but without changing the local state.
% In Java an exception is thrown if the thread is already terminated.

The assertion language 11

We elide the rules for the remaining sequential constructs —sequential com-
position, conditional statement, and iteration— since they are standard.

We conclude the section with the definition of initial and reachable config-
urations. The initial configuration (Tg, o) of a program satisfies the following:
To = {(772™[this —], body yin)}, Where ¢ is the main class, and a € Val®.
Moreover, dom(oo) = {a} and op(e) = 05" We call a configuration (T,)
of a program reachable iff there exists a computation (Tp,09) —* (T, o) such
that (Tp,00) is the initial configuration of the program and —* the reflexive
transitive closure of —.

In Java, the main method of a program is static. Since Javayrr does not have
static methods and variables, we define the initial configuration as having a single
initial object in which an initial thread starts to execute the main-method. Note
that according to the definition of the started predicate, the start-method of the
initial object cannot be invoked.

3 The assertion language

In this section we introduce assertions to specify properties of Javay programs.
The assertion logic consists of a local and a global sublanguage. The local asser-
tion language is used to annotate methods in terms of their local variables and
of the instance variables of the class to which they belong. The global assertion
language describes a whole system of objects and their communication structure
and will be used in the cooperation test.

To be able to argue about communication histories, represented as lists of
objects, we add the type Object as the supertype of all classes into the assertion
language. Note that we allow this type solely in the assertion language, but not in
the programming language, thus preserving the assumption of monomorphism.

After fixing the syntax of the assertions in the next section, we define its
semantics and provide basic substitution properties.

3.1 Syntax

In the language of assertions, we introduce a countably infinite set LVar of well-
typed logical variables with typical element z, where we assume that instance
variables, local variables, and this are not in LVar. Logical variables are used for
quantification in both the local and the global language. Besides that, they are
used as free variables to represent local variables in the global assertion language:
To express a local property on the global level, each local variable in a given local
assertion will be replaced by a fresh logical variable.

Table 4 defines the syntax of the assertion language. Local expressions exp, €
LExp are expressions of the programming language possibly containing logical
variables. The set LExpfn’c consists of all local expressions of type ¢ in method m

of class ¢, where LEzp' is defined by Unn.e LEz‘pfn’C. In abuse of notation, we use e,

e’ ... not only for program expressions of Table 1, but also for typical elements of

12 The assertion language

7(this) = «
(T U {€ o (r,a:=¢; stm)},0) — (T U {€ o (r, stm)}, oz = [e]2*)7])

Assinst

7(this) = «
Assloc
(T 0 {€ o (r,u:=e; stm)},0) — (T U {€ o (rlum[e]7*7], stm)}, 0)
B € Val®\dom® (o) o =olBr ot
NEW

(T U {€o (r,u:=new’; stm)},0) — (T U {€ o (r[urs B], stm)},0’)

7(this) = « B =1[e]3"" € dom® (o) T = 75 this s]

—started (T U {€ o (1, e.start(); stm)}, B)
START

(T U {€o (r,estart(); stm)},0) — (T U {€ o (r, stm), (1, bodygan.c) },)

7(this) = « B =1[e]3"" € dom® (o)
started (T U {€ o (1, e.start(); stm)}, 8)
(T U {€o(r,estart(); stm)},0) — (T U {€o (1, stm)}, o)

START sip

7(this) = « B =eo Z.(a)”— € dom®(o) modif m(u){ body } € Meth,

m # start ' = 7 this s B)[@ —]2 sync(c, m) — isfree(T, B)

CALL
(TU{€ o (1, u:=e0.m(&); stm)}, ¢y — (TU{¢ o (7, receive u; stm) o (7', body)}, o)
T’(this) = 6 7'” = T[’U, Hﬂe]];(ﬁ)ﬂ"]
RETURN

(T U {€ o (1, receiveu; stm) o (7', return ¢)}, o) — (T U {£ o (7", stm)}, o)

TERMINATE

(T U {(r,return)}, o) — (T U {(r,¢)},0)

Table 3. Operational semantics

The assertion language 13

local expressions. Local assertions ass; € LAss, with typical elements p,p’,q, ...,
are standard logical formulas over boolean local expressions; local assertions in
method m of class ¢ form the set LAss,, .. We allow three forms of quantification
over the logical variables: Unrestricted quantification 3z(p) is solely allowed for
integer and boolean domains, i.e., z is required to be of type Int or Bool. For
reference types ¢, this form of quantification is not allowed, as for those types,
the existence of a value dynamically depends on the global state, something one
cannot speak about on the local level, or more formally: Disallowing unrestricted
quantification for object types ensures that the value of a local assertion indeed
only depends on the values of the instance and local variables, but not on the
global state. Nevertheless, one can assert the existence of objects on the local
level satisfying a predicate, provided one is explicit about the set of objects to
range over. Thus, the restricted quantifications 3z € e(p) or 3z C e(p) assert the
existence of an element, respectively, the existence of a subsequence of a given
sequence e, for which a property p holds.

Global expressions exp, € GEzp, with typical elements E,FE',..., are con-
structed from logical variables, nil, operator expressions, and qualified references
E.z to instance variables x of objects E. We write GExp' for the set of global
expressions of type t. Global assertions ass, € GAss, with typical elements
P,Q ..., are logical formulas over boolean global expressions. Unlike the local
language, the meaning of the global one is defined in the context of a global
state. Thus unrestricted quantification is allowed for all types and is interpreted
to range over the set of existing values, i.e., the set of values domy; (o) in a
global configuration (T, o).

exp; =z | & | w | this | nil | f(ezp,, ... , exp;) e € LEzp local expressions
ass; == exp, | —ass; | ass; A ass;
| Jz(ass;) | Iz € exp,(ass;) | Iz C exp,(ass;) p € LAss local assertions

z | nil | f(ezp,, ..., ezp,) | exp . E € GEzp global expressions
exp, | massq | assg A assg | 3z(assg) P € GAss global assertions

erp,
assg

Table 4. Syntax of assertions

3.2 Semantics

Next, we define the interpretation of the assertion language. The semantics is
fairly standard, except that we have to cater for dynamic object creation when
interpreting quantification.

Expressions and assertions are interpreted relative to a logical environment
w € {2, a partial function of type LVar — Val,,, assigning values to logical
variables. We denote by w[z+ wal] the logical environment that assigns val €

14 The assertion language

Val,; to z, and agrees with w on all other variables. For a logical environment
w and a global state o we say that w refers only to values existing in o, if
w(2) € domp (o) for all z € dom(w). This property matches with the definition
of quantification which ranges only over existing values and nil, and with the
fact that in reachable configurations local variables may refer only to existing
values or to nil. Correspondingly for local states, we say that a local state 7
refers only to values existing in o, if 7(u) € domy; (o) for all u € dom(r).

The semantic function [_], of type (2 X Xipet X Zioc) = (LEzp U LAss —
Val,,;) evaluates local expressions and assertions in the context of a logical en-
vironment w and an instance local state (o;,,,,T) (cf. Table 5). The evaluation
function is defined for expressions and assertions that contain only variables
from dom(w) U dom(o,,,,) U dom(7). The instance local state provides the con-
text for giving meaning to programming language expressions as defined by the
semantic function [_]; the logical environment evaluates logical variables. An
unrestricted quantification 3z(p) is evaluated to true in the logical environment
w and instance local state (0,,,;,) if and only if there exists a value val € Val'
such that p holds in the logical environment w[z — wal] and instance local state
(O inst» T), Where for the type t of z only Int or Bool is allowed. The evaluation
of a restricted quantification 32 € e(p) with z € LVar! and e € LEzp"tt is
defined analogously, where the existence of an element in the sequence is re-
quired. An assertion 3z C e(p) with z € LVar'™? and e € LEz‘p"Stt states the
existence of a subsequence of e for which p holds. In the following we also write
W, O, T Ec p for [p]277"7 = true. By [p, we express that w,0,,.,,7 Ez p
holds for arbitrary logical environments, instance states, and local states.

[[Z]]uz,ain.«w" = LU(Z)
Hm]]‘z’o'insi"" = Crinst(m)
[[u]]tz,ffin..«w'" = T(U)

[this] "7 = (this)
[[n”]]z,ﬂmw" = nil

[Fer, o enl27 = f(ers™™ . feal 7
([l = true) iff (]2 = false)
([pr Ap2]2 7™ = true) iff ([pa]27™"" = true and [p2]3 7™ = true)
([Fz(p)]2 7" = true) iff ([[p]]ihH velh@insts™ — trye for some val € Val)
) (
) (

([Fz€e(P)]7™"" = true) iff ([z€e /\p]]z[z'_) vt T —trye for some val€ Val,ir)
([F2Ce(p)] 27" = true) iff

wlz v vall,o;, 4T

[2Ce Ap], =true for some val€ Val,, ;)

Table 5. Local evaluation

Since global assertions do not contain local variables and non-qualified ref-
erences to instance variables, the global assertional semantics does not refer to

The assertion language 15

instance local states but to global states. The semantic function [_]g of type
(2xX) = (GExp U GAss — Val,;), shown in Table 6, gives meaning to global
expressions and assertions in the context of a global state ¢ and a logical envi-
ronment w. To be well-defined, w is required to refer only to values existing in o,
and the expression respectively assertion may only contain free variables from
dom(w) U dom (o). Logical variables, nil, and operator expressions are evaluated
analogously to local assertions. The value of a global expression E.x is given by
the value of the instance variable z of the object referred to by the expression
E. The evaluation of an expression E.z is defined only if E refers to an object
existing in o. Note that when E and E’ refer to the same object, that is, E
and E’ are aliases, then E.z and E'.x denote the same variable. The semantics
of negation and conjunction is standard. A quantification 3z(P) evaluates to
true in a logical environment w and global state ¢ if and only if P evaluates
to true in the logical environment w[z + val] and global state o, for some value
val € domy; (o). Note that quantification over objects ranges over the set of
existing objects and nil, only.

g7 = w(2)
hillg” = mnil
[f(E1,... ,Ex)]g® = f(Eg?,-.. [Es7)
[Bz]g” = o([E]g") (=)

([-P]g° = true) iff ([P]g” = false)
([P A Po]° = true) iff ([Pi]5° = true and [P2]57 = true)
([3z(P)]g” = true) iff ([[P]IZ[Z =l — e for some val € dom (o))

Table 6. Global evaluation

For a global state o and a logical environment w referring only to values
existing in o we write w,o |=¢ P when P is true in the context of w and 0. We
write =g P if P holds for arbitrary global states ¢ and logical environments w
that refers only to values existing in o.

The verification conditions defined in the next section involve the following
substitution operations: The standard capture-avoiding substitution p[é/7] re-
places in the local assertion p all occurrences of the given distinct variables §
by the local expressions €. We apply the substitution also to local expressions.
The following lemma expresses the standard property of the above substitution,
relating it to state-update. The relation between substitution and update for-
mulated in the lemma asserts that p[€/¢] is the weakest precondition of p wrt. to
the assignment. The lemma will be used for proving invariance of local assertions
under assignments.

16 The assertion language

Lemma 1 (Local substitution). For arbitrary logical environments w, in-

stance local states (0,4 ,T), local expressions €', and local assertions p, we have

[[e’[é’/g‘]]]‘27o'inxt77- _ [[e/]]wﬁim[Q‘H[[é‘]]:’gi"”'f]7"'[?7’—’[[5]:’61'"”’7]

, and
W, Oinsts T EL PIENT) iff @, 05 [T [E] 7] g =[] T EL p

The effect of assignments to instance variables is expressed on the global
level by the substitution P[E/z.7], which replaces in the global assertion P the
instance variables ¥ of the object referred to by z by the global expressions E. To
accommodate properly for the effect of assignments, though, we must not only
syntactically replace the occurrences z.z; of the instance variables, but also all
their aliases E’.x;, when 2z and the result of the substitution applied to E’ refer
to the same object. As the aliasing condition cannot be checked syntactically,
we define the main case of the substitution by a conditional expression [6]:

(E'.2;)[E/z.4) = (if E'[E/2.&) =z then E; else (E'[E/z.7]).x; fi).

The substitution is extended to global assertions homomorphically. We use this
substitution to express that a property defined in the global assertion language
is invariant under assignments. For the sake of convenience, we also use the
substitution P[E/z.7] for arbitrary variable sequences ¢ possibly containing local
variables, whose semantics is defined by P[E /z.%], where & is the sequence of
the instance variables of § and E, is the corresponding subsequence of E. That
the substitution accurately catches the semantical update, and thus represents
the weakest precondition relation, is expressed by the following lemma;:

Lemma 2 (Global substitution). For arbitrary global states o, logical envi-
ronments w referring only to values existing in o, global expressions E', global
assertions P, and class-typed logical variables z:

[EI[E/Zf]HE’U — IIEI]]°57U[[[ZH;'G-§’_>|IEH;'G]

w,0 g PIE[2.3) iff w,o[[z]5°.Z~[E]5"] g P .

To express a local property p in the global assertion language, we define the
substitution p[z, E/this, @] by simultaneously replacing in p all occurrences of the
self-reference this by the logical variable z, which is assumed to occur neither in

p nor in E, and all occurrences of the local variables i by the global expressions
E. The main cases of the substitution are defined as follows:

, and

this[z, E /this, @] = z
z[z, B /this, ii] = z.z
uilz, E [this, @] = E
(32’ (p))|z, E /this, @] = 32 (p[z, E [this, ii])
(32 € e(p))[z, E /this, @] = 32/ ((2' € e[z, E /this, i]) A p[z, E /this, @])
(32’ T e(p))[z, E /this, @] = 32 (2’ C e[z, E/this, @l]) A p|z, E /this, @) ,

The proof system 17

where z # 2’ in the cases for existential quantification. The substitution re-
places all occurrences of the self-reference this by z, transforms all occurrences
of instance variables z into qualified references z.xz, and substitutes all local
variables u; by the given global expressions F;. For unrestricted quantifications
(32'(p))[2, E /this, @] the substitution applies to the assertion p. Local restricted
quantifications are transformed into global unrestricted ones where the relations
€ and C are expressed at the global level as operators.

For notational convenience we sometimes view the local variables occurring in
the global assertion p[z/this] as logical variables. Formally, these local variables
are replaced by fresh logical variables.

This substitution will be used to combine properties of instance local states
on the global level. The substitution [z, E /this, @] preserves the meaning of local
assertions, provided the meaning of the local variables @ and this is matchingly
represented by the global expressions E and z:

Lemma 3 (Lifting substitution). Let o be a global state, w and T a logi-
cal environment and local state, both referring only to values existing in o. Let
furthermore e and p be a local expression and a local assertion containing local
U;Lzriables a. If (@) = [E]5° and z a fresh logical variable with w(z) = 7(this),
then

[elz, E/this, @] = [e]2 ") and

w,0 =g plz, E/this, @] iff w,o(r(this)),T =L p.

4 The proof system

This section presents the assertional proof system for reasoning about Javayr
programs, formulated in terms of proof outlines [26,15], i.e., where Hoare-style
pre- and postconditions [16, 20] are associated with each program statement. The
proof system has to accommodate for dynamic object creation, shared-variable
concurrency, aliasing, method invocation, and synchronization.

The following section defines how to augment and annotate programs into
proof outlines, before Section 4.2 describes the proof method.

4.1 Proof outlines

To reason about multithreading and communication, we first define a program
transformation, introducing new communication statements that model explic-
itly the communication mechanism of method invocations, then augment the
program by auxiliary variables, and, finally, introduce bracketed sections.

To be able to reason about the communication mechanism of method invo-
cations from the view of the caller, who sends the actual parameter values and
receives the return value, we split each method invocation v := ey.m(€) different

18 The proof system

from the invocation of the start-method of an object into the sequential composi-
tion of the statements ey.m(€) and receive u. Execution of a method call ey.m(€)
sends the actual parameter values, whereas the corresponding receive statement
receive u models the reception of the result value. Correspondingly, for methods
without return value, the pure receive statement receive is used, instead.

To express properties of the multithreaded flow of control we need to augment
the program by fresh auziliary variables, disjoint from the program variables,
both as local and as instance variables. They are added only for the sake of
verification and do not influence the control flow. These additional variables
represent information about the global configuration within local and instance
states.

Formally, assignments y := e of expressions without side-effects to instance
or local variables can be extended to multiple assignments y, i := e, € by insert-
ing additional assignments to auxiliary variables, where (y, i) denotes a vector of
distinct variables and (e, €) a corresponding sequence of side-effect-free expres-
sions. Besides the above extension of already occurring assignments, additional
multiple assignments to auxiliary variables can be inserted at any point of the
program.

Finally, we extend programs by bracketed sections, a conceptual notion, which
is introduced for the purpose of proof and does not influence the control flow.
Semantically, a bracketed section (stm) expresses that the statements inside are
executed without interleaving with other threads. To make object creation and
communication observable, we attach auxiliary assignments to the corresponding
statements; to do the observation immediately after these statements, we enclose
the statement and the assignment in bracketed sections. The replacement of
communication and object creation statements, and method bodies is defined in

Table 7, where 4,41, ... , ¥4 are arbitrary auxiliary variable sequences.
Replace by

call eo.m(€) (e0-m(€); 71 := €1)
method body stm; rexp (§2 := &); stm; (rezp; s := €3)
receive receive u (receive u; §a := €)
receive receive (receive; g4 := €4)

object creation U = new (u := new; g := €)

object creation new (new; i := €)

Table 7. Bracketed sections

As auxiliary variables do not change the control flow of the original program,
we can schedule the execution order of the augmented program as follows: For
method call statements, after communication of the parameters, first the auxil-
iary assignment of the caller and then that of the callee is executed. Conversely

The proof system 19

for return, where the communication of the return value is followed by the execu-
tion of the assignment of the callee and then that of the caller, in this order. Note
that these three steps for method invocation and return may not be interleaved
by other threads.

Control points within a bracketed section and at the beginning of a method
body we call non-interleaving points. All other control points are called interleav-
ing points. A global configuration (T, o) is stable, if for all local configurations
(7, stm) in T, stm represents an interleaving point. Restricted to an object, (T, o)
is stable in a, if for all local configurations (7, stm) in T' with 7(this) = «, stm
represents an interleaving point. A local configuration (7, stm) € T is enabled in
(T, o), if the statement stm can be executed at the current point, i.e., if there is
a computation step (T, o) — (T",¢') executing stm in the local state 7.

A transformation of a program is given by, first, introducing communication
statements, then adding assignments to auxiliary variables, and, finally, extend-
ing the program by bracketed sections. The operational semantics of transformed
programs is given in Appendix A. A transformation does not change the origi-
nal behavior of a program (cf. Lemma 9), except that it introduces additional
non-interleaving points.

The definition of a complete proof system requires that we can formulate
the transition semantics of Javayr in the assertion language. As the assertion
language can reason about the local and global states, only, we have to augment
the program with auxiliary variables to represent information about the control
points and stack structures within the local and global states. We introduce the
specific auxiliary variables

callerobj, id, lock, started, and stable ,

described in the following.

An important point of the proof system is the identification of the communi-
cating objects and threads. Roughly speaking, the local state of the execution of
a method must represent information about the caller object to distinguish self-
calls from others. Additionally, information about its thread membership and its
position within the call stack is needed to detect local configurations in caller-
callee relationship and reentrant calls. As these distinctions determine whether
and how the auxiliary assignments accompanying the communication statements
affect the instance states of objects, they will be crucial in the formulation of
the interference freedom test.

We identify a thread by the object in which it has begun its execution, i.e.,
by the self-reference of the deepest local configuration in the thread’s stack. This
identification is unique since the start-method of an object can be invoked only
once, i.e., at most one thread can begin its execution in a single object. A local
configuration is identified by the stack it appears in together with its position
in the stack, i.e., the stack depth at which it occurs.

Formally, each method definition is extended by the auxiliary formal parame-
ters callerobj and id. The variable callerobj of type Object stores the identity of the

20 The proof system

caller object. The variable id of type Object x Int is used to identify the executing
thread via the object in which it has begun its execution, and the position of the
corresponding local configuration in the stack of the thread. Each formal param-
eter list @ is extended to (callerobj,id, #@). When executing the main-method in
the initial configuration, callerobj is initialized to nil, and id gets the initial value
(c,0), where « is the initial object. Correspondingly for each method invocation,
eg-m(€) is extended to ep.m(this, callee(id), €), where callee(a,n) = (a,n+ 1) for
all n > 0. If m is the start-method, the method call statement is replaced by
ep.start(nil, (eg, 0)), instead.

To express if two local configurations appear in the same stack let the function
samethread : (Object x Int)? — Bool be defined by samethread((ca,n), (3, m)) iff
a = (3. Similarly, the relation < of the same type is given by (a1,n1) < (a2, n2)
iff @y = as and n; < nsy. The following lemma, formalizes some basic invariant
properties of the auxiliary variables callerobj and id.

Lemma 4 (Identification). Let (T, o) be a reachable configuration of a trans-
formed program. Then

1. for all stacks £,&' € T and for all local configurations (7,stm) € & and
(t', stm') € & we have samethread(7(id), 7' (id)) = true iff £ = &', and

2. for each stack (1o, stmg)...(Tn, stmy) in T and each index i € {0,...,n}
7i(id) = (7o(this),i); furthermore, mo(callerobj) = nil and 7;(callerobj) =
Tj—1(this) for all j € {1,... ,n}.

To be able to reason about the synchronization mechanism of Javayr, we ex-
tend each class definition by the auxiliary instance variable lock of type Object x
Int. Its initial value (nil,0) states that no thread is currently executing any syn-
chronized method of the given object; otherwise, the value («,n) identifies the
thread which acquired the lock by invoking a synchronized method of the given
object. Besides the identity « of the lock-holder, lock remembers the stack depth
n, at which the thread has gotten the lock. L.e., if a thread is currently executing
some synchronized methods in an object «, then the variable lock of a stores the
identity of the deepest local configuration in the thread’s stack which represents
the execution of a synchronized method of a.

Formally, lock reservation for a synchronized method with body (7> :=
&); stm; (rexp;§3 := €3), is represented by including the assignment lock :=
getlock(lock, id) in #> := &, and lock := release(lock, id) into g3 := &; for lock
release. The interpretation of the operators getlock and release is defined by

lock if lock # (nil,0)
id otherwise

lock if lock # id
(nil,0) otherwise .

getlock (lock, id) = {
release(lock, id) = {

The following lemma shows how to express enabledness of the invocation of
synchronized methods using the auxiliary variable lock of the callee object:

The proof system 21

Lemma 5 (Lock). Let (T,0) be a reachable stable configuration of a trans-
formed program, o € dom(c), and € € T a stack with &€ = &' o (1, stm). Then

isfree(T\{¢},) iff o(a)(lock) = (nil,0) V o(a)(lock) < 7(id) .

The auxiliary boolean instance variable started represents the semantic func-
tion started and states whether there is a thread in the global configuration
which started its execution in the given object. For each object, started is initial-
ized to false. Bracketed sections at the beginning of the main-method and at the
beginning of start-methods contain the assignment started := true. The follow-
ing lemma states that the variable started adequately represents the predicate
started.

Lemma 6 (Started). For all reachable stable configurations (T, o) of a trans-
formed program and all objects o € dom(c),

started(T,«) iff o(a)(started) .

The proof system of Section 4.2 generates verification conditions assuring
invariance of assertions under the execution of statements, indeed of enabled
statements. Now, in the transformed semantics with its bracketed sections, en-
abledness of a statement is a global notion, as it depends on whether the global
configuration is stable or not. In order not to stipulate too strong proof obliga-
tions and thus loose completeness of the proof system, invariance at the level
of local proof obligations needs to be shown only if there exists a corresponding
global state with the statement enabled.

Ordinary statements outside bracketed sections are enabled in stable config-
urations, only. Nevertheless, concentrating on the local verification conditions
for a single thread visiting a single object «, the fact whether another thread
executing exclusively outside of o is currently at a non-interleaving point is im-
material for the local proof obligations. It is immaterial, as, from the perspective
of the thread for which we formulate the verification conditions, the next stable
configuration after the non-interleaving section as well as the one in front of it
are identical with the globally instable one in between wrt. the instance state
of «a, since the threads do not have common variables, neither local ones nor
instance variables. If a second thread is currently at a non-interleaving point
and visits the same object, the situation is similar. For non-interleaving points
immediately after object creation (new;# := €), the instable instance state after
object creation is identical with the stable one just before the bracketed section.
Also method calls and returns (cf. Table 7) across different objects can be han-
dled analogously, since either the caller or the callee object is different from the
object under current consideration. Hence again the stable global configuration
either before or after the non-interleaving execution of the method call or return
agrees with the instance state of « in between, and thus the invariance needs to
be shown.

The only situation which cannot be argued away in this manner is for self-
calls affecting the same object as for which we are formulating the local proof

22 The proof system

obligation: The non-stable configuration at the non-interleaving point in between
the caller’s and the callee’s observation does not necessarily correspond to any
stable configuration with identical instance local state. We must therefore ex-
plicitly exclude from the proof-conditions this case, lest to loose completeness of
the proof method.

To be able to do so, we introduce for each class an auxiliary boolean in-
stance variable stable, asserting the existence of a global stable configuration
with corresponding instance state. Formally, we define the augmentation as fol-
lows: The initial value of stable is true. Bracketed sections of method call and
return statements, representing the sending parts of communication, contain the
assignments stable := (ep # this) and stable := (callerobj # this), respectively,
thereby distinguishing between self-calls and others. Correspondingly for the re-
ceiver part, the bracketed sections at the beginning of method bodies and those
of receive statements include the assignment stable := true.

With this augmentation, we define the assertion enabled for multiple assign-
ments i := € as true for assignments in the bracketed sections attached to object
creation, and as stable for assignments occurring outside bracketed sections. For
assignments in bracketed sections accompanying communication, we define:

enabled(y; := €1) = true

enabled(¢> := &) = (callerobj = this) — —stable
enabled(iz := €3) = true

enabled(yy := €1) = (ep = this) — —stable,

where ¢ specifies the callee object of the method invocation under consideration.
That the assertion enabled accurately captures enabledness as seen from the local
perspective of a single instance is expressed in the following lemma:

Lemma 7 (Enabled). Let (T, o) be a reachable configuration of a transformed
program and (T, stmass; stm) a local configuration in T where stmqss s § = €
or (§ := €). Let furthermore o,,,, = o(7(this)).

1. If (7, stmges; stm) is enabled in (T, o), then w,0;,,,T |= enabled(y := €).
2. If w,0,,4,T Er enabled(y := &), then (T, stm,ss; stm) is enabled in some
reachable (T", o'y with o' (7(this)) = o,

inst*

The values of the auxiliary variables callerobj, id, lock, started, and stable are
changed only in the bracketed sections as described above.

To specify invariant properties of the system, the transformed programs are
annotated by attaching local assertions to each control point. Besides that, for
each class ¢, the annotation defines a local assertion I. called class invariant that
expresses invariant properties of the instances of the class.® Finally, the global
invariant GI € GAss specifies properties of communication between objects.

6 Note that the notion of class invariant used, for instance, in [22] differs from our
notion since they require the class invariant to hold only after the termination of the
class constructor and to be preserved by whole method calls, but not necessarily in
between.

The proof system 23

Definition 1 (Annotation, proof outline). An annotation of a transformed
program associates with each control point in some method m of a class ¢ a
local assertion p € LASSy, . Furthermore, it assigns to each class ¢ a class
invariant I. € LAss,, . which may refer only to the instance variables of c.
Finally, the program is assigned a global invariant GI € GAss. We require
that in the annotation no free logical variables occur, and that for all qualified
references E.x in GI with E € GExp°, all assignments to x in class ¢ are
enclosed in bracketed sections. An annotated transformation of prog, denoted by
prog’, is called a proof outline.

For annotated programs, we use the standard notation {p} stm {q} to express
that p and ¢ are the pre- and postconditions of stm, i.e., the assertions in front
of and after stm, and write pre(stm) and post(stm) to refer to them.

4.2 Proof system

The proof system formalizes a number of verification conditions which induc-
tively ensure that for each reachable configuration (T, o) and for each local con-
figuration (7, stm) in T the precondition of the statement stm is satisfied and the
class invariants and the global invariant hold. More precisely, the global invariant
is required to hold in reachable stable configurations only, since its satisfaction
can be expected only if the auxiliary variables are up-to-date. To cover concur-
rency and communication, the verification conditions are grouped, as usual, into
initial conditions, local correctness conditions, an interference freedom test, and
a cooperation test.

A proof outline is initially correct, if the precondition of the main statement
and the global invariant are satisfied in the initial configuration. Local correctness
ensures that local properties of a thread are invariant under its own execution.
This invariance can be guaranteed by local correctness conditions only if no
communication or object creation takes place, since their effect depends on the
communicated values and cannot be determined locally. They will be analyzed
in the cooperation test whose conditions are formalized in the global language.
The invariance of local properties of a thread that currently executes in a given
object can also be influenced by other threads executing in the same object which
possibly changes the instance state. The corresponding verification conditions are
formalized in the interference freedom test.

Our proof method is modular in the sense that it allows for separate in-
terference freedom and cooperation tests. This modularity, which in practice
simplifies correctness proofs considerably, is obtained by disallowing the assign-
ment of side-effect expressions to instance variables. Clearly, such assignments
can be avoided by additional assignments to fresh local variables and thus at the
expense of new interleaving points.

Before specifying the verification conditions for a proof outline, we first fix
some auxiliary functions and notations. Let InitVal be a syntactical operator
with interpretation ImitVal : Var — Val assigning true to stable and the initial

24 The proof system

value of type t to each other variable y € Var!, i.e., nil, false, and 0 for class,
boolean, and integer types, respectively, and analogously for compound types,
where sequences are initially empty. Note that since this ¢ Var, the self-reference
is not in the domain of InitVal. Given IVar, as the set of instance variables
of class ¢ and z € LVar®, then InitState(z) denotes the global assertion z #
nil A /\mGIVarc z.x = InitVal(z), expressing that the object denoted by z is in its
initial instance state.

4.2.1 Initial correctness A proof outline is initially correct, if the precon-
dition of the main statement is satisfied by the initial instance and local states,
where id identifies the first local configuration of a thread, and all other variables
have their initial values. Furthermore, the global invariant must be satisfied by
the first reachable stable configuration, i.e., by the initial global state after the
execution of the bracketed section at the beginning of the main-method.

Definition 2 (Initial correctness). A proof outline is initially correct, if

= pre(body .0 [(this, 0)/id][InitVal(7) /4] , (1)
=g InitState(z) AV2/(2' = nil V 2 = 2') — GI[Ey /2], (2)

where body i = (Vo := &); stm is the body and § the local and instance variables
of the main-method, E; = &[(this, 0) /id][InitVal(§) /] [z/this|, 2 is of the type of
the main class, and z' € LVarObect,

4.2.2 Local correctness A proof outline is locally correct, if the usual ver-
ification conditions [7] for standard sequential constructs hold. Especially, the
precondition of an enabled assignment, as given in the proof-outline, must imply
its postcondition after the execution of the assignment (cf. Equation (3)). Be-
sides invariance under assignments, local correctness requires that all assertions
of a class imply the class invariant:

Definition 3 (Local correctness). A proof outline is locally correct, if for

each class ¢ with class invariant I., all multiple assignments ¥ := €, and all
assertions p in class c,
= pre(y :=) Aenabled(§ := &) — post(§ := €)[¢/7] (3)
|:L', p— 1. (4)

Note that we have no local verification conditions for communication and
object creation statements. The postcondition of a receive statement expresses
an assumption about the method’s return value. Similarly, the precondition of
a method body expresses an assumption about the actual parameters received
and the postcondition of an object creation statement an assumption about the
identity of the new object. These assumptions will be verified in the cooperation
test.

Other threads concurrently executing in the same object may influence or
interfere with the invariance of the local assertions. This is covered in the inter-
ference freedom test.

The proof system 25

4.2.3 The interference freedom test Next we formalize conditions that
ensure the invariance of local properties of a local configuration under the ac-
tivities of others. Since we disallow qualified reference to instance variables in
Javayr, we only have to deal with the invariance of properties under the ex-
ecution of statements within the same object. Containing only local variables,
communication and object creation do not change the state of the executing
objects. Thus we only have to take assignments into account. In the following
let p and § := € be an assertion and an assignment occurring in the same class
of a program.

Satisfaction of an assertion describing a local property of a thread may
clearly be affected by the execution of an assignment by a different thread
in the same object, provided that not both belong to a synchronized method
of the object. Note that this applies only for assertions at interleaving points,
since control points within bracketed sections are protected against interleaving
by another thread.” This situation covering shared-variable interaction between
different threads is captured by the predicate diff_threads(p, 7 := €) defined as
—samethread(id, id") if p is at an interleaving point and not both p and ¢ := &
occur in a synchronized method, and by false otherwise (see page 20 for the
definition of samethread). The variable id represents the identity of the thread
executing 77 := € and id’ the identity of the thread of p.

If, otherwise, the assertion describes the same thread that executes the as-
signment, the only interleaving points endangered are those waiting for a return
value earlier in the current execution stack. In other words, an assignment be-
longing to a reentrant code segment can affect the precondition of a receive
statement whose execution is suspended earlier in the same call chain. However,
the assignment belonging to the matching return statement need not be con-
sidered. To express this kind of interference, we define wait_for_ret(p, i := €) by
id" < id if p is the precondition of a receive statement and 7 := € is not in the
bracketed section of a return statement, by callee(id’) < id if p is the precondi-
tion of a receive statement and § := € is in the bracketed section of a return
statement, and by false otherwise.

For self-calls, the auxiliary assignments at the caller interferes with the
precondition of method body, since both reside in the same object. The case
for return to the same object is analogous. Unlike the situation captured by
wait_for_ret, p here represents a non-interleaving point that has to be shown in-
terference free. For method calls, we define self _call(p, 7 := €) by id" = callee(id) A
ep = this, if p is the precondition of a method m and ¢ := € occurs in a brack-
eted section invoking method m of ey, and by false otherwise. For self-calls of
the start-method, we use id’ = (this, 0) for identification, i.e., self start(p, 7 := €)
is id" = (this,0) A ey = this, if p is the precondition of start and 7 := € occurs in
a bracketed section invoking the start-method of ey. For all other assignments
and assertions the predicate is false.

7 Strictly speaking, interference in the same object by different threads can occur also
when the start-method is executed by a self-call. This will be handled together with
self-calls in general.

26 The proof system

The case for returning is specified by the assertion self_ret(p, 7 := €) which
is id = callee(id") A ¢} = this if § := € occurs in the bracketed section of return in
a method m and p is the postcondition of a receive statement which is preceded
by the invocation of method m of ey. In all other cases self_ret(p, i :=) is false.
The expression e} denotes ey with every local variable u different from this is
replaced by a fresh one u'.

Collecting the above cases, we define interleavable(p, i := €) for assertions p
and assignments ¢ := € in the same class by

—

y:=e)V
)

self _call(p, i := €) V self start(p, i := €) V self ret(p,§ := €) .

diff_threads(p, 7 := €) V wait_for_ret(p

The interference freedom test assures invariance of a property under the
execution of an assignment in the same object, if both local configurations are
in a configuration in that the assignment is enabled. We use the assertion and the
precondition of the assignment to express reachability of the given control points,
where the predicate interleavable(p, stm) denotes that they are also reachable in
a common computation. That an assignment i := € can be enabled in the given
instance local state is stated by the assertion enabled(y := €), as defined on
page 22.

Definition 4 (Interference freedom). A proof outline is interference free, if
for all classes ¢, all assignments i := € and assertions p in c,

Ec p' A pre(i := &) A this = this’ A interleavable(p, 7 := &) A enabled (7 := #)
= p'[E/q] (5)

where p’ denotes p with all local variables u and this replaced by some fresh local
variables u' and this', respectively.

4.2.4 The cooperation test Whereas the verification conditions associated
with local correctness and interference freedom cover the effects of assignments,
the cooperation test deals with method invocation and object creation. Since dif-
ferent objects may be involved, it is formulated in the global assertion language.
Besides ensuring invariance of the global invariant over bracketed sections, it
specifies conditions under which the local properties of the communicating part-
ners, i.e., the postconditions of statements involving communication or object
creation, are satisfied. We start with the cooperation test for method invocation.

In the following definition, the logical variable z denotes the object calling
a method and 2’ refers to the callee. The cooperation test assures that the
local assertions at both ends of the communication hold, immediately after the
values have been communicated. When calling a method, the postcondition of the
method invocation statement and the precondition of the invoked method’s body
must hold after passing the parameters (Equation (6)). In the stable global state
prior to the call, we can assume that the global invariant, the precondition of the
method invocation at the caller side, and the class invariant of the callee hold.

The proof system 27

For synchronized methods, additionally the lock of the callee object is free, or the
lock has been acquired in the call chain of the executing thread. This is expressed
by the predicate isfree(z'.lock,id) defined as z'.lock = (nil,0) V z'.lock < id,
where id is the identity of the caller. Equation (7) works similarly, where the
postconditions of the corresponding return- and receive-statements are required
to hold after returning from a method. In the global state prior to the call the
global invariant and the preconditions of the return and receive statements are
assumed to hold.

The global invariant GI is not allowed to refer to instance variables whose
values are changed outside bracketed sections. Consequently, it will be automat-
ically invariant under the execution of statements outside bracketed sections.
For the bracketed sections, however, the invariance must be shown as part of
the cooperation test. A difference between the treatment of the local assertions
and the global invariant is, that the latter does not necessarily hold immediately
after communication, but only after the accompanying assignments to the auxil-
iary variables of both the caller and callee have been performed. This is reflected
in the two substitutions applied to the global invariant on the right-hand sides
of the implications. For instance in Equation (6), GI[E}/2".i][Ey /2] is the
weakest precondition of GI wrt. the assignments §; := €; and ¢ := &, in this
order. Note that the order in which the syntactic substitutions are applied to
GI is reverse compared with the order in which the corresponding assignments
update the state.

Invoking the start-method of an object whose thread is already started, or
returning from a start-method or from the first execution of the main-method
does not have communication effects; Equations (8) and (9) take care about the
validity of the postconditions and the invariance of the global invariant.

Definition 5 (Cooperation test: Communication). A proof outline satis-
fies the cooperation test for communication, if for all classes ¢ and all state-
ments (eg.m(€); 71 := &;); (receive v; iy := &) in c with ey € Exp.. , Equations (6)
and (7) hold, where m is a synchronized method of ' with body,, . = (J» =
&2); stm; (return epe;; 43 1= €3), formal parameter list @, and local variables U ex-
cept the formal parameters and this.
Eg GI A pre(ey.m(€))[z/this] A Ir[2'/this] A
eolz/this] = 2’ Aisfree(z’.lock,id) A z # nil A 2’ # nil
— post(eg.m(€))[z/this] A pre'(bodym,c,)[z',E/this, i) A
GI[E; /2][/2.47) (6)
=g GI A pre!(return ee;)[2', E /this, @] A pre(receive v)[z/this] A
eo[z/this] = 2" Az # nil A 2 # nil
— post' (return e,e)[2', E /this, @] A post(receivev)|z, E',, /this, v] A
GI[Ely/ 2] B3/ 5] - (7)
In the equations, z € LVar® and 2' € LVar® are distinct fresh logical vari-
ables and local variables are viewed as logical ones on the global level. We define

28 The proof system

pre’(body,, .,) = pre(body,, ..)[InitVal(?) /7], & = &[hitVal(d)/v], and e, &,
pre’ (return eret), and post'(return eq;) denote the given expressions and asser-
tions with every local variable except the formal parameters and this replaced by
a fresh one. Furthermore, E, = é1 [z /this], EZ = é’{[z’,ﬁ/this,ﬁ] for i = 2,3,
Ey = 2z, E! ,/this,v], where E = &z/this| and E!,, = ¢! [2', E/this, @]. For
non-synchronized methods, the antecedent isfree(z’.lock,id) is dropped. The ver-
ification conditions for methods without return value are analogous.

For invocations of start-methods, only (6) applies with the additional an-
tecedent —z'.started. For the case that the thread is already started,

Eg GI A pre(ep.start(€))[z/this] A I.[2' /this] A
eo[z/this] = 2' A 2'.started A z # nil A 2" # nil
— post(ep.start())[z/this] A GI[E; /z.i] (8)

has to be satisfied. Finally, for statements (return; 3 := &;) in the main-method
or in a start-method,

Eg GI A pre(return)[2’/this] Aid = (2',0) A 2" # nil
— post(return)[2' /this] A GI[Es /2" .7s] . 9)

Note that we replace the local variables u of the callee by fresh ones denoted by
¢’ in order to avoid name clashes with local variables of the caller. The resulting
assertions and expressions we denote by a primed version.

The substitution of @ by E in the condition pre’(bodym7c,)[z’, E/this,ﬁ] re-
flects the parameter-passing mechanism, where E are the actual parameters &
represented at the global assertional level. This substitution also identifies the
callee, as specified by its formal parameter id. Note that the actual parameters
do not contain instance variables, i.e., their interpretation does not change dur-
ing the execution of the method body. Therefore, E can be used not only to
logically capture the conditions at the entry of the method body, but at the exit
of the method body, as well, as shown in Equation (7).

Besides method calls and return, the cooperation test needs to handle brack-
eted sections containing object creation statements, taking care of the preser-
vation of the global invariant, the postcondition of the new-statement, and the
new object’s class invariant. We can assume that the precondition of the ob-
ject creation statement and the global invariant hold in the stable configuration
prior to the instantiation. The extension of the global state with a freshly cre-
ated object is formulated in a strongest postcondition style, i.e., it is requested
to hold immediately after the instantiation. We use existential quantification
to refer to the old value: 2’ of type LVar'stObiect represents the existing objects
prior to the extension. Moreover, that the created object’s identity stored in
u is fresh and that the new instance is properly initialized is captured by the
global assertion Fresh(z’,u) defined as InitState(u) Au & 2’ AVv(v € 2/ Vv = u),
where InitState(u) is as defined in Section 4.2. To express that an assertion
refers to the set of existing objects before the new-statement, we need to restrict

Soundness and completeness 29

any existential quantification to range over objects from z’, only. So let P be
a global assertion and 2’ € LVar'stObiect 5 Jogical variable not occurring in P.
Then P | 2’ is the global assertion P with all quantifications 3z(P’) replaced by
Jz(within(z, 2’) A P'), where the semantic interpretation within (v, v') for object
sequences v’ € Val™t Ot and arbitrary values v € Val is defined recursively by

true if v€ Val®®'u Val™
L N Juer if vel, Val,;
within(v, v') = within(vy,v") A within(vz,v') if v=(vi,v2)€U,, 4, Valll. <t
Yu; € v(within (v, v')) if velJ, Vallsy!.

The following lemma formulates the basic property of the projection operator:

Lemma 8. Assume a global state o, an extension o' = ola of;f;zit] for some
a € Val°, a ¢ dom(o), and a logical environment w referring only to values
ezisting in o. Let v be the sequence consisting of all elements of |, dom,; (o).
Then for all global assertions P and logical variables z' € LVaristObiect

not oc-
curring in P,
w,o =g P iff w2’ =)0’ =g Pl 2.

Thus the predicates GI | 2’ and Ju(pre(u := new®)[z/this]) | 2’ express that
the global invariant and the precondition of the object creation statement hold
for the old value of u prior to the creation of the new object.

This leads to the following definition of the cooperation test for object cre-
ation:

Definition 6 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes ¢ and statements
(u:=new’; g :=¢€) in ¢':

Eg 2z #nilA EIz'(Fresh(z',u) A (GI A Fu(pre(u := new®)[z/thig])) | z') (10)
— post(u := new®)[z/this] A I.[u/this] A GI[E/z.i]] ,

with fresh logical variables z € LVar® and 2' € LVar'tObiect | gnd E = &[z/this].

5 Soundness and completeness

This section contains soundness and completeness of the proof method of Sec-
tion 4. Given a program together with its annotation, the proof system stipulates
a number of induction conditions for the various types of assertions and program
constructs. Soundness for the inductive method means that for a proof outline
satisfying the verification conditions, all configurations reachable in the opera-
tional semantics satisfy the given assertions, completeness conversely means that
if a program does satisfy an annotation, this is provable. For convenience, let

30 Soundness and completeness

us introduce the following notations. Given a program prog, we will write ¢prg
or just ¢ for its annotation, and write prog = ¢, if prog satisfies all require-
ments stated in the assertions, more precisely, satisfaction of the assertions for
all reachable configurations, where in case of the global invariant, satisfaction is
required for stable configurations, only:

Definition 7. Given a program prog with annotation o, then prog |= ¢ iff for
all reachable configurations (T,c) of prog, for all (7, stm) € T with a = 7(this),
and for all logical environments w referring only to values existing in o:

1. w,o(a), 7 = pre(stm), and
2. if (T, o) is stable, then w,0 =g GI .

Furthermore, for all classes c, objects B € dom®(o), and local states T':
3. w,o(B), 7 = L .

The definition is applied both to transformed and original programs. For proof
outlines, i.e., annotated transformed programs, we write prog’ & ¢' iff prog’
satisfies the verification conditions of the proof system.

5.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their
assertions for an annotated program that has been verified using the proof con-
ditions. Soundness of the method is proved by a straightforward, albeit rather
tedious induction on the computation steps.

Before embarking upon the soundness formulation and its proof, we need to
clarify the connection between the original program and the transformed one, i.e.,
the one decorated with assertions, extended by auxiliary variables, sprinkled with
bracketed sections, and transformed as far as the method calls are concerned (cf.
Section 4.1). The transformation is done for the sake of verification, only, and as
far as the un-augmented portion of the states and the configurations is concerned,
the behavior of the original and the transformed program are the same, modulo
some additional non-interleaving points caused by the transformation.

To make the connection between original program and transformed one pre-
cise, we define a projection operation | prog, that jettisons all additions of the
transformation. So let prog’ a transformation of prog, and (T”, ') a global con-
figuration of prog’. Then ¢’ | prog is defined by removing all auxiliary instance
variables from the instance state domains. For the set of thread configurations
T' | prog is given by restricting the domains of the local states to non-auxiliary
variables, removing all annotations, augmentations, and bracketed sections, and
transforming back the explicit communication statements to Javayr syntax. The
following lemma expresses that the transformation does not change the behavior
of programs:

Lemma 9 (Transformation). Let prog’ be a transformation of a program
prog. Then (T,o) is a reachable configuration of prog iff there exists a reach-
able configuration (T', o'} of prog’ with (T' | prog,d' | prog) = (T, o).

Soundness and completeness 31

Let prog be a program with annotation ¢, and prog’ a transformation of
prog with annotation ¢’. Let GI' be the global invariant of ¢, I’ denote its class
invariants, and for an assertion p of ¢ let p' denote the assertion of ¢’ associated
with the same control point. We write |= ¢’ — ¢ iff Eg GI' = GI, = I. — 1.
for all classes ¢, and =, p' — p, for all assertions p of ¢ associated with some
control point. To give meaning to the auxiliary variables, the above implications
are evaluated in the context of states of the transformed program. The following
theorem states the soundness of the proof method.

Theorem 1 (Soundness). Given a proof outline prog’ with annotation @preg .

If prog' Pprogr then prog’ F ©prog' -

The soundness proof is contained in the appendix in Section B.2, basically an
induction on the length of computation, simultaneous on all three parts from the
definition of satisfaction (Definition 7). The property of Theorem 1 is formulated
for reachability of transformed programs. With the help of the transformation
Lemma 9, we immediately get:

Corollary 1. If prog' b @prog and |= @00 = Pprog, then prog = ©prog-

5.2 Completeness

Next we conversely show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

Vprog. prog = ¢prog = 3prog’. prog' b pprog A E Oprog = Pprog -

Given a program satisfying an annotation prog |= @preg, the consequent can be
uniformly shown, i.e., independently of the given assertional part ¢,.,, by in-
stantiating ¢, to the strongest annotation still provable, thereby discharging
the last clause = @progt — @prog. Since the strongest annotation still satisfied
by the program corresponds to reachability, the key to completeness is to

1. augment each program with enough information, to be able to

2. express reachability in the annotation, i.e., annotate the program such that
a configuration satisfies its local and global assertions exactly if reachable
(see Definition 9 below), and finally

3. to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation from Section 4.1
as starting point, where method invocation statements are replaced by method
call and receive statements, the programs are augmented with the specific aux-
iliary variables lock, started, stable, callerobj, and id, and finally equipped with
bracketed sections.

32 Soundness and completeness

Now to make visible within a configuration whether or not it is reachable,
the standard trick is to add information into the states about the way it has
been reached, i.e., the history of the computation leading to the configuration.
It is recorded in history variables, containing enough information to distinguish
reachable from unreachable configurations.

The assertional language is split into a local and a global level, and likewise
the proof-system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance
variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal and external behavior. The sequence
of internal state changes local to that instance are recorded in the local history
and the external behavior in the communication history.

The communication history keeps information about the kind of communi-
cation, the communicated values, and the identity (both object and local con-
figuration identities) of the communication partners involved. For the kind of
communication, we distinguish as cases object creation, ingoing and outgoing
method calls, and likewise ingoing and outgoing communication for the return
value. We use the set of constants {new, call, called, return, receive} for this pur-
pose. Note in passing that the information stored in the communication history
matches exactly the information needed to decorate the transitions in order to
obtain a compositional variant of the operational semantics of Section 2.3.2. See
[3] for such a compositional semantics.

To facilitate reasoning, we introduce an additional auxiliary local variable
loc, which stores the current control point of the execution of a thread. Given
a function which assigns to all control points unique location labels, we extend
each assignment ¢ := € by the update of the variable loc to ¥, loc := €, [, where [
is the label of the control point after the given occurrence of the assignment. We
extend bracketed sections which do not contain assignments by loc := [, where [
is the label of the control point following the bracketed section. We write [= stm
if | represents the control point in front of stm in a method body stm’; stm.

Definition 8 (Augmentation with histories). Each class is further extended
by two auziliary instance variables hinss and Neomm, both initialized to the empty
sequence. They are updated as follows:

1. Each multiple assignment i := € in a class c is replaced by
?ja hinst = é: hinst o ((fa ﬁ)[g/?j]))

where Z are the instance variables of class ¢ containing also h omm but with-
out hys, and @ are the local variables of the executing thread including this.
2. Every bracketed section (stm;§ := €) is extended to

(stm; 7, heomm = €, heomm © (kind, id, partner, values)) .

The value of kind is (new, ¢) for bracketed sections creating an object of type
¢, (call, m) for bracketed sections invoking method m of an object, (called, m)

Soundness and completeness 33

for the bracketed section at the beginning of a method m, (return,m) for
returning from method m, and (receive,m) for receiving the return value
from a method m. The communication partner partner is given by ey for
method invocation ey.m(€) and its subsequent receive statement, if any, and
by callerobj for bracketed sections at the beginning of method bodies and for
return statements. The sequence values contain the actual parameters for
method call, the formal parameters for bracketed sections at the beginning of
method bodies, the return value for return statements, and the received value
for receive statements. In the case of object creation partner is nil, and values
is the identity of the new object, if it is assigned to some variable, and the
empty sequence otherwise.

In the update of the history variable h;,s:, the expression (Z, @)[€/7] identifies
the active thread by the local variable id, and specifies its instance local state
after the execution of the assignment. Note that especially the values of the
auxiliary variables introduced in the program transformation are recorded in
the history hjps:. In the following we will also write (,,.,,7) when referring to
elements of h;,s:. For a non-empty sequence h we define head(h) as the sequence
without its last element and tail(h) as the last element of the sequence.

We introduce the following annotation for the transformed program:

Definition 9 (Reachability annotation).

1. For each class ¢ of the transformed program we define w,0,,.,,7 Fr I°
iff there exists a reachable configuration (T,c) of the program such that
U(T(thiS)) = Oinsts

2. We define post(body,, .) = I. for each class c and method m of c. For all
other control points in front of a statement stm we define w,0,,,,T Er
pre(stm) iff there exists a reachable configuration (T, o) of the program with
a local configuration (1, stm; stma) in T, with o(7(this)) = 0,,4;

3. Finally, w,0 =g GI iff there exists a reachable stable configuration (T, o'} of
the program such that dom(c) = dom(o'), and for all objects o € dom (o),

o(a)(hcomm) = o' (@) (hcomm)-

It can be shown that these assertions are expressible in the assertion language
[33]. The transformed program together with the above annotation build a proof
outline that we denote by prog’.

What remains to be shown for completeness is that the proof-outline prog’
indeed satisfies the verification conditions of the proof system. Initial and local
correctness are straightforward, where for local correctness we use the fact of
Lemma 7 that the enabled-predicate used in the local correctness condition cap-
tures enabledness from the perspective of an instance. The full proofs are shown
in the appendix in Section B.3.

Completeness for the interference freedom test and the cooperation test are
more complex, since, unlike initial and local correctness, the verification condi-
tions in these cases mention more than one local configuration in the assertions of
their respective antecedents. Now, the reachability assertions of prog’ guarantee

34 Conclusion

that, when satisfied by an instance local state, there exists a reachable global con-
figuration responsible for the satisfaction. So a crucial step in the completeness
proof for interference freedom and the cooperation test is to show that individual
reachability of two local configurations implies that they are reachable in a com-
mon computation. This is also the key property for the history variables: they
record enough information such that they allow to uniquely determine the way
a configuration has been reached; in the case of instance history, uniqueness of
course, only as far as the instance under consideration is concerned. This prop-
erty is stated formally in the following local merging lemma, where the global
configurations are required to be stable in the object, so that the history variable
indeed contains an up-to-date representation of all steps performed within the
instance.

Lemma 10 (Local merging lemma). Let (Ty,01) and (T>,02) be two reach-
able global configurations of prog' and (1, stm) € Ty, such that both (Ty,01) and
(Ty, 02) are stable in 7(this) € dom(o1) N dom(o2). Then o1 (7(this))(his) =
o2(7(this)) (hinse) implies (7, stm) € Ty.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories. Argu-
ing on the global level, the cooperation test can assume that two control points
are individually reachable but agreeing on the communication histories of the
objects. This information must be enough to ensure common reachability. Such a
common computation can be constructed, since the internal computations of dif-
ferent objects are independent from each other, i.e., in a global computation, the
local behavior of an object is interchangeable, as long as the external behavior
does not change. This leads to the following lemma:

Lemma 11 (Global merging lemma). Let (T7,01) and (T>,02) be two reach-
able stable global configurations of prog’ and a € dom(o1) N dom (o) with
o1(a)(hcomm) = 02(@)(hcomm). Then there exists a reachable stable configuration

(T, o) with o(a) = 01(a), and o(B) = 02(B) for all B € dom(o2)\{a}.

Note that together with the local merging lemma this implies that all local
configurations of « in (T7,01) all local configurations of § # « in (T, 02) are
contained in the commonly reached configuration (T, o).

This brings us to the last result of the paper:

Theorem 2 (Completeness). Given a program prog, the proof outline prog'
satisfies the verification conditions of the proof system from Section 4.2.

6 Conclusion

Related work This paper presents the first sound and complete assertional proof
method for a multithreaded sublanguage of Java. In [2] the basic ideas have
been introduced for proof outlines by means of a modular integration of the
interference freedom and the cooperation test for a more restricted version of

Conclusion 35

Java. The present paper offers such an integration for a more concrete version of
Java by incorporating Java’s reentrant synchronization mechanism. This requires
a non-trivial extension of the proof method by a more refined mechanism for the
identification of threads.

Most papers in the literature focus on sequential subsets of Java [30,12, 10, 28,
29,13, 34,1, 35, 36]. Formal semantics of Java, including multithreaded execution,
and its virtual machine in terms of abstract state machines is given in [31]. A
structural operational semantics of multithreaded Java can be found in [14].

Future work In the context of the bilateral NWO/DFG project MoBI1J and the
European Fifth Framework RTD project OMEGA we are currently developing
a front-end tool for the computer-aided specification and verification of Java
programs based on our proof method. Such a front-end tool consists of an editor
and a parser for annotating Java programs, and of a compiler which generates
corresponding proof obligations. A theorem prover (HOL or PVS) is used for
verifying the validity of these verifications conditions. Of particular interest in
this context is an integration of our method with related approaches like the
Loop project [19, 25].

As future work, we plan to extend Javayr by further constructs, especially
adding further synchronization primitives for monitor synchronization such as
wait and notify, but also extending the language in the direction of “object-
orientedness”, adding inheritance, subtyping, and other concepts featured in
Java. To deal with subtyping on the logical level requires a notion of behavioral
subtyping [5].

Acknowledgments We thank Marcel Kyas and Cees Pierik for fruitful dis-
cussions and suggestions. This work was partly supported by the NWO/DFG
project MoB1J and the European Fifth Framework RTD project OMEGA.

References

1. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In Bidoit and
Dauchet [11], pages 682—696. An extended version of this paper appeared as SRC
Research Report 161 (September 1998).

2. E. Abrahdm-Mumm and F. de Boer. Proof-outlines for threads in Java. In
Palamidessi [27].

3. E. Abrahdm-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. A compositional
semantics for javam,:. Technical report, Lehrstuhl fiir Software-Technologie, Insti-
tut fiir Informatik und praktische Mathematik, Christian-Albrechts-Universitat zu
Kiel, Mar., 2002.

4. J. Alves-Foss, editor. Formal Syntar and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer-Verlag, 1999.

5. P. America. A behavioural approach to subtyping in object-oriented programming
languages. 443, Phillips Research Laboratories, January/April 1989.

6. P. America and F. de Boer. Reasoning about dynamically evolving process struc-
tures. Formal Aspects of Computing, 6(3):269-316, 1993.

36

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Conclusion

K. R. Apt. Ten years of Hoare’s logic: A survey — part I. ACM Transactions on
Programming Languages and Systems, 3(4):431-483, Oct. 1981.

K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359-385, 1980.

I. Attali and T. Jensen, editors. Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France, 2001.
B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
Attali and Jensen [9], pages 6-24.

M. Bidoit and M. Dauchet, editors. Theory and Practice of Software Develop-
ment, Proceedings of the Tth International Joint Conference of CAAP/FASE, TAP-
SOFT’97, volume 1214 of Lecture Notes in Computer Science, Lille, France, Apr.
1997. Springer-Verlag.

R. Breu. Algebraic Specification Techniques in Object Oriented Programming En-
vironments. PhD thesis, Universitat Passau, 1991. See also Springer LNCS 562.
P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor classification. ACM Computing
Surveys, 27(1):63-107, Mar. 1995.

P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [4].

W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel,
and J. Zwiers. Concurrency Verification: Introduction to Compositional and Non-
compositional Proof Methods. Cambridge University Press, 2001.

R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19-32, 1967.

J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

C. Hankin, editor. Programming Languages and Systems: Proceedings of the Tth
European Symposium on Programming (ESOP ’98), Held as Part of the Joint
European Conferences on Theory and Practice of Software (ETAPS’98), (Lisbon,
Portugal, March/April 1998), volume 1381 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

J. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-
oriented languages: Logical models and tools. In Hankin [18].

C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576-580, 1969. Also in [21].

C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

H. Hussmann, editor. Fundamental Approaches to Software Engineering, volume
2029 of Lecture Notes in Computer Science. Springer-Verlag, 2001.

G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281-302, 1981.

The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/~bart/LOOP/, 2001.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319-340, 1976.

C. Palamidessi, editor. CONCUR 2000: Concurrency Theory (11th International
Conference, University Park, PA, USA), volume 1877 of Lecture Notes in Com-
puter Science. Springer-Verlag, Aug. 2000.

Conclusion 37

28.

29.

30.

31.

32.

33.

34.

35.

36.

37

A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
Technische Universitat Miinchen, Jan. 1997. Habilitationsschrift.

A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
Swierstra [32], pages 162-176.

B. Reus, R. Hennicker, and M. Wirsing. A Hoare calculus for verifying Java real-
izations of OCL-constrained design models. In Hussmann [23], pages 300-316.

R. Stérk, J. Schmid, and E. Borger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

S. Swierstra, editor. Proceedings of the 8th European Symposium on Programming
(ESOP ’99), volume 1576 of Lecture Notes in Computer Science. Springer, 1999.
J. V. Tucker and J. I. Zucker. Program Correctness over Abstract Data Types, with
Error-State Semantics, volume 6 of CWI Monograph Series. North-Holland, 1988.
D. von Oheimb. Axiomatic sematics for Java'“ in Isabelle/HOL. In
S. Drossopoulo, S. Eisenbach, B. Jacobs, G. Leavens, P. Miiller, and A. Poetzsch-
Heffter, editors, Formal Techniques for Java Programs, number 269, 5/2000 in
Technical Report. Fernuniversitat Hagen, 2000.

D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency — Practice
and Experience, 2001. to appear.

D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side
effects and virtual methods revisited. submitted for publication, 2002.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With Uml. Object Technology Series. Addison-Wesley, 1999.

38 Semantics of transformed programs

A Semantics of transformed programs

Section 4 describes how to transform programs to reason about their properties.
This transformation implies slight changes in the semantics. The operational
semantics of transformed programs is given in the Tables 8 and 9.

Multiple assignments are executed simultaneously (Ass). Method invocation
consists of three steps executed without interleaving with other threads not
involved in the method invocation: First, a new local configuration is created
ready to execute the method body and the actual parameters are passed on
(CALL), afterwards, the caller thread executes the multiple assignment in the
bracketed section of the output statement (Ass!), and third, the bracketed
section at the beginning of the method body is executed (Ass?.). For the
invocation of start-methods, the rules START, Ass? ., and Ass?,, are used,
instead. If the thread is already started, only one local configuration is involved,
and only the rules START and Ass?2,;, apply. Analogously, the semantics of return
in a transformed program is defined by substituting the return value in a first
step (RETURN), executing the callee-assignment in a second step (Ass?), and,

crit
finally, executing the caller-assignment (Ass? ;). In the case of termination no

communication takes place, and only rules TERMINATE and Ass?,;, apply.

Since the stability of a global configuration depends only on the thread con-
figurations, we use here the predicate stable, defined in Section 4.1 for global
configurations, also for sets of thread configurations. Note that the statement of
a local configuration represents a non-interleaving control point if and only if its
statement begins with a bracketed section containing only a multiple assignment.
Lemma 9 shows that reachable configurations of a program prog correspond to
reachable configurations of its transformation prog’ in that all control points are
interleaving points, i.e., all started communications are completed.

The transitions for the remaining sequential constructs are standard and

omitted.

Semantics of transformed programs 39

T stable B € Val®\dom®(o) ' =r1lurs B o =B ol

nst

(T U {€ o (r, (u:=new’; ji=2); stm)}, o) — (T'U {€ o (7', (7:=2); stm)}, ')

NEwW

T stable 7(this) = « 8= [[eo]]g(a)’T € dom®(o)

v = i fthis o Bl S [T
—started (T U {€ o (1, (eo.start(€'); § := €); stm)}, B)
START

(T U {¢o(r,{eo.start(&"); i := &); stm)}, o) —
(T U {& o (r,(§] := &); stm), (7', bodygan)}, 0)

=« 8= [[eo]]g(““ € dom(o)
T, (eo.start(&'); 7 := €); stm)}, B)
(TU{€ o (1, {eo.start(&"); §:=8); stm) }, o) — (TU{€ o (7, (ij:=8); stm)}, o)

T stable 7(this
started (T U {€ o

)
(

START kip

T stable 7(this) = « B =1Teo g(a)’r € dom® (o)
modif m(i@){body,, .} € Meth. m # start sync(e,m) — isfree(T, B)

= 7 thises B)[d [

init

CALL
(T U{&o(r,(e0.m(); ¢ := &); stm)},0) —>
(T U{& o (1,(7 = €); stm) o (7', body,, .)}, o)
T stable 7/(this) =8 7 = ru—[e]2?7]
RETURN

(T U {€ o (1, {receive u; jjs := &4); stm) o (7', (return e; §fs := &))},0) —
(T U {5 o (T”a (:‘74 = 84); Stm) o (7,7 (@73 = _é3>)}7 0)

T stable
(T U {(r, (return; g3 := &))},0) — (T U {(7, (43 := &))},0)

TERMINATE

Table 8. Operational semantics of transformed programs I

40 Semantics of transformed programs

T stable 7(this) = « = T[Q’n—)[[é’]]g(“)’f] o = 0[(1.37!—)[[5]];(0‘)’7]

(TU{€o (1,7 := &stm)}, o) — (T U {€o (7, stm)}, o)

Ass

stm' # € 7(this) = « = T[;L}'l—)[[é’]lg(a)’r] o = U[a-g'_)[[g]];(a),T] Ass!
crit

(TU{€ o (1, (i := &); stm) o (7', (i := &'); stm/)},0) —
(TU{€ o (7", stm) o (7', (§ := &); stm”)}, o")

T U {¢} stable stm #eVE=c¢€ 7(this) = «

T =rlfolFlE T o = olag o [ElE)]

: : : — ASSZut
(TO{€ o (1,(:= &); stm)}, 0) — (TU{ o (7', stm)}, o)
E#£e T(this)=a o =olage[e]Z"7] st

(TU{E o (7,(F =)}, 0) — (TU{E}, o)
r(this) =a " =7[F[E]2 7] o = olag[E]3)7] Asst,

(TU{§ o (7, (7 := &); stm), (7', body o o)}, o) —
(TU{g o (7", stm), (7', bodY gan o) }, ')

Table 9. Operational semantics of transformed programs IT

Proofs 41

B Proofs

B.1 Properties of substitutions

Proof (of Lemma 1). By straightforward induction on the structure of local
expressions and assertions. In the case for local variables u = y; we get

[[U [é“/g“]]]z’ain.si T [[ei]]z’amsi T
= rfu s e)

. W, 0T o AN PR
_ [[]]W7Ui,1.gi[y’_>[5115 et]7T[y’_>|1é1]L G
= |u C .

For instance variables x = y; similarly:

[[l'[é‘/g’]]]z’ﬂin.«tﬁ — [[ei]]z’ai"‘““T
= Oinst [z '_)[[ei]]?ainm‘r](l‘)
= [[x]]w’a-‘."‘“t[gH[[éj]z’gingt’T],T[g;—}ﬂé‘]]:;‘ain.gi-"]
= [=]; |
The remaining cases are straightforward. .

Proof (of Lemma 2). Let o = a[[[z]]“é”a'c’»—)[[ﬁ]]é”] We proceed by induction on
the structure of global expressions and assertions. The base cases are straight-
forward:

[nil[E/z.&]]%7 = nil = [nil] &
B2y = 7 =

Furthermore, we get the following induction cases. We start with the crucial one
for qualified reference to instance variables.

[(E'.)[E/2.2]]3° = [if E'[E/2.7] = 2 then E; else (E'[E/z.q]).x; fi]57 .

This conditional assertion evaluates to [E;]g " if [E’ [E/zf]]]é” = [2]¢” and to
[(E [E/za‘:’])azl]]g" otherwise. So in the first case we get

(B) (B8 = [
= U'([[Z]]gi)(ﬂlz) by def. of ¢
= U'([[E'[E/;Zf]]]gd)(xl) by the case assumption
= U’([[EI]]ug)’UI) () by induction
= [E'zilg” by def. of []g -

If otherwise [E'[E/z.@]]5" # [2]57, then

(B) (B2 = (BB /=a) il

o([E'[E[=af]5")(w:) by def. of [1g

=o' ([E' [E/’zf]]]g”)(mz) case assumption and def. of o’
=o' ([E']g7)(zi) by induction

= [B a2 by def. of [], -

42 Proofs

For operator expressions we get:

(El 1ot 7En))[E/ZjJﬂg7U

Ei\[E/z.4),... ,Ey[E/z.2])]g" def. of substitution
BAE /57, . [BalEf22137) def. of 1

Eg (BT) by induction

= [f(Er,... . Ex)]5” def. of [], .

1
=
- —
—~ —h

For global assertions, the cases of negation and conjunction are straightforward.
For quantification,

[(32/(P))[E/2.7]5° = true

= [[EIz'(P[E/za‘:’])]]“QJU = true def. of substitution

= [[P[E/zf]]]éh L7 — true for some v € domng (o) def. of []

— [[P]]“g’[z = b = rue for some v € domap (o) by induction

= [F(P)]g7 = true dom(o) = dom(a') .
O

Proof (of Lemma 38). By induction on the structure of local expressions and
assertions. The base cases for local expressions are listed below, where the ones
for instance and local variables are covered by the respective provisos of the
lemma. Note that # is the vector of all local variables of the expression.

[z[z, E/this, @57 = [2.2]5 = o([2]57)(z) = o(w(2))(z) = o(r(this))(z)
— [[x]]z),a'(r(this))ﬂ'
[[qu,E/this,ﬁ]]]“é"’ = [E]o" = m(w) = [[ui]]Z,U(T(this)),T
[[this[z,E/this,ﬁ]]]“é” [2]67 = w(z) = r(this) = [[this]]%ﬂ(f(thiS)),T
[nil[z, E /this, @] [nil] 7 (7 ()
[2'[2, E/this, @] °

nil =

[[Z/]]oép — w(z') — [[Z/]]o27a(r(this)),r)

Compound expressions are treated by straightforward induction:

[fes,... ,en)l, EB/this, al]5"

= f([ei]z, E/this,ﬁ]]]“é’”, ..., [enlz, E /this, i]]”) semantics of assertions
= ST, feal 7T by induction
= [fler,. .. ,en)]27 "I semantics of assertions .

For local assertions, negation and conjunction are straightforward. Unrestricted
quantification 3z'(p) in the local assertion language is only allowed for variables

Proofs 43

of type t € {Int, Bool}, for which dom' ; () = Val'. We get

nil

[(32'(p))[z, E/this, @] = true

— [32'(p|z, E/this, i))]g” = true def. of substitution
= [p[z, E/this, U]]]“g’[zr =L — trye for some v € Val' assertion semantics
= [[p]]z[zr = vhe(r(ti9)T — 4re for some v € Val® by induction

= [@] = trye assertion semantics.

For restricted quantification over elements of a sequence let 2z’ € LVar?. Then

[(32' € e(p))[z, E/this, a]]g” = true
[32'((2 € e[z, E/this, i) A (p[z, E /this, @])) &° = true by definition

11

[(2' € e[z, E/this, @) A plz, E [this, @]]% " = true semantics
for some v € dom’,; (o) and W' = W[z >]

= (([[z' gr‘a € [elz, E /this, ﬁ]]]gla) A [plz, E /this, 11’]]]5"’) = true semantics

for some v € dom’,; (o) and W' = W[z]

— ((l[zl]lz’,o'(r(this)),r c Heﬂz’,g(‘r(this)),‘r) A [p]]tzl,g(‘r(this)),‘r) = true by induction
for some v € dom’,; (o) and W' = W[z]

<~ [(' €e) /\p]]“ﬁ”’g(r(this))’f = true semantics

for some v € dom!,;(0) and W' = W[z’]

= [32 € e)]27 TN = true semantics .

The last equation uses the assumption that the local state 7 and the instance
state o(7(this)) assign values from dom,; (o) to all variables, i.e., e does not
refer to values of non-existing objects. Consequently, v € Valﬁm together with
[' € e]]z[z = vhe(r(HI9)T — 4re implies v € dom’, (7).

The case for restricted quantification is analogous. O

B.2 Soundness

This section contains the inductive proof of soundness of the proof method. We
start with some ancillary lemmas about basic invariant properties of transformed
and annotated programs, for instance properties of the auxiliary variables added
in the transformation. Afterwards, we show soundness of the verification condi-
tions of Section 4.2, which then straightforwardly lead to the soundness of the
proof-system.

B.2.1 Invariant properties

Proof (of transformation Lemma 9). Both directions by straightforward induc-
tion on the length of reduction. The crucial point in the “if”-direction is that
for all reachable global configurations (T",0') of a transformed program prog’
there is also a reachable stable configuration (T, ¢"") of prog’ representing the

44 Proofs

same configuration of the original program, i.e., such that (T" | prog,oc"

prog) = (T | prog,o’ | prog). The stable configuration (T" ") is the next
stable configuration after completing the assignments in the bracketed sections
accompanying object creation and communication statements in (T”,0'). Note
that a local configuration is enabled in a reachable stable configuration (T", o"")
of a transformed program iff the corresponding local configuration is enabled in
the projection (T" | prog,a” | prog). O

Lemma 12. Let o be a global state and w a logical environment referring only
to values existing in o. Then [E]g" € domy (o) for all global expressions E €
GEzxp that can be evaluated in the context of w and o.

Proof (of Lemma 12). By structural induction on the global assertion. The case
for logical variables z € LVar' is immediate by the assumption about w, the ones
for nil and operator expressions are trivial, respectively follows by induction. For
qualified references E.z with E € GEzp® and z € IVart an instance variable of
class ¢, if E.xz can be evaluated in the context of w and o, then [E]5" # nil.
Hence by induction [E]3? € domyq(c), more specifically [E]g” € dom(o).
Therefore by definition of global states o([E]g”)(2) € domupi (o). a

Proof (of Lemma 8). By structural induction on the global assertion P. Let w' =
w[z' = v]. For logical variables z in P we know z # 2’ and thus [2]5" = w(z) =

W'(z) = [[z]]‘gl’”’. For qualified references to instance variables, the argument is
as follows:

[E.x]g? = o([E]g7) (=)

= a’([[E]]“g’”)(g?) , [E]g" # o by Lemma 12 and a ¢ dom(o)
=d'([E *LIZ,]’]; 7 Y(z) by induction

= U'([[E]]; 'IT)(x) by the definition of | 2’

= [[Ex]]g 7 semantics of global expressions .

The interesting case is the one for quantification. For z € LVar?:

w,o =g 32(P)

= wlz = v],0 |=g P for some v € dom! (o) semantics

= W[z][z =], =g P | 2 for some v € dom! (o) induction

< w[z][z =], 0’ [Eg within(z,2")AP | 2/ dom!; (o) Cv

for some v € dom! (o)
= wlz' =], 0’ |Eg Fz(within(z,2') AP | 2") semantics
= wl[z' =), 0’ =g (32(P)) | 2.
The remaining cases are straightforward. O

Proof (of Lemma 4). All parts by straightforward induction on the steps of the
transformed program. O

Lemma 13 (Synchronization). Let (T,c) be a reachable stable configuration
of prog'. Then for each class ¢ of prog’ and each object a € dom®(o),

Proofs 45

1. o(a)(lock) = (nil,0) iff there exists no (1,stm) € T with T(this) = a and
stm synchronized, and

2. o(a)(lock) # (nil,0) iff there exists a (7, stm) € T with 7(this) = a, 7(id) =
o(a)(lock), and stm synchronized, and for all (7', stm') with 7'(this) = «
and stm' synchronized, 7'(id) > o(a)(lock).

Proof (of Lemma 13). By induction on the length of (Ty, 00) —* (T, 0n)-

In the base case of an initial configuration (Tp,00) (cf. page 11), the set
To contains exactly one thread (7, stm), executing the non-synchronized main-
statement of the program, and initially the lock of the only object 7(this) = « is
set to (nil,0). The first stable configuration results from (Tg, o) by executing
the bracketed section at the beginning of the non-synchronized main-method.
Since the assignment in this bracketed section does not change the values of the
variables lock, id, and this of any objects or threads, does not create new objects,
and does not add or remove any local configuration from 7', the property holds
for the first reachable stable configuration.

For the inductive step, assume (Ty,09) —* (T,0) —* (T",0') such that
(T', ') is stable and (T, o) is the last stable configuration preceding (T”, ¢’} in
the computation. We distinguish whether (T”, 6"} results from (T, o) by executing
assignment, object creation, method invocation, or return.

Case: Ass

Let (T, o) — (T", 0"y result from the execution of an assignment § := € outside
bracketed sections, where both (T, o) and (T”,¢') are stable (rule Ass). The as-
signment does not touch the variables lock, id, and this of any objects or threads,
does not create new objects, and does not push or pop local configurations, and
the property follows directly by induction.

Case: NEW
In this case (T,0) —2 (T',0'), where the first step created a new object (rule
NEW), and the second one is the trailing multiple assignment in the bracketed
section of new.

Let a« € dom(c'). Then a either reference the newly created object, or
a € dom(o). In the first case a ¢ dom(c), and by the definition of global config-
urations (cf. page 8) there is no local configuration (7, stm) € T with 7(this) = a.
Since the last two steps do not add any local configurations to T, 7(this) # «
for all (7, stm) € T'. Furthermore, since the lock of the new object is initialized
to (nil,0), the required property holds for the new object. In the second case, if
a € dom(o), the property follows directly by induction.

Case: START gpip

Also in this case where the two steps of (T,o) —2 (T',0') are justified by
STARTp and AsS, no local configurations are added to or removed from 7', no
new objects are created, and the values of lock, id, and this are unchanged, and
the case follows by induction.

Case: CALL, START
We are given (T,0) —> (T', '), where the first step is justified by rule CALL

46 Proofs

or START, and the following two steps are the the assignments in the bracketed
sections of caller and callee.

Let o € dom(o'). Then also a € dom(o), since no new objects are created in
the last three steps. If « is not the callee object, then the property holds directly
by induction. If « is the callee object, the only new local configuration (7, stm)
in T" with 7(this) = a represents the execution of the invoked method.

If the invoked method is non-synchronized, then no locks are touched, and
since no local configurations with synchronized statements are added to or re-
moved from the stack, the property follows by induction.

In the case of a synchronized method, the invoked method is not a start-
method, as they are non-synchronized by definition. If in the state prior to the
method invocation o(a)(lock) = (nil,0), then by induction (7, stm) is the only
local configuration in T' representing the execution of a synchronized method
of a. Furthermore, in the bracketed section of the callee the assignment lock :=
getlock(lock, id) is executed, implying o'(«)(lock) = 7(id), and thus the required
property. Otherwise, if o(a)(lock) # (nil,0), then by induction there exists
(7', stm”) € T such that 7'(this) = «, stm' synchronized, and 7'(id) = o(«)(lock),
and for all (7", stm'") € T representing the execution of a synchronized method
in a we have 7'(id) < 7"(id). Since the callee configuration is on top of its
stack, the antecedent isfree of rule CALL together with Lemma 4 implies also
7'(id) < 7(id). The assignment lock := getlock(lock,id) of the callee does not
change the lock value, i.e., o(a)(lock) = o'(a)(lock). As no local configurations
are removed from the stack in the last three steps, the property is satisfied.

Case: RETURN

We are given (T,0) —3 (T', '), consisting of a return step by rule RETURN
and the two trailing assignments in the bracketed sections of the callee and the
caller.

The assumption a € dom(o’) implies @ € dom(o), since no new objects are
created in the last three steps. If « is not the callee object, or if the invoked
method is non-synchronized, then the property holds directly by induction. If
otherwise « is the callee object and the invoked method is synchronized, the
bracketed section of the callee contains the assignment lock := release(lock, id).
We further distinguish two cases: If the identity 7(id) of the callee is greater
than o(a)(lock), then the lock of the callee remains unchanged, and the property
follows directly by induction. Otherwise, if o(a)(lock) equals the identity 7(id)
of the callee, then in the bracketed section of the return statement the lock
is set by lock := release(lock,id) to (nil,0), and the local configuration of the
callee is removed from the stack. By induction, all local configurations (7', stm')
in T with synchronized statements stm’' and representing execution in a, i.e.,
7'(this) = «, have an identity 7'(id) > o(«a)(lock), i.e., 7/(id) > 7(id). On the
other hand, the callee configuration in T is by rule RETURN on the top of its
stack, and consequently by Lemma 4 7/ (id) < 7(id). It follows that 7/(id) = 7(id),
and by Lemma 4 the callee configuration (7, stm) is the only configuration in
T with synchronized statement and 7(this) = «. Thus after removing the callee

Proofs 47

from the stack, there is no local configuration in 7" representing the execution
of any synchronized methods of «, and the property holds.

Case: TERMINATE
For termination, we are given (T,0) —2 (T",0'), where the first step is the
execution of the return-statement of a start-method or of the initial invocation
of the main-method (rule TERMINATE), and the second step executed the assign-
ment in the bracketed section of the return-statement. Since main- and start-
methods are non-synchronized by definition, no lock-values are changed during
these steps, no local configurations with synchronized statements are pushed or
popped, and no new objects are created, and the property holds by induction.
O

Proof (of Lemma 5). For the “only-if”-direction, isfree(T\{¢}, @) implies by
definition (cf. page 10) that there is no (7', stm’) € T\{¢} with 7/(this) = «
and stm' synchronized. If neither in £ there exist such a configuration, then by
Lemma 13 o(a)(lock) = (nil,0). Otherwise, o(«)(lock) # (nil,0) by Lemma, 13,
and there exists (7', stm') € T with 7' (this) = a and stm’ synchronized, such that
o(a)(lock) = 7'(id). The assumption isfree(T\{£}, &) implies that (7', stm') € &.
Furthermore, since (7, stm) is on top of the stack &, Lemma 4 implies that
7'(id) < 7(id), i.e., o(a)(lock) < 7(id).

For the reverse direction, we are given o(a)(lock) = (nil,0) V o(a)(lock) <
7(id). If o(a)(lock) = (nil,0), then isfree(T\{¢}, @) directly by Lemma 13.
If o(a)(lock) < 7(id), then by Lemma 13 there exists a (7', stm') € T with
7'(this) = a and stm’ synchronized, such that o(a)(lock) = 7'(id), and for
all (7", stm") with 7"(this) = « and stm' synchronized, o(a)(lock) < 7"(id).
Lemma 4 implies that all such local configurations representing the execution of
a synchronized method in « are in the same stack as (7, stm), i.e., in £, hence

isfree(T\{¢}, @). a
Proof (of Lemma 6). Straightforward by the definition of augmentation. O

Lemma 14 (Stable). For all reachable configurations (T, o) of a program prog’
and for all objects a € dom (o), o(a)(stable) = false iff the last two steps in the
computation leading to (T,c) were a self-communication (call or return) within
a and the execution of the auxiliary assignment of the sender but not yet that of
the receiver.

Proof (of Lemma 14). By straightforward induction, using the definition of aug-
mentation. 0

Proof (of Lemma 7). Let (T,0) be a reachable configuration of a transformed
program and (7, stm,ss; stm) a local configuration in T where stm,ss equals
g := € or (7:= €). Let furthermore o,,,, = o(7(this)).

Case: Part 1

Let (7, stm,ss; stm) be enabled in (T, 0). If § := € is the observation of either
object creation, or the sender part in a communication, or the receiver part in

a non-self-communication, then by definition w,0,,,, 7T =, enabled(7 := €). If

48 Proofs

iy := € is the observation of the receiver part in a self-communication, then,
since the assignment is enabled, the sender has already executed its observation,
and Lemma 14 assures that o, (stable) = false, and hence by the clause for
self-calls w, 0., T = enabled(y := €). If finally ¥ := € does not occur within a
bracketed section, (T, o) is stable since the assignment is enabled. By Lemma 14

O inst (Stable) = true and thus also w,0,,,, T |=, enabled(y := €).

Case: Part 2
Let w,0,,., T = enabled(§ := é). If §:= € is the observation of object creation
or of the sender part of a communication, then it is enabled in (T, o).

If 7 := € is the observation of the receiver part of a self-communication
within 7(this), then Lemma 4 together with w,o,,.,, T =, enabled(§ := €) and
the definition of enabled imply o, (stable) = false. Using Lemma 14 we get that
the sender already executed its observation, i.e., § := € is enabled in (T, o).

If f := € is the observation of the receiver part of a non-self-communication,
then either the sender has already executed its observation, or not. In the first
case i := € is enabled in (T, o). In the second case, executing the observation of
the caller does not change the instance state of the callee object 7(this). Thus
the resulting global configuration satisfies the requirements.

Finally, assume that := € occurs outside bracketed sections and let (T”, ")
be the last stable configuration in the computation leading to (T, o). If ¢’ and o
define the same instance state for 7(this), then (T, ¢') satisfies the requirements.
Otherwise, (T', 0’y —* (T, 0) executes some communication and the observa-
tion of the sender in the object 7(this). Furthermore, w, 0,,,,, T = enabled(§ :=
é€) imply o,,, (stable) = true, and Lemma 14 assures that the receiver object is
different from 7(this). This means, executing the observation of the receiver does
not change the instance state of 7(this), and the resulting configuration satisfies
the requirements. |

inst?

Lemma 15 (Interleavable). Let (71, stmss; stm1) be enabled in a reachable
configuration (T,c) of a proof outline, where stmqss is i := € or (i := €). Let
furthermore (71, StMass; stmy) # (T2, stm; stma) € T with 1 (this) = 7»(this) = a.
Then

w,o(a), T = interleavable(pre(stm), § := €)

for arbitrary w € 2 and T = [, this' — 72 (i), T2 (this)], where @ are the local
variables from the domain of 7o and @' fresh variables of corresponding types.

Proof (of Lemma 15). We distinguish whether or not the local configurations
(71, Stmass; stmy) and (72, stm; stms) occur in the same stack.

Case: (71, stmgss; stmy) and (12, stm; stms) reside in the same stack

Then Lemma 4 yields samethread (7> (id), 71 (id)). Furthermore, if stm represents
an interleaving point, we have m»(id) < 7 (id), and stm begins with a receive
statement. If additionally stm,ss = (¥ := &) is the trailing observation of a
return statement, then (72, stm; stms) cannot be the matching callee, since, as
said, stm begins with a receive statement. I.e., we have the stronger condition

Proofs 49

callee(m2(id)) < 71(id). Hence by definition of wait_for_ret (cf. page 25) and by
the definition of 7

w,o(a), T =, wait_for_ret(pre(stm), 7 := €) .

If otherwise stm represents a non-interleaving point, then, according to the
semantics of communication for transformed programs, either the last com-
putation step leading to (T',0) was a self-call within @ or the communica-

tion of a return value within «, such that (r,(§ := &);stmy) is the result-
ing configuration of the sender and (7, stm;stms) that of the receiver. For
the self-call we have 75(id) = callee(r;(id)) and in the case of return con-

versely 71 (id) = callee(r2(id)). Note that for the invocation of a start-method,
(71, Stmass; stmy) and (72, stm; stma) would not belong to the same stack; this
kind of communication is handled in the proof case below. Thus, by definition
of self_call and self _ret (cf. page 25) we get

—

w,o(a), T . self_call(pre(stm), § := &) V self _ret(pre(stm),§ := €) .

Case: (71, stmgss; stmy) and (12, stm; stms) are in different stacks

According to the semantics of synchronization, since the local configurations
(71, stmyss; stmy) and (72, stm; stms) belong to different threads executing in the
same object, not both statements are synchronized. Furthermore by Lemma 4
—samethread (7 (id), 72(id)). If additionally stm represents an interleaving point,
then

w,o(a), T [diff_threads(pre(stm), 7 := €) .

If otherwise stm represents a non-interleaving point, then the last computation
step leading to (T, o) was the self-invocation of the start-method of «, where
(T2, stm; stms) represents the initial stack of the new thread, and (m, (7 :=
€); stmy) is the caller. By the definition of the augmentation 7»(id) = («,0),
and therefore

w,o(a), T [Er self _start(pre(stm),y := €) .

Hence we have

—

w,o(a), T = interleavable(pre(stm), 7 := €) .

a

B.2.2 Soundness of the proof-conditions This section shows one by one
the soundness of the verification conditions of Section 4.2, from Equation (1) to
(10).

Lemma 16 (Initial correctness). Let the proof outline prog' be initially cor-
rect. Let (Ty, 00) the initial configuration of prog' with Ty = {(7, bodymain)}, and
<T07 00> — <Téa 0'6) Then w, UO(T(thiS))aT ':E pre(bOdymain) and w, O'(,) |:g GI’
for all logical environments w referring only to values existing in oy.

50 Proofs

Proof (of Lemma 16). Let « be the initial object. Then by definition 7 =
Tinit[this = a][id = (a, 0)], dom(oo) = {a} and o¢(a) = g% Furthermore, the
first stable configuration (7§, () results from (Ty, 09) by executing the multiple
assignment i := € in the bracketed section at the beginning of the main-
method, i.e., o, = oo[c.ifa —[E:] 2™ 7].

Condition (1) of the initial correctness on page 24 implies

W, Timats T . pre(body gy,)[(this, 0)/id][InitVal(7) /7],

and with Lemma 1, w, 0" 7 =, pre(body ai,), Which means, w, oo (7(this)), 7
|_ pre(bOdymam)'

For the global invariant we argue as follows. As in g there exists exactly one
object a being in its initial instance state, we have

wlz+ al,00 Eg InitState(z) A V2 (2'=nil v 2=2") ,

where z is of the type of the main class, and 2’ is a logical variable of type Object.
Using condition (2) of the initial correctness we get

wlz+ al, 00 Fg GI[E/2.405] ,
where E, = &][(this, 0)/id][InitVal(i7) /7][z/this]. Applying Lemma 2 we get
Wiz al, oolagp = [E]SF 7 =g GT
Using Lemma 3 on page 17 and Lemma 1 gives

HE2H;’[ZHQ]7UO _ (this, 0) /id][InitVal(7)/ﬂ[z/thls]]]g wlz = al,o0

[
]] wlz— al,o0(a), T
2]

-
€2
-

[
= [e
[[cro(a) T

ie., w[z—al,0) Eg GI. Again, the value of GI does not depend on the logical
environment, and therefore w, o, =g GI. O

Lemma 17 (Local correctness). Let (T}, 0,) be a reachable configuration of a
locally correct proof outline, and let (Ty,, 0n) — (Tni1,0nt1) result from the ex-
ecution of a multiple assignment i := € in a local configuration (T, stm .5; Stm) €
T, where stmass is § := € or (§ := &). Then w,o,(7(this)), T =, pre(stmass)
implies w,opy1 (7' (this)), 7 =, pre(stm) for arbitrary w € (2, where 7' =
T[g'_)[[é»]]tz,a'n(r(thls)),r]'

Proof (of Lemma 17). As the assignment is enabled in (T}, 5,), so by Lemma 7
w, op(T(this)), T =, enabled(§ := &). The verification condition (3) for local
correctness on page 24 gives w, o, (7(this)), T =, post(y := €)[€/7], and since
post(§ := &) = pre(stm), we get by Lemma 1 w, 0,41 (7' (this)), 7" = pre(stm).

a

Proofs 51

Lemma 18 (Interference freedom test). Let (T}, 0,) be a reachable config-
uration of an interference free proof outline, and let (Ty,0n) — (Tni1,0n41)
result from the execution of a multiple assignment i := € in a local configuration
(T1, Stmass; stmy) € T, where stmygs is § := & or (§ := &). Let furthermore
(12, stm; stma) € T, N Thyq-

Then w, oy (71 (this)), 71 = pre(stmgss) and w, oy (12(this)), 72 |=¢ pre(stm)
imply w, op1(m2(this)), 72 [=r pre(stm) for arbitrary w € £2.

Proof (of Lemma 18). We are given

(T'U{€&o (1, 8tmgss; stm1) 0 &'}, 0,) — (T U {€o (11, stm1) 0 &'}, 0pn11) , OF
<T U {§ ° (7‘1, StmaSS)}aUn> — <T U {5}70n+1> s

where stmg is 7 := & or (§ := &), 71 (this) = a, 7, = n[F[e]27 "™, and
O = onlogo[e]7 .

Let m»(this) = B and 7 = 7 [il’, this' — 72 (i), 72 (this)], where i@ are the local
variables from the domain of 7 and @’ fresh variables.

If a # B, then 0,(8) = o0pn+1(8), and we get w, 0p,4+1(8), 72 [Er pre(stm) by
assumption.

Assume in the following @ = 3. Then w,0,(8),7 [, this = this'. By
assumption and by the definition of 7 we get w,o,(a),7 [Er pre(§ := €)
and w,o,(a), T [Er pre(stm). As the assignment is enabled in (T}, 0,), so by
Lemma 7 w, o, (a), T =¢ enabled(§ := €). Furthermore, using Lemma 15 we get
that w,opn(a), T |=¢ interleavable(pre(stm), := €). Condition (5) of the inter-
ference freedom test implies w, oy (), 7 |=¢ pre(stm)[€/7]. Using Lemma 1 and
the definition of 7 yields the required property. O

Lemma 19 (Cooperation test: Method invocation). Let (T,,0,) be a
reachable configuration of a proof outline satisfying the verification conditions of
the cooperation test for communication, and let (Ty,0,) — (Tha1,0n41) —
(Thao,0nt2) — (Thas,onas) result from executing a method invocation in a
local configuration (11, {eq.m(€);41 = €);stm1) € T, and the corresponding
observations. Let (1o, (§o := &); stma) € T, y1 be the callee configuration after
communication. Then

w, o (71 (this)), 71 Er pre(en.m(€)) ,
w, opn(m2(this)), 7 Es I, and

w,on Eg GI

imply
g1 = é); stma) ,
o

w, ong1 (11 (this)), 71 =2 pre((
W, opt1(T2(this)), 72 = pre((
W, On43 ':g GI

for arbitrary w € 2 and T € X\oc, where I is the class invariant of the callee
object.

= &); stma) , and

52 Proofs

Proof (of Lemma 19). Let caller and callee be given by 7 (this) = « and 7 (this) =
[[eo]]“ﬁ”""(c’)’r1 = (3, both different from nil. Furthermore, the callee’s local state

is defined by 75 = 7, [—[£]27" "™][this — 5], where i are the formal pa-

2
rameters of the method invocation. In addition, if m is synchronized, then

isfree(T\{¢ o (11, (e0.m(&); §1 := €1); stm1)}, B).
Since the method invocation is enabled, the global configuration (T, 0,)
prior to the method call is stable. By assumption

w,on(a), T [Fr pre(eo.m(E))
w,O'n(,B),T |:[, I
W, 0p 'Zg GI,

where [is the class invariant of the callee.

Let z and z' be fresh logical variables of appropriate type and let w' =
wlz = a][z' + B][U'— 71 (7)], where ¢ are the local variables of the caller viewed
as fresh logical variables in the global language. Since logical variables may not
occur free in the annotation, we have

W', on(a), 71 = pre(eg.m(€))
W' on(B), T EL I
W' o, Eg GI,

and further with the substitution Lemma 3

W', o, Eg pre(eg.m(€))[z/this]
W' o =g I[2' /this] .

By definition of w' and the assumption on the value of e, [[(30]];‘:”"7"(“)’71 =B and
further ', 0, g (eo[z/this] = z'). If method m is synchronized, isfree(T\{& o
(11, (€0-m(€); 71 := €); stmy)}, B) implies with Lemma 5 0, (5)(lock) = (nil,0)Vv
on(B)(lock) < 7(id), consequently w' o, |=¢ 2z'.lock = (nil,0) v 2".lock < id.
Furthermore, if m = start, from the predicate —started in rule START we get
additionally using Lemma 6 w’, 0, =g —2'.started. Thus, by Equation (6) of the
cooperation test,

W', on g post(eg.m(8))[z/this] A pre! ((if> == &); stms)[2’, E [this, @] A
GI[EY 2" p])[Ey [z.41] ,

where E = [z/this], Ey = &[z/this|, and E} = &', E /this, @]. For the local

assertions, Lemma 3 together with w'(z) = 7 (this), w'(z') = 72 (this), and w(?)
71 (0) implies

7
I

W on(a), 1 o pre({(fh := &1); stmy)

w',on(B), 72 = pre((

= &); stma) .

Proofs 53

Since logical variables may not occur free in the annotation, and since o, = 041,
we get as required
w, opt1(a), 11 = pre((Fh

—

W, 0n11(B), T2 =L pre((Fa := &); stma) .

= €); stm1)

For the global invariant we observe that the global state is not influenced by
the communication itself; after the assignment ; := € of the caller it is given
by 0ni2 = on[adf l—)[[é’l]]Z"(a)7T1], and after the execution of i» := & by the
callee, the resulting global state is 0,43 = 0y 12[8.%2 —[& Z"”(B)’T2]. Using the
substitution Lemma 3 we get

[B]2 ™ = [afz/this]]2 " = [a]2 ",
and hence 0,12 = oy [0.i1 Hﬂﬁlﬂgl’a"]. Using the same substitution lemma once
more yields

[Elg ™ = [, B this, allg ™ = [&] 770,
Therefore, op13 = Tnia[B.72 l—)[[Eé]]Z "7"+2]. Now, applying twice the substitu-
tion Lemma 2 and using the above equalities yields w’, 043 [Eg GI. Since GI

may not contain free occurrences of logical variables, also w,on4+1 [Eg GI, as
required. O

Lemma 20 (Cooperation test: Startg,). Let (T),,0,) be a reachable config-
wration of a proof outline satisfying the verification conditions of the cooperation
test for communication, and let (Ty,0,) — (Tha1,0n11) — (Tnia, Opia) Te-
sult from calling the start-method of an object whose thread is already started
in a local configuration (1, (ep.start(€); 71 := €1); stmy) € Ty, and executing the
corresponding observation. Then

w, op (71 (this)), 71 [Er pre(en.m(€)) ,
OJ,Un([[eg]]zn(n(thiS))7T1),7— |:E I : and

w,on Eg GI
imply

w, opnt1(71(this)), 71 pre((f1 := €1); stmy) , and
w,ont2 Eg GI

for arbitrary w € 2 and T € Yo, where I is the class invariant of the callee
object.

Proof (of Lemma 20). The proof is analogous to the case of ordinary method
invocation (cf. proof of Lemma 19), where the additional antecedent z'.started of
condition (8) of the cooperation test is implied by the predicate started in rule
STARTsip and again by Lemma 6. a

54 Proofs

Lemma 21 (Cooperation test: Return). Let (T),,0,) be a reachable config-
wration of a proof outline satisfying the verification conditions of the cooperation
test for communication, and let (T, 0n) — (Tnt1,0n41) — (Thao,0pta) —
(Tht3,0n+3) result from communicating the return value of a method in the lo-
cal configurations (1, (receive u; iy := €); stms) € T, and (12, (return e,ct; ¥z :=
&3)) € Ty, and the execution corresponding observations. Let 1| be the local state
of the callee after communication. Then

w, op (71 (this)), 71 Er pre(receiveu) ,
w, op(12(this)), 72 Er pre(return e,t) , and

w,on Eg GI

imply

—

W, ony1 (7 (this)), 71 = pre((fs := €); stmz) ,
W, Ony1(Ta(this)), 7 = pre((y:

w,ont3 Eg GI

3 :=&)), and

for arbitrary w € £2.

Proof (of Lemma 21). Let 1 (this) = a be the caller object, 72(this) = 3 the

callee, both different from nil Then 7| = 7[u+>[eres] 27" (8):71 i5 the updated
local state of the caller after receiving the return value. By the assumptions we
have

w,on(a), 71 Er pre(receive u)

w,on(B), T2 [pre(return e q;)
W, 0n |:g GI .

Let z and 2’ be fresh logical variables not occurring in prog’, and let furthermore
W' = wlze a]lz' = P[0 = 11 (T1)][0h — T2(T2)], where 07 are the local variables
of the caller, and ¥ the local variables of the callee except the formal parameters
and this, viewed as disjoint fresh logical variables in the global language. As the
logical variables do not occur free in prog’, we have

w', on(a), 71 Er pre(receiveu)
w',on(B), T2 [F pre(return eyet)

W' o Eg GI .

Since actual parameters are not allowed to contain instance variables, and since
formal parameters may not be assigned to, their values remain unchanged during
the execution of the invoked method, and thus 7 (if) = [[é’]]%””” (@71 where @ are
the formal parameters of the method considered, and € its actual parameters.
By the substitution Lemma 3

(i) = [2]2 7 = [elz/this]]s " = [E]S

Proofs 55

Using the same lemma once more gives

W', 0 =g pre(receive u)[z /this]
W' o, =g pre'(return eq)[2', E /this, @]

where pre'(return e,;) results from pre(return e..;) by replacing the local vari-
ables from @ by the corresponding logical variables from .

If the receive statement is preceded by a bracketed section invoking a method
of object eg, then since ey may not contain instance variables, i.e., its value does
not change during the execution of the invoked method, the callee object § is
given by [[eo]];:””"(a)’ﬁ. This implies using the definition of w’ that w', o, Fg
(eo[z/this] = 2"). Now, Equation (7) of the cooperation test gives

W', on =g post(receiveu)[z, E!,, /this, u] A post’ (return epe;)[2', E /this, @A
GI[Ey/z.44)[ES 2" 75] ,

where E} = &[2', E /this, if] with E = é[z/this], and E4 = 2[z, E',, /this, u] with
El,, = el [#/, B this, .

For the local assertions, Lemma 3 and using w'(2') = § and (@) = [[E_’]]“g’l"“
further gives

[EL157 = [epalz', Efthis, @l ™ = [eredd 7 ™7 = (u),

where e],, results from e,.; by substituting all local variables from @ by the
corresponding logical variables from . Using Lemma 3 again we get

W' on(a), | E post(receiveu)
W' on(B), 2 [Er post(return epet) .

As prog’ does not contain free occurrences of logical variables, furthermore
post(receiveu) = pre((§y := &4); stmy), post(return e..t) = pre({y3 := €)), and
Op = On+1, We obtain

-

4 = 64); stmy)

Y
U3 = 8)) .

w,opnt1(a), 7 Ec pre((
w,0n+1(8), 72 Ec pre((

For the global invariant,

For the global invariant we observe that the local state of the caller after
communication is given by 7{ = 7i[u—[epet] 7" (8):71 For the global states we
have o' = o, [B.55 = [&]7 7] and o1 = o'[aii > [E]% @] With the

help of Lemma 3 and with (@) = [[E]]“QJ””", we obtain
[B)g " = [&le", Bjthis, allg ™ = [&]7 777 = [&]7 7.

This implies 0,[3.73 H[Eéﬂgl’”"] = On12, and therefore applying Lemma 2 to
the global invariant in Equation (B.2.2) yields

W', 0pia Eg GI[Ey/2.04] - (11)

56 Proofs

We further get with Lemma 3
T{ (U) = [[eTEt]]gn(ﬁ),Tz = [[eret 2),0“(6),7-2 = [[e:*et[zl/this]]]g 7 = IIE;‘et]]g o)
and by the same lemma again

[E4ﬂg,70n+2 _ [[84[2,E;et/this, u]]]g',awrz _ [[64]]2)'7an+2(a)77{,

and hence oy,42[a.7s H[E4ﬂg’7g"+2] = opa3. Therefore, applying Lemma 2 to
Equation (11) yields w',0,4+3 g GI. Since GI does not contain free logical
variables, also w,0,4+3 E¢g GI, as required. a

Lemma 22 (Cooperation test: Terminate). Let (T,,, 0,,) be a reachable con-
figuration of a proof outline satisfying the verification conditions of the coopera-
tion test for communication, and let (T, 0pn) — (Tne1,0n11) — (Tni2, Onia)
result from executing the return-statement of a start-method or of the initial in-
vocation of the main-method in a local configuration (1, (return; s := &3)) € T,
and executing the corresponding observation. Then

w, oy (11 (this)), 1 |=¢ pre(return) , and
W, 0pn 'Zg GI
imply
W, Opy1 (11 (this)), 71 Er pre({(ys := &)) , and
W, ont2 Eg GI

for arbitrary w € (2.

Proof (of lemma 22). Let 1 (this) = a. Executing the return statement at the
end of the initial invocation of the main-method or at the end of a start-method
changes only the control point, but no states. By assumption

w,on(a), 7 = pre(return)
w,on g GI .
Let w' = w[z' =][t~ 71 (¥)], where ¢ are the local variables from the domain of
71 viewed as logical variables on the global level, and where 2z’ is a fresh logical

variable. Since the annotation does not contain free logical variables, also

W' on(a), 71 [pre(return)
W' o, Eg GI .

Using the substitution Lemma 3 we get

W', o, =g pre(return)[2’/this] A GI .

Proofs 57

Furthermore, 7 (id) = (7 (this),0), w'(z') = a = 7 (this), and w'(id) = 7(id)
imply ', 0, g id = (2/,0). By Equation (9) of the cooperation test for commu-
nication, w', o, =g post(return)['/this] A GI[E;/z'.iJ5], where E5 =]2/ /this].
Applying Lemma 3 again yields for the local assertion that w',o,(a), 71 |=r
post(return). Since the annotation does not contain free logical variables, we get
with o, = 041 that w,on41(a), 71 = pre((Fs := €3)), as required.

For the global invariant we observe that Otz = onla.if3 |—>[[é’3]]‘7"(a)’r] Ap-
plying Lemma 3 yields [[Eg]]” I = [[eg[z'/thls]]]“’ o =@]]“’ 707 Using the
above equalities and Lemma 2 we get w', 010 |=g G1. Since GI does not contain
free logical variables, finally w, 0,49 =g GI. O

Lemma 23 (Cooperation test: Instantiation). Let (T,,0,) be a reach-
able configuration of a proof outline satisfying the verification conditions of
the cooperation test for instantiation, and let (T,,0n) — (Tni1,0n41) —
(Tht2,0n+2) result from the creation of a mew object in a local configuration
(11, (u := new®;y := &); stmy) € Ty, and executing the corresponding observa-
tion. Let | be the local state of the executing thread after object creation. Then

w, op (71 (this)), 71 [Er pre(u := new®) , and
w,on Eg GI

imply

W, Oy (7 (this)), 7 = pre((7 := &); stm1) ,
W, oni1(mi(u)), 7 EL I, and
W, On42 ':g GI

for arbitrary w € 2 and T € Xy, where I is the class invariant of the new
object.

Proof (of Lemma 23). Let 1 (this) = o and 8 ¢ domy; (0y,) the newly created
object. Then 7/ = my[urs B8], and ony1 = 0n[B— 02, Note that (T, 0y) is

inst
stable, since the object creation statement is enabled. By assumption

W, 0n |:g GI

w,on(), 71 L pre(u ;= new®) .

Let @ be the local variables from the domain of ;. For the logical environment,
w' = w[z— a][F— 71 (¥)], with fresh logical variables z and ¥, also

W'on Eg GI

W' on(a), 7 Ec pre(u := new®) .

Applying the substitution Lemma 3 we have ', 0, |Eg pre(u := new®)[z/this].
As 1 (u) = w'(u) € domuy (0y,), this implies

W' o Eg GI A Ju(pre(u := new®)[z/this]) .

58 Proofs

As opt1 = op[B o] and B ¢ dompi (0,), Lemma 8 gives

W'[2" = dompi (o), 001 Eg (GI A Ju(pre(u := new®)[z/this])) | 2" .

The logical variable u does not occur free in the above assertion, so we further
obtain w'[2" — domp (0,)][u— B, ont1 Eg (GI A Ju(pre(u := new®)[z/this])) |
z'. Since ¢ domyi (o) is the unique new element in dom(o,41) being in its
initial state, we obtain that w'[z'— dompy(op)]|[ur B],0n+1 =g Fresh(z',u).
Therefore, by the semantics of global assertions,

W'us B, 0011 g 32'(Fresh(2',u) A (GI A Ju(pre(u := new®)[z/this])) | 2") .
From this, we get with the cooperation test for object creation (Equation (10))
W' B, 0nt1 g post(u := new®)[z/this] A I[u/this] A GI[E/z.q] ,

where E = #[z/this]. For the local assertions we get with the substitution
Lemma 3

Wurs B, ons1(a), 7 Erc post(u := new®)
wl[u'_)ﬂ]aan+1(ﬂ)a7- |:E I.

According to the definition of annotation on page 23, no free logical variables
occur in post(u := new®) and in I, and hence we get w, op41(a), 71 [Er pre(stm)
and w, 0,41 (7 (u)), 7 |=r I, as required.

For the global invariant we observe that 0,41 = op[f+—0
(a

¢, init
inst] and o4 =

Ontia.g[E] 7T)’T{]. By the substitution Lemma 2 and w'(z) = « thus

W o lag - E]S] =g GI

and further with Lemma 3 [[E]]g Tt = e, 741071 and thus Wy ont2 Eg
GI. Since there are no free occurrences of logical variables in GI, also w, 0,12 FEg
GI, as required. O

B.2.3 Inductive soundness proof This section collects the previous sound-
ness lemmas for the single proof conditions into the inductive soundness proof
for the whole system. We split the inductive step into preservation for the local
precondition, for the class invariant, and for the global invariant, before we wrap
up the results into the soundness proof of Theorem 1.

Lemma 24 (Induction step: preconditions). Given a proof outline prog'
that satisfies the verification conditions and a reachable configuration (T, 0y)
of prog’. Assume further that w, o, (7(this)), T = pre(stm) for all (1,stm) € T,
and all logical environments w referring only to values existing in o,. Addi-
tionally assume w,o, =g GI to hold, if (T, 0,) is stable. Furthermore, for all
classes ', objects 3 € dom® (on), and local states ' assume w,o,(B), 7 Er 1.

Then (Ty,0n) — (Thi1,0n+1) implies w, opq1 (7(this)), T = pre(stm), for
all (1, stm) € Tpy1.

Proofs 59

Proof (of Lemma 24). Let (7,stm) € T,y1 with 7(this) = a. We show that
w,ont1(a), T = pre(stm) and distinguish according to the computation step
(Tnyon) — (Tnt1,0n41).

Case: Ass
We are given

(T U {€&o (1, 8tmgss; stmy) 0 £'},0,) — (T U {€o (11, stm1) 0 &'}, 0pn11) , OF
(T'U{€o (11, 8tmass)}y0n) — (T U {E},0n11) -

By assumption w, o, (71 (this)), 1 =z pre(y := &), and if (r,stm) € T,, then
additionally w, o, (7(this)), T |=¢ pre(stm).

If (r,stm) = (71, stmy), then soundness of the local correctness conditions
(Lemma 17) implies the required property. Otherwise (7, stm) € T,,, and sound-
ness of the interference freedom test (Lemma 18) implies w, 0,41 (7(this)), 7 |=£
pre(stm).

Case: CALL
In this case we are given

<TL:J{f°(T17(€0-m(€);*1 = é1); stmy)}, 04) —
(T U{&o (1, (th := €1); stmy) o (2, body,,,)}, 0nt1)

where m is not the start-method. If (7, stm) = (71, (1 := &); stmy) or (1, stm) =
(72, body,,,), then the assumptions and soundness of the cooperation test for
communication (Lemma, 19) implies the required property. If otherwise (7, stm) €
T or (1, stm) € &, then directly by assumption w, 0,11 (), T |2 pre(stm), since
method invocation does not change the global state,

Case: START, STARTgip
Rule START is treated analogously to the above case of ordinary method invo-
cation using the assumptions and Lemma 19. In case of STARTki, Lemma 20 is
used instead, stating soundness of the verification condition (8) of the coopera-
tion test for STARTgip.

Case: RETURN
In this case we are given

(T U {€o (1, (receive u; Gy := &1); stmi) o (T2, (return epes; J3 1= €3))}, 0n) —
(T'U{& o (11, (§a = €4); stma) o (T2, (Y3 = €3))}, Ont1) -

If (1,stm) = (71, (Ys := €); stmy) or (7,stm) = (72, {y3 = €3)), then, as the
communication is enabled, the global configuration (T}, o,) prior to the commu-
nication is stable. Thus using the assumptions and Lemma 21 stating soundness
of the cooperation test for return (cf. Equation (7)) we get the required property.
If otherwise (7, stm) € £ or (1, stm) € T, then (7, stm) € T, and by assumption
w,on(a), T =z pre(stm). From o, = 041 the property follows directly.

60 Proofs

Case: TERMINATE

(T U {(m1, (return; g3 := &))},00) — (T U {(11, (73 :== &)}, 0n41) -

Then (T,,0,) is stable. In the case if (7, stm) = (71, (i3 = €3)), we get the
required property by using the assumptions and Lemma 22 about the soundness
of the termination (cf. Equation (9) of the cooperation test for communication).
If otherwise (7, stm) € T, then (7, stm) € T),, and the assumption w, o, (a), T |=¢
pre(stm) and oy, = 011 yield the required property.

Case: NEW

<T U {f o (Tla (U = newc;gj:: é)) Stml)}aon> —
(T'U A€o (11, (§:= &); stm1)}, onp1) -

Note that (T},,0,) is stable, since the object creation statement is enabled. If
(1, stm) = (1{,(y := &);stm1), then by assumption and using Lemma 23 for
the the soundness of the cooperation test for instantiation we get the required
property. If otherwise (r,stm) € T or (r,stm) € &, then (r,stm) € T,, and
by assumption w, o, (), Er pre(stm). According to the definition of global
configurations, a = 7(this) € dom/(o,), i.e., a # . Hence o, (a) = op11(a), and
finally w, opt1 (@), T Er pre(stm). a

Lemma 25 (Inductive step: Class invariant). Let the proof outline prog’
satisfy the verification conditions and (T,,c,) be a reachable configuration of
prog' such that for all (7, stm) € T,, with o = 7(this) of type ¢ and for all logical
environments w referring only to values existing in o, we have w,o,(a), T Er
pre(stm). If (T},,0,) is stable, assume further w,o, =g GI. Furthermore, for
all classes ', objects B € dom® (on), and local states 7', let w,on(8), 7" = L.

Then for all (T,,0n) — (Tht1,0n4+1) and for all existing objects a €
dom(on+1) of type c, local states T € Xioc, and logical environments w refer-
ring only to values existing in opy1,

w,ont1(a), 7 Er L. .

Proof (of Lemma 25). Let a € dom (op11), T € Xioc, and w € 2 referring only
to values existing in oy,41. We show that w,op41(a), 7 |=¢ I, distinguishing on
the last computation step.

Case: Ass

Let (Tha1,0na1) result from (T}, 0,) by executing the assignment ¥ := € in the
local configuration (71, stmgss; stm1) € T), where stm g is § := € or (§f := €).
Then « € dom‘(0y,), and by assumption w,op(a),7 Er .. If 71(this) # «,
then o,(a) = on41(a), and thus w,o,41(a),7 Er I, as required. If other-

wise 71 (this) = a, then condition (3) of the local correctness combined with

the local substitution Lemma 1 assures that w, 0,11 (a), 71 [7— €] on)’TI] =

post(§ := €). By the local correctness condition (4) for the class invariant

Proofs 61

w,0np1 (@), [F—[E]27 ™) |, I.. As the class invariant may refer only
to instance variables, its evaluation does not depend on the local state, hence
w,ont+1(a), 7 =¢ I, as required.
Case: CALL, START, STARTgkip, RETURN, TERMINATE
In these cases the global state is not changed, i.e., o, = 0,41, and the property
is directly implied by the assumption w, o, (@), 7 E£ L.
Case: NEW
Let (Ty41,0n+1) result from (T),,0,) by executing an object creation statement.
The instance states of objects existing prior to the last computation step are
unchanged, i.e., if « is not the newly created object, then o, (a) = op41(a), and
w, ont1(a), T = I, follows from the assumption w, oy, (a), T |=¢ I..

If a is the newly created object, then the property is implied by the assump-
tions and using Lemma 23 which states soundness of the cooperation test for
instantiation. a

Lemma 26 (Inductive step: Global invariant). Let the proof outline prog’
satisfy the verification conditions and (T,,,0,) be a reachable stable configura-
tion of prog' such that for all (7,stm) € T, with a = 7(this) of type ¢ and
for all logical environments w referring only to values existing in o, we have
w,on(a), T = pre(stm) and w,0, =g GI. Furthermore, for all classes ¢, ob-
jects B € dom® (o), and local states 7' let w,on(B8), T Er Lo

Let (T, 0n) —* (Tha1,0na1), such that (Tyy1,0,11) is stable, and there are
no stable configurations in the computation between (T, 0,) and (Thi1,0n41)-
Then

w,ont1 Eg GI .

Proof (of Lemma 26). We distinguish according to the computation steps in
<Tn, G'n> —* <Tn+17 U'n+1>-

Case: Ass

Assume that (Ty,,0,) — (Tht1,0n+1) consists of the execution of a single
assignment, outside bracketed sections. The case follows by assumption and the
restrictions on the global invariant (cf. Definition 1), which assure that GI is
preserved under the execution of assignments outside bracketed sections.

Case: CALL, START

We are given (T, 0,) —3 (Thi1,0n41), where the first step is a method call
(rule CALL) and the following two steps correspond to the observations in the
bracketed sections of the caller and the callee. The required property follows
from the assumptions and soundness of Equation (6) of the cooperation test for
method calls (Lemma 19). The case for CALL is analogous.

Case: START gip
Analogously to the previous case CALL, using Lemma 20 instead.

Case: RETURN
We are given the sequence (T,,0,) —* (T,y1,0,41) consisting of the com-
munication of a return value by rule RETURN followed by the assignments in

62 Proofs

the bracketed sections of callee and caller. The required property follows from
the assumptions and by soundness of the cooperation test for returning from a
method (Lemma 21).

Case: TERMINATE

For termination, we are given (Ty,,0y,) —2 (Tys1,0n41), caused by the return-
statement of a start-method or of the initial invocation of the main-method by
rule TERMINATE, followed by the accompanying assignment in the bracketed
section of the return-statement. The required property follows from the assump-
tions and by soundness of the cooperation test for termination (Lemma 22).

Case: NEW

We are given (Ty,,0,) —2 (Tyy1,0n41) consisting of an object creation step by
rule NEw followed by the execution of the assignment in the bracketed section
of new. The required property follows from the assumptions and soundness of
the cooperation test for instantiation (Lemma 23). a

Proof (of the soundness Theorem 1). We proceed by induction on the length of
the computation, simultaneously for all parts of Definition 7 of =, where in part
(2) for the global invariant we consider stable configurations, only.

The base cases of parts (1) and (2) are implied by Lemma 16. For part (3),
condition (4) of the local correctness ensures w, o r =, pre(body i) — I
where I is the class invariant of the initial object c. The class invariant contains
only instance variables, i.e., its evaluation does not depend on the local state.

Furthermore, « is the only existing object in o, thus part (3) is satisfied initially.

For the inductive step in parts (1) and (3) we are given (Ty, o) —+ (T, o)
and the result follow directly by induction from Lemma 24 respectively from
Lemma 25. Part (2) follows by induction and Lemma 26 applied to the last
stable configuration preceding (T, o) in the computation (T§, o) —* (T, o).

O

B.3 Completeness

The following lemma states that the variable loc indeed stores the current control
point of a thread:

Lemma 27. Let (T, o) be a reachable configuration of prog, and let (1,stm) € T
such that the control point before the statement stm is an interleaving point. Then
7(loc) = stm.

Proof (of Lemma 27). Straightforward by the definition of augmentation. O

Lemma 28 (Initial correctness). The proof outline prog’ satisfies the initial
conditions of Definition 2.

Proofs 63

Proof (of Lemma 28). We show that the proof outline prog’ satisfies the initial
conditions of Definition 2. Let w € 12, 0, € Xinst, and 7 € Zjoc with 7(this) =
a. For the precondition of the main-method we have to show

W, it T = pre(body main)[(this, 0) /id][InitVal(7) /9] ,

where 7 are the local and instance variables occurring in pre(body ,.i,). We start
transforming the right-hand side using Lemma 1:

[(this, 0)/|d][|n|tVa|(7)1 e
[(thIS 0)/]]] [+ InitVal(3)],7[§ — InitVal(y)]

[[pre bOdymaln
= [pre
= [pre

()

(bOdymam)

()]]w,cr st LT — it Val(9)],7[7 — InitVal(7)][id —(«,0)]
L

()]]210'",,7'",[th|s>—>a][ld —(a, 0)]

bOdymam

The assertion pre(body,,i,) is satisfied by the logical environment w and the
instance local state (it T Timit [this— a][id —(a, 0)]) iff there exists a reachable
Tinie | this = a][id = (e, 0)], body ain) € T and

configuration (T, o) of prog’ with (r,
o(a) = o™ The initial configuration satisfies these conditions.

inst*

For the global invariant we need to show that
w, o [=¢ InitState(z) AVz'(z'=nil V z2=2") = GI[E>/z.4b]

for arbitrary ¢ € X and w € {2 referring only to values existing in o, where
(ijo := &) is the bracketed section at the beginning of the main-method, By =
é2[(this, 0) /id][InitVal(7) /¢][z/this], z is of the type of the main class, and 2’ €
LVar®®iet, We observe that

w, 0 =g InitState(z) AVZ' (2 =nil v 2’ = 2)

implies that ¢ is the unique initial global state defining exactly one existing
object w(z) = «a in its initial instance state o(a) = o™i,
For the global expression Fs we get using the substitution Lemmas 3 and

Lemma 1, together with the fact that €; does not contain logical variables, that

[Eo]8° _
[2[(this, 0) /id][InitVal(7) /g‘][z/th.s]]]w o =
[2(this, 0) /id][InitVal () /g]] 7 *) 7T = o] =

[[]]w T ,,‘r”m[thls — a]fid —(«,0)]

[[e]] i this = a]fid = (,0)] .

Thus for the global invariant

[GIE: /2451157 =
IIGI]]gaayZHHEZ]]g 7] —

ot s lthis s a]lid >—)(a,0)]]

[[G[]];),cr[a.gjg >—)|I§2]]€L :

64 Proofs

Starting from the initial one, the configuration (77, o1) after executing the brack-

eted section at the beginning of the main-method has as state component o1 =
init . .

o[ouify 3 [E] G Tt ollid (@Ol o the initial correctness condition for

the global invariant equivalently reads w, o1 =g GI. Since (T, 01) is stable and

reachable, it is satisfied. O

Lemma 29 (Local correctness). The proof outline prog' satisfies the locally
correctness conditions from Definition 3.

Proof (of Lemma 29). Let ¢ be a class of prog’ with class invariant I.., § := &

a multiple assignment, and p an assertion in class c¢. Let furthermore w € (2,

Oinst € Yinst and T € Yjoc. We have to show the local correctness conditions
W, Oimst» T Ec pre(§ := €) A enabled(7 := &) — post(7 := €)[€/y] and

Wy Oinsty T 'ZEp — Ic .

From w, 0,4, 7 Ec pre(§ := &) it follows that there is a reachable (T, o) contain-
ing (7,9 := & stm) € T or (1,(§ := €); stm) € T, and where o(7(this)) = 0,4
Furthermore, w,0,,,,T = enabled(7 := €) implies by Lemma 7 that the local
configuration is enabled in some reachable (T”, o'} with o'(7(this)) = 7, Exe-
cuting the local configuration in (7", ¢') leads to a reachable global configuration
(T",0") with o' (7(this)) = 0,,,[7+—[€]z"""]. Furthermore, if stm is not the
empty statement, i.e., i/ := € is not the observation in the bracketed section of
a return statement, then (7[§f—[€]z"""], stm) € T". If otherwise stm = €, then
post(stm) is the class invariant. Thus by the definition of the annotation for

prog' we have
W, Oins[§ = [E]g™ 7], TG = [Ele™T] o post(§ = @) ,

and further with the substitution Lemma 1

W Oinst> T '25 pOSt(gj = 5)[5/171 >
as required.

For the local correctness condition of the class invariant, let w, o, ., 7 = D
If p is the postcondition of a method body, then it is the class invariant itself.
Otherwise, let p be the precondition of the non-empty statement stm. Then by
definition of the annotation there exists a reachable (T, o) such that (1, stm) € T
and o(7(this)) = 0,,.;, and with o(7(this)) = 0;,,,;, immediately w,,,,, T Er I,
as required. ad

The local merging Lemma 10 states that the instance history variables con-
tain enough information, such that individual reachability at two instance local
states with a common value for the the history variable implies, that the local
configuration is commonly reachable. A key intuition for this property is that
the information stored in the instance history suffices to uniquely determine the

Proofs 65

set of local configurations currently executing within the given instance. The in-
stance variable h;,s; contains the history for all local configurations shuffled into
one sequence, but as each method body in execution is characterized uniquely by
its value of id stored as well in the history, one can read-off the set of currently
executing local configuration by looking at the last (7, stm) per id and using the
value of loc to determine the statement corresponding the current control point.
Remember in this context that the value of loc identifies the statement to be
executed next. This leads to the definition of LocConf, which assigns to each
sequence of instance local states a set of local configurations as follows:

LocConf (€) =0
LocConf (h o (0,,4t,7)) = {(7', stm") € LocConf (h) | 7'(id) # 7(id) }U
{(7, stm) | T(loc)=stm A (stm#eV(id)=(7(this),0))}.

That this definition, given the value of h;,s; in an instance, captures all local
configurations currently active in the instance, is stated in Lemma 30 below. In
the Lemma, the reachable (T,0) must be stable in « for the same reason, as
this is needed in the local merging lemma: Stability is required for the history
variable to be up-to date.

Lemma 30. Let (T,0) be a reachable configuration of prog’, and a € dom(o)
such that (T, o) is stable in . Then

{(r, stm) € T | 7(this) = a} = LocConf (o(c)(hinst)) -

Proof (of Lemma 30). Let (Ty,00) —* (T,0) be a computation of prog’ and
a € dom(o) such that (T, o) is stable in a. We show by induction on the length of
the computation that {(7, stm) € T | 7(this) = a} equals LocConf (o(a)(hipst))-
If (T, o) is the first configuration in the computation stable in «a, then either
« is a freshly created object in its initial instance state such that no local config-
urations are executing in «, or « is the initial object, and (T,) results from the
initial configuration (T, 0¢) with Ty = {(7, (J> := &); stm)} by executing the
bracketed section at the beginning of the main-method. The first case is straight-
forward. In the second case T = {(7/, stm)} with 7' = 7[j l—)[[é’g]]go(a)7T], and
o(0)(hinst) = [@ D[/l = [@DIF " = (o(a),). By Lemma 27
we get 7/ (loc)=stm, and since stm contains at least a return statement, stm # e.
Thus we get LocConf ((o(a), ")) = {(7, stm)} = {(r, stm) € T | 7(this) = a}.
Let now (T", ¢’} be the last configuration preceding (T, o) in the computation
(To,00) —* (T, o) that is stable in «, and let o(a)(hinst) = o' () (hinst) © h.

Assume first (7, stm) € T with 7(this) = «. If (1, stm) € T', then by induction
(1, stm) € LocConf(c'(a)(hnst)). Furthermore, (7, stm) € T' and (7, stm) € T
together imply that (7, stm) does not execute in (T",0'y —* (T,0), i.e., for
all (0,,6:,7') in h, 7'(id) # 7(id). By definition of LocConf we get (7, stm) €
LocConf (o(c)(hinst))-

If otherwise (7, stm) ¢ T', then (7, stm) is executed in (T',0') —* (T, 0).
Since (T, o) is stable in «, (7, stm) also observes its execution in (T" o'y —*

66 Proofs

(T, o), i.e., it results from the execution of a multiple assignment, possibly pre-
ceded by some communication or object creation. This assignment updates also
the history h;y,st, i.e., there exists an instance state o, such that (o,,.,7) is
contained in h. Furthermore, since (T',0') is the last configuration preceding
(T,o) in the computation (Tp,00) —* (T,0), we know that (0,,.,7) is the
only element in h with identity 7(id). By the definition of LocConf we get that
(1, stm) € LocConf (o(a)(hinst)). Note that since (7, stm) € T, either stm # € or
(7, stm) represents the terminated initial execution of the main-method or that
of a start-method, i.e., 7(id) = («,0). Furthermore, since (T, o) is stable in «,
stm represents an interleaving point, and by Lemma 27 7(loc) = stm.

For the reverse direction, let (7, stm) € LocConf (o(a)(hinse)). If there is no
instance state o,,,, such that (0,,.,7) is in h, then (7, stm) is not executed in
(T',c"y —* (T, o), because otherwise it would have updated the history h;,s;.
Consequently 7/(id) # 7(id) for all (o, 7") € h. By definition of LocConf we
have (1, stm) € LocConf(o'(a)(hinst)), and thus by induction (r,stm) € T
Since (7, stm) is not executed in (T", ¢’y — (T,), also (7, stm) € T.

Otherwise, if (0,,,,7) is in h for some instance state o,,,,, then (7, stm)
results from the execution of an assignment during (T',¢') —* (T, o) that
updates the history. Note that in (T",0') —* (T, o) at most one local configu-
ration with the identity 7(id) executes an assignment, i.e., (o},.,7) is the only
element in h with identity 7(id). Furthermore, (7, stm) € LocConf (o(c)(hinst))
implies by definition of LocConf that stm # eV 7(id) = (7(this),0), and thus

(1,stm) € T. O

Proof (of the local merging Lemma 10). Let (Ty,01) and (T, 02) be two reach-
able global configurations of prog’ and (7, stm) € Ty, such that both (T, 04)
and (T»,02) are stable in 7(this) € dom(o1) N dom(o3). Assume furthermore
o1(7(this)) (hinst) = o2(7(this))(hnst). Then by Lemma 30

{(r', stm") € Ty | 7'(this) = 7(this)} = LocConf (o1 (7(this))(hinst)) ,
{(r', stm") € Ty | 7'(this) = 7(this)} = LocConf (g2 (7(this))(hinst)) -

With o1 (7(this))(hinst) = o2 (7(this))(hinst) and (7, stm) € Ty, we get (1, stm) €
Ts. a

The next lemma roughly states that when an assignment can interleave with
the precondition of some statement (as given by the predicate interleavable from
page 26) then the assignment and the statement occur in the same reachable
global configuration. The lemma is a application of the local merging lemma
and will be helpful in the completeness of the interference freedom test.

Lemma 31. Let (T,01) be a reachable global configuration of prog’ and let
(11, stm; stmy) € Ty. Let furthermore stm,ss be an assignment § := € or (§ :=
), and let (T2, StMass; Stmo) with T2(this) = 7 (this) = a be enabled in some

reachable configuration (Is,02) with o2(a) = o1(a) = 0y, Assume further a

Proofs 67

local state T with T(u) = T2(u) for all u € dom(r2) and T(u') = 711 (u) for all
u € dom(7,), where u' are fresh variables. Then

W, Omst, T Er interleavable(pre(stm), 7 := &)

implies that (11, stm; stmy) € Ty.

Proof. From the assumptions stated in the lemma together with w,0,,.,7 ¢
interleavable(pre(stm), i := €) we show that (11, stm; stm,) € Ts.

Let (To,00) —* (T1,01) and (Ty, 00) —* (T2, 02). We start observing that
both computations contain at least one stable configuration. So see this note that
the only computation without any stable configuration is the empty one, which
contains just the initial configuration and in which only one local configuration
exists. This means, o1 (a) = g2(a) = o™ implies 7 (id) = m(id), contradicting
W, Oinsts T = interleavable(pre(stm), i := €).

So let <T0,0'0> — <T1I,G'i> — <T1,0'1> and <T0,0'0> —* <T2I,0'é> —*
(T2, 09) such that (T}, o) and (T4, 0h) are the last configurations in the compu-
tations that are stable in a.

We distinguish according to the steps in (T4, 05) —* (I», 0), starting with
the case where the sequence is empty.
Case: (Ty,0b) = (Ts, 03)
In this case (T»,02) is stable in «. Therefore § := € is enabled in (T%,02)
and thus the assignment occurs outside bracketed sections. Hence w, 0,4, 7 Er
interleavable(pre(stm),§ := €) implies that pre(stm) represents an interleaving
point and 7 (id) # 72(id).

For the computation (T7,07) —* (T1,01) we know that either

1. it does not execute an assignment in «, and thus o (a) = 01 () = o2(a), or

2. it executes a self-communication together with the observation of the sender,
but not yet that of the receiver part, otherwise (T}, 01) itself would be stable
in a, i.e., (T],01) = (T1,01), and the first clause would apply.

In the second case the definition of augmentation gives oy (a)(stable) = false,
but w,0,,.,™ = enabled(§ := €) implies that oy(a)(stable) = true. Thus
o1(a) = o2(a) leads to a contradiction, and only the first case is possible.

That the computation (T},01) —* (T1,01) executes no assignment in «
means that all local configurations with self-reference « involved in the computa-
tion represent non-interleaving points. Since (11, stm; stm,) € T}, the statement
stm represents an interleaving point, and therefore (71, stm;stm;) is already
contained in 77. Using the local merging Lemma 10 with o] () = 02(a) we get
(71, stm; stmq) € T, as required.

Case: NEW

Assume next that (Ty,0h) — (T2, 02) executes an object creation statement.
Then, since the assignment § := € is enabled in (T5, 02}, the local configuration
(12, (§ := €); stms) represents the executing thread:

(T U{€o (73,

, (u = new¢; i := €); stma) }, 05) —
(T UA{E 0 (2,

u:
g = &); stma)},02) .

68 Proofs

As in the above case, w,0,,,;, T |=¢ interleavable(pre(stm),§ := &) implies that
pre(stm) represents an interleaving point and 7 (id) # 7»(id). Furthermore, cor-
responding to the above case again, o2 («)(stable) = true implies that the com-
putation (T}, 0{) —* (T1,01) does not execute any assignment is «, and since
stm represents an interleaving point, thus (1, stm; stm;) € TY. Using the local
merging Lemma 10 with o] (a) = o)(a) we get (71, stm; stmq) € T,. Finally,
from 72 (id) # 71(id) we conclude that (71, stm; stmy) € Ts.

Case: START sy

In this case, (T3, 05) — (T2, 09) tries to invoke the start-method of an object
whose thread is already started. By Lemma 6, o(a)(started) = true. Since
the assignment ¢ := € is enabled in (75, 03), the local configuration (72, (§ :=
€); stma) represents the executing thread:

(T'U{E o (12, (eo.start(&'); i := €); stma)}, o) —
(T U {&o (12, (¥ := €); stmo) }, 02)

From w,0,,,,T = interleavable(pre(stm), := €) we conclude that either the
assertion pre(stm) is at an interleaving point and 7 (id) # 7»(id), or ey evaluates
to a and stm; is the body of the start-method of . But in the second case
the precondition of the body of the start-method implies o («)(started) = false,
which contradicts to o1 (a) = o2 () and o} («)(started) = true.

By similar arguments as in the previous cases, o2 («)(stable) = true implies
that the computation (T7],c}) —* (T1,01) does not execute any assignment
is a, and since stm represents an interleaving point, thus (71, stm; stmq) € T7.
Using the merging Lemma 10 with o} (a) = o4 (), we get (11, stm; stmy) € Ty.
Finally, from 7»(id) # 7 (id) we conclude that (71, stm; stm) € Ts, as required.

Case: TERMINATE

In this case (Ts,05) — (Ts,02) corresponds to the termination of a start-
method or of the initial execution of the main-method. Then, since the assign-
ment § := € is enabled in (Ts,02), the local configuration (72, (7 := €); stma)
represents the executing thread:

(T U {(72, (return; § := &); stma)}, 0b) —
(T U {(72, (§ := €); stm2)},02) .

The assumption w, 0;,,;, T2 = interleavable(pre(stm), § := €) implies that either
pre(stm) represents an interleaving point and 7 (id) # 7»(id). Note that 72 (id) =
(a,0), and thus callee(r1(id)) cannot be equal to 7 (id).

Asin the above cases, o2 () (stable) = true implies that (T}, o1} —* (T, 01)
does not execute an assignment in «, and thus (7, stm;stm;) € Tj. Using

Lemma 10 with o(a) = o)(a) we get (71, stm;stmy) € T. Finally, from
7 (id) # 71(id) we conclude that (71, stm; stmy) € Ts.
Case: CALL

In this case, (T3,0%) — (T2, 02) executes a method invocation statement and
since ¢ := € is enabled in (T%,02), the local configuration (72, (7 := €); stms)

Proofs 69

represents the caller thread:

(T 0 {€ 0 (1], eo.m(@); 7 = £ stna) } o) —
= é’); Sth) (Tcalleea bOdym,c)}a 0’2) .

The assumption w, 0;,,;, 7> = interleavable(pre(stm), § := €) implies that either
pre(stm) represents an interleaving point and 7 (id) # 72(id), or stm is the body
of the invoked method m, 71 (id) = callee(7>(id)), and [[eo]]glz(a)’ré =q.

The case where stm represents an interleaving point is analogous to the
above cases: oa(«)(stable) = true implies that (T},01) —* (T1,01) does not
execute any assignment in «, and thus (71, stm; stmq) € T|. Using Lemma 10
with of (a) = ob(a) we get (71, stm; stmy) € Ty. Finally, from 7 (id) # 7 (id) we
conclude that (71, stm; stmq) € Ts.

Assume now that stm; is the body of the invoked method m, 7 (id) =
callee(m>(id)), and [[60]];’2(&),72’ = a. Then also (T},0}) —* (T1,01) contains
the invocation of the same method of a with resulting callee configuration
(71, stm; stm). Furthermore, o2 («)(stable) = true = oq(a)(stable), i.e., (T{,0})
—* (T, 01) does not execute any assignment in . Let (Tcaller, StMcalier) be the lo-
cal configuration of the caller in T7. Then using o} (o) = 01(a) = o2(a) = ()
and the local merging Lemma 10 we get (Tcaller, StMealler) € T5. With 7 (id) =
callee(Tealer (id)) and 71 (id) = callee(m2(id)) we further get Teaner(id) = 7(id),
i.e., (Tealler, StMcaller) = (75, (€0-m(€); ¥ := €); stms). Thus (T}, c1)—*(T1,01)
and (T3, 04)— (T, 02) execute the same method invocation creating the same
callee configuration (71, stm; stmy) = (Tcalee, b0dy,,, .) € T».

Case: CALL+ASS

Assume next that (Ty, 0b) —2 (Ts, 02) executes a method invocation statement
and the observation of the caller. Then, since § := € is enabled in (T%, 02), the
local configuration (7, (¢ := €);stms) represents the callee thread before its
observation:

(T U {€0 (TLiers (e0-m(€); §' := €'); stmcalier) }, 05)
(T U {f ° (Tclallerv (Zjl = év)? Stmcaller) o (7'2: (ﬂ = é’); stmg)}, Ué>
(T U {€ o (Tcaller, Stmcalier) © (T2, (§ 1= &); stma)}, 02) .

—
—

Then w,0,,, T Fr interleavable(pre(stm), § := €) implies that pre(stm) repre-
sents an interleaving point and 71 (id) # 72 (id).

If o5 () (stable) = true, i.e., the method invocation is not a self-call, then the
computation (T7,o01) —* (T1,01) does not execute any assignment in «, and
thus (71, stm; stmy) € T|. Otherwise, oy (a)(stable) = o3(a)(stable) = false and
01(a) (hinst) = oa(a)(hinst) imply that (T}, 01) —* (T1,01) executes the same
assignment in the same local configuration as (T4, 0b) —?2 (T%, 02), and thus the
same method invocation in the same local configuration with identity 7caler (id).
Thus o} (@) = ob(a), and with 72 (id) = callee(Tcaner (id)) and 7 (id) # 7=(id) we
conclude that (71, stm; stm,) is not the callee configuration, i.e., either it is the
caller or (71, stm;stm;) € T. In the first case, if (11, stm; stm;) is the caller,
then (71, stm; stm1) = (Tealler, StMcaiter) € To. Otherwise, if (71, stm; stmy) € T},

70 Proofs

then using again Lemma 10 with o] (a) = o)(a) we get (11, stm; stmy) € Ty.
Finally, since (71, stm; stmy) is neither the caller nor the callee configuration, we
conclude that (1, stm; stmy) € Ts.

Case: RETURN

In this case (T3,0%) —> (T2, 02) returns the result of a method. Then, since
the assignment ¢ := € is enabled in (75, 03), the local configuration (72, (§ :=
€); stmz) represents the callee thread:

(T U {€ 0 (TLyer» (receive u; y' := &'); stmealier) © (T2, (return eper; 4 := €))},05) —
<T U {f o (Tcallera (g" = €I>; Stmca”e") o (T27 <?j = é))}702> .

Then w, 0., T = interleavable(pre(stm), § := €) implies that either pre(stm)
represents an interleaving point and 7 (id) # 72 (id) and callee(r (id)) # m(id),
or stmy occurs after a receive statement, which is preceded by the invocation of
method m of ey, callee(r(id)) = 72(id), and [[eo]]g;(a)ﬁ2 = a.

The case that stm represents an interleaving point is analogous to the above
cases: oq(a)(stable) = true implies that (T},0}) —* (T1,01) does not exe-
cute any assignment in «, and thus (71, stm; stm,) € T|. Using Lemma 10 with
o1 (a) = oh(a) we get (11, stm; stmy) € Ty. Finally, from 71(id) # 7»(id) and
callee(1 (id)) # 72 (id) we conclude that (71, stm; stmq) € Ts.

Assume now that stm, occurs after a receive statement which is preceded by
the invocation of method m of ey, callee(r;(id)) = m(id), and [[eo]]?(a)’T2 = a.
Then also (T},01) —* (T1,01) contains the return from the same method

of a with resulting caller configuration (7, stm; stmy). Note that (T}, o]) —*

.
(T1,01) does not execute any assignments in a: from [[eo]]?(a)’r2 = a we conclude

that a self-communication is executed, and o1 (a) = o2(a) and o2(«)(stable) =
true imply also oy («)(stable) = true.

Let (Tcallee, StMcallee) be the local configuration of the callee in T7. Then using
oi(a) = o1(a) = o2(a) = d)(a) and Lemma 10 we get that (Tcallee, StMcallee) €
T3. From callee(r1(id)) = 7ealee(id) and callee(r;(id)) = 72(id) we conclude
Teallee (Id) = 72(id), i.e., (Tcallee, StMcallee) = (T2, (return epes; i := €); stma). Thus
(T],01) —* (T1,01) and (Ty,0h4) — (T3, 02) execute the same return and
receive statements and thus (71, stm; stm1) = (Tealler, (7 := €'); stmcaller) € To.

Case: RETURN+ASS

In this case, (Ty,0%) —2 (Ty,05) returns from a method and executes the
observation of the callee. Since the assignment § := € is enabled in (T%,09),
the local configuration (72, (i := €); stms) represents the caller thread before its
observation:

(T U {& o (14, (receiveu; 7 := &); stmz) o (Tcallee, (return eper; ¥ := €'))},0%) —
(T U {0 (72, (§ == €); stm2) o (Tealiee, (§ = &)}, 03) —
(T'U{&o (12, (¥ := €); stma)},00) -

By the assumption w, 0,4, T |=¢ interleavable(pre(stm),§ := €), pre(stm) rep-
resents an interleaving point and 7 (id) # 7 (id).

Proofs 71

*

If o2 (a)(stable) = true, i.e., in the case of self-communication, (T}, 0}) —
(Ty,01) does not execute any assignment in «, and thus (i, stm; stm,) € T}.
Otherwise, o1 (a)(stable) = oa(a)(stable) = false and o1 () (hinst) = o2(a)(hinst)
imply that (T},01) —* (T1,01) executes the same assignment in the same lo-
cal configuration as (Ty,0h) —2 (T, 02), and thus the same return in the
same local configuration with identity Tealiee(id). Thus o] () = o (a), and with
callee(m2(id)) = Teanee (id) and 71 (id) # 72(id) we conclude that (71, stm; stm;)
is not the caller configuration, i.e., (71, stm;stm;) € T|. Furthermore, since
(11, stm; stmy) € Ty, it is also not the callee configuration. Using again the
merging Lemma 10 with o} (a)=0} () we get (11, stm; stmq) € T5. Since finally
(71, stm; stmy) is neither the caller nor the callee configuration, we conclude that
(11, stm; stmq) € Ts. O

Lemma 32 (Interference freedom). The proof outline prog' satisfies the con-
ditions for interference freedom from Definition 4.

Proof (of Lemma 32). Assume an arbitrary multiple assignment ¢ := € in class ¢
and an arbitrary statement stm in the same class. We prove interference freedom
for the precondition of the statement stm under the execution of 7 := €, i.e., we
have to show the verification condition from Equation (5) on page 26 for some
logical environment w together with some instance and local states o, , and 7:

W, O imets T =1 pre’ (stm) A pre(if := €) A this=this’ A
interleavable(pre(stm), i := &) A enabled(¢ := &) — pre' (stm)[&/7]

where pre’(stm) denotes pre(stm) with all local variables u and this replaced by
some fresh local variables u' and this’, respectively.

If stm = ¢, then by Definition 9 of the annotation pre(stm)(= pre'(stm))
is the class invariant, whose invariance under execution is shown in the local
correctness. So assume stm # € in the following.

From w,0,,,,T = this = this' we get 7(this) = 7(this'), i.e., m2(this) =
7(this) for 7» = 7, and 7 (this) = 7(this), where 71 coincides with 7 modulo
renaming of the local variables, i.e., 7 (u) = 7(u') for all local variables u' €
dom (7). Let a = 71 (this) = m»(this).

The first clause w,o0,,4,7 Ec pre'(stm) implies w,0,,.,71 FEc pre(stm).
Remember that we assume that the annotation does not contain free logical
variables, hence the logical environment w does not play a role. According to
Definition 9 of the annotation, w, 0,, ., T [=¢ pre(stm) implies that there exists
a reachable configuration (T1,01) and a local configuration (7, stm;stm,) €
Ty with oy(a@) = o0,,,. For the assignment § := € we similarly get using
W, 04,4, = pre(ij := @) that there exists a computation reaching (15, 6>)

with (72, stmgss; stma) € Ty with stmgss = 7 := € or stmgss = (¥ := €) such
that 2(a) = 0, It follows that o1(a) = d2(a). Furthermore w,0,,,, 7 Er
enabled(y := &) implies with Lemma 7 that (7, stm .ss; stmo) is enabled in some
reachable (T», 03) with o3(a) = 0, = 01().

Using Lemma 31 we get (71, stm; stmy) € T. Furthermore, (72, $tm ass; $tms)

is enabled in (T5, 02), and additionally w,0,,,,, T = interleavable(pre(stm), 7 :=

72 Proofs

€) implies that 71 (id) # 72 (id). Thus executing in (T, 02) the assignment ¢ := €
in the local configuration (72, stm,ss; stms) results in a reachable global config-
uration (T,0) with (71, stm;stm;) € T and o(a) = Jg(a)[g'b—)[[é’]]?(a)’ﬁ]. We

get w, og(a)[g’b—)[[é’]]?(a)’m],ﬁ =r pre(stm), and renaming back the local vari-

ables of pre(stm) also w,ag(a)[y"»—)[[é’]]?(a)’T],T E. pre/(stm). Finally, by the
substitution Lemma 1 together with o3(a) = 7,,,, Wwe get the required property
W, Oimsts T Ec pre’(stm)[€/4]. Note that due to renaming, no local variables of §

occur in pre'(stm), and for the same reason 7 = 1 [§7+—[]2(*)™]. O

Proof (of the global merging Lemma 11). Let (T1,01) and (T, 02) be two reach-
able stable global configurations of prog’ and a € dom(oy) N dom(o2) with
o1(a)(hcomm) = 2(@)(hcomm)- We show that there exists a reachable stable con-
figuration (T, o) with o(a) = 01(a), and o(8) = 02(B) for all 5 € dom(o2)\{a}.
We proceed by induction on the sum of the lengths of the computations.

In the base case of the first reachable stable configurations, we are given
(Ty,01) = (T»,02) and the property trivially holds.

For the inductive step, assume (Tp,00) —* (T},01) —* (T1,01) and
(To, 00) —* (T4, 0Ly —* (I»,02) as computations of prog’ such that (T7,07)
and (Tj,0)) are the last stable configurations preceding (T}, 01) respectively
(T3, 02) in the computations. We distinguish whether in the computations from
(T{,01) to (Th,01) and from (T},01) to (T1,01), the communication histories
are updated or not.

Case: 01 (a)(hcomm) = 01(@)(hcomm,)
In this case (T}, 01) —* (T1,01) does not execute any communication or object
creation involving «. By induction there is a computation (T, o) —* (T”,d")
leading to a stable configuration such that ¢'(a) = o} (a) and o'(8) = o2(8) for
all g € dom(o2)\{a}.

In case (T}, 01) —* (T1,01) does not execute in « at all, i.e., o] (a) = o1 (),
the computation (Ty,00) —* (T”, ') already satisfies the required properties.

Otherwise, (T{,01) — (T1,01) executes an assignment outside bracketed
sections in «, say in the local configuration also (r,stm). For (r,stm) € T}
we know 7(this) = a and o'(a) = o}(a), and therefore by the local merging
Lemma 10 (7, stm) € T'. Assignments outside bracketed sections are enabled
in all stable configurations. Thus we can execute (7,stm) in (T’ '), leading
to the computation (Tp,00) —* (T",0'Y — (T,0) with o(a) = o1(a) and
o(B) =o' (B) = 02(B) for all 5 € dom(o2)\{a}, as required.

Case: oh(a)(hcomm) = 02(a)(hcomm)
In this case (Ty,0h) —* (T»,09) does not execute any communication or object
creation involving a. By induction, there is a computation (T, c9) —* (T”,d")
leading to a stable configuration such that ¢'(a) = o1 (a) and o'(8) = o4 (8) for
all g € dom(oh)\{a}.

If (Ty,0Ly —* (T»,09) performs a step within «, then according to the
case assumption it executes an assignment outside bracketed sections within

Proofs 73

a. This means, 0(3) = o3(B) for all § € dom(o2)\{a}, and the computation
(To, 00) —* (T", ') already satisfies the required properties.

If otherwise (Ty,0%) —* (T»,02) does not execute in «a, then all local con-
figurations in Ty, which define a self-reference different from «, are also in T';
this follows from stability of (T",¢') and (T3,0%), from o4(8) = o2(8) for all
B € dom(o2)\{a}, and with the help of the local merging Lemma 10 applied to
(T',0') and (T3, 04). Furthermore, the enabledness of local configurations, whose
execution does not involve «, are independent of the instance state of a. Thus in
(T',0') we can execute the same computation steps as in (Ty,05) — (T2, 09),
leading to a reachable stable configuration (T',¢) with the required properties.

Case: o1(a)(hcomm) # 01(@)(hcomm) and o5(a)(hcomm) # o2(@) (hoomm)

In this case finally both (T},c}) —* (T1,01) and (T3, 0%) —* (Ts,02) exe-
cute some object creation or communication involving the object a. We show
that in this case o1(@)(heomm) = 02(a)(heomm) implies also o (@) (heomm) =
() (heomm), and thus by induction there is a computation leading to a config-
uration (T",¢') such that o'(a) = o} (a) and o' (8) = o4 (8) for all other objects
§ € dom(oh)\{a}.

Furthermore, combining those computation steps in (T}, 01) —* (T1,01)
which execute within o with those in (T4, 05) —* (T%, 02) which execute outside
a, we can define a computation (T, ') —* (T, o) resulting in a reachable stable
global configuration with o(a) = o1(a) and o(8) = 02(8) for all other objects
B € dom(o2)\{a}.

We distinguish according to the steps in the computation (7},0}) —
<T1, g1 >C

Subcase: NEW
In this case (T, 0]) —* (T}, 01) is the execution of an object creation statement
and its observation in a of the form

*

(T U {€o (7', (u = new®; i := €); stm)},0}) —
(TU{Lo (", (= &);stm)},07)
(T U {f o (Ta Stm)}701>

l

with 7(this) = a. The assignment 7 := € contains the communication history
update heomm = heomm © (kind, id, partner, values), resulting in o1 (@) (hcomm) =
o1 (@) (heomm) © ((new, ¢), 7' (id), nil,v), where v is the newly created object.

Since o1 () (heomm) = 02(@)(heomm), the last element of oa(a)(heomm) con-
tains the same information ((new,c),7'(id), nil,v). With the case assumption
o5 (@)(hecomm) 7 02(@)(heomm) we additionally know that the tuple represents in-
formation observed in (Ty, o) —* (T, 02). This means, executing (T4, oh) —*
(T>,02) creates the same new object v and leaves the states of all objects
from dom(c})\{a} untouched. By the definition of the augmentation it means
o1 (@) (hecomm) = 05(a)(heomm) and ob(B8) = o2(B) for all objects 5 € dom(o}h)
different from «. Thus by induction there is a computation (T, 00) —* (T”,0")
with (T", ') stable and where ¢'(a) = o} (a) and o'(8) = 04(B8) = 02(B) for all
B € dom(oy)\{a}.

74 Proofs

As o'(a) = o}(a), the local merging Lemma 10 implies that all local con-
figurations in T} with self-reference « are also contained in T”. From the above
observation and the fact that for stable configurations the enabledness of execu-
tion exclusively within « is independent from the instance states of other objects,
we conclude that the same computation steps as in (T7,01) —* (T1,01) can be
executed also in (T",¢"), leading to a reachable stable configuration (T, o) with
o(a) = o1(a), and o(B) = o'(B) = 02(B) for all 5 € dom(ch)\{a}. Finally, for
the newly created object we have o(7y) = o2(y) = o and thus o(8) = 02(8)
for all 8 € dom(o2)\{a}.

The case for object creation without storing the identity of the new object
(new®;§ := &) is similar, where the communication history does not contain
information about the identity of the new object. Thus the fact that o1 and o5
define the same communication history for oz does not ensure that the last steps
(T{,01) —* (T1,01) and (T3, 0%) —* (I»,02) create a new object with the
same identity. But in this case the instance states of objects existing prior to
the object creation do not depend on the identity of the new object, and we can
replace the identity of the new object in ¢ by the one in o9, still getting a valid
computation with the required properties.

Subcase: CALL
In this case (T],01) —* (T1,01) executes a method invocation and the corre-
sponding observations:

o (71, (e0.m(€); 1 := &); stm1)},01)
T U {¢o ET’ (T = @1); stmy) o (15, (T := 62> stma)}, 01)
o (

I

o (11, stm1) o (13, (2 1= &); stm2)}, o7')
T1, stml)] (T2, Sth)},(71> .

Since o1 () (heomm) # 1 (@) (heomm), Wwe know « is involved in the method in-
vocation, as caller or the callee object, or both.

If the caller object is a but the callee is different, then by the semantics of
method invocation and by the augmentation definition

o1() (heomm) = 01 () (heomm) © ((call, m), 1 (id), 75 (this), 75 () ,

where @ are the formal parameters of the invoked method. Correspondingly in
case the callee is o and the caller is different, we have

() (hgomm) © ((called, m), 75 (id), 7 (this), 74 (1)) .

—~

o1 (a)(hcomm) =0

Finally, in case of a self-call within a we have

o1() (heomm) = 01 (@) (eomm) © ((call,m), { (id), o, 75 ()
o ((called, m), 75(id), av, 75,(7)) .

The assumption o) (@) (hcomm) 7# 02(a)(hcomm) implies, that the last element of
the communication history of o was appended in the computation (T4, oh) —*

Proofs 75

(T2, 09). Since o1 (a)(hcomm) = 02(a)(heomm), the computation (Ty,oh) —*
(T, 02) invokes the same method of the same callee object by the same caller
object and with the same actual parameter list, thereby creating the same new
local configuration representing the method execution. Thus o} (a)(hcomm) =
o%(@)(heomm), and by induction there is a computation (T, 00) —* (T”,0")
leading to a stable configuration such that ¢/ (a) = o1 (a), and o'(8) = o4(5) for
all g € dom(oh)\{a}.
Let (T3, 0%) —* (Ta,02) be of the form

(T'UA{E o (71, (eg-m(&); 41 = &); stm])}, 03) —
(TU{g o (7, (271 i= €)); stm}) o (13, (2 1= &); stma)}, 03) —
(T UAE o (71, stmy) o (13, (2 := &); stma) }, 05) —
(T'U{& o (71, stmy) o (T2, stma) }, 02) .

where 7{ (this) = 7{ (this). As ¢'(a) = o} (a), the local merging lemma Lemma 10
implies that all local configurations in 7] with self-reference « are also contained
in T'. Similarly for objects from § € dom(c})\{a} = dom(o2)\{a}, o'(8) =
o(B) implies that all local configurations in T with self-reference 3 are also
contained in T".

Consequently, if « is the caller object, then the local configuration of the
caller in (T}, 0!) is enabled in (T”,0'). Note that since o5(8) = o'(8) for all
B € dom(cy)\{a} and of (@) = o'(a), and since the invocation of the method
m of the callee object is enabled both in (T7,07) and in (Ty,0}), in the case
of a synchronized method the lock of the callee object is free in (T”,0'). Thus
the same computation steps as in (T{,0() —* (T},01) can be executed in
(T',0') leading to a reachable stable configuration (T, o) with o(a) = o1(a),
and o(B) = o2(B) for all § € dom(o2)\{a}.

Similarly, if the caller object is not «, then the same computation steps as
in (T3, 0Ly —* (T»,02) can be executed in (T, ¢’} leading to a reachable stable
configuration satisfying the requirements.

The remaining subcases are analogous. For the case of return, the computa-
tion (T", 0"y —* (T, o) is constructed from the execution of those local config-
urations with self-reference a which execute in (T7,01) —* (T1,01), and the
execution of those local configurations with self-reference different from a which
execute in (T3, 0b) —* (T, 02). a

Lemma 33 (Cooperation test: Method call, return, and terminate).
The annotated program prog' and the global invariant GI satisfy the verification
conditions of the cooperation test for communication of Definition 5.

Proof (of Lemma 33) Let (eg.m(&) ¥1 1= @1); (receive v; g4 := €41) be a statement
in a class ¢ of prog’ with ey € EalcpC , where method m of ¢’ is synchronized with
formal parameter list @, local variables without the formal parameters and this
given by @, and body,, . =(¥> 1= €); stm; (return epes; i3 := €3).

76 Proofs

Case: Method call
Assume

w,0 Eg GI A pre(eg.m(€))[z/this] A I.[2' /this] A
eolz/this]=z" A isfree(z'.lock, id) ,

where z € LVar® and 2’ € LVar® are distinct fresh logical variables.

By definition of the global invariant, the assumption w, o =g GI implies that
there exists a reachable stable configuration (T”,¢') with dom (o) = dom(c') and
(B)(hcomm) = o' (B8)(hcomm) for all g € dom(o).

Assuming « as the identity of the caller, i.e., w(z) = a, then w,o =g
pre(ey.m(€))[z/this] implies

w,o(a), 71 = pre(ep.m(€))

by the substitution Lemma 3, for some local state 7, with 7 (this) = w(z) = «
and 71 (u) = w(u) for all local variables occurring in pre(eyg.m(€)). By definition of
the precondition, there exists a (not necessarily stable) reachable configuration
(Ty,01) such that o1(a) = o(a) and (71, {eg.m(€);y1 := €);stm1) € T1. We
define the configuration (7Y, o)

1. as the last stable global configuration in the computation leading to (T1, 1),
if its instance state for « coincides with oy (a), and

2. as the next configuration following (T7,01) after extending the computation
by one computation step, otherwise. Note that the extension is deterministic,
since a reachable, unstable configuration can proceed in only one way.

In the first case, either (T}, o) itself is stable, or the computation (T}, 01} —*
(Ty,01) executes some object creation or communication possibly followed by
observations in objects different from «, but it does not execute any obser-
vations in «. From (71, (eg.m(€); 71 := €);stmy) € T; we conclude that also
(11, (€0-m(€); 71 = f1);stmy) € Ty, since otherwise its statement would begin
with an assignment. Furthermore we know o1 () = of ().

In the second case, (T, 01) is not stable. Furthermore, since the instance
state o1 () differs from the instance state of « in the last stable configuration
in the computation, we know that in the last two steps of the computation a
communication has taken place, where the sender object is a which already
executed its observation, but not yet the receiver object.

Since (T, 0"} is stable, the last element in the sequence o'(a)(hcomm) is not
the observation of the sender part of a self-communication. Since () (hcomm) =
o' (@) (h¢omm), the last element in the sequence o(a)(hcomm) = 1(@)(hcomm) 18
neither the observation of the sender part of a self~communication. Thus the
receiver object differs from a. Executing the observation of the receiver part
outside of « leads to a configuration (77, o) defining the same instance state for
a as o1 and still containing (71, (eo.m(€); 71 := €); stmy).

Thus we conclude that (T}, o) is a reachable stable configuration such that
o1 (a) = o1 (a) and (71, (eg-m(&); 71 = €1); stmy) € TY.

Proofs 77

Recall that (T',0') is a reachable stable configuration with o'(v)(hcomm) =
o(7)(hcomm) for all v € dom(c), especially o'(a)(hcomm) = o(a)(heomm) =
o1(a)(heomm) = 01 (@) (heomm). Using the global merging Lemma 11 applied to
(T}, o) and (T', 0') we get that there is a reachable stable configuration (T, ")
with " (a) = of(a) = o1(a) = o(a) and ¢"(y) = o'(y) for all objects v # «
from the domain of ¢/, which equals the domain of ¢. Furthermore, since (T}, o7)
and (T",0") are stable, (71, (eo.m(€); 71 := é1); stmy1) € T, i (this) = «, and
oi(a) = ¢"(a), the local merging Lemma 10 implies that (71, (eg.m(€); 91 :=
é1); stmy) € T".

We get that (T, ") is a reachable stable configuration containing the local
conﬁguratlon (11, (e0.m(&); 91 = &);stmy) € T", and furthermore ¢"(a) =
o(a) and o () = o' (7y), for all other objects v # a from the domain of &

Similarly for the callee, say 3, the assumption w,o =g I.[2'/this] implies
w,o(B), 2 [Er I for some local state 75 with 7» (thls) = w(z) B. Note that
1., contains instance variables, only. By definition of the class invariant, there is
a reachable global configuration (T%, o2) such that o2(8) = o(5).

In the case of a self-call, i.e., for a = 3, we directly get that (T",¢") is
a reachable stable configuration such that ¢"(a) = o(a), ¢"(8) = o(8), and
(Tl, <€0m(é),]71 = él), stml) € T".

For non-self-calls, i.e., when « # 3, we need to fall back upon the two merging
lemmas once more to obtain a common reachable configuration: Analogously to
the caller part we can show that there is a reachable stable configuration (T4, ob)
with 4(8) = 03(8) = o(B). The global merging Lemma 11 applied to (T4, ob)
and (T",0") yields that there is a reachable stable configuration (T"",¢"") with
a"'(B) = oh(B) = o(B) and "' () = ¢’ (a) = o(«). Furthermore, since (T", ")
and (T"',0"") are stable, (11, (eg.m(€);71 := &);stmy) € Ty, i (this) = a,
and ¢"'(a) = 0”(a), the local merging Lemma 10 implies (71, (eg.m(€); 71 =

é1);stmy) € T"'. Thus (T"",0"") is a reachable stable global configuration with
J”’() =o(a), c""(B) = o(B), and (11, (eo.m(€); i1 := &);stmq) € T".

The antecedent w, o |=¢ isfree(z’.lock, id) of the cooperation test expands to
w,0o =g 2".lock=(nil,0) V 2’ .lock < id, where id is the identity of the caller, i.e.,
a(B)(lock) = (nil,0)Va(B)(lock) = 71 (id). By Lemma 5 isfree(T""\{¢},), where
¢ is the stack with (71, (e9.m(€); 71 := &); stm1) on top. This means, the local
configuration of the method invocation is enabled in (T ¢'""}. Furthermore, us-
ing the substitution Lemma 3, w, o |=¢ eo[z/this|=2" implies that [e,]2*"™ = 3.
Executing the method invocation results in a reachable global configuration with
still the same global state ¢’’, and containing the local configurations for caller

and callee (11, (7, := &1); stmy) and (7, [this —] [ﬁH[[é]]g’II(a)’Tl], body,,, .1)-
The definition of the augmentation and ¢"'(a) = o(a) gives w,o(a), 71 |=¢

post(ey.m(€)), which by the substitution Lemma 3 yields the required postcon-
dition of the method call in a:

w, o =g post(ey.m(€))[z/this] .

78 Proofs

For the precondition of the callee’s method body we argue similarly: By definition
of the precondition of the method body

w70-(6)’ znzt[thls'_)ﬁ][u'_)[[e]]é‘ (e ’Tl] |:L', pre(bOdym,c’) .

Defining pre’(body,, ..) = pre(body,, .)[InitVal(7) /7] gives

w,a(B), r[this = B)[a = [e]Z] b=r pre! (body,y,)

for an arbitrary local state 7. Note that all variables occurring in pre’(body,, .)
are either instance variables, this, or formal parameters, since the remaining
local variables are substituted by their initial values. For the global expression
E = &[z/this] we obtain by the substitution Lemma 3

[E1g7 = [el=/whisllg " = [e] 77" = [els ™,

and further with the same lemma, the precondition of the method body in the
form as required by the cooperation test:

w,0 g pre'(bodym7c,)[z',E/this,ﬁ] .

Let (T",0") — (Teomm> Tcomm) — (Tops1>T0bs1) — (Tgheos Oopen) e

comm? comm
the computation executing the method invocation in the local configuration

(11, (e0-m(€); 71 = é1);stmy) € T"" and the observations of both the caller
and the callee, in this order. Then
mn mn

ocomm =0 ’

U:)I;)SI = Ucomm [O[hn '_>|[61]]

ot o =l B0]z os1 (B), Teatlee]

comm. (a)77'1] and
’

where the local state Tcgpiee 18 given by 7, [this — S][@ »—)[[e]] comn{ TI] We have

to show that
w,o =g GIE,)2 b)EL) 2.1]

where Ey = & [z/this] and Ej=8,[2', E /this, @] with & = &[InitVal(7)/7] and
E= €[z/this]. Applying Lemma 2 yields

[GIE /By 218 = [GILEL /2)]s e 1P e

sola gy »[E1157]
ol —[E]S 711852 —~ [Ealy ¢

—[GI1 I

Proofs 79

" = _, 2 qesolei = [Eilg”
Let 05051 = ola.gi »[E1]57] and oopse = Oobst [B-72 |—>[[E§]]UQJ ole-h =~ 1l]].

With the substitution Lemmas 3 and 1 we can get the following equations.
HEHEU = [elz/this]] g7 = [[g]]g(a),n
_ [[é‘]]gm(oz)’n — [g]]ggognm(oz),rl
[\ = [&1[z/this]| 27 = [&]5 ™
_ [[gl]]grll(a)yTl — [[5»1]];7"’7"7"(05)7T1 ,
Byl = (3", By,)™
= [[InitVal(9)/d][2', E /this, @] 7

‘T,” @), T . - MW, o
oo qwsolacgi »[E]E O T (8) 7, [this s B[E]S 7]
= [[‘32]15

)

6,” a), T
12 190 (B),Tilthis = B][d s [E] 7o) T
= [[32]15

— [[52]]?7%’31 (B) T calice -
This means,
— = = 1T o (@) 71 — = 1T ope1 (B)sTeallee
Oobs2 = U[a-yl '_)[[el]]g][B-yQ '_)[[62]]5'] .
Remember that
mo N oot (@), N = 10 0er (B) T eattce
Oobs2 — Ucomm[a'yl '_)[[61]]5][ﬂy2 '_)[[62]](‘,'] .

At the end, the communication histories all coincide, i.e., !/ (7)(hcomm) =

"' (¥)(heomm) = () (hcomm) for all v € dom(c), and consequently o,ps2 agrees

with 0!} , also on all heomsm, values. Consequently, (T ,,0"; ,) is a reachable

stable configuration satisfying o'/} o (V) (hcomm) = Tobs2 (7)(heomm) for all v €
dom(o), and we get by the definition of the annotation w, o2 Eg GI, and

finally w, o |=¢ GI[E} /2 .b][E, /2.1, as required
The case for non-synchronized methods is shown analogously, only the an-

tecedent isfree(z’.lock,id) is dropped.

The case for the invocation of start-methods, whose enabledness requires
—started(T", 8), we have the additional antecedent —z’.started, which implies
—0'"(3) (started). So by Lemma 6 implies that started(T"", B) iff o' (/3)(started).

Case: Return
In this case assume

w,o [=g GI A pre' (return eyo;)[2’, E [this, @] A pre(receive v)[z/this] A
eo[2z/this]=2".
By definition of the global invariant, w, o g GI implies that there is a reachable

stable configuration (T”,¢') such that dom(c) = dom(o') and o(8)(hcomm) =
' (B)(hcomm) for all 8 € dom(o).

80 Proofs

Assuming « as the identity of the caller, i.e., w(z) = «, then Lemma 3
w, o =g pre(receive v)[z/this] gives

w,o(a),n = pre(receivev)

for some local state 7 with 7 (this) = w(z) = a and 7 (u) = w(u) for all local
variables occurring in pre(receive v). This implies by definition of the annotation
that there exists a reachable configuration (T3, 1) such that o1 (o) = o(a) and
(11, (receive v; ¥y := &); stmy) € Ty. Similar as in the case for method calls, we
define the configuration (7Y, o)

1. as the last stable global configuration in the computation leading to (T7,071),
if its instance state for « coincides with oy (a), and

2. as the next configuration following (T},0,) after extending the computa-
tion by one computation step, otherwise. Note again that the extension is
deterministic.

As in the case of method invocation, we conclude that (T}, o}) is a reachable
stable configuration with o} () = o1 («) and (71, (receive v; 7y := &4); stmq) € TY.

Recall that (T",0') is a reachable stable configuration with o’ () (hcomm) =
o(¥)(hcomm) for all v € dom(o), especially o'(a)(hcomm) = o(@)(hcomm) =
01(a)(heomm) = 01 (@) (heomm)- Using the global merging Lemma 11 on (77, 07)
and (T',0') we get that there is a reachable stable configuration (T",¢"") with
d"(a) = o} (a) = o1(a) = o(a) and ¢"(v) = o'(v) for all objects v # « from
the domain of ¢, which equals the domain of o. Furthermore, since (17, 0})
and (T",0") are stable, (71, (receivev; ¢y := €); stm1) € T7, 71 (this) = a, and
o1(a) = o' (a), the local merging Lemma 10 implies that (7, (receivev; gy :=
é1);stmq1) € T". So (T",0") is a reachable stable configuration containing the
local configuration (71, (receivev; 4y := &41); stmq) € T", and with ¢ (a) = o(«)
and o' () = o' () for all other objects v # « from the domain of o.

Similarly for the callee, say 3, w,o g pre'(return eret)[z’,E/this,ﬂj implies
that w, 0(8), T2 = pre(return epe:) for some local state 7o with 2 (this) = w(z') =
B, (@) = [[f’_:']’]]“g“7 for the formal parameters @, and 72 (%) = w(¢") for the local
variables ¥ without the formal parameters and this. By definition of the anno-
tation there is a reachable global configuration (T, 02) such that o2(8) = o(f5)
and (72, (return epe; U3 := €3)) € Ts.

In the case of a self-call, i.e., if the caller and the callee are the same ob-
ject, we get directly that (T", o") is a reachable stable configuration such that
o' (a) = o(a), 0" (B) = o(B), and (11, (receive v; ¥y := &4); stmy) € T". Further-
more, by the local merging Lemma 10 using (72, (return e,.;; ¥ := €;)) € Ty also
(72, (return epes; i3 == €3)) € T".

Assume now that a # 3. Analogously to the caller part, we can show that
there is a reachable stable configuration (T3, o) with ¢ (8) = 02(8) = o(f) and
(12, (return e,et; 3 := €3)) € T5. Using the global merging Lemma 11 applied
to (Ty,0h) and (T",0") we get that there is a reachable stable configuration
(T, ¢""y with o' (8) = o4(8) = o(8) and 0" () = 0" () = o (). Furthermore,

Proofs 81

since (T",0") and (T",0"") are stable, (11, (receivev;yy = €);stmy) € T,
71(this) = a, and ¢'"(a) = ¢”(a), the local merging Lemma 10 implies that
(11, (receivev; ¢y := &1);stmq1) € T'". Correspondingly for the callee, (T4, ob)

and (T"",0'") are stable, (72, (return epet; ¥z := €3)) € Ty, 2(this) = 3, ¢'"'(B) =
o5(B), and the local merging Lemma 10 implies that (72, (return ey;; i3 := €3))
T"'. Thus (T",c'") is a reachable stable global configuration with ¢’ (a) = o(«a
"' (B) = o(B), (11, (receivev; gy 1= €x); stmy) € T, and (72, (return eyes; 73 :
é)) eT".

)

I>=m

With Lemma 3, the antecedent w, o =g e[z/this]=z' implies that [[eo]]g(a)’T1
equals 3. Executing the communication of the return value results in a reachable
global configuration still having the same global state ¢’’, and containing the
local configuration (71[v »—>[[eret]]gm(6)’r2], (74 == &1); stmy) of the caller, and the
local configuration (72, (73 := &)) of the callee.

By the definition of the augmentation and using o"'(a) = o(«) we get that
w,o(a), v H[[eret]]gm(ﬁ)’m] = post(receivev). Applying the lifting Lemma 3
once more, but in the other direction as before, and using

Leretd? 7 = Lewal2 ™77 = [eyale’, Bfthis, dllg " = Byl
gives
w, o =g post(receivev)[z, EL, /this, v] .

Similarly for the callee, w,o(8), T2 |= post(return ept). By the definition of
we have 7 (this) = w(z') = B, w(@) = [E]57 for the formal parameters i, and
T2 (0) = w(¥") for the local variables ¥ without the formal parameters and this.
Applying the lifting Lemma 3 again yield the required post-condition from the
cooperation test.

w, 0 f=g post' (return e,e;)[2', E [this, @] .

For the global invariant, let (T, ") — (Tl 0 im) — (T oisr, Ohsr)
— (T} .0,00;.0) be the computation executing the return and receive state-
ments in the local configurations (71, (receivev;%s = €);stmy) € T" and
(72, (return epes; i3 := €3)) € T"', and the observations of both the callee and the
caller, in this order. The communication does not change any instance states,

ie., o = ¢'". Furthermore, after the execution of the assignment i3 := &3

in the object 3 we get o'} , = o 1873 [E]z"" (B)7T2]. The execution of

the observation ¢ := €, in the caller object « results finally in the global state

nr ol (B),m2
" " — o 100 (@), 1 [v = [ere] g o™™]
O obs2 defined by O obsi [a_y4 ’-)[[64]]5)

comm

We have to show that

w,o t=g GIEy/z.4)[EL)2 i7s]

82 Proofs

where Eé— 112/, E Jthis, @), Ey=#[z, E!,,/this, 0], E.,, = €' ,[2', E/this, @], and
er.. and € denote the given expressions with every local variable except the
formal parameters and this replaced by a fresh one. Applying Lemma 2 yields

[GIIEy /2. By/ o127 = [GI{Ba/ =] PP ~IEs1e]

w, o o[B.73 = [E515 7]
1835 [E51S " oga [By 7 72 7Pl

— [GI1 I

Let Oobst = U[ﬂ'y-% Hﬂﬁéﬂ] and Oobs2 = Oobst [a Ya HI[E]]W 271855 H[[Eg]]; G]]

Then we have to show that

W, Tophs2 'Zg GI .

With the substitution Lemmas 3 and 1, we get the following equations

[EL 157" = el [2, E/this, @57
e
= [[%et]]g(ﬁ)’r2 =
— [[eret]]ﬂﬁ'n'mm(ﬁ)’fz ’
[[E_:4]]z’a°b‘l [éi]z, B, /this, v]] 57"
= [&]"" (@), miv =B Jg 7]

omm(8), T2

_[[]] T obst (@), n[v»—)[[e,p]]s
[E3le” = 15[
= [&]2”
= [&]¢

)

z E/thls 7] e

T oomm (B) T2

This means,

(a),m1[v ’_)[[euii]] T omm (B)> "2]

(B),

nr
Tobs2 — U[ﬂ'?jS HI[éS]]gcamm][OL Ya '_)[[64]] s

Remember that

a8 "'2]

1" opsr (@), T1[v = [erell ¢

mnr
ol o = 0l B [E1 5D gy]

"

Since ! (V) (heomm) = "' (¥)(hcomm) = o(7)(hcomm) for all objects v €

dom(o), the state o,ps2 agrees with ol , also on all hiomm values. There-

fore (T} .,00}.5) is a reachable stable configuration with o/ ,(7)(hcomm) =
Tobs2 (7)) (heomm) for all v € dom(o), and we get by the definition of the an-
notation w,o,pse |=¢ GI, and thus finally w,o =g GI[E4/2.§4][E§/Z’.§3], as
required.

The case for methods without a return value is shown analogously.

Proofs 83

Case: Startgpgp
In case the thread is already started, assume the left-hand side of Equation 8

w,0 =g GI A pre(ey.start(€))[z/this] A I [2' /this] A o[z /this]=2" A 2'.started .

As in the case of method invocation, we can show that there is a reachable
stable global configuration (T",0"") with ¢"'(a) = o(a), ¢"'(8) = o(8), and
(11, {€o.start(€); 71 := &1); stmq) € T".

Using the lifting Lemma 3, w, 0 |=g €p[2/this|=z' implies that [e]z (@7 — g,
The additional antecedent z'.started implies ¢'”(5)(started), which equals by
Lemma 6 started(T"',3). This means, executing eg.start(€) in the local config-
uration (71, (ep.start(€); 41 := €); stmq) € T"" does not start a new thread and
results in a reachable global configuration with still the same global state o',
and containing the local configuration (71, (§; := €); stm;) of the caller.

By the definition of the augmentation and using ¢'(a) = o(a) we get
w,o(a), 7 |=¢ post(eg.m(€)). Applying the lifting Lemma 3 once more gives
the required post-condition

w,0 =g post(en.m(€))[z/this]

For the global invariant, let (T, 0"y — (T o0 o) — (T2 00 1)
be the computation executing the method invocation in the local configuration

(11, (€0-m(€); 71 := €1);stmy) € T" and the observations of the caller. Then

n "

ol o =0c"and o} =0l lag—[e]s Zeomm (@): ™). We have to show that

w,0 =g GI[Ey /2],
where Ey = & [z/this]. Applying Lemma 2 yields

w U[O‘ 71 H[[El]]g]

[GIE: /24]l5" = [CT]g

Let 0,551 = ofa.ifi Hﬂﬁl]]“g””]. For the expression E, we get using the lifting
Lemma 3

z/thls]]] = [[a]]g(“)’”

[[El]]g’ al
aly " =alpen

|=||=|

This means,

Oobs1 = U[Of Y1 I—)I[el]] T rormm (00), T1])

Remember that

"

Oobst = UCOmm[a Y1 I—)[[el]] Mmm(a),‘ﬁ] -

Furthermore, ¢ () (hcomm) = " (7)(hcomm) = 0(¥)(hcomm) for all v €

dom (o), and thus ola.ii —[&]z Teomm ()71 '] agrees also on all heyym values with

84 Proofs

oo = O mlC T l—)[[é’l]]g;g””(a)’n]. Therefore (T, ,,00;.,) is a reachable sta-
ble configuration satisfying the requirement o'} ., (7)(hcomm) = Tobs2 (V) (hcomm.)
for all v € dom(c), and we get by the definition of the annotation w,o,ps1 =g
GI, and thus w,o =g GI[El/z.ﬁl].

Case: TERMINATE

This proof case is analogous to the proof case of START;;,, where the additional
antecedent id = (2',0) implies by the definition of the augmentation, that the
return statement is executed in a local configuration being on the bottom of its
stack. This means, the thread terminates, and Rule TERMINATE applies. O

Lemma 34 (Cooperation test: Instantiation). The annotated program prog’

and the global invariant GI satisfy the verification conditions of the cooperation
test for object creation of Definition 6.

Proof (of Lemma 34). Let {(u := new®; 7 := é) be a statement in a class ¢’ of
prog’, and assume

w,o Eg EIz'(Fresh(z',u) A (GI A Ju(pre(u := new®)[z/this])) | z')

with fresh logical variables z € LVar® and 2’ € LVar'stObect, Let w(z) = o and
w(u) = B. According to the semantics of assertions we have that

W', o [=g Fresh(z',u) A (GI A Ju(pre(u := new®)[z/this])) | 2’

for some logical environment w’ that assigns to 2’ a sequence of objects from
domgibl’ed(a) = |, dom3; (o), and agrees on the values of all other variables

with w. The assertion Fresh(z’,u) is defined by
u & 2" A InitState(u) AVo(v € 2’ Vo =u),

where InitState(u) expands into u # nil A A _;y,, u.z = InitVal(z). Thus, o',

=g Fresh(z',u) implies that 3 € dom® (o) with o(8) = 0 and domO%* () =

w'(2") U {B}. Let o’ be the global state with domain dom®**(s’) given as
dom®®**(5)\{B} and such that o'(y) = o(y) for all v € dom®®*%(0)\{5}.
Then o = o[+ o], and from

inst
W', o =g (GI A Ju(pre(u := new®)[z/this])) | 2’
we get with Lemma 8

w,0' =g GI A Ju(pre(u := new®)[z/this]) .

By definition of the annotation, w,o’ =g GI implies that there is a reachable
stable configuration (T7,01) such that dom(o1) = dom(o’) and o1 (7)(hcomm) =
o' (7) (hcomm) for all v € dom(o”).

The precondition of the object creation statement

w, 0’ =g Ju(pre(u := new®)[z/this])

Proofs 85

implies
wlur Z], 0" =g pre(u := new®)[z/this]

Object
nil

for some Z € dom (¢). Applying the lifting Lemma 3 we get that

w,o' (a), T [=¢ pre(u := new®)

for a local state 7 with 7(this) = w(z) = «a, 7(u) = Z, and 7(v) = w(v) for
all other local variables v. By definition of the annotation, there is a reachable
global configuration (T5,02) such that o2(a) = o'(a) and (7, (u := new®; § :=
€); stm) € Ts.

To be able to apply the global merging lemma and analogous to the situation
in the proof of the cooperation test for communication (Lemma 33), we define
the configuration (Ty, %) either

1. as the last stable global configuration in the computation leading to (T, o2},
if it defines the same instance state for a as o3, or

2. as the configuration following (T5,02) when extending the computation by
one computation step, otherwise. Again note that the extension is determin-
istic.

In the first case, either (Ty, 02) itself is stable or the computation (Ty, o) —*
(T», 02) executes some object creation or communication possibly followed by
observations in objects different from «, but it does not execute any obser-
vations in «. From (7, (u := new®;§ := &);stm) € T> we conclude that also
(1, (u := new®; § := €); stm) € T, (otherwise its statement would begin with an
assignment), and that o2(a) = o4(a). In the second case, (T, 02) is not stable
since otherwise the first case would apply. Furthermore, since the instance state
o2(a) differs from the instance state of « in the last stable configuration in the
computation, we know that in the last two steps of the computation a commu-
nication has taken place, where the sender object is a which already executed
its observation, but not yet the receiver object.

Since (T}, 01) is stable, the last element in the sequence o1 (@) (hcomm) is not
the observation of the sender part of a self-communication. Since o2(a) (hcomm) =
o' (@) (heomm) = 01(a)(homm), neither is the last element in o5 (@) (hcomm). Thus
the receiver object differs from «a. Executing the observation of the receiver part
outside a leads to a configuration (T4, c4) with the same instance state for a as
o2 and still containing (7, (u := new¢; i := €); stm).

Thus we conclude that (T3, 0%) is a reachable stable configuration such that
oh(a) = o3(a) = o'(a) and (7, (u := new®; § := €); stm) € T5.

Recall that (T, 04) is a reachable stable configuration with o1 () (heomm) =
o' (7)(heomm) for all v € dom(o'), especially o1(a)(hcomm) = o' (@)(hcomm) =
02(a) (heomm) = 05()(hcomm). Using the global merging Lemma 11 applied to
the reachable stable global configurations (T4, 0b) and (T, 01) we get that there
is a reachable stable configuration (T3, 03) with o3(a) = oh(a) = 02(a) = o'(@)

86 Proofs

and a3(v) = o1 (7) for all objects v different from « from the domain of ¢, which
equals the domain of ¢'. Furthermore, since (T4, 0%) and (T3,03) are stable,
(1, (u := new®; ¢ := &);stm) € Ty, 7(this) = «, and di(a) = o3(a), the local
merging Lemma 10 implies that (7, (u := new®; § := €); stm) € T3.

So we know that (T3, 03) is a reachable stable configuration containing the
local configuration (7, (u := new®; 7 := €); stm) € T3, and defining o3(a) = o' ()
and o3(8) = o1(7) for all other objects v different from « from the domain of
o. Now executing the instantiation statement in the local configuration (7, (u :=

new®; i := €); stm) in (T3, 03) creates a new object 3 ¢ dom(o3) and results in
a new global configuration (T3, %) with o} = o3[8+ oiMt]. Especially, (T4, %)

is a reachable global configuration with o}(a) = o3(a) = o'(a) = o(a) and
(1,(7 := €); stm) in (T3,03) € T3, i.e.,

w,o(a), T Er post(u := new®) .
and with the lifting Lemma 3 together with the definition of 7 this means
w, o =g post(u := new®)[z/this]

as required in the cooperation test.
As (T}, 0%) is a reachable global configuration with o4(8) = o(8) = o™t we
know

w,o(B),7" =r Lo

for some local state 7 with 7(this) = 3. Applying the lifting Lemma 3 again with
w(u) = B yields the required condition for the class invariant.

w,o Eg I.[u/this] ,

as required.

To show finally satisfaction of the global invariant, let (T5,03) — (T3, 0%)

— (T4, 0%) be the computation executing the object creation and its obser-

vation in the local configuration (7,(u := new®;§ := &);stm) € T5 such that
B ¢ dom(o3) is the identity of the new object. Then o = o3[3+ oini] and

inst
o = o} [a.if > [€]2 7). We have to show that
w,0 =g GIE/z4),
where E = €[z /this]. Applying the substitution Lemma 2 yields
= w,o Nl -*H[[E_“]]w'a]
[GIIE/2.q]5" = [GI];" "7 .

Now let o' = o[a.gj’H[[E]]E’”]. Transforming the expression E

[[@]“5# = [elz/this]] 7 = [[g]]g(a),r _ [[g]]gg(a),r _ [[é.]]?(a),r 7

Proofs 87

with the help of the lifting Lemma 3 and the definition of 7, this means

0" = o'[B = ol la.g [7]

inst

Remember that

olf = o3[Brs o i g €] 7] .

Furthermore, o4 (7) (hcomm) = 3(7) (hecomm) = () (hecomm) for all v € dom(c’),
and consequently o' agrees also on all hy,m values with of.

Thus (T4, 0¥} is a reachable stable configuration such that of (v)(heomm) =
" (7)(hcomm) for all v € dom(o), and we get by the definition of the annotation

w,d" =g GI, and thus w,o =g GI[E/z.j], as required. |

88

C Notation

Notation

typ. element, symbol definition, explanation
notation domain
Syntax
c C class names
m M method names
t T types
z IVart instance variables
w,v TVart local variables
y Var? local or instance variables
f F operators
e Ezpf: expressions
sexp SEzp’ side-effect expressions
stm Stm. statements
meth Meth, methods
class Class classes
prog program
Semantics
e Val® object identities
Valt values of type ¢
Val J, Val' all values (except nil)
nil® empty reference of type ¢
Vals,; Val® U {nil} identities or empty reference
val Val,; U,{Vall,} all values
T Yoc TVar U {this} — Val,; local state
T inst Yinst IVar — Val,; instance state
o X U, Val® = Xina global state
(Tinst>T) Yinst X Hioc instance local state
dom® (o) 2 Val® existing instances of ¢ in o
dom! (o) gVal' existing values of type ¢
dom/(o) 2Val existing values
dom it (o) 2Valui existing values including nil
(7, stm) Yloc X Stm local configuration
& Thread Stack of X x Stm thread configuration
(T, o) gThread o 5 global configuration
[-1e (Xinst X Xioc) = (Ezp — Val,;) local evaluation function
isfree 27hread 5 |, Val® — Bool entering possible?
started 27hread |, Val® — Bool thread of an object started?
sync C x M — Bool m of ¢ synchronized?
Assertions (syntax)
z LVar' logical var’s
e LEzxp local expressions
p,q LAss local assertions
E GEzp global expressions
PQ GAss global assertions
Assertions (semantics)
w 2 LVar — Val,; logical environment

[g

(Q X Einst X Eloc) —
(LEzp U LAss — Val,;)

local evaluation

(2 x X)— (GEzp U GAss — Val,;) global evaluation

Notation

89

90 Example

D Example

The following class implements interfaces for read and write access to some
database. Several threads may concurrently read the database. Before entering
the reading section the threads must log in for reading, which increases a counter
named readers by one; after finishing reading, the threads log out by decreasing
the counter.

Entering the critical section of writing is possible only if there are no threads
currently reading, i.e., if the counter readers has the value 0. Since the meth-
ods for write access and for logging in for reading are synchronized, no threads
can log in for reading or begin to write if another thread is currently writ-
ing. Thus we conclude that write access is mutually exclusive wrt. reading and
writing, whereas concurrent reading is possible. The example is formulated in
Java-syntax, which is slightly different from Javayr.

class Resource{
private int readers = 0;
public void read(){
login_read();
// Critical section of reading
logout_read();

private synchronized void login_read(){
readers = readers + 1;

}

private void logout_read(){
readers = readers — 1;

public synchronized void write(){
while (readers != 0) {;}
// Critical section of writing

}
}

To define an inductive assertion network expressing the program proper-
ties mentioned above, we first have to transform the program. In the following
transformation the type Id denotes the type Object x Int of the auxiliary formal
parameter id; the type listId is denoted by IdSequence. The operation ”o” ap-
plied to a sequence of type IdSequence and an identity of type Id appends the
given identity at the end of the sequence. The operator ”—" applied again to
a sequence of type IdSequence and an identity of type Id removes exactly one
occurrence of the given identity from the sequence, if any, and lets the sequence
untouched otherwise.

Besides the built-in transformation introducing the explicit communication
statements with their bracketed sections and the augmentation with the built-in
auxiliary variables, we introduce the auxiliary instance variable reader_threads,

Example 91

which we use to store the identities of all currently reading threads. For the
sake of readability, we don’t show the augmentation with the auxiliary variables
callerobj, lock, started, and stable, since they don’t occur in the annotation, and
thus their values do not influence the inductiveness of the network.

class Resource{

private int readers = 0;

private IdSequence reader_threads;

public void read(Id id){
(login_read(callee(id))); (receive);
// Critical section of reading
(logout_read(callee(id))); (receive);
(return);

}

private synchronized void login_read(Id id){
readers, reader_threads = readers + 1, reader_threads o id;
(return);

}

private void logout_read(Id id){
readers, reader_threads = readers — 1, reader_threads — id;
(return);

}

public synchronized void write(Id id){
while (readers != 0) {;}
// Critical section of writing
(return);

}
}

Each reading thread is logged in, and consequently its identity is appended
to the sequence reader_threads. Using the fact that a thread can remove only
its own identity from the sequence reader_threads, we state as invariant that
the identity of a thread is represented in reader_threads iff the thread is logged
in for reading. Thus we observe that the value of reader_threads of each in-
stance of the class Resource contains the identities of all threads that are cur-
rently logged in for reading. Its length equals the number of reading threads,
i.e., readers = |reader_threads|. Combining the above observations leads to the
following annotation of the transformed program:

class Resource{ I = (readers = |reader_threads|)
private int readers = 0;
private IdSequence reader_threads;

public void read(Id id){ {I}
(login_read(callee(id))); {I} (receive); {callee(id) € reader_threads A I'}
// Critical section of reading {callee(id) € reader_threads A I'}

(logout_read(callee(id))); {I} (receive); {I'}

92 Example

(return); {I}
}
private synchronized void login_read(Id id){ {I'}
readers, reader_threads = readers + 1, reader_threads o id;
{id € reader_threads N I'}
(return); {I}
¥
private void logout_read(Id id){ {id € reader_threads N I'}
readers, reader_threads = readers — 1, reader_threads — id;

{1}

(return); {I'}

public synchronized void write(Id id){ {I}
while (readers != 0) {;} {readers = 0N I}
// Critical section of writing {readers = 0N I}
(return); {I'}

}
}

Next we show that the above transformed and annotated class definition sat-
isfies the verification conditions. Initial and local correctness are straightforward.
For the interference freedom test we have to show the invariance of assertions un-
der the execution of the assignments in the methods login_read and logout_read.
Invariance of the class invariant is straightforward. Invariance of the assertion
callee(id) € reader _threads A I under appending an element to reader_threads in
the method login_read is easy to see. The assertion is also invariant under the
execution of the assignment in logout_read which removes an element from the se-
quence, since the assertion interleavable in the verification condition implies that
the assertion describes a thread different from the one executing the assignment.
Le., msamethread(id’, id), and thus callee(id’) # id, where id’ denotes the identity
of the thread described by the assertion, and id is the identity of the thread
executing the assignment. The same arguments apply to the invariance of the
assertion id € reader_threads A\ I. The assertion readers = 0 A I cannot interfere
with the execution of any assignments: Since the methods write and login_read
are both synchronized, the assertion interleavable applied to readers = 0 A I and
the assignment in login_read evaluates to false, and thus we don’t have to show
interference freedom for this case. Finally, the assertion readers = 0 A I imply
that the sequence reader_threads is empty, that contradicts to the precondition
id € reader_threads A I of the assignment in the method logout_read. Thus the
verification conditions of the interference freedom test are satisfied.

For the cooperation test we define the trivial global invariant GI = true.
The cooperation test for the invocation of login_read and for returning from
logout_read are straightforward. The cooperation test defines the following con-
dition for returning from the method login_read invoked by a thread executing

Example 93

the method read:

w,o Eg (id € reader_threads A I)[2', callee(id)/this,id] A I[z/this] A
this[z /this] = 2’ A z#nil A 2'#nil
— I[Z', callee(id) /this, id] A (callee(id) € reader_threads A I')[z/this] ,

ie.,

w,0 g callee(id) € 2'.reader_threads A I[2'/this] A I[z/this] A z = 2’
— I[2'/this] A callee(id) € z.reader_threads A I[z/this] ,

whose satisfaction is easy to see. Similarly for the invocation of the method
logout_read by a thread executing the method read we have to show that

w, 0 =g (callee(id) € reader_threads A I)[z/this] A I[z/this] A
this[z/this] = 2’ A z # nil A 2’ # nil
— I[z/this] A (id € reader_threads A I)[2', callee(id) /this, id] ,

ie.,

w, 0 =g callee(id) € z.reader_threads A I[z/this] A I[z'/this] A z = 2/
— I[z/this] A callee(id) € 2'.reader_threads A Iz /this] ,

whose validity is again straightforward.

This example shows that with our proof method we can prove properties
of instances of a class without explicitly defining the whole program, i.e., the
context of the class. The preconditions of the methods in the class define as-
sumptions about the behavior of the context. The object properties of instances
of the class are invariant, if these assumptions are satisfied for all invocations of
instance methods by the context.

