
INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK

LEHRSTUHL FÜR SOFTWARETECHNOLOGIE

Verification for Java’s

Reentrant Multithreading Concept:

Soundness and Completeness

Erika Ábrahám-Mumm

Frank S. de Boer

Willem-Paul de Roever

Martin Steffen

Bericht Nr. TR-ST-02-01

15 März 2002

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

Veri�
ation for Java's

Reentrant Multithreading Con
ept:

Soundness and Completeness

Mar
h 15, 2002

Erika

�

Abrah�am-Mumm

1

, Frank S. de Boer

2

,

Willem-Paul de Roever

1

, and Martin Ste�en

1

1

Christian-Albre
hts-University Kiel, Germany

2

Utre
ht University, The Netherlands

Abstra
t. Besides the features of a
lass-based obje
t-oriented lan-

guage, Java integrates
on
urren
y via its thread-
lasses, allowing for

a multithreaded
ow of
ontrol. The
on
urren
y model in
ludes shared-

variable
on
urren
y via instan
e variables,
oordination via reentrant

syn
hronization monitors, syn
hronous message passing, and dynami

thread
reation.

To reason about multithreaded programs, we introdu
e in this paper

an assertional proof method for safety properties for Java

MT

(\Multi-

Threaded Java"), a small
on
urrent sublanguage of Java,
overing the

mentioned
on
urren
y issues as well as the obje
t-based
ore of Java,

i.e., obje
t
reation, side e�e
ts, and aliasing, but leaving aside inheri-

tan
e and subtyping. We show soundness and relative
ompleteness of

the proof method.

Table of Contents

1 Introdu
tion . 3

2 The programming language Java

MT

. 4

2.1 Introdu
tion . 4

2.2 Abstra
t syntax . 5

2.3 Semanti
s . 7

2.3.1 States and
on�gurations . 7

2.3.2 Operational semanti
s . 10

3 The assertion language . 11

3.1 Syntax . 11

3.2 Semanti
s . 13

4 The proof system . 17

4.1 Proof outlines . 17

4.2 Proof system . 23

4.2.1 Initial
orre
tness . 24

4.2.2 Lo
al
orre
tness . 24

4.2.3 The interferen
e freedom test . 25

4.2.4 The
ooperation test . 26

5 Soundness and
ompleteness . 29

5.1 Soundness . 30

5.2 Completeness . 31

6 Con
lusion . 34

A Semanti
s of transformed programs . 38

B Proofs . 41

B.1 Properties of substitutions . 41

B.2 Soundness . 43

B.2.1 Invariant properties . 43

B.2.2 Soundness of the proof-
onditions . 49

B.2.3 Indu
tive soundness proof . 58

B.3 Completeness . 62

C Notation . 88

D Example . 90

Introdu
tion 3

1 Introdu
tion

The semanti
al foundations of Java [17℄ have been thoroughly studied ever sin
e

the language gained widespread popularity (see e.g. [4, 31, 14℄). The resear
h

on
erning Java's proof theory mainly
on
entrated on various aspe
ts of se-

quential sublanguages (see e.g. [22, 36, 29℄). This paper presents a proof system

for multithreaded Java programs. Con
entrating on the issues of
on
urren
y, we

introdu
e an abstra
t programming language Java

MT

, a subset of Java, featuring

dynami
 obje
t
reation, method invo
ation, obje
t referen
es with aliasing, and

spe
i�
ally
on
urren
y. Threads are the units of
on
urren
y. They are
reated

as instan
es of spe
i�
 thread-
lasses and share the instan
e variables of obje
ts.

As a me
hanism of
on
urren
y
ontrol, methods
an be de
lared as syn-

hronized, where syn
hronized methods within a single obje
t are exe
uted by

di�erent threads mutually ex
lusive. A
all
hain
orresponding to the exe
u-

tion of a single thread
an
ontain several invo
ations of syn
hronized methods

within the same obje
t. This
orresponds to the notion of re-entrant monitors

and eliminates the possibility that a single thread deadlo
ks itself on an obje
t's

syn
hronization barrier.

The assertional proof system for verifying safety properties of Java

MT

is for-

mulated in terms of proof outlines [26℄, i.e., of programs augmented by auxiliary

variables and with Hoare-style assertions [16, 20℄ asso
iated with every
ontrol

point.

The behavior of a Java

MT

program results from the
on
urrent exe
ution of

method bodies, that
an intera
t by

{ shared-variable
on
urren
y,

{ syn
hronous message passing for method
alls, and

{ obje
t
reation.

In order to
apture these features in a modular way, the assertional logi
 and

the proof system are formulated in two levels, a lo
al and a global one. The lo
al

assertion language des
ribes the internal obje
t behavior. The global behavior,

in
luding the
ommuni
ation topology of the obje
ts, is expressed in the global

language. As in the Obje
t Constraint Language (OCL) [37℄, properties of obje
t-

stru
tures are des
ribed in terms of a navigation or dereferen
ing operator.

The lo
al level treats internal
omputations a�e
ting a single obje
t, but

ex
luding
ommuni
ation. The exe
ution of a single method body in isolation is

aptured by standard lo
al
orre
tness
onditions that show the indu
tiveness

of the annotated method bodies.

To support a
lean interfa
e between internal and external behavior, Java

MT

does not allow quali�ed referen
es to instan
e variables. As a
onsequen
e,

shared-variable
on
urren
y is
aused by simultaneously exe
ution within a sin-

gle obje
t, but not a
ross obje
t boundaries, and
an therefore be handled on the

lo
al level, as well. A further healthy e�e
t of disallowing referen
es to external

instan
e variables is that it redu
es the potential of interferen
e
onsiderably,

whi
h means mu
h less proof obligations generated by the proof system. The

4 The programming language Java

MT

interferen
e freedom test [26, 24℄ formulates the
orresponding veri�
ation
on-

ditions. It has espe
ially to a

ommodate for reentrant
ode and the spe
i�

syn
hronization me
hanism.

A�e
ting more than one instan
e, syn
hronous message passing and obje
t

reation
an be established lo
ally only relative to assumptions about the
om-

muni
ated values. These assumptions are veri�ed in the
ooperation test on the

global level. The
ommuni
ation
an take pla
e within a single obje
t or between

di�erent obje
ts. As these two
ases
annot be distinguished synta
ti
ally, our

ooperation test
ombines elements from similar rules used in [8℄ and in [24℄ for

CSP.

Overview This paper is organized as follows. Se
tion 2 de�nes the syntax of

Java

MT

, Se
tion 2.3 its operational semanti
s. After introdu
ing the assertion

language in Se
tion 3, the main Se
tion 4 presents the proof system. Soundness

and
ompleteness of the proof system is shown in Se
tion 5. In Se
tion 6, we

dis
uss related and future work. The proofs of the results are in
luded in the

appendix.

2 The programming language Java

MT

In this se
tion we introdu
e the language Java

MT

(\Multi-Threaded Java"). We

start with highlighting the features of Java

MT

and its relationship to full Java,

before formally de�ning its abstra
t syntax and semanti
s.

2.1 Introdu
tion

Java

MT

is a multithreaded sublanguage of Java. Programs, as in Java, are given

by a
olle
tion of
lasses
ontaining instan
e variable and method de
larations.

Instan
es of the
lasses, i.e., obje
ts, are dynami
ally
reated, and
ommuni
ate

via method invo
ation, i.e., syn
hronous message passing. As we fo
us on a proof

system for the
on
urren
y aspe
ts of Java, all
lasses in Java

MT

are thread

lasses in the sense of Java: Ea
h
lass
ontains a start-method that
an be

invoked only on
e for ea
h obje
t, resulting in a new thread of exe
ution. The

new thread starts to exe
ute the start-method of the given obje
t while the

initiating thread
ontinues its own exe
ution.

As a me
hanism of
on
urren
y
ontrol, methods
an be de
lared as syn
hro-

nized. The exe
ution of syn
hronized methods within a single obje
t by di�erent

threads is mutually ex
lusive, whereas non-syn
hronized methods do not require

su
h
oordination. Note that in a single
all
hain re
ursive invo
ations of syn-

hronized methods on the same obje
t are allowed, as they are exe
uted by the

same thread. This
orresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., ea
h method invoked on

an obje
t must be supported by the obje
t, the types of the formal and a
tual

parameters of the invo
ation must mat
h, et
. As the stati
 relationships between

lasses are orthogonal to multithreading aspe
ts, we ignore in Java

MT

the issues

The programming language Java

MT

5

of inheritan
e, and
onsequently subtyping, overriding, and late-binding. For

simpli
ity, we neither allow method overloading, i.e., we require that ea
h method

name is assigned a unique list of formal parameter types and a return type. In

short, being
on
erned with the veri�
ation of the run-time behavior, we assume

a simple monomorphi
 type dis
ipline for Java

MT

.

2.2 Abstra
t syntax

Similar to Java, the language Java

MT

is strongly typed and supports
lass types

and primitive, i.e., non-referen
e types. As built-in primitive types we restri
t

to integers and booleans, denoted by Int and Bool. Besides the built-in types,

the set of user-de�nable types is given by a set of
lass names C, with typi
al

element
. Furthermore, the language allows pairs of type t

1

�t

2

and sequen
es of

type list t. Side-e�e
t expressions without a value, i.e., methods without a return

value, will get the type Void. Thus the set of all types T with typi
al element t

is given by the following abstra
t grammar:

t ::= Void j Int j Bool j
 j t� t j list t

For ea
h type, the
orresponding value domain is equipped with a standard

set F of operators with typi
al element f. Ea
h operator f has a unique type

t

1

�� � ��t

n

! t and a �xed interpretation f , where
onstants are operators of zero

arity. Apart from the standard repertoire of arithmeti
al and boolean operations,

the set F of operators also
ontains operations on tuples and sequen
es like

proje
tion,
on
atenation, et
.

Sin
e Java

MT

is strongly typed, all program
onstru
ts of the abstra
t syntax

|variables, expressions, statements, methods,
lasses| are silently assumed to

be well-typed. In other words, we work with a type-annotated abstra
t syntax

where we omit the expli
it mentioning of types when no
onfusion
an arise.

For variables, we notationally distinguish between instan
e and lo
al vari-

ables. Instan
e variables are always assumed to be private in Java

MT

. They hold

the state of an obje
t and exist throughout the obje
t's lifetime. Lo
al variables

are sta
k-allo
ated; they play the role of formal parameters and variables of

method de�nitions and only exist during the exe
ution of the method to whi
h

they belong.

The set of variables Var = IVar

_

[TVar with typi
al element y is given as

the disjoint union of the instan
e and the lo
al variables. Var

t

denotes the set of

all variables of type t, and
orrespondingly for IVar

t

and TVar

t

. As we assume

a monomorphi
 type dis
ipline, Var

t

\ Var

t

0

= ; for distin
t types t and t

0

.

We use x; x

0

; x

1

; : : : as typi
al elements from IVar , and u; v; u

0

; v

1

; : : : as typi
al

elements from TVar .

Besides using instan
e and lo
al variables, side-e�e
t free expressions e 2 Exp

are built from this, nil, and from subexpressions using the given operators.We use

Exp

t

m;

to denote the set of well-typed expressions of type t in method m 2 M

of
lass
 2 C, where M is an in�nite set of method names
ontaining main,

6 The programming language Java

MT

start, and run. The expression this is used for self-referen
e within an obje
t,

and nil is a
onstant representing an empty referen
e. Expressions with side-

e�e
ts sexp 2 SExp
ontain
lauses for obje
t
reation and method invo
ation.

By SExp

t

m;

we denote the set of side-e�e
t expressions of type t in method m of

lass
. The expression new

stands for the referen
e to a new instan
e of
lass

. An invo
ation of a method with name m on obje
t e

0

with a
tual parameters

e

1

; : : : ; e

n

is written as e

0

:m(e

1

; : : : ; e

n

).

Besides the mentioned simpli�
ations on the type system, we impose for

te
hni
al reasons the following restri
tions: We require that method invo
ation

and obje
t
reation statements
ontain only lo
al variables, i.e., that none of the

expressions e

0

; : : : ; e

n

ontains instan
e variables, and that formal parameters

do not o

ur on the left-hand side of assignments; this restri
tion implies that

during the exe
ution of a method the values of the a
tual and formal parameters

are not
hanged. Finally, the result of an obje
t
reation or method invo
ation

statement may not be assigned to instan
e variables. This restri
tion allows for

a proof system with separated veri�
ation
onditions for interferen
e freedom

and
ooperation. It should be
lear that it is possible to transform a program to

adhere to this restri
tions at the expense of additional lo
al variables and thus

new interleaving points.

Statements stm 2 Stm are built from side-e�e
t expressions and assignments

of the form x := e, u := e, and u := sexp by using standard
ontrol
onstru
ts

like sequential
omposition,
onditional statements, and iteration, to form
om-

posite statements. Espe
ially, we will use � to denote the empty statement. We

refer by Stm

m;

to the set of statements in method m of
lass
.

A method de�nition modif m(u

1

; : : : ; u

n

)f stm; rexp g 2 Meth
onsists of a

method name m, a list of formal parameters u

1

; : : : ; u

n

, and a method body

body

m;

of the form stm; rexp. The set Meth

ontains the methods of
lass
.

To simplify the proof system we require that method bodies are terminated by a

single return statement, either giving ba
k a value using return e, or not, written

as return. Additionally, methods are de
orated by a modi�ermodif distinguishing

between non-syn
hronized and syn
hronized methods.

3

We use syn
(
;m) to

state that method m in
lass
 is syn
hronized. In the sequel we also refer to

statements in the body of a syn
hronized method as being syn
hronized. A
lass

fmeth

1

: : :meth

n

meth

start

meth

run

g is de�ned by its name
 and its methods,

whose names are assumed to be distin
t. As mentioned earlier, all
lasses in

Java

MT

are thread
lasses; all
lasses
ontain a start-method meth

start

and a run-

method meth

run

without return values. A program h
lass

1

: : :
lass

n

lass

main

i,

�nally, is a
olle
tion of
lass de�nitions having di�erent
lass names, where

lass

main

is the entry point of the program exe
ution. This
lass spe
i�
ally

ontains a main-method meth

main

without return value. We
all its body, written

as body

main

, the main statement of the program.

The set of instan
e variables IVar

of a
lass
 is impli
itly given by the set

of all instan
e variables o

urring in that
lass. Correspondingly for methods,

3

Java does not have the \non-syn
hronized" modi�er: methods are non-syn
hronized

by default.

The programming language Java

MT

7

the set of lo
al variables TVar

m;

of a method m in
lass
 is given by the set

of all lo
al variables o

urring in that method.

The syntax is summarized in Table 1.

exp ::= x j u j this j nil j f(exp; : : :; exp) e2Exp expressions

sexp ::= new

j exp:m(exp; : : :; exp) sexp2SExp side-e�e
t exp

stm ::= sexp j x := exp j u := exp j u := sexp

j � j stm; stm j if exp then stm else stm

j while exp do stm : : : stm2Stm statements

modif ::= nsyn
 j syn
 modi�ers

rexp ::= return j return exp

meth ::= modif m(u; : : :; u)f stm ; rexpg meth2Meth methods

meth

run

::= modif run()f stm; return g meth

run

2Meth run-meth.

meth

start

::= nsyn
 start()f this:run(); return g meth

start

2Meth start-meth.

meth

main

::= nsyn
 main()f stm; return g meth

main

2Meth main-meth.

lass ::=
fmeth : : :meth meth

run

meth

start

g
lass2Class
lass defn's

lass

main

::=
fmeth : : :meth meth

run

meth

start

meth

main

g
lass

main

2Class main-
lass

prog ::= h
lass: : :
lass
lass

main

i programs

Table 1. Java

MT

abstra
t syntax

2.3 Semanti
s

In this se
tion, we de�ne the operational semanti
s of Java

MT

, espe
ially, the

me
hanisms of multithreading, dynami
 obje
t
reation, method invo
ation, and

oordination via syn
hronization. After introdu
ing the semanti
 domains, we

des
ribe states and
on�gurations in the following se
tion. The operational se-

manti
s is presented in Se
tion 2.3.2 by transitions between program
on�gura-

tions.

2.3.1 States and
on�gurations To give semanti
s to the expressions, we

�rst �x the domains Val

t

of the various types t. Thus Val

Int

and Val

Bool

denote

the set of integers and booleans,Val

list t

are �nite sequen
es over values fromVal

t

,

and Val

t

1

�t

2

stands for the produ
t Val

t

1

�Val

t

2

. For
lass names
 2 C, the set

Val

with typi
al elements �; �; : : : denotes an in�nite set of obje
t identi�ers,

where the domains for di�erent
lass names are assumed to be disjoint. For ea
h

lass name
, nil

=2 Val

represents the value of nil in the
orresponding type.

In general we will just write nil , when
 is
lear from the
ontext. We de�ne

Val

nil

as Val

_

[fnil

g, and
orrespondingly for
ompound types. The set of all

possible non-nil values

S

t

Val

t

is written as Val , and Val

nil

denotes

S

t

Val

t

nil

.

The
on�guration of a program is
hara
terized by the
on�gurations of all

urrently exe
uting threads together with the set of existing obje
ts and the

8 The programming language Java

MT

values of their instan
e variables. Before formalizing the global
on�gurations of

a program, we de�ne lo
al states and lo
al
on�gurations. In the sequel we in

general identify the o

urren
e of a statement in a program with the statement

itself.

A lo
al state � 2 �

lo

of a thread holds the values of its lo
al variables

and is modeled as a partial fun
tion of type TVar

_

[fthisg * Val

nil

. We will

maintain as invariant, that the lo
al state
ontains a referen
e to the obje
t in

whi
h the
orresponding thread is
urrently exe
uting, i.e., this 2 dom(�) with

�(this) 6= nil . For a
lass
 and a method m of
 we use the notation �

m;

for

lo
al states with domain TVar

m;

_

[fthisg su
h that �

m;

(this) 2 Val

, i.e.,

�

m;

des
ribes the lo
al state of a thread exe
uting method m of an instan
e of

lass
. We denote by �

init

or by �

m;

init

lo
al states whi
h assign to ea
h
lass-

typed lo
al variable of type

0

from dom(�)nfthisg the value of nil

0

, to ea
h

boolean variable the value false , and to ea
h integer variable the value 0. Pairs

are initialized
orrespondingly; sequen
es are initially empty.

A lo
al
on�guration (�; stm) of a thread exe
uting within an obje
t �(this)

spe
i�es, in addition to its lo
al state, its point of exe
ution represented by

the statement stm. A thread
on�guration � is a sta
k of lo
al
on�gurations

(�

0

; stm

0

)(�

1

; stm

1

) : : : (�

n

; stm

n

), representing the
hain of method invo
ations

of the given thread. We write � Æ (�; stm) for pushing a new lo
al
on�guration

onto the top of the sta
k.

The state of an obje
t is
hara
terized by its instan
e state �

inst

2 �

inst

of type IVar * Val

nil

whi
h assigns values to its instan
e variables. For a

lass
 we write �

inst

to denote instan
e states assigning values to the instan
e

variables of
lass
, i.e., �

inst

is of type IVar

! Val

nil

. The initial instan
e

state �

init

inst

or �

;init

inst

assigns to ea
h of its instan
e variables of type

0

the value

nil

0

, to ea
h of its boolean instan
e variable the value false , and to ea
h integer

variable the value 0. Pairs are initialized
orrespondingly; sequen
es are initially

empty. A global state � 2 � stores for ea
h
urrently existing obje
t its instan
e

state and is modeled as a partial fun
tion of type (

S

2C

Val

) * �

inst

. The set

of existing obje
ts of type
 in a state � is given by dom

(�), and dom

nil

(�)

is de�ned by dom

(�) [fnil

g. For the built-in types Int and Bool we de�ne

dom

t

and dom

t

nil

, independently of �, as the set of pre-existing values Val

Int

and Val

Bool

, respe
tively. For
ompound types, dom

t

and dom

t

nil

are de�ned

orrespondingly. We refer to the set

S

t

dom

t

by dom(�); dom

nil

(�) denotes

S

t

dom

t

nil

. The instan
e state of an obje
t � 2 dom(�) is given by �(�). We

all an obje
t � 2 dom(�) existing in �, and we throughout require that, given

a global state, no instan
e variable in any of the existing obje
ts refers to a

non-existing obje
t, i.e., �(�)(x) 2 dom

nil

(�) for all � 2 dom

(�). This will be

an invariant of the operational semanti
s of the next se
tion.

A global
on�guration hT; �i
onsists of a set T of thread
on�gurations of

the
urrently exe
uting threads, together with a global state � des
ribing the

urrently existing obje
ts. Analogously to the restri
tion on global states, we

require that lo
al
on�gurations (�; stm) in hT; �i do not refer to non-existing

obje
t identities, i.e., �(u) 2 dom

nil

(�) for all variables u from the domain of � ,

The programming language Java

MT

9

and again this will be an invariant of the operational semanti
s. In the following

we write (�; stm) 2 T if there exists a lo
al
on�guration (�; stm) within one of

the exe
ution sta
ks of T .

Expressions e 2 Exp

t

m;

are evaluated with respe
t to an instan
e lo
al state

(�

inst

; �

m;

) 2 �

inst

� �

lo

, where, as mentioned, the lo
al state de�nes the

obje
t �

m;

(this) in whi
h the thread is
urrently exe
uting and the values of the

urrent lo
al variables of the thread, and �

inst

de�nes the values of the instan
e

variables of �

m;

(this). This means, the semanti
 fun
tion [[℄℄

E

: (�

inst

��

lo

)!

(Exp * Val

nil

) shown in Table 2 evaluates in the
ontext of an instan
e lo
al

state (�

inst

; �) expressions
ontaining only variables from dom(�

inst

) [dom(�):

Instan
e variables x and lo
al variables u are evaluated to �

inst

(x) and �(u),

respe
tively. The value of this refers to the obje
t in whi
h the expression is

evaluated, nil has the unde�ned value nil . Finally, the evaluation of
ompound

expressions are de�ned by homomorphi
 lifting.

[[x℄℄

�

inst

;�

E

= �

inst

(x)

[[u℄℄

�

inst

;�

E

= � (u)

[[this℄℄

�

inst

;�

E

= � (this)

[[nil℄℄

�

inst

;�

E

= nil

[[f(e

1

; : : : ; e

n

)℄℄

�

inst

;�

E

= f([[e

1

℄℄

�

inst

;�

E

; : : : ; [[e

n

℄℄

�

inst

;�

E

)

Table 2. Expression evaluation

For a lo
al state � , a lo
al variable u of type t, and val 2 Val

t

nil

, we denote by

� [u 7! val ℄ the lo
al state whi
h assigns val to u and agrees with � on the values

of all other variables. The semanti
 update �

inst

[x 7! val ℄ of instan
e states is

de�ned analogously. Correspondingly for global states, �[�:x 7! val ℄ denotes the

global state resulting from � by assigning val to the instan
e variable x of obje
t

�. We use these operators analogously for simultaneously setting the values of a

ve
tor of variables. We use � [~y 7!~v℄ also for arbitrary variable sequen
es, where

instan
e variables are untou
hed, i.e., � [~y 7!~v℄ is de�ned by � [~u 7!~v

u

℄, where ~u is

the sequen
e of the lo
al variables in ~y and ~v

u

the
orresponding value sequen
e.

Similarly, for instan
e states, �

inst

[~y 7!~v℄ is de�ned by �

inst

[~x 7!~v

x

℄ where ~x

is the sequen
e of the instan
e variables in ~y and ~v

x

the
orresponding value

sequen
e. The semanti
s of �[�:~y 7!~v℄ is analogous. Finally for global states,

�[� 7!�

inst

℄ equals � ex
ept on �; note that in
ase � =2 dom

(�), the operation

extends the set of existing obje
ts by �, that has its instan
e state initialized to

�

inst

.

10 The programming language Java

MT

2.3.2 Operational semanti
s Computation steps of a program are repre-

sented by transitions between global
on�gurations. The operational semanti
s

of Java

MT

is given indu
tively by the rules of Table 3.

Rule Ass

inst

states that assigning e to the instan
e variable x exe
uted in

an obje
t � updates the instan
e state of the respe
tive obje
t with a new

value of x as given by evaluation of the expression in the respe
tive instan
e

lo
al state. Assignments to lo
al variables are handled
orrespondingly by rule

Ass

lo

, where the lo
al state is updated. Exe
uting u := new

, as shown in rule

New,
reates a new obje
t of type
, initializes its instan
e variables, but does

not yet add a new exe
ution sta
k to the global
on�guration.

4

This is done

by the �rst invo
ation of the start-method (
f. rule Start), thereby initializing

the �rst a
tivation re
ord of the new sta
k. Only the �rst invo
ation of the

start-method has this e�e
t. This is
aptured by the predi
ate started whi
h

holds for a global
on�guration T and an instan
e � i� there exists a sta
k

(�

0

; stm

0

) : : : (�

n

; stm

n

) 2 T su
h that �

0

(this) = �. Further invo
ations of the

start-method are without e�e
t (
f. rule Start

skip

).

5

Invoking a method extends the
all
hain by a new lo
al
on�guration (
f. rule

Call for methods with return value). After initializing the lo
al state, the values

of the a
tual parameters are assigned to the formal parameters and the thread

begins to exe
ute the method body. We introdu
e the statements re
eive and

re
eiveu to denote that the exe
ution of a
on�guration is suspended until the

invoked method terminates, where the return value, if any, will be stored in the

variable u. Note that these statements are not part of the syntax of Java

MT

.

Statements stm in the operational semanti
s are assumed to be program state-

ments possibly
ontaining re
eive statements. An analogous rule not shown here

takes
are of method invo
ation without return value.

Di�erent threads exe
ute syn
hronized methods mutually ex
lusive on a given

obje
t. This is expressed by the
ondition syn
(
;m)! isfree(T; �), where isfree

is a predi
ate over a set of sta
ks and an obje
t su
h that isfree(T; �) is true i�

no sta
k in T
ontains any lo
al
on�guration (�; stm) with �(this) = � and stm

syn
hronized. This means, a syn
hronized method of an obje
t
an be invoked

if and only if
urrently no other thread exe
utes any syn
hronized methods of

this obje
t.

When returning from a method
all (
f. rule Return) the
allee evaluates its

return expression and passes it to the
aller whi
h subsequently updates its lo
al

state. The method body terminates its exe
ution and the
aller
an
ontinue.

An analogous rule, not shown in the table, deals with returning from a method

without return value. Returning from the initial invo
ation of the main-method

or from a start-method is spe
i�
 in that there is no
aller
on�guration in the

sta
k (
f. rule Terminate). The worked-o� lo
al
on�guration (�; �) is kept in

the global
on�guration to ensure that the thread of �(this)
annot be started

twi
e.

4

The statement new

is handled similarly but without
hanging the lo
al state.

5

In Java an ex
eption is thrown if the thread is already terminated.

The assertion language 11

We elide the rules for the remaining sequential
onstru
ts |sequential
om-

position,
onditional statement, and iteration| sin
e they are standard.

We
on
lude the se
tion with the de�nition of initial and rea
hable
on�g-

urations. The initial
on�guration hT

0

; �

0

i of a program satis�es the following:

T

0

= f(�

main;

init

[this 7!�℄; body

main

)g, where
 is the main
lass, and � 2 Val

.

Moreover, dom(�

0

) = f�g and �

0

(�) = �

;init

inst

. We
all a
on�guration hT; �i

of a program rea
hable i� there exists a
omputation hT

0

; �

0

i �!

�

hT; �i su
h

that hT

0

; �

0

i is the initial
on�guration of the program and �!

�

the re
exive

transitive
losure of �!.

In Java, the main method of a program is stati
. Sin
e Java

MT

does not have

stati
 methods and variables, we de�ne the initial
on�guration as having a single

initial obje
t in whi
h an initial thread starts to exe
ute the main-method. Note

that a

ording to the de�nition of the started predi
ate, the start-method of the

initial obje
t
annot be invoked.

3 The assertion language

In this se
tion we introdu
e assertions to spe
ify properties of Java

MT

programs.

The assertion logi

onsists of a lo
al and a global sublanguage. The lo
al asser-

tion language is used to annotate methods in terms of their lo
al variables and

of the instan
e variables of the
lass to whi
h they belong. The global assertion

language des
ribes a whole system of obje
ts and their
ommuni
ation stru
ture

and will be used in the
ooperation test.

To be able to argue about
ommuni
ation histories, represented as lists of

obje
ts, we add the type Obje
t as the supertype of all
lasses into the assertion

language. Note that we allow this type solely in the assertion language, but not in

the programming language, thus preserving the assumption of monomorphism.

After �xing the syntax of the assertions in the next se
tion, we de�ne its

semanti
s and provide basi
 substitution properties.

3.1 Syntax

In the language of assertions, we introdu
e a
ountably in�nite set LVar of well-

typed logi
al variables with typi
al element z, where we assume that instan
e

variables, lo
al variables, and this are not in LVar . Logi
al variables are used for

quanti�
ation in both the lo
al and the global language. Besides that, they are

used as free variables to represent lo
al variables in the global assertion language:

To express a lo
al property on the global level, ea
h lo
al variable in a given lo
al

assertion will be repla
ed by a fresh logi
al variable.

Table 4 de�nes the syntax of the assertion language. Lo
al expressions exp

l

2

LExp are expressions of the programming language possibly
ontaining logi
al

variables. The set LExp

t

m;

onsists of all lo
al expressions of type t in method m

of
lass
, where LExp

t

is de�ned by

S

m;

LExp

t

m;

. In abuse of notation, we use e,

e

0

: : : not only for program expressions of Table 1, but also for typi
al elements of

12 The assertion language

� (this) = �

Ass

inst

hT

_

[f� Æ (�; x:=e; stm)g; �i �! hT

_

[f� Æ (�; stm)g; �[�:x 7![[e℄℄

�(�);�

E

℄i

� (this) = �

Ass

lo

hT

_

[f� Æ (�; u:=e; stm)g; �i �! hT

_

[f� Æ (� [u 7![[e℄℄

�(�);�

E

℄; stm)g; �i

� 2 Val

ndom

(�) �

0

= �[� 7!�

;init

inst

℄

New

hT

_

[f� Æ (�; u:=new

; stm)g; �i �! hT

_

[f� Æ (� [u 7!�℄; stm)g; �

0

i

� (this) = � � = [[e℄℄

�(�);�

E

2 dom

(�) �

0

= �

start;

init

[this 7!�℄

:started (T [f� Æ (�; e:start(); stm)g; �)

Start

hT

_

[f� Æ (�; e:start(); stm)g; �i �! hT

_

[f� Æ (�; stm); (�

0

; body

start;

)g; �i

� (this) = � � = [[e℄℄

�(�);�

E

2 dom

(�)

started (T [f� Æ (�; e:start(); stm)g; �)

Start

skip

hT

_

[f� Æ (�; e:start(); stm)g; �i �! hT

_

[f� Æ (�; stm)g; �i

� (this) = � � = [[e

0

℄℄

�(�);�

E

2 dom

(�) modif m(~u)f body g 2 Meth

m 6= start �

0

= �

m;

init

[this 7! �℄[~u 7![[~e ℄℄

�(�);�

E

℄ syn
(
;m)! isfree(T; �)

Call

hT

_

[f� Æ (�; u:=e

0

:m(~e); stm)g; �i�!hT

_

[f� Æ (�; re
eiveu; stm) Æ (�

0

; body)g; �i

�

0

(this) = � �

00

= � [u 7![[e℄℄

�(�);�

0

E

℄

Return

hT

_

[f� Æ (�; re
eiveu; stm) Æ (�

0

; return e)g; �i �! hT

_

[f� Æ (�

00

; stm)g; �i

Terminate

hT

_

[f(�; return)g; �i �! hT

_

[f(�; �)g; �i

Table 3. Operational semanti
s

The assertion language 13

lo
al expressions. Lo
al assertions ass

l

2 LAss , with typi
al elements p; p

0

; q; : : : ,

are standard logi
al formulas over boolean lo
al expressions; lo
al assertions in

method m of
lass
 form the set LAss

m;

. We allow three forms of quanti�
ation

over the logi
al variables: Unrestri
ted quanti�
ation 9z(p) is solely allowed for

integer and boolean domains, i.e., z is required to be of type Int or Bool. For

referen
e types
, this form of quanti�
ation is not allowed, as for those types,

the existen
e of a value dynami
ally depends on the global state, something one

annot speak about on the lo
al level, or more formally: Disallowing unrestri
ted

quanti�
ation for obje
t types ensures that the value of a lo
al assertion indeed

only depends on the values of the instan
e and lo
al variables, but not on the

global state. Nevertheless, one
an assert the existen
e of obje
ts on the lo
al

level satisfying a predi
ate, provided one is expli
it about the set of obje
ts to

range over. Thus, the restri
ted quanti�
ations 9z 2 e(p) or 9z v e(p) assert the

existen
e of an element, respe
tively, the existen
e of a subsequen
e of a given

sequen
e e, for whi
h a property p holds.

Global expressions exp

g

2 GExp , with typi
al elements E;E

0

; : : : , are
on-

stru
ted from logi
al variables, nil, operator expressions, and quali�ed referen
es

E:x to instan
e variables x of obje
ts E. We write GExp

t

for the set of global

expressions of type t. Global assertions ass

g

2 GAss , with typi
al elements

P;Q : : : , are logi
al formulas over boolean global expressions. Unlike the lo
al

language, the meaning of the global one is de�ned in the
ontext of a global

state. Thus unrestri
ted quanti�
ation is allowed for all types and is interpreted

to range over the set of existing values, i.e., the set of values dom

nil

(�) in a

global
on�guration hT; �i.

exp

l

::= z j x j u j this j nil j f(exp

l

; : : : ; exp

l

) e 2 LExp lo
al expressions

ass

l

::= exp

l

j :ass

l

j ass

l

^ ass

l

j 9z(ass

l

) j 9z 2 exp

l

(ass

l

) j 9z v exp

l

(ass

l

) p 2 LAss lo
al assertions

exp

g

::= z j nil j f(exp

g

; : : : ; exp

g

) j exp

g

:x E 2 GExp global expressions

ass

g

::= exp

g

j :ass

g

j ass

g

^ ass

g

j 9z(ass

g

) P 2 GAss global assertions

Table 4. Syntax of assertions

3.2 Semanti
s

Next, we de�ne the interpretation of the assertion language. The semanti
s is

fairly standard, ex
ept that we have to
ater for dynami
 obje
t
reation when

interpreting quanti�
ation.

Expressions and assertions are interpreted relative to a logi
al environment

! 2
, a partial fun
tion of type LVar * Val

nil

, assigning values to logi
al

variables. We denote by ![z 7! val ℄ the logi
al environment that assigns val 2

14 The assertion language

Val

nil

to z, and agrees with ! on all other variables. For a logi
al environment

! and a global state � we say that ! refers only to values existing in �, if

!(z) 2 dom

nil

(�) for all z 2 dom(!). This property mat
hes with the de�nition

of quanti�
ation whi
h ranges only over existing values and nil , and with the

fa
t that in rea
hable
on�gurations lo
al variables may refer only to existing

values or to nil . Correspondingly for lo
al states, we say that a lo
al state �

refers only to values existing in �, if �(u) 2 dom

nil

(�) for all u 2 dom(�).

The semanti
 fun
tion [[℄℄

L

of type (
 � �

inst

� �

lo

) ! (LExp [LAss *

Val

nil

) evaluates lo
al expressions and assertions in the
ontext of a logi
al en-

vironment ! and an instan
e lo
al state (�

inst

; �) (
f. Table 5). The evaluation

fun
tion is de�ned for expressions and assertions that
ontain only variables

from dom(!) [dom(�

inst

) [dom(�). The instan
e lo
al state provides the
on-

text for giving meaning to programming language expressions as de�ned by the

semanti
 fun
tion [[℄℄

E

; the logi
al environment evaluates logi
al variables. An

unrestri
ted quanti�
ation 9z(p) is evaluated to true in the logi
al environment

! and instan
e lo
al state (�

inst

; �) if and only if there exists a value val 2 Val

t

su
h that p holds in the logi
al environment ![z 7! val ℄ and instan
e lo
al state

(�

inst

; �), where for the type t of z only Int or Bool is allowed. The evaluation

of a restri
ted quanti�
ation 9z 2 e(p) with z 2 LVar

t

and e 2 LExp

list t

is

de�ned analogously, where the existen
e of an element in the sequen
e is re-

quired. An assertion 9z v e(p) with z 2 LVar

list t

and e 2 LExp

list t

states the

existen
e of a subsequen
e of e for whi
h p holds. In the following we also write

!; �

inst

; � j=

L

p for [[p℄℄

!;�

inst

;�

L

= true. By j=

L

p, we express that !; �

inst

; � j=

L

p

holds for arbitrary logi
al environments, instan
e states, and lo
al states.

[[z℄℄

!;�

inst

;�

L

= !(z)

[[x℄℄

!;�

inst

;�

L

= �

inst

(x)

[[u℄℄

!;�

inst

;�

L

= � (u)

[[this℄℄

!;�

inst

;�

L

= � (this)

[[nil℄℄

!;�

inst

;�

L

= nil

[[f(e

1

; : : : ; e

n

)℄℄

!;�

inst

;�

L

= f([[e

1

℄℄

!;�

inst

;�

L

; : : : ; [[e

n

℄℄

!;�

inst

;�

L

)

([[:p℄℄

!;�

inst

;�

L

= true) i� ([[p℄℄

!;�

inst

;�

L

= false)

([[p

1

^ p

2

℄℄

!;�

inst

;�

L

= true) i� ([[p

1

℄℄

!;�

inst

;�

L

= true and [[p

2

℄℄

!;�

inst

;�

L

= true)

([[9z(p)℄℄

!;�

inst

;�

L

= true) i� ([[p℄℄

![z 7! val℄;�

inst

;�

L

= true for some val 2 Val)

([[9z2e(p)℄℄

!;�

inst

;�

L

= true) i� ([[z2e ^ p℄℄

![z 7! val℄;�

inst

;�

L

=true for some val2Val

nil

)

([[9zve(p)℄℄

!;�

inst

;�

L

= true) i� ([[zve ^ p℄℄

![z 7! val℄;�

inst

;�

L

=true for some val2Val

nil

)

Table 5. Lo
al evaluation

Sin
e global assertions do not
ontain lo
al variables and non-quali�ed ref-

eren
es to instan
e variables, the global assertional semanti
s does not refer to

The assertion language 15

instan
e lo
al states but to global states. The semanti
 fun
tion [[℄℄

G

of type

(
��) * (GExp [GAss * Val

nil

), shown in Table 6, gives meaning to global

expressions and assertions in the
ontext of a global state � and a logi
al envi-

ronment !. To be well-de�ned, ! is required to refer only to values existing in �,

and the expression respe
tively assertion may only
ontain free variables from

dom(!) [dom(�). Logi
al variables, nil, and operator expressions are evaluated

analogously to lo
al assertions. The value of a global expression E:x is given by

the value of the instan
e variable x of the obje
t referred to by the expression

E. The evaluation of an expression E:x is de�ned only if E refers to an obje
t

existing in �. Note that when E and E

0

refer to the same obje
t, that is, E

and E

0

are aliases, then E:x and E

0

:x denote the same variable. The semanti
s

of negation and
onjun
tion is standard. A quanti�
ation 9z(P) evaluates to

true in a logi
al environment ! and global state � if and only if P evaluates

to true in the logi
al environment ![z 7! val ℄ and global state �, for some value

val 2 dom

nil

(�). Note that quanti�
ation over obje
ts ranges over the set of

existing obje
ts and nil , only.

[[z℄℄

!;�

G

= !(z)

[[nil℄℄

!;�

G

= nil

[[f(E

1

; : : : ; E

n

)℄℄

!;�

G

= f([[E

1

℄℄

!;�

G

; : : : ; [[E

n

℄℄

!;�

G

)

[[E:x℄℄

!;�

G

= �([[E℄℄

!;�

G

)(x)

([[:P ℄℄

!;�

G

= true) i� ([[P ℄℄

!;�

G

= false)

([[P

1

^ P

2

℄℄

!;�

G

= true) i� ([[P

1

℄℄

!;�

G

= true and [[P

2

℄℄

!;�

G

= true)

([[9z(P)℄℄

!;�

G

= true) i� ([[P ℄℄

![z 7! val ℄;�

G

= true for some val 2 dom

nil

(�))

Table 6. Global evaluation

For a global state � and a logi
al environment ! referring only to values

existing in � we write !; � j=

G

P when P is true in the
ontext of ! and �. We

write j=

G

P if P holds for arbitrary global states � and logi
al environments !

that refers only to values existing in �.

The veri�
ation
onditions de�ned in the next se
tion involve the following

substitution operations: The standard
apture-avoiding substitution p[~e=~y℄ re-

pla
es in the lo
al assertion p all o

urren
es of the given distin
t variables ~y

by the lo
al expressions ~e. We apply the substitution also to lo
al expressions.

The following lemma expresses the standard property of the above substitution,

relating it to state-update. The relation between substitution and update for-

mulated in the lemma asserts that p[~e=~y℄ is the weakest pre
ondition of p wrt. to

the assignment. The lemma will be used for proving invarian
e of lo
al assertions

under assignments.

16 The assertion language

Lemma 1 (Lo
al substitution). For arbitrary logi
al environments !, in-

stan
e lo
al states (�

inst

; �), lo
al expressions e

0

, and lo
al assertions p, we have

[[e

0

[~e=~y℄℄℄

!;�

inst

;�

L

= [[e

0

℄℄

!;�

inst

[~y 7![[~e℄℄

!;�

inst

;�

L

℄;� [~y 7![[~e℄℄

!;�

inst

;�

L

℄

L

; and

!; �

inst

; � j=

L

p[~e=~y℄ i� !; �

inst

[~y 7![[~e℄℄

!;�

inst

;�

L

℄; � [~y 7![[~e℄℄

!;�

inst

;�

L

℄ j=

L

p :

The e�e
t of assignments to instan
e variables is expressed on the global

level by the substitution P [

~

E=z:~x℄, whi
h repla
es in the global assertion P the

instan
e variables ~x of the obje
t referred to by z by the global expressions

~

E. To

a

ommodate properly for the e�e
t of assignments, though, we must not only

synta
ti
ally repla
e the o

urren
es z:x

i

of the instan
e variables, but also all

their aliases E

0

:x

i

, when z and the result of the substitution applied to E

0

refer

to the same obje
t. As the aliasing
ondition
annot be
he
ked synta
ti
ally,

we de�ne the main
ase of the substitution by a
onditional expression [6℄:

(E

0

:x

i

)[

~

E=z:~x℄ = (if E

0

[

~

E=z:~x℄ = z then E

i

else (E

0

[

~

E=z:~x℄):x

i

�) :

The substitution is extended to global assertions homomorphi
ally. We use this

substitution to express that a property de�ned in the global assertion language

is invariant under assignments. For the sake of
onvenien
e, we also use the

substitution P [

~

E=z:~y℄ for arbitrary variable sequen
es ~y possibly
ontaining lo
al

variables, whose semanti
s is de�ned by P [

~

E

x

=z:~x℄, where ~x is the sequen
e of

the instan
e variables of ~y and

~

E

x

is the
orresponding subsequen
e of

~

E. That

the substitution a

urately
at
hes the semanti
al update, and thus represents

the weakest pre
ondition relation, is expressed by the following lemma:

Lemma 2 (Global substitution). For arbitrary global states �, logi
al envi-

ronments ! referring only to values existing in �, global expressions E

0

, global

assertions P , and
lass-typed logi
al variables z:

[[E

0

[

~

E=z:~x℄℄℄

!;�

G

= [[E

0

℄℄

!;�[[[z℄℄

!;�

G

:~x 7![[

~

E℄℄

!;�

G

℄

G

; and

!; � j=

G

P [

~

E=z:~x℄ i� !; �[[[z℄℄

!;�

G

:~x 7![[

~

E℄℄

!;�

G

℄ j=

G

P :

To express a lo
al property p in the global assertion language, we de�ne the

substitution p[z;

~

E=this; ~u℄ by simultaneously repla
ing in p all o

urren
es of the

self-referen
e this by the logi
al variable z, whi
h is assumed to o

ur neither in

p nor in

~

E, and all o

urren
es of the lo
al variables ~u by the global expressions

~

E. The main
ases of the substitution are de�ned as follows:

this[z;

~

E=this; ~u℄ = z

x[z;

~

E=this; ~u℄ = z:x

u

i

[z;

~

E=this; ~u℄ = E

i

(9z

0

(p))[z;

~

E=this; ~u℄ = 9z

0

(p[z;

~

E=this; ~u℄)

(9z

0

2 e(p))[z;

~

E=this; ~u℄ = 9z

0

((z

0

2 e[z;

~

E=this; ~u℄) ^ p[z;

~

E=this; ~u℄)

(9z

0

v e(p))[z;

~

E=this; ~u℄ = 9z

0

((z

0

v e[z;

~

E=this; ~u℄) ^ p[z;

~

E=this; ~u℄) ;

The proof system 17

where z 6= z

0

in the
ases for existential quanti�
ation. The substitution re-

pla
es all o

urren
es of the self-referen
e this by z, transforms all o

urren
es

of instan
e variables x into quali�ed referen
es z:x, and substitutes all lo
al

variables u

i

by the given global expressions E

i

. For unrestri
ted quanti�
ations

(9z

0

(p))[z;

~

E=this; ~u℄ the substitution applies to the assertion p. Lo
al restri
ted

quanti�
ations are transformed into global unrestri
ted ones where the relations

2 and v are expressed at the global level as operators.

For notational
onvenien
e we sometimes view the lo
al variables o

urring in

the global assertion p[z=this℄ as logi
al variables. Formally, these lo
al variables

are repla
ed by fresh logi
al variables.

This substitution will be used to
ombine properties of instan
e lo
al states

on the global level. The substitution [z;

~

E=this; ~u℄ preserves the meaning of lo
al

assertions, provided the meaning of the lo
al variables ~u and this is mat
hingly

represented by the global expressions

~

E and z:

Lemma 3 (Lifting substitution). Let � be a global state, ! and � a logi-

al environment and lo
al state, both referring only to values existing in �. Let

furthermore e and p be a lo
al expression and a lo
al assertion
ontaining lo
al

variables ~u. If �(~u) = [[

~

E℄℄

!;�

G

and z a fresh logi
al variable with !(z) = �(this),

then

[[e[z;

~

E=this; ~u℄℄℄

!;�

G

= [[e℄℄

!;�(�(this));�

L

; and

!; � j=

G

p[z;

~

E=this; ~u℄ i� !; �(�(this)); � j=

L

p :

4 The proof system

This se
tion presents the assertional proof system for reasoning about Java

MT

programs, formulated in terms of proof outlines [26, 15℄, i.e., where Hoare-style

pre- and post
onditions [16, 20℄ are asso
iated with ea
h program statement. The

proof system has to a

ommodate for dynami
 obje
t
reation, shared-variable

on
urren
y, aliasing, method invo
ation, and syn
hronization.

The following se
tion de�nes how to augment and annotate programs into

proof outlines, before Se
tion 4.2 des
ribes the proof method.

4.1 Proof outlines

To reason about multithreading and
ommuni
ation, we �rst de�ne a program

transformation, introdu
ing new
ommuni
ation statements that model expli
-

itly the
ommuni
ation me
hanism of method invo
ations, then augment the

program by auxiliary variables, and, �nally, introdu
e bra
keted se
tions.

To be able to reason about the
ommuni
ation me
hanism of method invo-

ations from the view of the
aller, who sends the a
tual parameter values and

re
eives the return value, we split ea
h method invo
ation u := e

0

:m(~e) di�erent

18 The proof system

from the invo
ation of the start-method of an obje
t into the sequential
omposi-

tion of the statements e

0

:m(~e) and re
eiveu. Exe
ution of a method
all e

0

:m(~e)

sends the a
tual parameter values, whereas the
orresponding re
eive statement

re
eiveu models the re
eption of the result value. Correspondingly, for methods

without return value, the pure re
eive statement re
eive is used, instead.

To express properties of the multithreaded
ow of
ontrol we need to augment

the program by fresh auxiliary variables, disjoint from the program variables,

both as lo
al and as instan
e variables. They are added only for the sake of

veri�
ation and do not in
uen
e the
ontrol
ow. These additional variables

represent information about the global
on�guration within lo
al and instan
e

states.

Formally, assignments y := e of expressions without side-e�e
ts to instan
e

or lo
al variables
an be extended to multiple assignments y; ~y := e;~e by insert-

ing additional assignments to auxiliary variables, where (y; ~y) denotes a ve
tor of

distin
t variables and (e;~e) a
orresponding sequen
e of side-e�e
t-free expres-

sions. Besides the above extension of already o

urring assignments, additional

multiple assignments to auxiliary variables
an be inserted at any point of the

program.

Finally, we extend programs by bra
keted se
tions, a
on
eptual notion, whi
h

is introdu
ed for the purpose of proof and does not in
uen
e the
ontrol
ow.

Semanti
ally, a bra
keted se
tion hstmi expresses that the statements inside are

exe
uted without interleaving with other threads. To make obje
t
reation and

ommuni
ation observable, we atta
h auxiliary assignments to the
orresponding

statements; to do the observation immediately after these statements, we en
lose

the statement and the assignment in bra
keted se
tions. The repla
ement of

ommuni
ation and obje
t
reation statements, and method bodies is de�ned in

Table 7, where ~y; ~y

1

; : : : ; ~y

4

are arbitrary auxiliary variable sequen
es.

Repla
e by

all e

0

:m(~e) he

0

:m(~e); ~y

1

:= ~e

1

i

method body stm ; rexp h~y

2

:= ~e

2

i; stm ; hrexp; ~y

3

:= ~e

3

i

re
eive re
eiveu hre
eiveu; ~y

4

:= ~e

4

i

re
eive re
eive hre
eive; ~y

4

:= ~e

4

i

obje
t
reation u := new hu := new; ~y := ~ei

obje
t
reation new hnew; ~y := ~ei

Table 7. Bra
keted se
tions

As auxiliary variables do not
hange the
ontrol
ow of the original program,

we
an s
hedule the exe
ution order of the augmented program as follows: For

method
all statements, after
ommuni
ation of the parameters, �rst the auxil-

iary assignment of the
aller and then that of the
allee is exe
uted. Conversely

The proof system 19

for return, where the
ommuni
ation of the return value is followed by the exe
u-

tion of the assignment of the
allee and then that of the
aller, in this order. Note

that these three steps for method invo
ation and return may not be interleaved

by other threads.

Control points within a bra
keted se
tion and at the beginning of a method

body we
all non-interleaving points. All other
ontrol points are
alled interleav-

ing points. A global
on�guration hT; �i is stable, if for all lo
al
on�gurations

(�; stm) in T , stm represents an interleaving point. Restri
ted to an obje
t, hT; �i

is stable in �, if for all lo
al
on�gurations (�; stm) in T with �(this) = �, stm

represents an interleaving point. A lo
al
on�guration (�; stm) 2 T is enabled in

hT; �i, if the statement stm
an be exe
uted at the
urrent point, i.e., if there is

a
omputation step hT; �i ! hT

0

; �

0

i exe
uting stm in the lo
al state � .

A transformation of a program is given by, �rst, introdu
ing
ommuni
ation

statements, then adding assignments to auxiliary variables, and, �nally, extend-

ing the program by bra
keted se
tions. The operational semanti
s of transformed

programs is given in Appendix A. A transformation does not
hange the origi-

nal behavior of a program (
f. Lemma 9), ex
ept that it introdu
es additional

non-interleaving points.

The de�nition of a
omplete proof system requires that we
an formulate

the transition semanti
s of Java

MT

in the assertion language. As the assertion

language
an reason about the lo
al and global states, only, we have to augment

the program with auxiliary variables to represent information about the
ontrol

points and sta
k stru
tures within the lo
al and global states. We introdu
e the

spe
i�
 auxiliary variables

allerobj; id; lo
k; started; and stable ;

des
ribed in the following.

An important point of the proof system is the identi�
ation of the
ommuni-

ating obje
ts and threads. Roughly speaking, the lo
al state of the exe
ution of

a method must represent information about the
aller obje
t to distinguish self-

alls from others. Additionally, information about its thread membership and its

position within the
all sta
k is needed to dete
t lo
al
on�gurations in
aller-

allee relationship and reentrant
alls. As these distin
tions determine whether

and how the auxiliary assignments a

ompanying the
ommuni
ation statements

a�e
t the instan
e states of obje
ts, they will be
ru
ial in the formulation of

the interferen
e freedom test.

We identify a thread by the obje
t in whi
h it has begun its exe
ution, i.e.,

by the self-referen
e of the deepest lo
al
on�guration in the thread's sta
k. This

identi�
ation is unique sin
e the start-method of an obje
t
an be invoked only

on
e, i.e., at most one thread
an begin its exe
ution in a single obje
t. A lo
al

on�guration is identi�ed by the sta
k it appears in together with its position

in the sta
k, i.e., the sta
k depth at whi
h it o

urs.

Formally, ea
h method de�nition is extended by the auxiliary formal parame-

ters
allerobj and id. The variable
allerobj of type Obje
t stores the identity of the

20 The proof system

aller obje
t. The variable id of type Obje
t� Int is used to identify the exe
uting

thread via the obje
t in whi
h it has begun its exe
ution, and the position of the

orresponding lo
al
on�guration in the sta
k of the thread. Ea
h formal param-

eter list ~u is extended to (
allerobj; id; ~u). When exe
uting the main-method in

the initial
on�guration,
allerobj is initialized to nil , and id gets the initial value

(�; 0), where � is the initial obje
t. Correspondingly for ea
h method invo
ation,

e

0

:m(~e) is extended to e

0

:m(this;
allee(id);~e), where
allee(�; n) = (�; n+1) for

all n � 0. If m is the start-method, the method
all statement is repla
ed by

e

0

:start(nil ; (e

0

; 0)), instead.

To express if two lo
al
on�gurations appear in the same sta
k let the fun
tion

samethread : (Obje
t� Int)

2

! Bool be de�ned by samethread ((�; n); (�;m)) i�

� = �. Similarly, the relation < of the same type is given by (�

1

; n

1

) < (�

2

; n

2

)

i� �

1

= �

2

and n

1

< n

2

. The following lemma formalizes some basi
 invariant

properties of the auxiliary variables
allerobj and id.

Lemma 4 (Identi�
ation). Let hT; �i be a rea
hable
on�guration of a trans-

formed program. Then

1. for all sta
ks �; �

0

2 T and for all lo
al
on�gurations (�; stm) 2 � and

(�

0

; stm

0

) 2 �

0

we have samethread (�(id); �

0

(id)) = true i� � = �

0

, and

2. for ea
h sta
k (�

0

; stm

0

) : : : (�

n

; stm

n

) in T and ea
h index i 2 f0; : : : ; ng

�

i

(id) = (�

0

(this); i); furthermore, �

0

(
allerobj) = nil and �

j

(
allerobj) =

�

j�1

(this) for all j 2 f1; : : : ; ng.

To be able to reason about the syn
hronization me
hanism of Java

MT

, we ex-

tend ea
h
lass de�nition by the auxiliary instan
e variable lo
k of type Obje
t�

Int. Its initial value (nil ; 0) states that no thread is
urrently exe
uting any syn-

hronized method of the given obje
t; otherwise, the value (�; n) identi�es the

thread whi
h a
quired the lo
k by invoking a syn
hronized method of the given

obje
t. Besides the identity � of the lo
k-holder, lo
k remembers the sta
k depth

n, at whi
h the thread has gotten the lo
k. I.e., if a thread is
urrently exe
uting

some syn
hronized methods in an obje
t �, then the variable lo
k of � stores the

identity of the deepest lo
al
on�guration in the thread's sta
k whi
h represents

the exe
ution of a syn
hronized method of �.

Formally, lo
k reservation for a syn
hronized method with body h~y

2

:=

~e

2

i; stm; hrexp; ~y

3

:= ~e

3

i, is represented by in
luding the assignment lo
k :=

getlo
k(lo
k; id) in ~y

2

:= ~e

2

, and lo
k := release(lo
k; id) into ~y

3

:= ~e

3

for lo
k

release. The interpretation of the operators getlo
k and release is de�ned by

getlo
k(lo
k ; id) =

�

lo
k if lo
k 6= (nil ; 0)

id otherwise

release(lo
k ; id) =

�

lo
k if lo
k 6= id

(nil ; 0) otherwise :

The following lemma shows how to express enabledness of the invo
ation of

syn
hronized methods using the auxiliary variable lo
k of the
allee obje
t:

The proof system 21

Lemma 5 (Lo
k). Let hT; �i be a rea
hable stable
on�guration of a trans-

formed program, � 2 dom(�), and � 2 T a sta
k with � = �

0

Æ (�; stm). Then

isfree(Tnf�g; �) i� �(�)(lo
k) = (nil ; 0) _ �(�)(lo
k) � �(id) :

The auxiliary boolean instan
e variable started represents the semanti
 fun
-

tion started and states whether there is a thread in the global
on�guration

whi
h started its exe
ution in the given obje
t. For ea
h obje
t, started is initial-

ized to false . Bra
keted se
tions at the beginning of the main-method and at the

beginning of start-methods
ontain the assignment started := true. The follow-

ing lemma states that the variable started adequately represents the predi
ate

started .

Lemma 6 (Started). For all rea
hable stable
on�gurations hT; �i of a trans-

formed program and all obje
ts � 2 dom(�),

started(T; �) i� �(�)(started) :

The proof system of Se
tion 4.2 generates veri�
ation
onditions assuring

invarian
e of assertions under the exe
ution of statements, indeed of enabled

statements. Now, in the transformed semanti
s with its bra
keted se
tions, en-

abledness of a statement is a global notion, as it depends on whether the global

on�guration is stable or not. In order not to stipulate too strong proof obliga-

tions and thus loose
ompleteness of the proof system, invarian
e at the level

of lo
al proof obligations needs to be shown only if there exists a
orresponding

global state with the statement enabled.

Ordinary statements outside bra
keted se
tions are enabled in stable
on�g-

urations, only. Nevertheless,
on
entrating on the lo
al veri�
ation
onditions

for a single thread visiting a single obje
t �, the fa
t whether another thread

exe
uting ex
lusively outside of � is
urrently at a non-interleaving point is im-

material for the lo
al proof obligations. It is immaterial, as, from the perspe
tive

of the thread for whi
h we formulate the veri�
ation
onditions, the next stable

on�guration after the non-interleaving se
tion as well as the one in front of it

are identi
al with the globally instable one in between wrt. the instan
e state

of �, sin
e the threads do not have
ommon variables, neither lo
al ones nor

instan
e variables. If a se
ond thread is
urrently at a non-interleaving point

and visits the same obje
t, the situation is similar. For non-interleaving points

immediately after obje
t
reation hnew; ~y := ~ei, the instable instan
e state after

obje
t
reation is identi
al with the stable one just before the bra
keted se
tion.

Also method
alls and returns (
f. Table 7) a
ross di�erent obje
ts
an be han-

dled analogously, sin
e either the
aller or the
allee obje
t is di�erent from the

obje
t under
urrent
onsideration. Hen
e again the stable global
on�guration

either before or after the non-interleaving exe
ution of the method
all or return

agrees with the instan
e state of � in between, and thus the invarian
e needs to

be shown.

The only situation whi
h
annot be argued away in this manner is for self-

alls a�e
ting the same obje
t as for whi
h we are formulating the lo
al proof

22 The proof system

obligation: The non-stable
on�guration at the non-interleaving point in between

the
aller's and the
allee's observation does not ne
essarily
orrespond to any

stable
on�guration with identi
al instan
e lo
al state. We must therefore ex-

pli
itly ex
lude from the proof-
onditions this
ase, lest to loose
ompleteness of

the proof method.

To be able to do so, we introdu
e for ea
h
lass an auxiliary boolean in-

stan
e variable stable, asserting the existen
e of a global stable
on�guration

with
orresponding instan
e state. Formally, we de�ne the augmentation as fol-

lows: The initial value of stable is true. Bra
keted se
tions of method
all and

return statements, representing the sending parts of
ommuni
ation,
ontain the

assignments stable := (e

0

6= this) and stable := (
allerobj 6= this), respe
tively,

thereby distinguishing between self-
alls and others. Correspondingly for the re-

eiver part, the bra
keted se
tions at the beginning of method bodies and those

of re
eive statements in
lude the assignment stable := true.

With this augmentation, we de�ne the assertion enabled for multiple assign-

ments ~y := ~e as true for assignments in the bra
keted se
tions atta
hed to obje
t

reation, and as stable for assignments o

urring outside bra
keted se
tions. For

assignments in bra
keted se
tions a

ompanying
ommuni
ation, we de�ne:

enabled(~y

1

:= ~e

1

) = true

enabled(~y

2

:= ~e

2

) = (
allerobj = this)! :stable

enabled(~y

3

:= ~e

3

) = true

enabled(~y

4

:= ~e

4

) = (e

0

= this)! :stable ;

where e

0

spe
i�es the
allee obje
t of the method invo
ation under
onsideration.

That the assertion enabled a

urately
aptures enabledness as seen from the lo
al

perspe
tive of a single instan
e is expressed in the following lemma:

Lemma 7 (Enabled). Let hT; �i be a rea
hable
on�guration of a transformed

program and (�; stm

ass

; stm) a lo
al
on�guration in T where stm

ass

is ~y := ~e

or h~y := ~ei. Let furthermore �

inst

= �(�(this)).

1. If (�; stm

ass

; stm) is enabled in hT; �i, then !; �

inst

; � j=

L

enabled(~y := ~e).

2. If !; �

inst

; � j=

L

enabled(~y := ~e), then (�; stm

ass

; stm) is enabled in some

rea
hable hT

0

; �

0

i with �

0

(�(this)) = �

inst

.

The values of the auxiliary variables
allerobj, id, lo
k, started, and stable are

hanged only in the bra
keted se
tions as des
ribed above.

To spe
ify invariant properties of the system, the transformed programs are

annotated by atta
hing lo
al assertions to ea
h
ontrol point. Besides that, for

ea
h
lass
, the annotation de�nes a lo
al assertion I

alled
lass invariant that

expresses invariant properties of the instan
es of the
lass.

6

Finally, the global

invariant GI 2 GAss spe
i�es properties of
ommuni
ation between obje
ts.

6

Note that the notion of
lass invariant used, for instan
e, in [22℄ di�ers from our

notion sin
e they require the
lass invariant to hold only after the termination of the

lass
onstru
tor and to be preserved by whole method
alls, but not ne
essarily in

between.

The proof system 23

De�nition 1 (Annotation, proof outline). An annotation of a transformed

program asso
iates with ea
h
ontrol point in some method m of a
lass
 a

lo
al assertion p 2 LAss

m;

. Furthermore, it assigns to ea
h
lass
 a
lass

invariant I

2 LAss

m;

whi
h may refer only to the instan
e variables of
.

Finally, the program is assigned a global invariant GI 2 GAss. We require

that in the annotation no free logi
al variables o

ur, and that for all quali�ed

referen
es E:x in GI with E 2 GExp

, all assignments to x in
lass
 are

en
losed in bra
keted se
tions. An annotated transformation of prog, denoted by

prog

0

, is
alled a proof outline.

For annotated programs, we use the standard notation fpg stm fqg to express

that p and q are the pre- and post
onditions of stm, i.e., the assertions in front

of and after stm, and write pre(stm) and post(stm) to refer to them.

4.2 Proof system

The proof system formalizes a number of veri�
ation
onditions whi
h indu
-

tively ensure that for ea
h rea
hable
on�guration hT; �i and for ea
h lo
al
on-

�guration (�; stm) in T the pre
ondition of the statement stm is satis�ed and the

lass invariants and the global invariant hold. More pre
isely, the global invariant

is required to hold in rea
hable stable
on�gurations only, sin
e its satisfa
tion

an be expe
ted only if the auxiliary variables are up-to-date. To
over
on
ur-

ren
y and
ommuni
ation, the veri�
ation
onditions are grouped, as usual, into

initial
onditions, lo
al
orre
tness
onditions, an interferen
e freedom test, and

a
ooperation test.

A proof outline is initially
orre
t, if the pre
ondition of the main statement

and the global invariant are satis�ed in the initial
on�guration. Lo
al
orre
tness

ensures that lo
al properties of a thread are invariant under its own exe
ution.

This invarian
e
an be guaranteed by lo
al
orre
tness
onditions only if no

ommuni
ation or obje
t
reation takes pla
e, sin
e their e�e
t depends on the

ommuni
ated values and
annot be determined lo
ally. They will be analyzed

in the
ooperation test whose
onditions are formalized in the global language.

The invarian
e of lo
al properties of a thread that
urrently exe
utes in a given

obje
t
an also be in
uen
ed by other threads exe
uting in the same obje
t whi
h

possibly
hanges the instan
e state. The
orresponding veri�
ation
onditions are

formalized in the interferen
e freedom test.

Our proof method is modular in the sense that it allows for separate in-

terferen
e freedom and
ooperation tests. This modularity, whi
h in pra
ti
e

simpli�es
orre
tness proofs
onsiderably, is obtained by disallowing the assign-

ment of side-e�e
t expressions to instan
e variables. Clearly, su
h assignments

an be avoided by additional assignments to fresh lo
al variables and thus at the

expense of new interleaving points.

Before spe
ifying the veri�
ation
onditions for a proof outline, we �rst �x

some auxiliary fun
tions and notations. Let InitVal be a synta
ti
al operator

with interpretation InitVal : Var ! Val assigning true to stable and the initial

24 The proof system

value of type t to ea
h other variable y 2 Var

t

, i.e., nil , false , and 0 for
lass,

boolean, and integer types, respe
tively, and analogously for
ompound types,

where sequen
es are initially empty. Note that sin
e this =2 Var , the self-referen
e

is not in the domain of InitVal . Given IVar

as the set of instan
e variables

of
lass
 and z 2 LVar

, then InitState(z) denotes the global assertion z 6=

nil ^

V

x2IVar

z:x = InitVal(x), expressing that the obje
t denoted by z is in its

initial instan
e state.

4.2.1 Initial
orre
tness A proof outline is initially
orre
t, if the pre
on-

dition of the main statement is satis�ed by the initial instan
e and lo
al states,

where id identi�es the �rst lo
al
on�guration of a thread, and all other variables

have their initial values. Furthermore, the global invariant must be satis�ed by

the �rst rea
hable stable
on�guration, i.e., by the initial global state after the

exe
ution of the bra
keted se
tion at the beginning of the main-method.

De�nition 2 (Initial
orre
tness). A proof outline is initially
orre
t, if

j=

L

pre(body

main

)[(this; 0)=id℄[InitVal(~y)=~y℄ ; (1)

j=

G

InitState(z) ^ 8z

0

(z

0

= nil _ z = z

0

)! GI [

~

E

2

=z:~y

2

℄ ; (2)

where body

main

= h~y

2

:= ~e

2

i; stm is the body and ~y the lo
al and instan
e variables

of the main-method,

~

E

2

= ~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄[z=this℄, z is of the type of

the main
lass, and z

0

2 LVar

Obje
t

.

4.2.2 Lo
al
orre
tness A proof outline is lo
ally
orre
t, if the usual ver-

i�
ation
onditions [7℄ for standard sequential
onstru
ts hold. Espe
ially, the

pre
ondition of an enabled assignment, as given in the proof-outline, must imply

its post
ondition after the exe
ution of the assignment (
f. Equation (3)). Be-

sides invarian
e under assignments, lo
al
orre
tness requires that all assertions

of a
lass imply the
lass invariant:

De�nition 3 (Lo
al
orre
tness). A proof outline is lo
ally
orre
t, if for

ea
h
lass
 with
lass invariant I

, all multiple assignments ~y := ~e, and all

assertions p in
lass
,

j=

L

pre(~y := ~e) ^ enabled(~y := ~e)! post(~y := ~e)[~e=~y℄ (3)

j=

L

p! I

: (4)

Note that we have no lo
al veri�
ation
onditions for
ommuni
ation and

obje
t
reation statements. The post
ondition of a re
eive statement expresses

an assumption about the method's return value. Similarly, the pre
ondition of

a method body expresses an assumption about the a
tual parameters re
eived

and the post
ondition of an obje
t
reation statement an assumption about the

identity of the new obje
t. These assumptions will be veri�ed in the
ooperation

test.

Other threads
on
urrently exe
uting in the same obje
t may in
uen
e or

interfere with the invarian
e of the lo
al assertions. This is
overed in the inter-

feren
e freedom test.

The proof system 25

4.2.3 The interferen
e freedom test Next we formalize
onditions that

ensure the invarian
e of lo
al properties of a lo
al
on�guration under the a
-

tivities of others. Sin
e we disallow quali�ed referen
e to instan
e variables in

Java

MT

, we only have to deal with the invarian
e of properties under the ex-

e
ution of statements within the same obje
t. Containing only lo
al variables,

ommuni
ation and obje
t
reation do not
hange the state of the exe
uting

obje
ts. Thus we only have to take assignments into a

ount. In the following

let p and ~y := ~e be an assertion and an assignment o

urring in the same
lass

of a program.

Satisfa
tion of an assertion des
ribing a lo
al property of a thread may

learly be a�e
ted by the exe
ution of an assignment by a di�erent thread

in the same obje
t, provided that not both belong to a syn
hronized method

of the obje
t. Note that this applies only for assertions at interleaving points,

sin
e
ontrol points within bra
keted se
tions are prote
ted against interleaving

by another thread.

7

This situation
overing shared-variable intera
tion between

di�erent threads is
aptured by the predi
ate di� threads(p; ~y := ~e) de�ned as

:samethread(id; id

0

) if p is at an interleaving point and not both p and ~y := ~e

o

ur in a syn
hronized method, and by false otherwise (see page 20 for the

de�nition of samethread). The variable id represents the identity of the thread

exe
uting ~y := ~e and id

0

the identity of the thread of p.

If, otherwise, the assertion des
ribes the same thread that exe
utes the as-

signment, the only interleaving points endangered are those waiting for a return

value earlier in the
urrent exe
ution sta
k. In other words, an assignment be-

longing to a reentrant
ode segment
an a�e
t the pre
ondition of a re
eive

statement whose exe
ution is suspended earlier in the same
all
hain. However,

the assignment belonging to the mat
hing return statement need not be
on-

sidered. To express this kind of interferen
e, we de�ne wait for ret(p; ~y := ~e) by

id

0

< id if p is the pre
ondition of a re
eive statement and ~y := ~e is not in the

bra
keted se
tion of a return statement, by
allee(id

0

) < id if p is the pre
ondi-

tion of a re
eive statement and ~y := ~e is in the bra
keted se
tion of a return

statement, and by false otherwise.

For self-
alls, the auxiliary assignments at the
aller interferes with the

pre
ondition of method body, sin
e both reside in the same obje
t. The
ase

for return to the same obje
t is analogous. Unlike the situation
aptured by

wait for ret, p here represents a non-interleaving point that has to be shown in-

terferen
e free. For method
alls, we de�ne self
all(p; ~y := ~e) by id

0

=
allee(id)^

e

0

= this, if p is the pre
ondition of a method m and ~y := ~e o

urs in a bra
k-

eted se
tion invoking method m of e

0

, and by false otherwise. For self-
alls of

the start-method, we use id

0

= (this; 0) for identi�
ation, i.e., self start(p; ~y := ~e)

is id

0

= (this; 0) ^ e

0

= this, if p is the pre
ondition of start and ~y := ~e o

urs in

a bra
keted se
tion invoking the start-method of e

0

. For all other assignments

and assertions the predi
ate is false.

7

Stri
tly speaking, interferen
e in the same obje
t by di�erent threads
an o

ur also

when the start-method is exe
uted by a self-
all. This will be handled together with

self-
alls in general.

26 The proof system

The
ase for returning is spe
i�ed by the assertion self ret(p; ~y := ~e) whi
h

is id =
allee(id

0

)^ e

0

0

= this if ~y := ~e o

urs in the bra
keted se
tion of return in

a method m and p is the post
ondition of a re
eive statement whi
h is pre
eded

by the invo
ation of method m of e

0

. In all other
ases self ret(p; ~y := ~e) is false.

The expression e

0

0

denotes e

0

with every lo
al variable u di�erent from this is

repla
ed by a fresh one u

0

.

Colle
ting the above
ases, we de�ne interleavable(p; ~y := ~e) for assertions p

and assignments ~y := ~e in the same
lass by

di� threads(p; ~y := ~e) _ wait for ret(p; ~y := ~e) _

self
all(p; ~y := ~e) _ self start(p; ~y := ~e) _ self ret(p; ~y := ~e) :

The interferen
e freedom test assures invarian
e of a property under the

exe
ution of an assignment in the same obje
t, if both lo
al
on�gurations are

in a
on�guration in that the assignment is enabled. We use the assertion and the

pre
ondition of the assignment to express rea
hability of the given
ontrol points,

where the predi
ate interleavable(p; stm) denotes that they are also rea
hable in

a
ommon
omputation. That an assignment ~y := ~e
an be enabled in the given

instan
e lo
al state is stated by the assertion enabled(~y := ~e), as de�ned on

page 22.

De�nition 4 (Interferen
e freedom). A proof outline is interferen
e free, if

for all
lasses
, all assignments ~y := ~e and assertions p in
,

j=

L

p

0

^ pre(~y := ~e) ^ this = this

0

^ interleavable(p; ~y := ~e) ^ enabled(~y := ~e)

! p

0

[~e=~y℄ ; (5)

where p

0

denotes p with all lo
al variables u and this repla
ed by some fresh lo
al

variables u

0

and this

0

, respe
tively.

4.2.4 The
ooperation test Whereas the veri�
ation
onditions asso
iated

with lo
al
orre
tness and interferen
e freedom
over the e�e
ts of assignments,

the
ooperation test deals with method invo
ation and obje
t
reation. Sin
e dif-

ferent obje
ts may be involved, it is formulated in the global assertion language.

Besides ensuring invarian
e of the global invariant over bra
keted se
tions, it

spe
i�es
onditions under whi
h the lo
al properties of the
ommuni
ating part-

ners, i.e., the post
onditions of statements involving
ommuni
ation or obje
t

reation, are satis�ed. We start with the
ooperation test for method invo
ation.

In the following de�nition, the logi
al variable z denotes the obje
t
alling

a method and z

0

refers to the
allee. The
ooperation test assures that the

lo
al assertions at both ends of the
ommuni
ation hold, immediately after the

values have been
ommuni
ated. When
alling a method, the post
ondition of the

method invo
ation statement and the pre
ondition of the invoked method's body

must hold after passing the parameters (Equation (6)). In the stable global state

prior to the
all, we
an assume that the global invariant, the pre
ondition of the

method invo
ation at the
aller side, and the
lass invariant of the
allee hold.

The proof system 27

For syn
hronized methods, additionally the lo
k of the
allee obje
t is free, or the

lo
k has been a
quired in the
all
hain of the exe
uting thread. This is expressed

by the predi
ate isfree(z

0

:lo
k; id) de�ned as z

0

:lo
k = (nil; 0) _ z

0

:lo
k � id,

where id is the identity of the
aller. Equation (7) works similarly, where the

post
onditions of the
orresponding return- and re
eive-statements are required

to hold after returning from a method. In the global state prior to the
all the

global invariant and the pre
onditions of the return and re
eive statements are

assumed to hold.

The global invariant GI is not allowed to refer to instan
e variables whose

values are
hanged outside bra
keted se
tions. Consequently, it will be automat-

i
ally invariant under the exe
ution of statements outside bra
keted se
tions.

For the bra
keted se
tions, however, the invarian
e must be shown as part of

the
ooperation test. A di�eren
e between the treatment of the lo
al assertions

and the global invariant is, that the latter does not ne
essarily hold immediately

after
ommuni
ation, but only after the a

ompanying assignments to the auxil-

iary variables of both the
aller and
allee have been performed. This is re
e
ted

in the two substitutions applied to the global invariant on the right-hand sides

of the impli
ations. For instan
e in Equation (6), GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄ is the

weakest pre
ondition of GI wrt. the assignments ~y

1

:= ~e

1

and ~y

2

:= ~e

2

, in this

order. Note that the order in whi
h the synta
ti
 substitutions are applied to

GI is reverse
ompared with the order in whi
h the
orresponding assignments

update the state.

Invoking the start-method of an obje
t whose thread is already started, or

returning from a start-method or from the �rst exe
ution of the main-method

does not have
ommuni
ation e�e
ts; Equations (8) and (9) take
are about the

validity of the post
onditions and the invarian
e of the global invariant.

De�nition 5 (Cooperation test: Communi
ation). A proof outline satis-

�es the
ooperation test for
ommuni
ation, if for all
lasses
 and all state-

ments he

0

:m(~e); ~y

1

:= ~e

1

i; hre
eive v; ~y

4

:= ~e

4

i in
 with e

0

2 Exp

0

, Equations (6)

and (7) hold, where m is a syn
hronized method of

0

with body

m;

0

= h~y

2

:=

~e

2

i; stm; hreturn e

ret

; ~y

3

:= ~e

3

i, formal parameter list ~u, and lo
al variables ~v ex-

ept the formal parameters and this.

j=

G

GI ^ pre(e

0

:m(~e))[z=this℄ ^ I

0

[z

0

=this℄ ^

e

0

[z=this℄ = z

0

^ isfree(z

0

:lo
k; id) ^ z 6= nil ^ z

0

6= nil

! post(e

0

:m(~e))[z=this℄ ^ pre

0

(body

m;

0

)[z

0

;

~

E=this; ~u℄ ^

GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄ (6)

j=

G

GI ^ pre

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ ^ pre(re
eive v)[z=this℄ ^

e

0

[z=this℄ = z

0

^ z 6= nil ^ z

0

6= nil

! post

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ ^ post(re
eive v)[z; E

0

ret

=this; v℄ ^

GI [

~

E

4

=z:~y

4

℄[

~

E

0

3

=z

0

:~y

3

℄ : (7)

In the equations, z 2 LVar

and z

0

2 LVar

0

are distin
t fresh logi
al vari-

ables and lo
al variables are viewed as logi
al ones on the global level. We de�ne

28 The proof system

pre

0

(body

m;

0

) = pre(body

m;

0

)[InitVal(~v)=~v℄, ~e

0

2

= ~e

2

[InitVal(~v)=~v℄, and e

0

ret

, ~e

0

3

,

pre

0

(return e

ret

), and post

0

(return e

ret

) denote the given expressions and asser-

tions with every lo
al variable ex
ept the formal parameters and this repla
ed by

a fresh one. Furthermore,

~

E

1

= ~e

1

[z=this℄,

~

E

0

i

= ~e

0

i

[z

0

;

~

E=this; ~u℄ for i = 2; 3,

~

E

4

= ~e

4

[z; E

0

ret

=this; v℄, where

~

E = ~e[z=this℄ and E

0

ret

= e

0

ret

[z

0

;

~

E=this; ~u℄. For

non-syn
hronized methods, the ante
edent isfree(z

0

:lo
k; id) is dropped. The ver-

i�
ation
onditions for methods without return value are analogous.

For invo
ations of start-methods, only (6) applies with the additional an-

te
edent :z

0

:started. For the
ase that the thread is already started,

j=

G

GI ^ pre(e

0

:start(~e))[z=this℄ ^ I

0

[z

0

=this℄ ^

e

0

[z=this℄ = z

0

^ z

0

:started ^ z 6= nil ^ z

0

6= nil

! post(e

0

:start(~e))[z=this℄ ^GI [

~

E

1

=z:~y

1

℄ (8)

has to be satis�ed. Finally, for statements hreturn; ~y

3

:= ~e

3

i in the main-method

or in a start-method,

j=

G

GI ^ pre(return)[z

0

=this℄ ^ id = (z

0

; 0) ^ z

0

6= nil

! post(return)[z

0

=this℄ ^GI [

~

E

3

=z

0

:~y

3

℄ : (9)

Note that we repla
e the lo
al variables u of the
allee by fresh ones denoted by

u

0

in order to avoid name
lashes with lo
al variables of the
aller. The resulting

assertions and expressions we denote by a primed version.

The substitution of ~u by

~

E in the
ondition pre

0

(body

m;

0

)[z

0

;

~

E=this; ~u℄ re-

e
ts the parameter-passing me
hanism, where

~

E are the a
tual parameters ~e

represented at the global assertional level. This substitution also identi�es the

allee, as spe
i�ed by its formal parameter id. Note that the a
tual parameters

do not
ontain instan
e variables, i.e., their interpretation does not
hange dur-

ing the exe
ution of the method body. Therefore,

~

E
an be used not only to

logi
ally
apture the
onditions at the entry of the method body, but at the exit

of the method body, as well, as shown in Equation (7).

Besides method
alls and return, the
ooperation test needs to handle bra
k-

eted se
tions
ontaining obje
t
reation statements, taking
are of the preser-

vation of the global invariant, the post
ondition of the new-statement, and the

new obje
t's
lass invariant. We
an assume that the pre
ondition of the ob-

je
t
reation statement and the global invariant hold in the stable
on�guration

prior to the instantiation. The extension of the global state with a freshly
re-

ated obje
t is formulated in a strongest post
ondition style, i.e., it is requested

to hold immediately after the instantiation. We use existential quanti�
ation

to refer to the old value: z

0

of type LVar

list Obje
t

represents the existing obje
ts

prior to the extension. Moreover, that the
reated obje
t's identity stored in

u is fresh and that the new instan
e is properly initialized is
aptured by the

global assertion Fresh(z

0

; u) de�ned as InitState(u)^ u 62 z

0

^ 8v(v 2 z

0

_ v = u),

where InitState(u) is as de�ned in Se
tion 4.2. To express that an assertion

refers to the set of existing obje
ts before the new-statement, we need to restri
t

Soundness and
ompleteness 29

any existential quanti�
ation to range over obje
ts from z

0

, only. So let P be

a global assertion and z

0

2 LVar

list Obje
t

a logi
al variable not o

urring in P .

Then P # z

0

is the global assertion P with all quanti�
ations 9z(P

0

) repla
ed by

9z(within(z; z

0

) ^ P

0

), where the semanti
 interpretation within(v; v

0

) for obje
t

sequen
es v

0

2 Val

list Obje
t

and arbitrary values v 2 Val is de�ned re
ursively by

within(v; v

0

) =

8

>

>

<

>

>

:

true if v 2 Val

Bool

[Val

Int

v 2 v

0

if v 2

S

Val

nil

within(v

1

; v

0

) ^ within(v

2

; v

0

) if v=(v

1

; v

2

)2

S

t

1

;t

2

Val

t

1

�t

2

nil

8v

i

2 v(within(v

i

; v

0

)) if v 2

S

t

Val

list t

nil

:

The following lemma formulates the basi
 property of the proje
tion operator:

Lemma 8. Assume a global state �, an extension �

0

= �[� 7!�

;init

inst

℄ for some

� 2 Val

, � =2 dom(�), and a logi
al environment ! referring only to values

existing in �. Let v be the sequen
e
onsisting of all elements of

S

dom

nil

(�).

Then for all global assertions P and logi
al variables z

0

2 LVar

list Obje
t

not o
-

urring in P ,

!; � j=

G

P i� ![z

0

7! v℄; �

0

j=

G

P # z

0

:

Thus the predi
ates GI # z

0

and 9u(pre(u := new

)[z=this℄) # z

0

express that

the global invariant and the pre
ondition of the obje
t
reation statement hold

for the old value of u prior to the
reation of the new obje
t.

This leads to the following de�nition of the
ooperation test for obje
t
re-

ation:

De�nition 6 (Cooperation test: Instantiation). A proof outline satis�es

the
ooperation test for obje
t
reation, if for all
lasses

0

and statements

hu := new

; ~y := ~ei in

0

:

j=

G

z 6= nil ^ 9z

0

�

Fresh(z

0

; u) ^ (GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

�

(10)

! post(u := new

)[z=this℄ ^ I

[u=this℄ ^GI [

~

E=z:~y℄ ;

with fresh logi
al variables z 2 LVar

0

and z

0

2 LVar

list Obje
t

, and

~

E = ~e[z=this℄.

5 Soundness and
ompleteness

This se
tion
ontains soundness and
ompleteness of the proof method of Se
-

tion 4. Given a program together with its annotation, the proof system stipulates

a number of indu
tion
onditions for the various types of assertions and program

onstru
ts. Soundness for the indu
tive method means that for a proof outline

satisfying the veri�
ation
onditions, all
on�gurations rea
hable in the opera-

tional semanti
s satisfy the given assertions,
ompleteness
onversely means that

if a program does satisfy an annotation, this is provable. For
onvenien
e, let

30 Soundness and
ompleteness

us introdu
e the following notations. Given a program prog , we will write '

prog

or just ' for its annotation, and write prog j= ', if prog satis�es all require-

ments stated in the assertions, more pre
isely, satisfa
tion of the assertions for

all rea
hable
on�gurations, where in
ase of the global invariant, satisfa
tion is

required for stable
on�gurations, only:

De�nition 7. Given a program prog with annotation ', then prog j= ' i� for

all rea
hable
on�gurations hT; �i of prog, for all (�; stm) 2 T with � = �(this),

and for all logi
al environments ! referring only to values existing in �:

1. !; �(�); � j=

L

pre(stm), and

2. if hT; �i is stable, then !; � j=

G

GI :

Furthermore, for all
lasses
, obje
ts � 2 dom

(�), and lo
al states �

0

:

3. !; �(�); �

0

j=

L

I

:

The de�nition is applied both to transformed and original programs. For proof

outlines, i.e., annotated transformed programs, we write prog

0

` '

0

i� prog

0

satis�es the veri�
ation
onditions of the proof system.

5.1 Soundness

Soundness, as mentioned, means that all rea
hable
on�gurations do satisfy their

assertions for an annotated program that has been veri�ed using the proof
on-

ditions. Soundness of the method is proved by a straightforward, albeit rather

tedious indu
tion on the
omputation steps.

Before embarking upon the soundness formulation and its proof, we need to

larify the
onne
tion between the original program and the transformed one, i.e.,

the one de
orated with assertions, extended by auxiliary variables, sprinkled with

bra
keted se
tions, and transformed as far as the method
alls are
on
erned (
f.

Se
tion 4.1). The transformation is done for the sake of veri�
ation, only, and as

far as the un-augmented portion of the states and the
on�gurations is
on
erned,

the behavior of the original and the transformed program are the same, modulo

some additional non-interleaving points
aused by the transformation.

To make the
onne
tion between original program and transformed one pre-

ise, we de�ne a proje
tion operation # prog , that jettisons all additions of the

transformation. So let prog

0

a transformation of prog , and hT

0

; �

0

i a global
on-

�guration of prog

0

. Then �

0

prog is de�ned by removing all auxiliary instan
e

variables from the instan
e state domains. For the set of thread
on�gurations

T

0

prog is given by restri
ting the domains of the lo
al states to non-auxiliary

variables, removing all annotations, augmentations, and bra
keted se
tions, and

transforming ba
k the expli
it
ommuni
ation statements to Java

MT

syntax. The

following lemma expresses that the transformation does not
hange the behavior

of programs:

Lemma 9 (Transformation). Let prog

0

be a transformation of a program

prog. Then hT; �i is a rea
hable
on�guration of prog i� there exists a rea
h-

able
on�guration hT

0

; �

0

i of prog

0

with hT

0

prog ; �

0

progi = hT; �i.

Soundness and
ompleteness 31

Let prog be a program with annotation ', and prog

0

a transformation of

prog with annotation '

0

. Let GI

0

be the global invariant of '

0

, I

0

denote its
lass

invariants, and for an assertion p of ' let p

0

denote the assertion of '

0

asso
iated

with the same
ontrol point. We write j= '

0

! ' i� j=

G

GI

0

! GI , j=

L

I

0

! I

for all
lasses
, and j=

L

p

0

! p, for all assertions p of ' asso
iated with some

ontrol point. To give meaning to the auxiliary variables, the above impli
ations

are evaluated in the
ontext of states of the transformed program. The following

theorem states the soundness of the proof method.

Theorem 1 (Soundness). Given a proof outline prog

0

with annotation '

prog

0

.

If prog

0

` '

prog

0

then prog

0

j= '

prog

0

:

The soundness proof is
ontained in the appendix in Se
tion B.2, basi
ally an

indu
tion on the length of
omputation, simultaneous on all three parts from the

de�nition of satisfa
tion (De�nition 7). The property of Theorem 1 is formulated

for rea
hability of transformed programs. With the help of the transformation

Lemma 9, we immediately get:

Corollary 1. If prog

0

` '

prog

0

and j= '

0

prog

0

! '

prog

, then prog j= '

prog

.

5.2 Completeness

Next we
onversely show that if a program satis�es the requirements asserted

in its proof outline, then this is indeed provable, i.e., then there exists a proof

outline whi
h
an be shown to hold and whi
h implies the given one:

8prog : prog j= '

prog

) 9prog

0

: prog

0

` '

prog

0

^ j= '

prog

0

! '

prog

:

Given a program satisfying an annotation prog j= '

prog

, the
onsequent
an be

uniformly shown, i.e., independently of the given assertional part '

prog

, by in-

stantiating '

prog

0

to the strongest annotation still provable, thereby dis
harging

the last
lause j= '

prog

0

! '

prog

. Sin
e the strongest annotation still satis�ed

by the program
orresponds to rea
hability, the key to
ompleteness is to

1. augment ea
h program with enough information, to be able to

2. express rea
hability in the annotation, i.e., annotate the program su
h that

a
on�guration satis�es its lo
al and global assertions exa
tly if rea
hable

(see De�nition 9 below), and �nally

3. to show that this augmentation indeed satis�es the veri�
ation
onditions.

We begin with the augmentation, using the transformation from Se
tion 4.1

as starting point, where method invo
ation statements are repla
ed by method

all and re
eive statements, the programs are augmented with the spe
i�
 aux-

iliary variables lo
k, started, stable,
allerobj, and id, and �nally equipped with

bra
keted se
tions.

32 Soundness and
ompleteness

Now to make visible within a
on�guration whether or not it is rea
hable,

the standard tri
k is to add information into the states about the way it has

been rea
hed, i.e., the history of the
omputation leading to the
on�guration.

It is re
orded in history variables,
ontaining enough information to distinguish

rea
hable from unrea
hable
on�gurations.

The assertional language is split into a lo
al and a global level, and likewise

the proof-system is tailored to separate lo
al proof obligations from global ones

to obtain a modular proof system. The history will be re
orded in instan
e

variables, and thus ea
h instan
e
an keep tra
k only of its own past. To mirror

the split into a lo
al and a global level in the proof system, the history per

instan
e is re
orded separately for internal and external behavior. The sequen
e

of internal state
hanges lo
al to that instan
e are re
orded in the lo
al history

and the external behavior in the
ommuni
ation history.

The
ommuni
ation history keeps information about the kind of
ommuni-

ation, the
ommuni
ated values, and the identity (both obje
t and lo
al
on-

�guration identities) of the
ommuni
ation partners involved. For the kind of

ommuni
ation, we distinguish as
ases obje
t
reation, ingoing and outgoing

method
alls, and likewise ingoing and outgoing
ommuni
ation for the return

value. We use the set of
onstants fnew;
all;
alled; return; re
eiveg for this pur-

pose. Note in passing that the information stored in the
ommuni
ation history

mat
hes exa
tly the information needed to de
orate the transitions in order to

obtain a
ompositional variant of the operational semanti
s of Se
tion 2.3.2. See

[3℄ for su
h a
ompositional semanti
s.

To fa
ilitate reasoning, we introdu
e an additional auxiliary lo
al variable

lo
, whi
h stores the
urrent
ontrol point of the exe
ution of a thread. Given

a fun
tion whi
h assigns to all
ontrol points unique lo
ation labels, we extend

ea
h assignment ~y := ~e by the update of the variable lo
 to ~y; lo
 := ~e; l, where l

is the label of the
ontrol point after the given o

urren
e of the assignment. We

extend bra
keted se
tions whi
h do not
ontain assignments by lo
 := l, where l

is the label of the
ontrol point following the bra
keted se
tion. We write l � stm

if l represents the
ontrol point in front of stm in a method body stm

0

; stm.

De�nition 8 (Augmentation with histories). Ea
h
lass is further extended

by two auxiliary instan
e variables h

inst

and h

omm

, both initialized to the empty

sequen
e. They are updated as follows:

1. Ea
h multiple assignment ~y := ~e in a
lass
 is repla
ed by

~y; h

inst

:= ~e; h

inst

Æ ((~x; ~u)[~e=~y℄) ;

where ~x are the instan
e variables of
lass

ontaining also h

omm

but with-

out h

inst

, and ~u are the lo
al variables of the exe
uting thread in
luding this.

2. Every bra
keted se
tion hstm ; ~y := ~ei is extended to

hstm; ~y; h

omm

:= ~e; h

omm

Æ (kind; id; partner; values)i :

The value of kind is (new;
) for bra
keted se
tions
reating an obje
t of type

, (
all;m) for bra
keted se
tions invoking method m of an obje
t, (
alled;m)

Soundness and
ompleteness 33

for the bra
keted se
tion at the beginning of a method m, (return;m) for

returning from method m, and (re
eive;m) for re
eiving the return value

from a method m. The
ommuni
ation partner partner is given by e

0

for

method invo
ation e

0

:m(~e) and its subsequent re
eive statement, if any, and

by
allerobj for bra
keted se
tions at the beginning of method bodies and for

return statements. The sequen
e values
ontain the a
tual parameters for

method
all, the formal parameters for bra
keted se
tions at the beginning of

method bodies, the return value for return statements, and the re
eived value

for re
eive statements. In the
ase of obje
t
reation partner is nil, and values

is the identity of the new obje
t, if it is assigned to some variable, and the

empty sequen
e otherwise.

In the update of the history variable h

inst

, the expression (~x; ~u)[~e=~y℄ identi�es

the a
tive thread by the lo
al variable id, and spe
i�es its instan
e lo
al state

after the exe
ution of the assignment. Note that espe
ially the values of the

auxiliary variables introdu
ed in the program transformation are re
orded in

the history h

inst

. In the following we will also write (�

inst

; �) when referring to

elements of h

inst

. For a non-empty sequen
e h we de�ne head (h) as the sequen
e

without its last element and tail (h) as the last element of the sequen
e.

We introdu
e the following annotation for the transformed program:

De�nition 9 (Rea
hability annotation).

1. For ea
h
lass
 of the transformed program we de�ne !; �

inst

; � j=

L

I

i� there exists a rea
hable
on�guration hT; �i of the program su
h that

�(�(this)) = �

inst

;

2. We de�ne post(body

m;

) = I

for ea
h
lass
 and method m of
. For all

other
ontrol points in front of a statement stm we de�ne !; �

inst

; � j=

L

pre(stm) i� there exists a rea
hable
on�guration hT; �i of the program with

a lo
al
on�guration (�; stm; stm

2

) in T , with �(�(this)) = �

inst

;

3. Finally, !; � j=

G

GI i� there exists a rea
hable stable
on�guration hT; �

0

i of

the program su
h that dom(�) = dom(�

0

), and for all obje
ts � 2 dom(�),

�(�)(h

omm

) = �

0

(�)(h

omm

).

It
an be shown that these assertions are expressible in the assertion language

[33℄. The transformed program together with the above annotation build a proof

outline that we denote by prog

0

.

What remains to be shown for
ompleteness is that the proof-outline prog

0

indeed satis�es the veri�
ation
onditions of the proof system. Initial and lo
al

orre
tness are straightforward, where for lo
al
orre
tness we use the fa
t of

Lemma 7 that the enabled-predi
ate used in the lo
al
orre
tness
ondition
ap-

tures enabledness from the perspe
tive of an instan
e. The full proofs are shown

in the appendix in Se
tion B.3.

Completeness for the interferen
e freedom test and the
ooperation test are

more
omplex, sin
e, unlike initial and lo
al
orre
tness, the veri�
ation
ondi-

tions in these
ases mention more than one lo
al
on�guration in the assertions of

their respe
tive ante
edents. Now, the rea
hability assertions of prog

0

guarantee

34 Con
lusion

that, when satis�ed by an instan
e lo
al state, there exists a rea
hable global
on-

�guration responsible for the satisfa
tion. So a
ru
ial step in the
ompleteness

proof for interferen
e freedom and the
ooperation test is to show that individual

rea
hability of two lo
al
on�gurations implies that they are rea
hable in a
om-

mon
omputation. This is also the key property for the history variables: they

re
ord enough information su
h that they allow to uniquely determine the way

a
on�guration has been rea
hed; in the
ase of instan
e history, uniqueness of

ourse, only as far as the instan
e under
onsideration is
on
erned. This prop-

erty is stated formally in the following lo
al merging lemma, where the global

on�gurations are required to be stable in the obje
t, so that the history variable

indeed
ontains an up-to-date representation of all steps performed within the

instan
e.

Lemma 10 (Lo
al merging lemma). Let hT

1

; �

1

i and hT

2

; �

2

i be two rea
h-

able global
on�gurations of prog

0

and (�; stm) 2 T

1

, su
h that both hT

1

; �

1

i and

hT

2

; �

2

i are stable in �(this) 2 dom(�

1

) \ dom(�

2

). Then �

1

(�(this))(h

inst

) =

�

2

(�(this))(h

inst

) implies (�; stm) 2 T

2

.

For
ompleteness of the
ooperation test,
onne
ting two possibly di�erent

instan
es, we need an analogous property for the
ommuni
ation histories. Argu-

ing on the global level, the
ooperation test
an assume that two
ontrol points

are individually rea
hable but agreeing on the
ommuni
ation histories of the

obje
ts. This information must be enough to ensure
ommon rea
hability. Su
h a

ommon
omputation
an be
onstru
ted, sin
e the internal
omputations of dif-

ferent obje
ts are independent from ea
h other, i.e., in a global
omputation, the

lo
al behavior of an obje
t is inter
hangeable, as long as the external behavior

does not
hange. This leads to the following lemma:

Lemma 11 (Global merging lemma). Let hT

1

; �

1

i and hT

2

; �

2

i be two rea
h-

able stable global
on�gurations of prog

0

and � 2 dom(�

1

) \ dom(�

2

) with

�

1

(�)(h

omm

) = �

2

(�)(h

omm

). Then there exists a rea
hable stable
on�guration

hT; �i with �(�) = �

1

(�), and �(�) = �

2

(�) for all � 2 dom(�

2

)nf�g.

Note that together with the lo
al merging lemma this implies that all lo
al

on�gurations of � in hT

1

; �

1

i all lo
al
on�gurations of � 6= � in hT

2

; �

2

i are

ontained in the
ommonly rea
hed
on�guration hT; �i.

This brings us to the last result of the paper:

Theorem 2 (Completeness). Given a program prog, the proof outline prog

0

satis�es the veri�
ation
onditions of the proof system from Se
tion 4.2.

6 Con
lusion

Related work This paper presents the �rst sound and
omplete assertional proof

method for a multithreaded sublanguage of Java. In [2℄ the basi
 ideas have

been introdu
ed for proof outlines by means of a modular integration of the

interferen
e freedom and the
ooperation test for a more restri
ted version of

Con
lusion 35

Java. The present paper o�ers su
h an integration for a more
on
rete version of

Java by in
orporating Java's reentrant syn
hronization me
hanism. This requires

a non-trivial extension of the proof method by a more re�ned me
hanism for the

identi�
ation of threads.

Most papers in the literature fo
us on sequential subsets of Java [30, 12, 10, 28,

29, 13, 34, 1, 35, 36℄. Formal semanti
s of Java, in
luding multithreaded exe
ution,

and its virtual ma
hine in terms of abstra
t state ma
hines is given in [31℄. A

stru
tural operational semanti
s of multithreaded Java
an be found in [14℄.

Future work In the
ontext of the bilateral NWO/DFG proje
t MobiJ and the

European Fifth Framework RTD proje
t Omega we are
urrently developing

a front-end tool for the
omputer-aided spe
i�
ation and veri�
ation of Java

programs based on our proof method. Su
h a front-end tool
onsists of an editor

and a parser for annotating Java programs, and of a
ompiler whi
h generates

orresponding proof obligations. A theorem prover (HOL or PVS) is used for

verifying the validity of these veri�
ations
onditions. Of parti
ular interest in

this
ontext is an integration of our method with related approa
hes like the

Loop proje
t [19, 25℄.

As future work, we plan to extend Java

MT

by further
onstru
ts, espe
ially

adding further syn
hronization primitives for monitor syn
hronization su
h as

wait and notify, but also extending the language in the dire
tion of \obje
t-

orientedness", adding inheritan
e, subtyping, and other
on
epts featured in

Java. To deal with subtyping on the logi
al level requires a notion of behavioral

subtyping [5℄.

A
knowledgments We thank Mar
el Kyas and Cees Pierik for fruitful dis-

ussions and suggestions. This work was partly supported by the NWO/DFG

proje
t MobiJ and the European Fifth Framework RTD proje
t Omega.

Referen
es

1. M. Abadi and K. R. M. Leino. A logi
 of obje
t-oriented programs. In Bidoit and

Dau
het [11℄, pages 682{696. An extended version of this paper appeared as SRC

Resear
h Report 161 (September 1998).

2. E.

�

Abrah�am-Mumm and F. de Boer. Proof-outlines for threads in Java. In

Palamidessi [27℄.

3. E.

�

Abrah�am-Mumm, F. de Boer, W.-P. de Roever, and M. Ste�en. A
ompositional

semanti
s for java

mt

. Te
hni
al report, Lehrstuhl f�ur Software-Te
hnologie, Insti-

tut f�ur Informatik und praktis
he Mathematik, Christian-Albre
hts-Universit�at zu

Kiel, Mar., 2002.

4. J. Alves-Foss, editor. Formal Syntax and Semanti
s of Java. LNCS State-of-the-

Art-Survey. Springer-Verlag, 1999.

5. P. Ameri
a. A behavioural approa
h to subtyping in obje
t-oriented programming

languages. 443, Phillips Resear
h Laboratories, January/April 1989.

6. P. Ameri
a and F. de Boer. Reasoning about dynami
ally evolving pro
ess stru
-

tures. Formal Aspe
ts of Computing, 6(3):269{316, 1993.

36 Con
lusion

7. K. R. Apt. Ten years of Hoare's logi
: A survey { part I. ACM Transa
tions on

Programming Languages and Systems, 3(4):431{483, O
t. 1981.

8. K. R. Apt, N. Fran
ez, and W.-P. de Roever. A proof system for
ommuni
ating

sequential pro
esses. ACM Transa
tions on Programming Languages and Systems,

2:359{385, 1980.

9. I. Attali and T. Jensen, editors. Java on Smart Cards: Programming and Se
urity.

Revised Papers, Java Card 2000, International Workshop, Cannes, Fran
e, 2001.

10. B. Be
kert. A dynami
 logi
 for the formal veri�
ation of Java Card programs. In

Attali and Jensen [9℄, pages 6{24.

11. M. Bidoit and M. Dau
het, editors. Theory and Pra
ti
e of Software Develop-

ment, Pro
eedings of the 7th International Joint Conferen
e of CAAP/FASE, TAP-

SOFT'97, volume 1214 of Le
ture Notes in Computer S
ien
e, Lille, Fran
e, Apr.

1997. Springer-Verlag.

12. R. Breu. Algebrai
 Spe
i�
ation Te
hniques in Obje
t Oriented Programming En-

vironments. PhD thesis, Universit�at Passau, 1991. See also Springer LNCS 562.

13. P. A. Buhr, M. Fortier, and M. H. CoÆn. Monitor
lassi�
ation. ACM Computing

Surveys, 27(1):63{107, Mar. 1995.

14. P. Cen
iarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based stru
tural

operational semanti
s of multi-threaded Java. In Alves-Foss [4℄.

15. W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhne
h, M. Poel,

and J. Zwiers. Con
urren
y Veri�
ation: Introdu
tion to Compositional and Non-

ompositional Proof Methods. Cambridge University Press, 2001.

16. R. W. Floyd. Assigning meanings to programs. In J. T. S
hwartz, editor,

Pro
. Symp. in Applied Mathemati
s, volume 19, pages 19{32, 1967.

17. J. Gosling, B. Joy, and G. Steele. The Java Language Spe
i�
ation. Addison-

Wesley, 1996.

18. C. Hankin, editor. Programming Languages and Systems: Pro
eedings of the 7th

European Symposium on Programming (ESOP '98), Held as Part of the Joint

European Conferen
es on Theory and Pra
ti
e of Software (ETAPS'98), (Lisbon,

Portugal, Mar
h/April 1998), volume 1381 of Le
ture Notes in Computer S
ien
e.

Springer-Verlag, 1998.

19. J. Hensel, M. Huisman, B. Ja
obs, and H. Tews. Reasoning about
lasses in obje
t-

oriented languages: Logi
al models and tools. In Hankin [18℄.

20. C. A. R. Hoare. An axiomati
 basis for
omputer programming. Communi
ations

of the ACM, 12:576{580, 1969. Also in [21℄.

21. C. A. R. Hoare and C. B. Jones, editors. Essays in Computing S
ien
e. Interna-

tional Series in Computer S
ien
e. Prenti
e Hall, 1989.

22. M. Huisman. Java Program Veri�
ation in Higher-Order Logi
 with PVS and

Isabelle. PhD thesis, University of Nijmegen, 2001.

23. H. Hussmann, editor. Fundamental Approa
hes to Software Engineering, volume

2029 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2001.

24. G. M. Levin and D. Gries. A proof te
hnique for
ommuni
ating sequential pro-

esses. A
ta Informati
a, 15(3):281{302, 1981.

25. The LOOP proje
t: Formal methods for obje
t-oriented systems.

http://www.
s.kun.nl/

~

bart/LOOP/, 2001.

26. S. Owi
ki and D. Gries. An axiomati
 proof te
hnique for parallel programs. A
ta

Informati
a, 6(4):319{340, 1976.

27. C. Palamidessi, editor. CONCUR 2000: Con
urren
y Theory (11th International

Conferen
e, University Park, PA, USA), volume 1877 of Le
ture Notes in Com-

puter S
ien
e. Springer-Verlag, Aug. 2000.

Con
lusion 37

28. A. Poetzs
h-He�ter. Spe
i�
ation and Veri�
ation of Obje
t-Oriented Programs.

Te
hnis
he Universit�at M�un
hen, Jan. 1997. Habilitationss
hrift.

29. A. Poetzs
h-He�ter and P. M�uller. A programming logi
 for sequential Java. In

Swierstra [32℄, pages 162{176.

30. B. Reus, R. Henni
ker, and M. Wirsing. A Hoare
al
ulus for verifying Java real-

izations of OCL-
onstrained design models. In Hussmann [23℄, pages 300{316.

31. R. St�ark, J. S
hmid, and E. B�orger. Java and the Java Virtual Ma
hine. Springer-

Verlag, 2001.

32. S. Swierstra, editor. Pro
eedings of the 8th European Symposium on Programming

(ESOP '99), volume 1576 of Le
ture Notes in Computer S
ien
e. Springer, 1999.

33. J. V. Tu
ker and J. I. Zu
ker. Program Corre
tness over Abstra
t Data Types, with

Error-State Semanti
s, volume 6 of CWI Monograph Series. North-Holland, 1988.

34. D. von Oheimb. Axiomati
 semati
s for Java

light

in Isabelle/HOL. In

S. Drossopoulo, S. Eisenba
h, B. Ja
obs, G. Leavens, P. M�uller, and A. Poetzs
h-

He�ter, editors, Formal Te
hniques for Java Programs, number 269, 5/2000 in

Te
hni
al Report. Fernuniversit�at Hagen, 2000.

35. D. von Oheimb. Hoare logi
 for Java in Isabelle/HOL. Con
urren
y { Pra
ti
e

and Experien
e, 2001. to appear.

36. D. von Oheimb and T. Nipkow. Hoare logi
 for NanoJava: Auxiliary variables, side

e�e
ts and virtual methods revisited. submitted for publi
ation, 2002.

37. J. B. Warmer and A. G. Kleppe. The Obje
t Constraint Language: Pre
ise Modeling

With Uml. Obje
t Te
hnology Series. Addison-Wesley, 1999.

38 Semanti
s of transformed programs

A Semanti
s of transformed programs

Se
tion 4 des
ribes how to transform programs to reason about their properties.

This transformation implies slight
hanges in the semanti
s. The operational

semanti
s of transformed programs is given in the Tables 8 and 9.

Multiple assignments are exe
uted simultaneously (Ass). Method invo
ation

onsists of three steps exe
uted without interleaving with other threads not

involved in the method invo
ation: First, a new lo
al
on�guration is
reated

ready to exe
ute the method body and the a
tual parameters are passed on

(Call), afterwards, the
aller thread exe
utes the multiple assignment in the

bra
keted se
tion of the output statement (Ass

1

rit

), and third, the bra
keted

se
tion at the beginning of the method body is exe
uted (Ass

2

rit

). For the

invo
ation of start-methods, the rules Start, Ass

4

rit

, and Ass

2

rit

are used,

instead. If the thread is already started, only one lo
al
on�guration is involved,

and only the rules Start andAss

2

rit

apply. Analogously, the semanti
s of return

in a transformed program is de�ned by substituting the return value in a �rst

step (Return), exe
uting the
allee-assignment in a se
ond step (Ass

3

rit

), and,

�nally, exe
uting the
aller-assignment (Ass

2

rit

). In the
ase of termination no

ommuni
ation takes pla
e, and only rules Terminate and Ass

2

rit

apply.

Sin
e the stability of a global
on�guration depends only on the thread
on-

�gurations, we use here the predi
ate stable , de�ned in Se
tion 4.1 for global

on�gurations, also for sets of thread
on�gurations. Note that the statement of

a lo
al
on�guration represents a non-interleaving
ontrol point if and only if its

statement begins with a bra
keted se
tion
ontaining only a multiple assignment.

Lemma 9 shows that rea
hable
on�gurations of a program prog
orrespond to

rea
hable
on�gurations of its transformation prog

0

in that all
ontrol points are

interleaving points, i.e., all started
ommuni
ations are
ompleted.

The transitions for the remaining sequential
onstru
ts are standard and

omitted.

Semanti
s of transformed programs 39

T stable � 2 Val

ndom

(�) �

0

= � [u 7! �℄ �

0

= �[� 7!�

;init

inst

℄

New

hT

_

[f� Æ (�; hu:=new

; ~y:=~ei; stm)g; �i �! hT

_

[f� Æ (�

0

; h~y:=~ei; stm)g; �

0

i

T stable � (this) = � � = [[e

0

℄℄

�(�);�

E

2 dom

(�)

�

0

= �

start;

init

[this 7!�℄[~u 7![[~e

0

℄℄

�(�);�

E

℄

:started (T [f� Æ (�; he

0

:start(~e

0

); ~y := ~ei; stm)g; �)

Start

hT

_

[f� Æ (�; he

0

:start(~e

0

); ~y := ~ei; stm)g; �i �!

hT

_

[f� Æ (�; h~y := ~ei; stm); (�

0

; body

start;

)g; �i

T stable � (this) = � � = [[e

0

℄℄

�(�);�

E

2 dom

(�)

started (T [f� Æ (�; he

0

:start(~e

0

); ~y := ~ei; stm)g; �)

Start

skip

hT

_

[f� Æ (�; he

0

:start(~e

0

); ~y:=~ei; stm)g; �i�! hT

_

[f� Æ (�; h~y:=~ei; stm)g; �i

T stable � (this) = � � = [[e

0

℄℄

�(�);�

E

2 dom

(�)

modif m(~u)fbody

m;

g 2 Meth

m 6= start syn
(
;m)! isfree(T; �)

�

0

= �

m;

init

[this 7! �℄[~u 7![[~e

0

℄℄

�(�);�

E

℄

Call

hT

_

[f� Æ (�; he

0

:m(~e

0

); ~y := ~ei; stm)g; �i �!

hT

_

[f� Æ (�; h~y := ~ei; stm) Æ (�

0

; body

m;

)g; �i

T stable �

0

(this) = � �

00

= � [u 7![[e℄℄

�(�);�

0

E

℄

Return

hT

_

[f� Æ (�; hre
eive u; ~y

4

:= ~e

4

i; stm) Æ (�

0

; hreturn e; ~y

3

:= ~e

3

i)g; �i �!

hT

_

[f� Æ (�

00

; h~y

4

:= ~e

4

i; stm) Æ (�

0

; h~y

3

:= ~e

3

i)g; �i

T stable

Terminate

hT

_

[f(�; hreturn; ~y

3

:= ~e

3

i)g; �i �! hT

_

[f(�; h~y

3

:= ~e

3

i)g; �i

Table 8. Operational semanti
s of transformed programs I

40 Semanti
s of transformed programs

T stable � (this) = � �

0

= � [~y 7![[~e ℄℄

�(�);�

E

℄ �

0

= �[�:~y 7![[~e ℄℄

�(�);�

E

℄

Ass

hT

_

[f� Æ (�; ~y := ~e; stm)g; �i �! hT

_

[f� Æ (�

0

; stm)g; �

0

i

stm

0

6= � � (this) = � �

00

= � [~y 7![[~e ℄℄

�(�);�

E

℄ �

0

= �[�:~y 7![[~e ℄℄

�(�);�

E

℄

Ass

1

rit

hT

_

[f� Æ (�; h~y := ~ei; stm) Æ (�

0

; h~y

0

:= ~e

0

i; stm

0

)g; �i �!

hT

_

[f� Æ (�

00

; stm) Æ (�

0

; h~y

0

:= ~e

0

i; stm

0

)g; �

0

i

T [f�g stable stm 6= � _ � = � � (this) = �

�

0

= � [~y 7![[~e ℄℄

�(�);�

E

℄ �

0

= �[�:~y 7![[~e ℄℄

�(�);�

E

℄

Ass

2

rit

hT

_

[f� Æ (�; h~y := ~ei; stm)g; �i �! hT

_

[f� Æ (�

0

; stm)g; �

0

i

� 6= � � (this) = � �

0

= �[�:~y 7![[~e ℄℄

�(�);�

E

℄

Ass

3

rit

hT

_

[f� Æ (�; h~y := ~ei)g; �i �! hT

_

[f�g; �

0

i

� (this) = � �

00

= � [~y 7![[~e ℄℄

�(�);�

E

℄ �

0

= �[�:~y 7![[~e ℄℄

�(�);�

E

℄

Ass

4

rit

hT

_

[f� Æ (�; h~y := ~ei; stm); (�

0

; body

start;

)g; �i �!

hT

_

[f� Æ (�

00

; stm); (�

0

; body

start;

)g; �

0

i

Table 9. Operational semanti
s of transformed programs II

Proofs 41

B Proofs

B.1 Properties of substitutions

Proof (of Lemma 1). By straightforward indu
tion on the stru
ture of lo
al

expressions and assertions. In the
ase for lo
al variables u = y

i

we get

[[u[~e=~y℄℄℄

!;�

inst

;�

L

= [[e

i

℄℄

!;�

inst

;�

L

= � [u 7![[e

i

℄℄

!;�

inst

;�

L

℄(u)

= [[u℄℄

!;�

inst

[~y 7![[~e℄℄

!;�

inst

;�

L

℄;� [~y 7![[~e℄℄

!;�

inst

;�

L

℄

L

:

For instan
e variables x = y

i

similarly:

[[x[~e=~y℄℄℄

!;�

inst

;�

L

= [[e

i

℄℄

!;�

inst

;�

L

= �

inst

[x 7![[e

i

℄℄

!;�

inst

;�

L

℄(x)

= [[x℄℄

!;�

inst

[~y 7![[~e℄℄

!;�

inst

;�

L

℄;� [~y 7![[~e℄℄

!;�

inst

;�

L

℄

L

:

The remaining
ases are straightforward. ut

Proof (of Lemma 2). Let �

0

= �[[[z℄℄

!;�

G

:~x 7![[

~

E℄℄

!;�

G

℄. We pro
eed by indu
tion on

the stru
ture of global expressions and assertions. The base
ases are straight-

forward:

[[nil[

~

E=z:~x℄℄℄

!;�

G

= nil = [[nil℄℄

!;�

0

G

[[z

0

[

~

E=z:~x℄℄℄

!;�

G

= [[z

0

℄℄

!;�

G

= [[z

0

℄℄

!;�

0

G

:

Furthermore, we get the following indu
tion
ases. We start with the
ru
ial one

for quali�ed referen
e to instan
e variables.

[[(E

0

:x

i

)[

~

E=z:~x℄℄℄

!;�

G

= [[if E

0

[

~

E=z:~x℄ = z thenE

i

else (E

0

[

~

E=z:~x℄):x

i

�℄℄

!;�

G

:

This
onditional assertion evaluates to [[E

i

℄℄

!;�

G

if [[E

0

[

~

E=z:~x℄℄℄

!;�

G

= [[z℄℄

!;�

G

and to

[[(E

0

[

~

E=z:~x℄):x

i

℄℄

!;�

G

otherwise. So in the �rst
ase we get

[[(E

0

:x

i

)[

~

E=z:~x℄℄℄

!;�

G

= [[E

i

℄℄

!;�

G

= �

0

([[z℄℄

!;�

G

)(x

i

) by def. of �

0

= �

0

([[E

0

[

~

E=z:~x℄℄℄

!;�

G

)(x

i

) by the
ase assumption

= �

0

([[E

0

℄℄

!;�

0

G

)(x

i

) by indu
tion

= [[E

0

:x

i

℄℄

!;�

0

G

by def. of [[℄℄

G

:

If otherwise [[E

0

[

~

E=z:~x℄℄℄

!;�

G

6= [[z℄℄

!;�

G

, then

[[(E

0

:x

i

)[

~

E=z:~x℄℄℄

!;�

G

= [[(E

0

[

~

E=z:~x℄):x

i

℄℄

!;�

G

= �([[E

0

[

~

E=z:~x℄℄℄

!;�

G

)(x

i

) by def. of [[℄℄

G

= �

0

([[E

0

[

~

E=z:~x℄℄℄

!;�

G

)(x

i

)
ase assumption and def. of �

0

= �

0

([[E

0

℄℄

!;�

0

G

)(x

i

) by indu
tion

= [[E

0

:x

i

℄℄

!;�

0

G

by def. of [[℄℄

G

:

42 Proofs

For operator expressions we get:

[[(f(E

1

; : : : ; E

n

))[

~

E=z:~x℄℄℄

!;�

G

= [[f(E

1

[

~

E=z:~x℄; : : : ; E

n

[

~

E=z:~x℄)℄℄

!;�

G

def. of substitution

= f([[E

1

[

~

E=z:~x℄℄℄

!;�

G

; : : : ; [[E

n

[

~

E=z:~x℄℄℄

!;�

G

) def. of [[℄℄

G

= f([[E

1

℄℄

!;�

0

G

; : : : ; [[E

n

℄℄

!;�

0

G

) by indu
tion

= [[f(E

1

; : : : ; E

n

)℄℄

!;�

0

G

def. of [[℄℄

G

:

For global assertions, the
ases of negation and
onjun
tion are straightforward.

For quanti�
ation,

[[(9z

0

(P))[

~

E=z:~x℄℄℄

!;�

G

= true

() [[9z

0

(P [

~

E=z:~x℄)℄℄

!;�

G

= true def. of substitution

() [[P [

~

E=z:~x℄℄℄

![z

0

7! v℄;�

G

= true for some v 2 dom

nil

(�) def. of [[℄℄

G

() [[P ℄℄

![z

0

7! v℄;�

0

G

= true for some v 2 dom

nil

(�) by indu
tion

() [[9z

0

(P)℄℄

!;�

0

G

= true dom(�) = dom(�

0

) :

ut

Proof (of Lemma 3). By indu
tion on the stru
ture of lo
al expressions and

assertions. The base
ases for lo
al expressions are listed below, where the ones

for instan
e and lo
al variables are
overed by the respe
tive provisos of the

lemma. Note that ~u is the ve
tor of all lo
al variables of the expression.

[[x[z;

~

E=this; ~u℄℄℄

!;�

G

= [[z:x℄℄

!;�

G

= �([[z℄℄

!;�

G

)(x) = �(!(z))(x) = �(�(this))(x)

= [[x℄℄

!;�(�(this));�

L

[[u

i

[z;

~

E=this; ~u℄℄℄

!;�

G

= [[E

i

℄℄

!;�

G

= �(u

i

) = [[u

i

℄℄

!;�(�(this));�

L

[[this[z;

~

E=this; ~u℄℄℄

!;�

G

= [[z℄℄

!;�

G

= !(z) = �(this) = [[this℄℄

!;�(�(this));�

L

[[nil[z;

~

E=this; ~u℄℄℄

!;�

G

= nil = [[nil℄℄

!;�(�(this));�

L

[[z

0

[z;

~

E=this; ~u℄℄℄

!;�

G

= [[z

0

℄℄

!;�

G

= !(z

0

) = [[z

0

℄℄

!;�(�(this));�

L

:

Compound expressions are treated by straightforward indu
tion:

[[f(e

1

; : : : ; e

n

)[z;

~

E=this; ~u℄℄℄

!;�

G

= f ([[e

1

[z;

~

E=this; ~u℄℄℄

!;�

G

; : : : ; [[e

n

[z;

~

E=this; ~u℄℄℄

!;�

G

) semanti
s of assertions

= f ([[e

1

℄℄

!;�(�(this));�

L

; : : : ; [[e

n

℄℄

!;�(�(this));�

L

) by indu
tion

= [[f(e

1

; : : : ; e

n

)℄℄

!;�(�(this));�

L

semanti
s of assertions :

For lo
al assertions, negation and
onjun
tion are straightforward. Unrestri
ted

quanti�
ation 9z

0

(p) in the lo
al assertion language is only allowed for variables

Proofs 43

of type t 2 fInt;Boolg, for whi
h dom

t

nil

(�) = Val

t

. We get

[[(9z

0

(p))[z;

~

E=this; ~u℄℄℄

!;�

G

= true

() [[9z

0

(p[z;

~

E=this; ~u℄)℄℄

!;�

G

= true def. of substitution

() [[p[z;

~

E=this; ~u℄℄℄

![z

0

7! v℄;�

G

= true for some v 2 Val

t

assertion semanti
s

() [[p℄℄

![z

0

7! v℄;�(�(this));�

L

= true for some v 2 Val

t

by indu
tion

() [[9z

0

(p)℄℄

!;�(�(this));�

L

= true assertion semanti
s:

For restri
ted quanti�
ation over elements of a sequen
e let z

0

2 LVar

t

. Then

[[(9z

0

2 e(p))[z;

~

E=this; ~u℄℄℄

!;�

G

= true

() [[9z

0

((z

0

2 e[z;

~

E=this; ~u℄) ^ (p[z;

~

E=this; ~u℄))℄℄

!;�

G

= true by de�nition

() [[(z

0

2 e[z;

~

E=this; ~u℄) ^ p[z;

~

E=this; ~u℄℄℄

!

0

;�

G

= true semanti
s

for some v 2 dom

t

nil

(�) and !

0

= ![z

0

7! v℄

()

�

([[z

0

℄℄

!

0

;�

G

2 [[e[z;

~

E=this; ~u℄℄℄

!

0

;�

G

) ^ [[p[z;

~

E=this; ~u℄℄℄

!

0

;�

G

�

= true semanti
s

for some v 2 dom

t

nil

(�) and !

0

= ![z

0

7! v℄

()

�

([[z

0

℄℄

!

0

;�(�(this));�

L

2 [[e℄℄

!

0

;�(�(this));�

L

) ^ [[p℄℄

!

0

;�(�(this));�

L

�

= true by indu
tion

for some v 2 dom

t

nil

(�) and !

0

= ![z

0

7! v℄

() [[(z

0

2 e) ^ p℄℄

!

0

;�(�(this));�

L

= true semanti
s

for some v 2 dom

t

nil

(�) and !

0

= ![z

0

7! v℄

() [[9z

0

2 e(p)℄℄

!;�(�(this));�

L

= true semanti
s :

The last equation uses the assumption that the lo
al state � and the instan
e

state �(�(this)) assign values from dom

nil

(�) to all variables, i.e., e does not

refer to values of non-existing obje
ts. Consequently, v 2 Val

t

nil

together with

[[z

0

2 e℄℄

![z

0

7! v℄;�(�(this));�

L

= true implies v 2 dom

t

nil

(�).

The
ase for restri
ted quanti�
ation is analogous. ut

B.2 Soundness

This se
tion
ontains the indu
tive proof of soundness of the proof method. We

start with some an
illary lemmas about basi
 invariant properties of transformed

and annotated programs, for instan
e properties of the auxiliary variables added

in the transformation. Afterwards, we show soundness of the veri�
ation
ondi-

tions of Se
tion 4.2, whi
h then straightforwardly lead to the soundness of the

proof-system.

B.2.1 Invariant properties

Proof (of transformation Lemma 9). Both dire
tions by straightforward indu
-

tion on the length of redu
tion. The
ru
ial point in the \if"-dire
tion is that

for all rea
hable global
on�gurations hT

0

; �

0

i of a transformed program prog

0

there is also a rea
hable stable
on�guration hT

00

; �

00

i of prog

0

representing the

44 Proofs

same
on�guration of the original program, i.e., su
h that hT

00

prog ; �

00

#

progi = hT

0

prog ; �

0

progi. The stable
on�guration hT

00

; �

00

i is the next

stable
on�guration after
ompleting the assignments in the bra
keted se
tions

a

ompanying obje
t
reation and
ommuni
ation statements in hT

0

; �

0

i. Note

that a lo
al
on�guration is enabled in a rea
hable stable
on�guration hT

00

; �

00

i

of a transformed program i� the
orresponding lo
al
on�guration is enabled in

the proje
tion hT

00

prog ; �

00

progi. ut

Lemma 12. Let � be a global state and ! a logi
al environment referring only

to values existing in �. Then [[E℄℄

!;�

G

2 dom

nil

(�) for all global expressions E 2

GExp that
an be evaluated in the
ontext of ! and �.

Proof (of Lemma 12). By stru
tural indu
tion on the global assertion. The
ase

for logi
al variables z 2 LVar

t

is immediate by the assumption about !, the ones

for nil and operator expressions are trivial, respe
tively follows by indu
tion. For

quali�ed referen
es E:x with E 2 GExp

and x 2 IVar

t

an instan
e variable of

lass
, if E:x
an be evaluated in the
ontext of ! and �, then [[E℄℄

!;�

G

6= nil .

Hen
e by indu
tion [[E℄℄

!;�

G

2 dom

nil

(�), more spe
i�
ally [[E℄℄

!;�

G

2 dom(�).

Therefore by de�nition of global states �([[E℄℄

!;�

G

)(x) 2 dom

nil

(�). ut

Proof (of Lemma 8). By stru
tural indu
tion on the global assertion P . Let !

0

=

![z

0

7! v℄. For logi
al variables z in P we know z 6= z

0

and thus [[z℄℄

!;�

G

= !(z) =

!

0

(z) = [[z℄℄

!

0

;�

0

G

. For quali�ed referen
es to instan
e variables, the argument is

as follows:

[[E:x℄℄

!;�

G

= �([[E℄℄

!;�

G

)(x)

= �

0

([[E℄℄

!;�

G

)(x) [[E℄℄

!;�

G

6= � by Lemma 12 and � =2 dom(�)

= �

0

([[E # z

0

℄℄

!

0

;�

0

G

)(x) by indu
tion

= �

0

([[E℄℄

!

0

;�

0

G

)(x) by the de�nition of # z

0

= [[E:x℄℄

!

0

;�

0

G

semanti
s of global expressions :

The interesting
ase is the one for quanti�
ation. For z 2 LVar

t

:

!; � j=

G

9z(P)

() ![z 7! v℄; � j=

G

P for some v 2 dom

t

nil

(�) semanti
s

() ![z 7! v℄[z

0

7! v℄; �

0

j=

G

P # z

0

for some v 2 dom

t

nil

(�) indu
tion

() ![z 7! v℄[z

0

7! v℄; �

0

j=

G

within(z; z

0

)^P # z

0

dom

t

nil

(�) � v

for some v 2 dom

t

nil

(�)

() ![z

0

7! v℄; �

0

j=

G

9z(within(z; z

0

) ^ P # z

0

) semanti
s

() ![z

0

7! v℄; �

0

j=

G

(9z(P)) # z

0

:

The remaining
ases are straightforward. ut

Proof (of Lemma 4). All parts by straightforward indu
tion on the steps of the

transformed program. ut

Lemma 13 (Syn
hronization). Let hT; �i be a rea
hable stable
on�guration

of prog

0

. Then for ea
h
lass
 of prog

0

and ea
h obje
t � 2 dom

(�),

Proofs 45

1. �(�)(lo
k) = (nil ; 0) i� there exists no (�; stm) 2 T with �(this) = � and

stm syn
hronized, and

2. �(�)(lo
k) 6= (nil ; 0) i� there exists a (�; stm) 2 T with �(this) = �, �(id) =

�(�)(lo
k), and stm syn
hronized, and for all (�

0

; stm

0

) with �

0

(this) = �

and stm

0

syn
hronized, �

0

(id) � �(�)(lo
k).

Proof (of Lemma 13). By indu
tion on the length of hT

0

; �

0

i �!

�

hT

n

; �

n

i.

In the base
ase of an initial
on�guration hT

0

; �

0

i (
f. page 11), the set

T

0

ontains exa
tly one thread (�; stm), exe
uting the non-syn
hronized main-

statement of the program, and initially the lo
k of the only obje
t �(this) = � is

set to (nil ; 0). The �rst stable
on�guration results from hT

0

; �

0

i by exe
uting

the bra
keted se
tion at the beginning of the non-syn
hronized main-method.

Sin
e the assignment in this bra
keted se
tion does not
hange the values of the

variables lo
k, id, and this of any obje
ts or threads, does not
reate new obje
ts,

and does not add or remove any lo
al
on�guration from T , the property holds

for the �rst rea
hable stable
on�guration.

For the indu
tive step, assume hT

0

; �

0

i �!

�

hT; �i �!

�

hT

0

; �

0

i su
h that

hT

0

; �

0

i is stable and hT; �i is the last stable
on�guration pre
eding hT

0

; �

0

i in

the
omputation. We distinguish whether hT

0

; �

0

i results from hT; �i by exe
uting

assignment, obje
t
reation, method invo
ation, or return.

Case: Ass

Let hT; �i �! hT

0

; �

0

i result from the exe
ution of an assignment ~y := ~e outside

bra
keted se
tions, where both hT; �i and hT

0

; �

0

i are stable (rule Ass). The as-

signment does not tou
h the variables lo
k, id, and this of any obje
ts or threads,

does not
reate new obje
ts, and does not push or pop lo
al
on�gurations, and

the property follows dire
tly by indu
tion.

Case: New

In this
ase hT; �i �!

2

hT

0

; �

0

i, where the �rst step
reated a new obje
t (rule

New), and the se
ond one is the trailing multiple assignment in the bra
keted

se
tion of new.

Let � 2 dom(�

0

). Then � either referen
e the newly
reated obje
t, or

� 2 dom(�). In the �rst
ase � =2 dom(�), and by the de�nition of global
on�g-

urations (
f. page 8) there is no lo
al
on�guration (�; stm) 2 T with �(this) = �.

Sin
e the last two steps do not add any lo
al
on�gurations to T , �(this) 6= �

for all (�; stm) 2 T

0

. Furthermore, sin
e the lo
k of the new obje
t is initialized

to (nil ; 0), the required property holds for the new obje
t. In the se
ond
ase, if

� 2 dom(�), the property follows dire
tly by indu
tion.

Case: Start

skip

Also in this
ase where the two steps of hT; �i �!

2

hT

0

; �

0

i are justi�ed by

Start

skip

and Ass, no lo
al
on�gurations are added to or removed from T , no

new obje
ts are
reated, and the values of lo
k, id, and this are un
hanged, and

the
ase follows by indu
tion.

Case: Call, Start

We are given hT; �i �!

3

hT

0

; �

0

i, where the �rst step is justi�ed by rule Call

46 Proofs

or Start, and the following two steps are the the assignments in the bra
keted

se
tions of
aller and
allee.

Let � 2 dom(�

0

). Then also � 2 dom(�), sin
e no new obje
ts are
reated in

the last three steps. If � is not the
allee obje
t, then the property holds dire
tly

by indu
tion. If � is the
allee obje
t, the only new lo
al
on�guration (�; stm)

in T

0

with �(this) = � represents the exe
ution of the invoked method.

If the invoked method is non-syn
hronized, then no lo
ks are tou
hed, and

sin
e no lo
al
on�gurations with syn
hronized statements are added to or re-

moved from the sta
k, the property follows by indu
tion.

In the
ase of a syn
hronized method, the invoked method is not a start-

method, as they are non-syn
hronized by de�nition. If in the state prior to the

method invo
ation �(�)(lo
k) = (nil ; 0), then by indu
tion (�; stm) is the only

lo
al
on�guration in T

0

representing the exe
ution of a syn
hronized method

of �. Furthermore, in the bra
keted se
tion of the
allee the assignment lo
k :=

getlo
k(lo
k; id) is exe
uted, implying �

0

(�)(lo
k) = �(id), and thus the required

property. Otherwise, if �(�)(lo
k) 6= (nil ; 0), then by indu
tion there exists

(�

0

; stm

0

) 2 T su
h that �

0

(this) = �, stm

0

syn
hronized, and �

0

(id) = �(�)(lo
k),

and for all (�

00

; stm

00

) 2 T representing the exe
ution of a syn
hronized method

in � we have �

0

(id) � �

00

(id). Sin
e the
allee
on�guration is on top of its

sta
k, the ante
edent isfree of rule Call together with Lemma 4 implies also

�

0

(id) � �(id). The assignment lo
k := getlo
k(lo
k; id) of the
allee does not

hange the lo
k value, i.e., �(�)(lo
k) = �

0

(�)(lo
k). As no lo
al
on�gurations

are removed from the sta
k in the last three steps, the property is satis�ed.

Case: Return

We are given hT; �i �!

3

hT

0

; �

0

i,
onsisting of a return step by rule Return

and the two trailing assignments in the bra
keted se
tions of the
allee and the

aller.

The assumption � 2 dom(�

0

) implies � 2 dom(�), sin
e no new obje
ts are

reated in the last three steps. If � is not the
allee obje
t, or if the invoked

method is non-syn
hronized, then the property holds dire
tly by indu
tion. If

otherwise � is the
allee obje
t and the invoked method is syn
hronized, the

bra
keted se
tion of the
allee
ontains the assignment lo
k := release(lo
k; id).

We further distinguish two
ases: If the identity �(id) of the
allee is greater

than �(�)(lo
k), then the lo
k of the
allee remains un
hanged, and the property

follows dire
tly by indu
tion. Otherwise, if �(�)(lo
k) equals the identity �(id)

of the
allee, then in the bra
keted se
tion of the return statement the lo
k

is set by lo
k := release(lo
k; id) to (nil ; 0), and the lo
al
on�guration of the

allee is removed from the sta
k. By indu
tion, all lo
al
on�gurations (�

0

; stm

0

)

in T with syn
hronized statements stm

0

and representing exe
ution in �, i.e.,

�

0

(this) = �, have an identity �

0

(id) � �(�)(lo
k), i.e., �

0

(id) � �(id). On the

other hand, the
allee
on�guration in T is by rule Return on the top of its

sta
k, and
onsequently by Lemma 4 �

0

(id) � �(id). It follows that �

0

(id) = �(id),

and by Lemma 4 the
allee
on�guration (�; stm) is the only
on�guration in

T with syn
hronized statement and �(this) = �. Thus after removing the
allee

Proofs 47

from the sta
k, there is no lo
al
on�guration in T

0

representing the exe
ution

of any syn
hronized methods of �, and the property holds.

Case: Terminate

For termination, we are given hT; �i �!

2

hT

0

; �

0

i, where the �rst step is the

exe
ution of the return-statement of a start-method or of the initial invo
ation

of the main-method (rule Terminate), and the se
ond step exe
uted the assign-

ment in the bra
keted se
tion of the return-statement. Sin
e main- and start-

methods are non-syn
hronized by de�nition, no lo
k-values are
hanged during

these steps, no lo
al
on�gurations with syn
hronized statements are pushed or

popped, and no new obje
ts are
reated, and the property holds by indu
tion.

ut

Proof (of Lemma 5). For the \only-if"-dire
tion, isfree(Tnf�g; �) implies by

de�nition (
f. page 10) that there is no (�

0

; stm

0

) 2 Tnf�g with �

0

(this) = �

and stm

0

syn
hronized. If neither in � there exist su
h a
on�guration, then by

Lemma 13 �(�)(lo
k) = (nil ; 0). Otherwise, �(�)(lo
k) 6= (nil ; 0) by Lemma 13,

and there exists (�

0

; stm

0

) 2 T with �

0

(this) = � and stm

0

syn
hronized, su
h that

�(�)(lo
k) = �

0

(id). The assumption isfree(Tnf�g; �) implies that (�

0

; stm

0

) 2 �.

Furthermore, sin
e (�; stm) is on top of the sta
k �, Lemma 4 implies that

�

0

(id) � �(id), i.e., �(�)(lo
k) � �(id).

For the reverse dire
tion, we are given �(�)(lo
k) = (nil ; 0) _ �(�)(lo
k) �

�(id). If �(�)(lo
k) = (nil ; 0), then isfree(Tnf�g; �) dire
tly by Lemma 13.

If �(�)(lo
k) � �(id), then by Lemma 13 there exists a (�

0

; stm

0

) 2 T with

�

0

(this) = � and stm

0

syn
hronized, su
h that �(�)(lo
k) = �

0

(id), and for

all (�

00

; stm

00

) with �

00

(this) = � and stm

00

syn
hronized, �(�)(lo
k) � �

00

(id).

Lemma 4 implies that all su
h lo
al
on�gurations representing the exe
ution of

a syn
hronized method in � are in the same sta
k as (�; stm), i.e., in �, hen
e

isfree(Tnf�g; �). ut

Proof (of Lemma 6). Straightforward by the de�nition of augmentation. ut

Lemma 14 (Stable). For all rea
hable
on�gurations hT; �i of a program prog

0

and for all obje
ts � 2 dom(�), �(�)(stable) = false i� the last two steps in the

omputation leading to hT; �i were a self-
ommuni
ation (
all or return) within

� and the exe
ution of the auxiliary assignment of the sender but not yet that of

the re
eiver.

Proof (of Lemma 14). By straightforward indu
tion, using the de�nition of aug-

mentation. ut

Proof (of Lemma 7). Let hT; �i be a rea
hable
on�guration of a transformed

program and (�; stm

ass

; stm) a lo
al
on�guration in T where stm

ass

equals

~y := ~e or h~y := ~ei. Let furthermore �

inst

= �(�(this)).

Case: Part 1

Let (�; stm

ass

; stm) be enabled in hT; �i. If ~y := ~e is the observation of either

obje
t
reation, or the sender part in a
ommuni
ation, or the re
eiver part in

a non-self-
ommuni
ation, then by de�nition !; �

inst

; � j=

L

enabled(~y := ~e). If

48 Proofs

~y := ~e is the observation of the re
eiver part in a self-
ommuni
ation, then,

sin
e the assignment is enabled, the sender has already exe
uted its observation,

and Lemma 14 assures that �

inst

(stable) = false , and hen
e by the
lause for

self-
alls !; �

inst

; � j=

L

enabled(~y := ~e). If �nally ~y := ~e does not o

ur within a

bra
keted se
tion, hT; �i is stable sin
e the assignment is enabled. By Lemma 14

�

inst

(stable) = true and thus also !; �

inst

; � j=

L

enabled(~y := ~e).

Case: Part 2

Let !; �

inst

; � j=

L

enabled(~y := ~e). If ~y := ~e is the observation of obje
t
reation

or of the sender part of a
ommuni
ation, then it is enabled in hT; �i.

If ~y := ~e is the observation of the re
eiver part of a self-
ommuni
ation

within �(this), then Lemma 4 together with !; �

inst

; � j=

L

enabled(~y := ~e) and

the de�nition of enabled imply �

inst

(stable) = false . Using Lemma 14 we get that

the sender already exe
uted its observation, i.e., ~y := ~e is enabled in hT; �i.

If ~y := ~e is the observation of the re
eiver part of a non-self-
ommuni
ation,

then either the sender has already exe
uted its observation, or not. In the �rst

ase ~y := ~e is enabled in hT; �i. In the se
ond
ase, exe
uting the observation of

the
aller does not
hange the instan
e state of the
allee obje
t �(this). Thus

the resulting global
on�guration satis�es the requirements.

Finally, assume that ~y := ~e o

urs outside bra
keted se
tions and let hT

0

; �

0

i

be the last stable
on�guration in the
omputation leading to hT; �i. If �

0

and �

de�ne the same instan
e state for �(this), then hT

0

; �

0

i satis�es the requirements.

Otherwise, hT

0

; �

0

i �!

�

hT; �i exe
utes some
ommuni
ation and the observa-

tion of the sender in the obje
t �(this). Furthermore, !; �

inst

; � j=

L

enabled(~y :=

~e) imply �

inst

(stable) = true, and Lemma 14 assures that the re
eiver obje
t is

di�erent from �(this). This means, exe
uting the observation of the re
eiver does

not
hange the instan
e state of �(this), and the resulting
on�guration satis�es

the requirements. ut

Lemma 15 (Interleavable). Let (�

1

; stm

ass

; stm

1

) be enabled in a rea
hable

on�guration hT; �i of a proof outline, where stm

ass

is ~y := ~e or h~y := ~ei. Let

furthermore (�

1

; stm

ass

; stm

1

) 6= (�

2

; stm; stm

2

) 2 T with �

1

(this) = �

2

(this) = �.

Then

!; �(�); � j=

L

interleavable(pre(stm); ~y := ~e)

for arbitrary ! 2
 and � = �

1

[~u

0

; this

0

7! �

2

(~u); �

2

(this)℄, where ~u are the lo
al

variables from the domain of �

2

and ~u

0

fresh variables of
orresponding types.

Proof (of Lemma 15). We distinguish whether or not the lo
al
on�gurations

(�

1

; stm

ass

; stm

1

) and (�

2

; stm; stm

2

) o

ur in the same sta
k.

Case: (�

1

; stm

ass

; stm

1

) and (�

2

; stm; stm

2

) reside in the same sta
k

Then Lemma 4 yields samethread(�

2

(id); �

1

(id)). Furthermore, if stm represents

an interleaving point, we have �

2

(id) < �

1

(id), and stm begins with a re
eive

statement. If additionally stm

ass

= h~y := ~ei is the trailing observation of a

return statement, then (�

2

; stm; stm

2

)
annot be the mat
hing
allee, sin
e, as

said, stm begins with a re
eive statement. I.e., we have the stronger
ondition

Proofs 49

allee(�

2

(id)) < �

1

(id). Hen
e by de�nition of wait for ret (
f. page 25) and by

the de�nition of �

!; �(�); � j=

L

wait for ret(pre(stm); ~y := ~e) :

If otherwise stm represents a non-interleaving point, then, a

ording to the

semanti
s of
ommuni
ation for transformed programs, either the last
om-

putation step leading to hT; �i was a self-
all within � or the
ommuni
a-

tion of a return value within �, su
h that (�

1

; h~y := ~ei; stm

1

) is the result-

ing
on�guration of the sender and (�

2

; stm; stm

2

) that of the re
eiver. For

the self-
all we have �

2

(id) =
allee(�

1

(id)) and in the
ase of return
on-

versely �

1

(id) =
allee(�

2

(id)). Note that for the invo
ation of a start-method,

(�

1

; stm

ass

; stm

1

) and (�

2

; stm; stm

2

) would not belong to the same sta
k; this

kind of
ommuni
ation is handled in the proof
ase below. Thus, by de�nition

of self
all and self ret (
f. page 25) we get

!; �(�); � j=

L

self
all(pre(stm); ~y := ~e) _ self ret(pre(stm); ~y := ~e) :

Case: (�

1

; stm

ass

; stm

1

) and (�

2

; stm; stm

2

) are in di�erent sta
ks

A

ording to the semanti
s of syn
hronization, sin
e the lo
al
on�gurations

(�

1

; stm

ass

; stm

1

) and (�

2

; stm; stm

2

) belong to di�erent threads exe
uting in the

same obje
t, not both statements are syn
hronized. Furthermore by Lemma 4

:samethread (�

1

(id); �

2

(id)). If additionally stm represents an interleaving point,

then

!; �(�); � j=

L

di� threads(pre(stm); ~y := ~e) :

If otherwise stm represents a non-interleaving point, then the last
omputation

step leading to hT; �i was the self-invo
ation of the start-method of �, where

(�

2

; stm; stm

2

) represents the initial sta
k of the new thread, and (�

1

; h~y :=

~ei; stm

1

) is the
aller. By the de�nition of the augmentation �

2

(id) = (�; 0),

and therefore

!; �(�); � j=

L

self start(pre(stm); ~y := ~e) :

Hen
e we have

!; �(�); � j=

L

interleavable(pre(stm); ~y := ~e) :

ut

B.2.2 Soundness of the proof-
onditions This se
tion shows one by one

the soundness of the veri�
ation
onditions of Se
tion 4.2, from Equation (1) to

(10).

Lemma 16 (Initial
orre
tness). Let the proof outline prog

0

be initially
or-

re
t. Let hT

0

; �

0

i the initial
on�guration of prog

0

with T

0

= f(�; body

main

)g, and

hT

0

; �

0

i �! hT

0

0

; �

0

0

i. Then !; �

0

(�(this)); � j=

L

pre(body

main

) and !; �

0

0

j=

G

GI,

for all logi
al environments ! referring only to values existing in �

0

.

50 Proofs

Proof (of Lemma 16). Let � be the initial obje
t. Then by de�nition � =

�

init

[this 7!�℄[id 7!(�; 0)℄, dom(�

0

) = f�g and �

0

(�) = �

init

inst

. Furthermore, the

�rst stable
on�guration hT

0

0

; �

0

0

i results from hT

0

; �

0

i by exe
uting the multiple

assignment ~y

2

:= ~e

2

in the bra
keted se
tion at the beginning of the main-

method, i.e., �

0

0

= �

0

[�:~y

2

7![[~e

2

℄℄

�

0

(�);�

E

℄.

Condition (1) of the initial
orre
tness on page 24 implies

!; �

init

inst

; � j=

L

pre(body

main

)[(this; 0)=id℄[InitVal(~y)=~y℄;

and with Lemma 1, !; �

init

inst

; � j=

L

pre(body

main

), whi
h means, !; �

0

(�(this)); �

j=

L

pre(body

main

).

For the global invariant we argue as follows. As in �

0

there exists exa
tly one

obje
t � being in its initial instan
e state, we have

![z 7!�℄; �

0

j=

G

InitState(z) ^ 8z

0

(z

0

=nil _ z=z

0

) ;

where z is of the type of the main
lass, and z

0

is a logi
al variable of type Obje
t.

Using
ondition (2) of the initial
orre
tness we get

![z 7!�℄; �

0

j=

G

GI [

~

E

2

=z:~y

2

℄ ;

where

~

E

2

= ~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄[z=this℄. Applying Lemma 2 we get

![z 7!�℄; �

0

[�:~y

2

7![[

~

E

2

℄℄

![z 7!�℄;�

0

G

℄ j=

G

GI :

Using Lemma 3 on page 17 and Lemma 1 gives

[[

~

E

2

℄℄

![z 7!�℄;�

0

G

= [[~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄[z=this℄℄℄

![z 7!�℄;�

0

G

= [[~e

2

℄℄

![z 7!�℄;�

0

(�);�

L

= [[~e

2

℄℄

�

0

(�);�

E

;

i.e., ![z 7!�℄; �

0

0

j=

G

GI . Again, the value of GI does not depend on the logi
al

environment, and therefore !; �

0

0

j=

G

GI . ut

Lemma 17 (Lo
al
orre
tness). Let hT

n

; �

n

i be a rea
hable
on�guration of a

lo
ally
orre
t proof outline, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i result from the ex-

e
ution of a multiple assignment ~y := ~e in a lo
al
on�guration (�; stm

ass

; stm) 2

T

n

, where stm

ass

is ~y := ~e or h~y := ~ei. Then !; �

n

(�(this)); � j=

L

pre(stm

ass

)

implies !; �

n+1

(�

0

(this)); �

0

j=

L

pre(stm) for arbitrary ! 2
, where �

0

=

� [~y 7![[~e ℄℄

!;�

n

(�(this));�

L

℄.

Proof (of Lemma 17). As the assignment is enabled in hT

n

; �

n

i, so by Lemma 7

!; �

n

(�(this)); � j=

L

enabled(~y := ~e). The veri�
ation
ondition (3) for lo
al

orre
tness on page 24 gives !; �

n

(�(this)); � j=

L

post(~y := ~e)[~e=~y℄, and sin
e

post(~y := ~e) = pre(stm), we get by Lemma 1 !; �

n+1

(�

0

(this)); �

0

j=

L

pre(stm).

ut

Proofs 51

Lemma 18 (Interferen
e freedom test). Let hT

n

; �

n

i be a rea
hable
on�g-

uration of an interferen
e free proof outline, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i

result from the exe
ution of a multiple assignment ~y := ~e in a lo
al
on�guration

(�

1

; stm

ass

; stm

1

) 2 T

n

, where stm

ass

is ~y := ~e or h~y := ~ei. Let furthermore

(�

2

; stm; stm

2

) 2 T

n

\ T

n+1

.

Then !; �

n

(�

1

(this)); �

1

j=

L

pre(stm

ass

) and !; �

n

(�

2

(this)); �

2

j=

L

pre(stm)

imply !; �

n+1

(�

2

(this)); �

2

j=

L

pre(stm) for arbitrary ! 2
.

Proof (of Lemma 18). We are given

hT

_

[f� Æ (�

1

; stm

ass

; stm

1

) Æ �

0

g; �

n

i �! hT

_

[f� Æ (�

0

1

; stm

1

) Æ �

0

g; �

n+1

i ; or

hT

_

[f� Æ (�

1

; stm

ass

)g; �

n

i �! hT

_

[f�g; �

n+1

i ;

where stm

ass

is ~y := ~e or h~y := ~ei, �

1

(this) = �, �

0

1

= �

1

[~y 7![[~e℄℄

!;�

n

(�);�

1

L

℄, and

�

n+1

= �

n

[�:~y 7![[~e ℄℄

!;�

n

(�);�

1

L

℄.

Let �

2

(this) = � and � = �

1

[~u

0

; this

0

7! �

2

(~u); �

2

(this)℄, where ~u are the lo
al

variables from the domain of �

2

and ~u

0

fresh variables.

If � 6= �, then �

n

(�) = �

n+1

(�), and we get !; �

n+1

(�); �

2

j=

L

pre(stm) by

assumption.

Assume in the following � = �. Then !; �

n

(�); � j=

L

this = this

0

. By

assumption and by the de�nition of � we get !; �

n

(�); � j=

L

pre(~y := ~e)

and !; �

n

(�); � j=

L

pre(stm). As the assignment is enabled in hT

n

; �

n

i, so by

Lemma 7 !; �

n

(�); � j=

L

enabled(~y := ~e). Furthermore, using Lemma 15 we get

that !; �

n

(�); � j=

L

interleavable(pre(stm); ~y := ~e). Condition (5) of the inter-

feren
e freedom test implies !; �

n

(�); � j=

L

pre(stm)[~e=~y℄. Using Lemma 1 and

the de�nition of � yields the required property. ut

Lemma 19 (Cooperation test: Method invo
ation). Let hT

n

; �

n

i be a

rea
hable
on�guration of a proof outline satisfying the veri�
ation
onditions of

the
ooperation test for
ommuni
ation, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i �!

hT

n+2

; �

n+2

i �! hT

n+3

; �

n+3

i result from exe
uting a method invo
ation in a

lo
al
on�guration (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

n

and the
orresponding

observations. Let (�

2

; h~y

2

:= ~e

2

i; stm

2

) 2 T

n+1

be the
allee
on�guration after

ommuni
ation. Then

!; �

n

(�

1

(this)); �

1

j=

L

pre(e

0

:m(~e)) ;

!; �

n

(�

2

(this)); � j=

L

I ; and

!; �

n

j=

G

GI

imply

!; �

n+1

(�

1

(this)); �

1

j=

L

pre(h~y

1

:= ~e

1

i; stm

1

) ;

!; �

n+1

(�

2

(this)); �

2

j=

L

pre(h~y

2

:= ~e

2

i; stm

2

) ; and

!; �

n+3

j=

G

GI

for arbitrary ! 2
 and � 2 �

lo

, where I is the
lass invariant of the
allee

obje
t.

52 Proofs

Proof (of Lemma 19). Let
aller and
allee be given by �

1

(this) = � and �

2

(this) =

[[e

0

℄℄

!;�

n

(�);�

1

L

= �, both di�erent from nil . Furthermore, the
allee's lo
al state

is de�ned by �

2

= �

init

[~u 7![[~e ℄℄

!;�

n

(�);�

1

L

℄[this 7!�℄, where ~u are the formal pa-

rameters of the method invo
ation. In addition, if m is syn
hronized, then

isfree(Tnf� Æ (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

)g; �).

Sin
e the method invo
ation is enabled, the global
on�guration hT

n

; �

n

i

prior to the method
all is stable. By assumption

!; �

n

(�); �

1

j=

L

pre(e

0

:m(~e))

!; �

n

(�); � j=

L

I

!; �

n

j=

G

GI ;

where I is the
lass invariant of the
allee.

Let z and z

0

be fresh logi
al variables of appropriate type and let !

0

=

![z 7!�℄[z

0

7!�℄[~v 7! �

1

(~v)℄, where ~v are the lo
al variables of the
aller viewed

as fresh logi
al variables in the global language. Sin
e logi
al variables may not

o

ur free in the annotation, we have

!

0

; �

n

(�); �

1

j=

L

pre(e

0

:m(~e))

!

0

; �

n

(�); � j=

L

I

!

0

; �

n

j=

G

GI ;

and further with the substitution Lemma 3

!

0

; �

n

j=

G

pre(e

0

:m(~e))[z=this℄

!

0

; �

n

j=

G

I [z

0

=this℄ :

By de�nition of !

0

and the assumption on the value of e

0

, [[e

0

℄℄

!

0

;�

n

(�);�

1

L

= � and

further !

0

; �

n

j=

G

(e

0

[z=this℄ = z

0

). If method m is syn
hronized, isfree(Tnf� Æ

(�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

)g; �) implies with Lemma 5 �

n

(�)(lo
k) = (nil ; 0)_

�

n

(�)(lo
k) < �

1

(id),
onsequently !

0

; �

n

j=

G

z

0

:lo
k = (nil; 0) _ z

0

:lo
k � id.

Furthermore, if m = start, from the predi
ate :started in rule Start we get

additionally using Lemma 6 !

0

; �

n

j=

G

:z

0

:started. Thus, by Equation (6) of the

ooperation test,

!

0

; �

n

j=

G

post(e

0

:m(~e))[z=this℄ ^ pre

0

(h~y

2

:= ~e

2

i; stm

2

)[z

0

;

~

E=this; ~u℄^

GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄ ;

where

~

E = ~e [z=this℄,

~

E

1

= ~e

1

[z=this℄, and

~

E

0

2

= ~e

0

2

[z

0

;

~

E=this; ~u℄. For the lo
al

assertions, Lemma 3 together with !

0

(z) = �

1

(this), !

0

(z

0

) = �

2

(this), and !(~v) =

�

1

(~v) implies

!

0

; �

n

(�); �

1

j=

L

pre(h~y

1

:= ~e

1

i; stm

1

)

!

0

; �

n

(�); �

2

j=

L

pre(h~y

2

:= ~e

2

i; stm

2

) :

Proofs 53

Sin
e logi
al variables may not o

ur free in the annotation, and sin
e �

n

= �

n+1

,

we get as required

!; �

n+1

(�); �

1

j=

L

pre(h~y

1

:= ~e

1

i; stm

1

)

!; �

n+1

(�); �

2

j=

L

pre(h~y

2

:= ~e

2

i; stm

2

) :

For the global invariant we observe that the global state is not in
uen
ed by

the
ommuni
ation itself; after the assignment ~y

1

:= ~e

1

of the
aller it is given

by �

n+2

= �

n

[�:~y

1

7![[~e

1

℄℄

�

n

(�);�

1

L

℄, and after the exe
ution of ~y

2

:= ~e

2

by the

allee, the resulting global state is �

n+3

= �

n+2

[�:~y

2

7![[~e

2

℄℄

�

n+2

(�);�

2

L

℄. Using the

substitution Lemma 3 we get

[[

~

E

1

℄℄

!

0

;�

n

G

= [[~e

1

[z=this℄℄℄

!

0

;�

n

G

= [[~e

1

℄℄

!

0

;�

n

(�);�

1

L

;

and hen
e �

n+2

= �

n

[�:~y

1

7![[

~

E

1

℄℄

!

0

;�

n

G

℄. Using the same substitution lemma on
e

more yields

[[

~

E

0

2

℄℄

!

0

;�

n+2

G

= [[~e

0

2

[z

0

;

~

E=this; ~u℄℄℄

!

0

;�

n+2

G

= [[~e

2

℄℄

!;�

n+2

(�);�

2

L

:

Therefore, �

n+3

= �

n+2

[�:~y

2

7![[

~

E

0

2

℄℄

!

0

;�

n+2

G

℄. Now, applying twi
e the substitu-

tion Lemma 2 and using the above equalities yields !

0

; �

n+3

j=

G

GI . Sin
e GI

may not
ontain free o

urren
es of logi
al variables, also !; �

n+1

j=

G

GI , as

required. ut

Lemma 20 (Cooperation test: Start

skip

). Let hT

n

; �

n

i be a rea
hable
on�g-

uration of a proof outline satisfying the veri�
ation
onditions of the
ooperation

test for
ommuni
ation, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i �! hT

n+2

; �

n+2

i re-

sult from
alling the start-method of an obje
t whose thread is already started

in a lo
al
on�guration (�

1

; he

0

:start(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

n

, and exe
uting the

orresponding observation. Then

!; �

n

(�

1

(this)); �

1

j=

L

pre(e

0

:m(~e)) ;

!; �

n

([[e

0

℄℄

�

n

(�

1

(this));�

1

L

); � j=

L

I ; and

!; �

n

j=

G

GI

imply

!; �

n+1

(�

1

(this)); �

1

j=

L

pre(h~y

1

:= ~e

1

i; stm

1

) ; and

!; �

n+2

j=

G

GI

for arbitrary ! 2
 and � 2 �

lo

, where I is the
lass invariant of the
allee

obje
t.

Proof (of Lemma 20). The proof is analogous to the
ase of ordinary method

invo
ation (
f. proof of Lemma 19), where the additional ante
edent z

0

:started of

ondition (8) of the
ooperation test is implied by the predi
ate started in rule

Start

skip

and again by Lemma 6. ut

54 Proofs

Lemma 21 (Cooperation test: Return). Let hT

n

; �

n

i be a rea
hable
on�g-

uration of a proof outline satisfying the veri�
ation
onditions of the
ooperation

test for
ommuni
ation, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i �! hT

n+2

; �

n+2

i �!

hT

n+3

; �

n+3

i result from
ommuni
ating the return value of a method in the lo-

al
on�gurations (�

1

; hre
eiveu; ~y

4

:= ~e

4

i; stm

2

) 2 T

n

and (�

2

; hreturn e

ret

; ~y

3

:=

~e

3

i) 2 T

n

, and the exe
ution
orresponding observations. Let �

0

1

be the lo
al state

of the
allee after
ommuni
ation. Then

!; �

n

(�

1

(this)); �

1

j=

L

pre(re
eive u) ;

!; �

n

(�

2

(this)); �

2

j=

L

pre(return e

ret

) ; and

!; �

n

j=

G

GI

imply

!; �

n+1

(�

0

1

(this)); �

0

1

j=

L

pre(h~y

4

:= ~e

4

i; stm

2

) ;

!; �

n+1

(�

2

(this)); �

2

j=

L

pre(h~y

3

:= ~e

3

i) ; and

!; �

n+3

j=

G

GI

for arbitrary ! 2
.

Proof (of Lemma 21). Let �

1

(this) = � be the
aller obje
t, �

2

(this) = � the

allee, both di�erent from nil Then �

0

1

= � [u 7![[e

ret

℄℄

!;�

n

(�);�

2

L

℄ is the updated

lo
al state of the
aller after re
eiving the return value. By the assumptions we

have

!; �

n

(�); �

1

j=

L

pre(re
eive u)

!; �

n

(�); �

2

j=

L

pre(return e

ret

)

!; �

n

j=

G

GI :

Let z and z

0

be fresh logi
al variables not o

urring in prog

0

, and let furthermore

!

0

= ![z 7!�℄[z

0

7!�℄[~v

1

7! �

1

(~v

1

)℄[~v

0

2

7! �

2

(~v

2

)℄, where ~v

1

are the lo
al variables

of the
aller, and ~v

2

the lo
al variables of the
allee ex
ept the formal parameters

and this, viewed as disjoint fresh logi
al variables in the global language. As the

logi
al variables do not o

ur free in prog

0

, we have

!

0

; �

n

(�); �

1

j=

L

pre(re
eiveu)

!

0

; �

n

(�); �

2

j=

L

pre(return e

ret

)

!

0

; �

n

j=

G

GI :

Sin
e a
tual parameters are not allowed to
ontain instan
e variables, and sin
e

formal parameters may not be assigned to, their values remain un
hanged during

the exe
ution of the invoked method, and thus �

2

(~u) = [[~e ℄℄

!

0

;�

n

(�);�

1

L

, where ~u are

the formal parameters of the method
onsidered, and ~e its a
tual parameters.

By the substitution Lemma 3

�

2

(~u) = [[~e ℄℄

!

0

;�

n

(�);�

1

L

= [[~e[z=this℄℄℄

!

0

;�

n

G

= [[

~

E℄℄

!

0

;�

n

G

:

Proofs 55

Using the same lemma on
e more gives

!

0

; �

n

j=

G

pre(re
eiveu)[z=this℄

!

0

; �

n

j=

G

pre

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ ;

where pre

0

(return e

ret

) results from pre(return e

ret

) by repla
ing the lo
al vari-

ables from ~v

2

by the
orresponding logi
al variables from ~v

0

2

.

If the re
eive statement is pre
eded by a bra
keted se
tion invoking a method

of obje
t e

0

, then sin
e e

0

may not
ontain instan
e variables, i.e., its value does

not
hange during the exe
ution of the invoked method, the
allee obje
t � is

given by [[e

0

℄℄

!;�

n

(�);�

1

L

. This implies using the de�nition of !

0

that !

0

; �

n

j=

G

(e

0

[z=this℄ = z

0

). Now, Equation (7) of the
ooperation test gives

!

0

; �

n

j=

G

post(re
eiveu)[z; E

0

ret

=this; u℄ ^ post

0

(return e

ret

)[z

0

;

~

E=this; ~u℄^

GI [

~

E

4

=z:~y

4

℄[

~

E

0

3

=z

0

:~y

3

℄ ;

where

~

E

0

3

= ~e

0

3

[z

0

;

~

E=this; ~u℄ with

~

E = ~e[z=this℄, and

~

E

4

= ~e

4

[z; E

0

ret

=this; u℄ with

E

0

ret

= e

0

ret

[z

0

;

~

E=this; ~u℄.

For the lo
al assertions, Lemma 3 and using !

0

(z

0

) = � and �

2

(~u) = [[

~

E℄℄

!

0

;�

n

G

further gives

[[E

0

ret

℄℄

!

0

;�

n

G

= [[e

0

ret

[z

0

;

~

E=this; ~u℄℄℄

!

0

;�

n

G

= [[e

ret

℄℄

!

0

;�

n

(�);�

2

L

= �

0

1

(u) ;

where e

0

ret

results from e

ret

by substituting all lo
al variables from ~v

2

by the

orresponding logi
al variables from ~v

0

2

. Using Lemma 3 again we get

!

0

; �

n

(�); �

0

1

j=

L

post(re
eiveu)

!

0

; �

n

(�); �

2

j=

L

post(return e

ret

) :

As prog

0

does not
ontain free o

urren
es of logi
al variables, furthermore

post(re
eiveu) = pre(h~y

4

:= ~e

4

i; stm

1

), post(return e

ret

) = pre(h~y

3

:= ~e

3

i), and

�

n

= �

n+1

, we obtain

!; �

n+1

(�); �

0

1

j=

L

pre(h~y

4

:= ~e

4

i; stm

1

)

!; �

n+1

(�); �

2

j=

L

pre(h~y

3

:= ~e

3

i) :

For the global invariant,

For the global invariant we observe that the lo
al state of the
aller after

ommuni
ation is given by �

0

1

= �

1

[u 7![[e

ret

℄℄

�

n

(�);�

2

L

℄. For the global states we

have �

0

= �

n

[�:~y

3

7![[~e

3

℄℄

�

n

(�);�

2

L

℄ and �

n+1

= �

0

[�:~y

4

7![[~e

4

℄℄

�

0

(�);�

0

1

L

℄. With the

help of Lemma 3 and with �

2

(~u) = [[

~

E℄℄

!

0

;�

n

G

, we obtain

[[

~

E

0

3

℄℄

!

0

;�

n

G

= [[~e

0

3

[z

0

;

~

E=this; ~u℄℄℄

!

0

;�

n

G

= [[~e

3

℄℄

!

0

;�

n

(�);�

2

L

= [[~e

3

℄℄

�

n

(�);�

2

E

:

This implies �

n

[�:~y

3

7![[

~

E

0

3

℄℄

!

0

;�

n

G

℄ = �

n+2

, and therefore applying Lemma 2 to

the global invariant in Equation (B.2.2) yields

!

0

; �

n+2

j=

G

GI [

~

E

4

=z:~y

4

℄ : (11)

56 Proofs

We further get with Lemma 3

�

0

1

(u) = [[e

ret

℄℄

�

n

(�);�

2

E

= [[e

ret

℄℄

!

0

;�

n

(�);�

2

L

= [[e

0

ret

[z

0

=this℄℄℄

!

0

;�

n

G

= [[E

0

ret

℄℄

!

0

;�

n

G

;

and by the same lemma again

[[

~

E

4

℄℄

!

0

;�

n+2

G

= [[~e

4

[z; E

0

ret

=this; u℄℄℄

!

0

;�

n+2

G

= [[~e

4

℄℄

!

0

;�

n+2

(�);�

0

1

L

;

and hen
e �

n+2

[�:~y

4

7![[

~

E

4

℄℄

!

0

;�

n+2

G

℄ = �

n+3

. Therefore, applying Lemma 2 to

Equation (11) yields !

0

; �

n+3

j=

G

GI . Sin
e GI does not
ontain free logi
al

variables, also !; �

n+3

j=

G

GI , as required. ut

Lemma 22 (Cooperation test: Terminate). Let hT

n

; �

n

i be a rea
hable
on-

�guration of a proof outline satisfying the veri�
ation
onditions of the
oopera-

tion test for
ommuni
ation, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i �! hT

n+2

; �

n+2

i

result from exe
uting the return-statement of a start-method or of the initial in-

vo
ation of the main-method in a lo
al
on�guration (�

1

; hreturn; ~y

3

:= ~e

3

i) 2 T

n

,

and exe
uting the
orresponding observation. Then

!; �

n

(�

1

(this)); �

1

j=

L

pre(return) ; and

!; �

n

j=

G

GI

imply

!; �

n+1

(�

1

(this)); �

1

j=

L

pre(h~y

3

:= ~e

3

i) ; and

!; �

n+2

j=

G

GI

for arbitrary ! 2
.

Proof (of lemma 22). Let �

1

(this) = �. Exe
uting the return statement at the

end of the initial invo
ation of the main-method or at the end of a start-method

hanges only the
ontrol point, but no states. By assumption

!; �

n

(�); �

1

j=

L

pre(return)

!; �

n

j=

G

GI :

Let !

0

= ![z

0

7!�℄[~v 7! �

1

(~v)℄, where ~v are the lo
al variables from the domain of

�

1

viewed as logi
al variables on the global level, and where z

0

is a fresh logi
al

variable. Sin
e the annotation does not
ontain free logi
al variables, also

!

0

; �

n

(�); �

1

j=

L

pre(return)

!

0

; �

n

j=

G

GI :

Using the substitution Lemma 3 we get

!

0

; �

n

j=

G

pre(return)[z

0

=this℄ ^GI :

Proofs 57

Furthermore, �

1

(id) = (�

1

(this); 0), !

0

(z

0

) = � = �

1

(this), and !

0

(id) = �

1

(id)

imply !

0

; �

n

j=

G

id = (z

0

; 0). By Equation (9) of the
ooperation test for
ommu-

ni
ation, !

0

; �

n

j=

G

post(return)[z

0

=this℄ ^ GI [

~

E

3

=z

0

:~y

3

℄, where

~

E

3

= ~e

3

[z

0

=this℄.

Applying Lemma 3 again yields for the lo
al assertion that !

0

; �

n

(�); �

1

j=

L

post(return). Sin
e the annotation does not
ontain free logi
al variables, we get

with �

n

= �

n+1

that !; �

n+1

(�); �

1

j=

L

pre(h~y

3

:= ~e

3

i), as required.

For the global invariant we observe that �

n+2

= �

n

[�:~y

3

7![[~e

3

℄℄

�

n

(�);�

L

℄. Ap-

plying Lemma 3 yields [[

~

E

3

℄℄

!

0

;�

n

G

= [[~e

3

[z

0

=this℄℄℄

!

0

;�

n

G

= [[~e

3

℄℄

!

0

;�

n

(�);�

L

. Using the

above equalities and Lemma 2 we get !

0

; �

n+2

j=

G

GI . Sin
e GI does not
ontain

free logi
al variables, �nally !; �

n+2

j=

G

GI . ut

Lemma 23 (Cooperation test: Instantiation). Let hT

n

; �

n

i be a rea
h-

able
on�guration of a proof outline satisfying the veri�
ation
onditions of

the
ooperation test for instantiation, and let hT

n

; �

n

i �! hT

n+1

; �

n+1

i �!

hT

n+2

; �

n+2

i result from the
reation of a new obje
t in a lo
al
on�guration

(�

1

; hu := new

; ~y := ~ei; stm

1

) 2 T

n

, and exe
uting the
orresponding observa-

tion. Let �

0

1

be the lo
al state of the exe
uting thread after obje
t
reation. Then

!; �

n

(�

1

(this)); �

1

j=

L

pre(u := new

) ; and

!; �

n

j=

G

GI

imply

!; �

n+1

(�

0

1

(this)); �

0

1

j=

L

pre(h~y := ~ei; stm

1

) ;

!; �

n+1

(�

0

1

(u)); � j=

L

I ; and

!; �

n+2

j=

G

GI

for arbitrary ! 2
 and � 2 �

lo

, where I is the
lass invariant of the new

obje
t.

Proof (of Lemma 23). Let �

1

(this) = � and � =2 dom

nil

(�

n

) the newly
reated

obje
t. Then �

0

1

= �

1

[u 7!�℄, and �

n+1

= �

n

[� 7!�

;init

inst

℄. Note that hT

n

; �

n

i is

stable, sin
e the obje
t
reation statement is enabled. By assumption

!; �

n

j=

G

GI

!; �

n

(�); �

1

j=

L

pre(u := new

) :

Let ~v be the lo
al variables from the domain of �

1

. For the logi
al environment

!

0

= ![z 7!�℄[~v 7! �

1

(~v)℄, with fresh logi
al variables z and ~v, also

!

0

; �

n

j=

G

GI

!

0

; �

n

(�); �

1

j=

L

pre(u := new

) :

Applying the substitution Lemma 3 we have !

0

; �

n

j=

G

pre(u := new

)[z=this℄.

As �

1

(u) = !

0

(u) 2 dom

nil

(�

n

), this implies

!

0

; �

n

j=

G

GI ^ 9u(pre(u := new

)[z=this℄) :

58 Proofs

As �

n+1

= �

n

[� 7!�

init

inst

℄ and � =2 dom

nil

(�

n

), Lemma 8 gives

!

0

[z

0

7! dom

nil

(�

n

)℄; �

n+1

j=

G

(GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

:

The logi
al variable u does not o

ur free in the above assertion, so we further

obtain !

0

[z

0

7! dom

nil

(�

n

)℄[u 7!�℄; �

n+1

j=

G

(GI ^ 9u(pre(u := new

)[z=this℄)) #

z

0

. Sin
e � =2 dom

nil

(�

n

) is the unique new element in dom(�

n+1

) being in its

initial state, we obtain that !

0

[z

0

7! dom

nil

(�

n

)℄[u 7!�℄; �

n+1

j=

G

Fresh(z

0

; u).

Therefore, by the semanti
s of global assertions,

!

0

[u 7!�℄; �

n+1

j=

G

9z

0

(Fresh(z

0

; u) ^ (GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

) :

From this, we get with the
ooperation test for obje
t
reation (Equation (10))

!

0

[u 7!�℄; �

n+1

j=

G

post(u := new

)[z=this℄ ^ I

[u=this℄ ^GI [

~

E=z:~y℄ ;

where

~

E = ~e[z=this℄. For the lo
al assertions we get with the substitution

Lemma 3

!

0

[u 7!�℄; �

n+1

(�); �

0

1

j=

L

post(u := new

)

!

0

[u 7!�℄; �

n+1

(�); � j=

L

I :

A

ording to the de�nition of annotation on page 23, no free logi
al variables

o

ur in post(u := new

) and in I , and hen
e we get !; �

n+1

(�); �

0

1

j=

L

pre(stm)

and !; �

n+1

(�

0

1

(u)); � j=

L

I , as required.

For the global invariant we observe that �

n+1

= �

n

[� 7!�

;init

inst

℄ and �

n+2

=

�

n+1

[�:~y 7![[~e ℄℄

�

n+1

(�);�

0

1

L

℄. By the substitution Lemma 2 and !

0

(z) = � thus

!

0

; �

n+1

[�:~y 7![[

~

E℄℄

!

0

;�

n+1

G

℄ j=

G

GI ;

and further with Lemma 3 [[

~

E℄℄

!

0

;�

n+1

G

= [[~e ℄℄

!

0

;�

n+1

(�);�

0

1

L

and thus !

0

; �

n+2

j=

G

GI . Sin
e there are no free o

urren
es of logi
al variables in GI , also !; �

n+2

j=

G

GI , as required. ut

B.2.3 Indu
tive soundness proof This se
tion
olle
ts the previous sound-

ness lemmas for the single proof
onditions into the indu
tive soundness proof

for the whole system. We split the indu
tive step into preservation for the lo
al

pre
ondition, for the
lass invariant, and for the global invariant, before we wrap

up the results into the soundness proof of Theorem 1.

Lemma 24 (Indu
tion step: pre
onditions). Given a proof outline prog

0

that satis�es the veri�
ation
onditions and a rea
hable
on�guration hT

n

; �

n

i

of prog

0

. Assume further that !; �

n

(�(this)); � j=

L

pre(stm) for all (�; stm) 2 T

n

and all logi
al environments ! referring only to values existing in �

n

. Addi-

tionally assume !; �

n

j=

G

GI to hold, if hT

n

; �

n

i is stable. Furthermore, for all

lasses

0

, obje
ts � 2 dom

0

(�

n

), and lo
al states �

0

assume !; �

n

(�); �

0

j=

L

I

0

.

Then hT

n

; �

n

i �! hT

n+1

; �

n+1

i implies !; �

n+1

(�(this)); � j=

L

pre(stm), for

all (�; stm) 2 T

n+1

.

Proofs 59

Proof (of Lemma 24). Let (�; stm) 2 T

n+1

with �(this) = �. We show that

!; �

n+1

(�); � j=

L

pre(stm) and distinguish a

ording to the
omputation step

hT

n

; �

n

i �! hT

n+1

; �

n+1

i.

Case: Ass

We are given

hT

_

[f� Æ (�

1

; stm

ass

; stm

1

) Æ �

0

g; �

n

i �! hT

_

[f� Æ (�

0

1

; stm

1

) Æ �

0

g; �

n+1

i ; or

hT

_

[f� Æ (�

1

; stm

ass

)g; �

n

i �! hT

_

[f�g; �

n+1

i :

By assumption !; �

n

(�

1

(this)); �

1

j=

L

pre(~y := ~e), and if (�; stm) 2 T

n

, then

additionally !; �

n

(�(this)); � j=

L

pre(stm).

If (�; stm) = (�

0

1

; stm

1

), then soundness of the lo
al
orre
tness
onditions

(Lemma 17) implies the required property. Otherwise (�; stm) 2 T

n

, and sound-

ness of the interferen
e freedom test (Lemma 18) implies !; �

n+1

(�(this)); � j=

L

pre(stm).

Case: Call

In this
ase we are given

hT

_

[f� Æ (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

)g; �

n

i �!

hT

_

[f� Æ (�

1

; h~y

1

:= ~e

1

i; stm

1

) Æ (�

2

; body

m;

)g; �

n+1

i ;

wherem is not the start-method. If (�; stm) = (�

1

; h~y

1

:= ~e

1

i; stm

1

) or (�; stm) =

(�

2

; body

m;

), then the assumptions and soundness of the
ooperation test for

ommuni
ation (Lemma 19) implies the required property. If otherwise (�; stm) 2

T or (�; stm) 2 �, then dire
tly by assumption !; �

n+1

(�); � j=

L

pre(stm), sin
e

method invo
ation does not
hange the global state,

Case: Start, Start

skip

Rule Start is treated analogously to the above
ase of ordinary method invo-

ation using the assumptions and Lemma 19. In
ase of Start

skip

Lemma 20 is

used instead, stating soundness of the veri�
ation
ondition (8) of the
oopera-

tion test for Start

skip

.

Case: Return

In this
ase we are given

hT

_

[f� Æ (�

1

; hre
eiveu; ~y

4

:= ~e

4

i; stm

1

) Æ (�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i)g; �

n

i �!

hT

_

[f� Æ (�

0

1

; h~y

4

:= ~e

4

i; stm

1

) Æ (�

2

; h~y

3

:= ~e

3

i)g; �

n+1

i :

If (�; stm) = (�

0

1

; h~y

4

:= ~e

4

i; stm

1

) or (�; stm) = (�

2

; h~y

3

:= ~e

3

i), then, as the

ommuni
ation is enabled, the global
on�guration hT

n

; �

n

i prior to the
ommu-

ni
ation is stable. Thus using the assumptions and Lemma 21 stating soundness

of the
ooperation test for return (
f. Equation (7)) we get the required property.

If otherwise (�; stm) 2 � or (�; stm) 2 T , then (�; stm) 2 T

n

, and by assumption

!; �

n

(�); � j=

L

pre(stm). From �

n

= �

n+1

the property follows dire
tly.

60 Proofs

Case: Terminate

hT

_

[f(�

1

; hreturn; ~y

3

:= ~e

3

i)g; �

n

i �! hT

_

[f(�

1

; h~y

3

:= ~e

3

i)g; �

n+1

i :

Then hT

n

; �

n

i is stable. In the
ase if (�; stm) = (�

1

; h~y

3

:= ~e

3

i), we get the

required property by using the assumptions and Lemma 22 about the soundness

of the termination (
f. Equation (9) of the
ooperation test for
ommuni
ation).

If otherwise (�; stm) 2 T , then (�; stm) 2 T

n

, and the assumption !; �

n

(�); � j=

L

pre(stm) and �

n

= �

n+1

yield the required property.

Case: New

hT

_

[f� Æ (�

1

; hu := new

; ~y := ~ei; stm

1

)g; �

n

i �!

hT

_

[f� Æ (�

0

1

; h~y := ~ei; stm

1

)g; �

n+1

i :

Note that hT

n

; �

n

i is stable, sin
e the obje
t
reation statement is enabled. If

(�; stm) = (�

0

1

; h~y := ~ei; stm

1

), then by assumption and using Lemma 23 for

the the soundness of the
ooperation test for instantiation we get the required

property. If otherwise (�; stm) 2 T or (�; stm) 2 �, then (�; stm) 2 T

n

, and

by assumption !; �

n

(�); � j=

L

pre(stm). A

ording to the de�nition of global

on�gurations, � = �(this) 2 dom(�

n

), i.e., � 6=
. Hen
e �

n

(�) = �

n+1

(�), and

�nally !; �

n+1

(�); � j=

L

pre(stm). ut

Lemma 25 (Indu
tive step: Class invariant). Let the proof outline prog

0

satisfy the veri�
ation
onditions and hT

n

; �

n

i be a rea
hable
on�guration of

prog

0

su
h that for all (�; stm) 2 T

n

with � = �(this) of type
 and for all logi
al

environments ! referring only to values existing in �

n

we have !; �

n

(�); � j=

L

pre(stm). If hT

n

; �

n

i is stable, assume further !; �

n

j=

G

GI . Furthermore, for

all
lasses

0

, obje
ts � 2 dom

0

(�

n

), and lo
al states �

0

, let !; �

n

(�); �

0

j=

L

I

0

.

Then for all hT

n

; �

n

i �! hT

n+1

; �

n+1

i and for all existing obje
ts � 2

dom(�

n+1

) of type
, lo
al states � 2 �

lo

, and logi
al environments ! refer-

ring only to values existing in �

n+1

,

!; �

n+1

(�); � j=

L

I

:

Proof (of Lemma 25). Let � 2 dom

(�

n+1

), � 2 �

lo

, and ! 2
 referring only

to values existing in �

n+1

. We show that !; �

n+1

(�); � j=

L

I

, distinguishing on

the last
omputation step.

Case: Ass

Let hT

n+1

; �

n+1

i result from hT

n

; �

n

i by exe
uting the assignment ~y := ~e in the

lo
al
on�guration (�

1

; stm

ass

; stm

1

) 2 T

n

where stm

ass

is ~y := ~e or h~y := ~ei.

Then � 2 dom

(�

n

), and by assumption !; �

n

(�); � j=

L

I

. If �

1

(this) 6= �,

then �

n

(�) = �

n+1

(�), and thus !; �

n+1

(�); � j=

L

I

, as required. If other-

wise �

1

(this) = �, then
ondition (3) of the lo
al
orre
tness
ombined with

the lo
al substitution Lemma 1 assures that !; �

n+1

(�); �

1

[~y 7![[~e ℄℄

!;�

n

(�);�

1

L

℄ j=

L

post(~y := ~e). By the lo
al
orre
tness
ondition (4) for the
lass invariant

Proofs 61

!; �

n+1

(�); �

1

[~y 7![[~e ℄℄

!;�

n

(�);�

1

L

℄ j=

L

I

. As the
lass invariant may refer only

to instan
e variables, its evaluation does not depend on the lo
al state, hen
e

!; �

n+1

(�); � j=

L

I

, as required.

Case: Call, Start, Start

skip

, Return, Terminate

In these
ases the global state is not
hanged, i.e., �

n

= �

n+1

, and the property

is dire
tly implied by the assumption !; �

n

(�); � j=

L

I

.

Case: New

Let hT

n+1

; �

n+1

i result from hT

n

; �

n

i by exe
uting an obje
t
reation statement.

The instan
e states of obje
ts existing prior to the last
omputation step are

un
hanged, i.e., if � is not the newly
reated obje
t, then �

n

(�) = �

n+1

(�), and

!; �

n+1

(�); � j=

L

I

follows from the assumption !; �

n

(�); � j=

L

I

.

If � is the newly
reated obje
t, then the property is implied by the assump-

tions and using Lemma 23 whi
h states soundness of the
ooperation test for

instantiation. ut

Lemma 26 (Indu
tive step: Global invariant). Let the proof outline prog

0

satisfy the veri�
ation
onditions and hT

n

; �

n

i be a rea
hable stable
on�gura-

tion of prog

0

su
h that for all (�; stm) 2 T

n

with � = �(this) of type
 and

for all logi
al environments ! referring only to values existing in �

n

we have

!; �

n

(�); � j=

L

pre(stm) and !; �

n

j=

G

GI . Furthermore, for all
lasses

0

, ob-

je
ts � 2 dom

0

(�

n

), and lo
al states �

0

let !; �

n

(�); �

0

j=

L

I

0

.

Let hT

n

; �

n

i �!

�

hT

n+1

; �

n+1

i, su
h that hT

n+1

; �

n+1

i is stable, and there are

no stable
on�gurations in the
omputation between hT

n

; �

n

i and hT

n+1

; �

n+1

i.

Then

!; �

n+1

j=

G

GI :

Proof (of Lemma 26). We distinguish a

ording to the
omputation steps in

hT

n

; �

n

i �!

�

hT

n+1

; �

n+1

i.

Case: Ass

Assume that hT

n

; �

n

i �! hT

n+1

; �

n+1

i
onsists of the exe
ution of a single

assignment outside bra
keted se
tions. The
ase follows by assumption and the

restri
tions on the global invariant (
f. De�nition 1), whi
h assure that GI is

preserved under the exe
ution of assignments outside bra
keted se
tions.

Case: Call, Start

We are given hT

n

; �

n

i �!

3

hT

n+1

; �

n+1

i, where the �rst step is a method
all

(rule Call) and the following two steps
orrespond to the observations in the

bra
keted se
tions of the
aller and the
allee. The required property follows

from the assumptions and soundness of Equation (6) of the
ooperation test for

method
alls (Lemma 19). The
ase for Call is analogous.

Case: Start

skip

Analogously to the previous
ase Call, using Lemma 20 instead.

Case: Return

We are given the sequen
e hT

n

; �

n

i �!

3

hT

n+1

; �

n+1

i
onsisting of the
om-

muni
ation of a return value by rule Return followed by the assignments in

62 Proofs

the bra
keted se
tions of
allee and
aller. The required property follows from

the assumptions and by soundness of the
ooperation test for returning from a

method (Lemma 21).

Case: Terminate

For termination, we are given hT

n

; �

n

i �!

2

hT

n+1

; �

n+1

i,
aused by the return-

statement of a start-method or of the initial invo
ation of the main-method by

rule Terminate, followed by the a

ompanying assignment in the bra
keted

se
tion of the return-statement. The required property follows from the assump-

tions and by soundness of the
ooperation test for termination (Lemma 22).

Case: New

We are given hT

n

; �

n

i �!

2

hT

n+1

; �

n+1

i
onsisting of an obje
t
reation step by

rule New followed by the exe
ution of the assignment in the bra
keted se
tion

of new. The required property follows from the assumptions and soundness of

the
ooperation test for instantiation (Lemma 23). ut

Proof (of the soundness Theorem 1). We pro
eed by indu
tion on the length of

the
omputation, simultaneously for all parts of De�nition 7 of j=, where in part

(2) for the global invariant we
onsider stable
on�gurations, only.

The base
ases of parts (1) and (2) are implied by Lemma 16. For part (3),

ondition (4) of the lo
al
orre
tness ensures !; �

init

inst

; � j=

L

pre(body

main

) ! I

where I is the
lass invariant of the initial obje
t �. The
lass invariant
ontains

only instan
e variables, i.e., its evaluation does not depend on the lo
al state.

Furthermore, � is the only existing obje
t in �, thus part (3) is satis�ed initially.

For the indu
tive step in parts (1) and (3) we are given hT

0

; �

0

i �!

+

hT; �i

and the result follow dire
tly by indu
tion from Lemma 24 respe
tively from

Lemma 25. Part (2) follows by indu
tion and Lemma 26 applied to the last

stable
on�guration pre
eding hT; �i in the
omputation hT

0

0

; �

0

0

i �!

+

hT; �i.

ut

B.3 Completeness

The following lemma states that the variable lo
 indeed stores the
urrent
ontrol

point of a thread:

Lemma 27. Let hT; �i be a rea
hable
on�guration of prog

0

and let (�; stm) 2 T

su
h that the
ontrol point before the statement stm is an interleaving point. Then

�(lo
) � stm.

Proof (of Lemma 27). Straightforward by the de�nition of augmentation. ut

Lemma 28 (Initial
orre
tness). The proof outline prog

0

satis�es the initial

onditions of De�nition 2.

Proofs 63

Proof (of Lemma 28). We show that the proof outline prog

0

satis�es the initial

onditions of De�nition 2. Let ! 2
, �

inst

2 �

inst

, and � 2 �

lo

with �(this) =

�. For the pre
ondition of the main-method we have to show

!; �

inst

; � j=

L

pre(body

main

)[(this; 0)=id℄[InitVal(~y)=~y℄ ;

where ~y are the lo
al and instan
e variables o

urring in pre(body

main

). We start

transforming the right-hand side using Lemma 1:

[[pre(body

main

)[(this; 0)=id℄[InitVal(~y)=~y℄℄℄

!;�

inst

;�

L

= [[pre(body

main

)[(this; 0)=id℄℄℄

!;�

inst

[~y 7! InitVal(~y)℄;� [~y 7! InitVal(~y)℄

L

= [[pre(body

main

)℄℄

!;�

inst

[~y 7! InitVal (~y)℄;� [~y 7! InitVal(~y)℄[id 7!(�;0)℄

L

= [[pre(body

main

)℄℄

!;�

init

inst

;�

init

[this 7!�℄[id 7!(�;0)℄

L

:

The assertion pre(body

main

) is satis�ed by the logi
al environment ! and the

instan
e lo
al state (�

init

inst

; �

init

[this 7!�℄[id 7!(�; 0)℄) i� there exists a rea
hable

on�guration hT; �i of prog

0

with (�

init

[this 7!�℄[id 7!(�; 0)℄; body

main

) 2 T and

�(�) = �

init

inst

. The initial
on�guration satis�es these
onditions.

For the global invariant we need to show that

!; � j=

G

InitState(z) ^ 8z

0

(z

0

=nil _ z=z

0

)! GI [

~

E

2

=z:~y

2

℄

for arbitrary � 2 � and ! 2
 referring only to values existing in �, where

h~y

2

:= ~e

2

i is the bra
keted se
tion at the beginning of the main-method,

~

E

2

=

~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄[z=this℄, z is of the type of the main
lass, and z

0

2

LVar

Obje
t

. We observe that

!; � j=

G

InitState(z) ^ 8z

0

(z

0

= nil _ z

0

= z)

implies that � is the unique initial global state de�ning exa
tly one existing

obje
t !(z) = � in its initial instan
e state �(�) = �

init

inst

.

For the global expression

~

E

2

we get using the substitution Lemmas 3 and

Lemma 1, together with the fa
t that ~e

2

does not
ontain logi
al variables, that

[[

~

E

2

℄℄

!;�

G

=

[[~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄[z=this℄℄℄

!;�

G

=

[[~e

2

[(this; 0)=id℄[InitVal(~y)=~y℄℄℄

!;�(�);� [this 7!�℄

L

=

[[~e

2

℄℄

!;�

init

inst

;�

init

[this 7!�℄[id 7!(�;0)℄

L

=

[[~e

2

℄℄

�

init

inst

;�

init

[this 7!�℄[id 7!(�;0)℄

E

:

Thus for the global invariant

[[GI [

~

E

2

=z:~y

2

℄℄℄

!;�

G

=

[[GI ℄℄

!;�[�:~y

2

7![[

~

E

2

℄℄

!;�

G

℄

G

=

[[GI ℄℄

!;�[�:~y

2

7![[~e

2

℄℄

�

init

inst

;�

init

[this 7!�℄[id 7!(�;0)℄

E

℄

G

:

64 Proofs

Starting from the initial one, the
on�guration hT

1

; �

1

i after exe
uting the bra
k-

eted se
tion at the beginning of the main-method has as state
omponent �

1

=

�[�:~y

2

7![[~e

2

℄℄

�

init

inst

;�

init

[this 7!�℄[id 7!(�;0)℄

E

℄, i.e., the initial
orre
tness
ondition for

the global invariant equivalently reads !; �

1

j=

G

GI . Sin
e hT

1

; �

1

i is stable and

rea
hable, it is satis�ed. ut

Lemma 29 (Lo
al
orre
tness). The proof outline prog

0

satis�es the lo
ally

orre
tness
onditions from De�nition 3.

Proof (of Lemma 29). Let
 be a
lass of prog

0

with
lass invariant I

, ~y := ~e

a multiple assignment, and p an assertion in
lass
. Let furthermore ! 2
,

�

inst

2 �

inst

and � 2 �

lo

. We have to show the lo
al
orre
tness
onditions

!; �

inst

; � j=

L

pre(~y := ~e) ^ enabled(~y := ~e)! post(~y := ~e)[~e=~y℄ and

!; �

inst

; � j=

L

p! I

:

From !; �

inst

; � j=

L

pre(~y := ~e) it follows that there is a rea
hable hT; �i
ontain-

ing (�; ~y := ~e ; stm) 2 T or (�; h~y := ~ei; stm) 2 T , and where �(�(this)) = �

inst

.

Furthermore, !; �

inst

; � j=

L

enabled(~y := ~e) implies by Lemma 7 that the lo
al

on�guration is enabled in some rea
hable hT

0

; �

0

i with �

0

(�(this)) = �

inst

. Exe-

uting the lo
al
on�guration in hT

0

; �

0

i leads to a rea
hable global
on�guration

hT

00

; �

00

i with �

00

(�(this)) = �

inst

[~y 7![[~e℄℄

�

inst

;�

E

℄. Furthermore, if stm is not the

empty statement, i.e., ~y := ~e is not the observation in the bra
keted se
tion of

a return statement, then (� [~y 7![[~e ℄℄

�

inst

;�

E

℄; stm) 2 T

00

. If otherwise stm = �, then

post(stm) is the
lass invariant. Thus by the de�nition of the annotation for

prog

0

we have

!; �

inst

[~y 7![[~e ℄℄

�

inst

;�

E

℄; � [~y 7![[~e ℄℄

�

inst

;�

E

℄ j=

L

post(~y := ~e) ;

and further with the substitution Lemma 1

!; �

inst

; � j=

L

post(~y := ~e)[~e=~y℄ ;

as required.

For the lo
al
orre
tness
ondition of the
lass invariant, let !; �

inst

; � j=

L

p.

If p is the post
ondition of a method body, then it is the
lass invariant itself.

Otherwise, let p be the pre
ondition of the non-empty statement stm. Then by

de�nition of the annotation there exists a rea
hable hT; �i su
h that (�; stm) 2 T

and �(�(this)) = �

inst

, and with �(�(this)) = �

inst

immediately !; �

inst

; � j=

L

I

,

as required. ut

The lo
al merging Lemma 10 states that the instan
e history variables
on-

tain enough information, su
h that individual rea
hability at two instan
e lo
al

states with a
ommon value for the the history variable implies, that the lo
al

on�guration is
ommonly rea
hable. A key intuition for this property is that

the information stored in the instan
e history suÆ
es to uniquely determine the

Proofs 65

set of lo
al
on�gurations
urrently exe
uting within the given instan
e. The in-

stan
e variable h

inst

ontains the history for all lo
al
on�gurations shu�ed into

one sequen
e, but as ea
h method body in exe
ution is
hara
terized uniquely by

its value of id stored as well in the history, one
an read-o� the set of
urrently

exe
uting lo
al
on�guration by looking at the last (�; stm) per id and using the

value of lo
 to determine the statement
orresponding the
urrent
ontrol point.

Remember in this
ontext that the value of lo
 identi�es the statement to be

exe
uted next. This leads to the de�nition of Lo
Conf , whi
h assigns to ea
h

sequen
e of instan
e lo
al states a set of lo
al
on�gurations as follows:

Lo
Conf (�) = ;

Lo
Conf (h Æ (�

inst

; �)) = f(�

0

; stm

0

) 2 Lo
Conf (h) j �

0

(id) 6= �(id)g[

f(�; stm) j �(lo
)�stm ^ (stm 6=�_�(id)=(�(this); 0))g:

That this de�nition, given the value of h

inst

in an instan
e,
aptures all lo
al

on�gurations
urrently a
tive in the instan
e, is stated in Lemma 30 below. In

the Lemma, the rea
hable hT; �i must be stable in � for the same reason, as

this is needed in the lo
al merging lemma: Stability is required for the history

variable to be up-to date.

Lemma 30. Let hT; �i be a rea
hable
on�guration of prog

0

, and � 2 dom(�)

su
h that hT; �i is stable in �. Then

f(�; stm) 2 T j �(this) = �g = Lo
Conf (�(�)(h

inst

)) :

Proof (of Lemma 30). Let hT

0

; �

0

i �!

�

hT; �i be a
omputation of prog

0

and

� 2 dom(�) su
h that hT; �i is stable in �. We show by indu
tion on the length of

the
omputation that f(�; stm) 2 T j �(this) = �g equals Lo
Conf (�(�)(h

inst

)).

If hT; �i is the �rst
on�guration in the
omputation stable in �, then either

� is a freshly
reated obje
t in its initial instan
e state su
h that no lo
al
on�g-

urations are exe
uting in �, or � is the initial obje
t, and hT; �i results from the

initial
on�guration hT

0

; �

0

i with T

0

= f(�; h~y

2

:= ~e

2

i; stm)g by exe
uting the

bra
keted se
tion at the beginning of the main-method. The �rst
ase is straight-

forward. In the se
ond
ase T = f(�

0

; stm)g with �

0

= � [~y

2

7![[~e

2

℄℄

�

0

(�);�

E

℄, and

�(�)(h

inst

) = [[(~x; ~u)[~e

2

=~y

2

℄℄℄

�

0

(�);�

E

= [[(~x; ~u)℄℄

�(�);�

0

E

= (�(�); �

0

). By Lemma 27

we get �

0

(lo
)�stm, and sin
e stm
ontains at least a return statement, stm 6= �.

Thus we get Lo
Conf ((�(�); �

0

)) = f(�

0

; stm)g = f(�; stm) 2 T j �(this) = �g.

Let now hT

0

; �

0

i be the last
on�guration pre
eding hT; �i in the
omputation

hT

0

; �

0

i �!

�

hT; �i that is stable in �, and let �(�)(h

inst

) = �

0

(�)(h

inst

) Æ h.

Assume �rst (�; stm) 2 T with �(this) = �. If (�; stm) 2 T

0

, then by indu
tion

(�; stm) 2 Lo
Conf (�

0

(�)(h

inst

)). Furthermore, (�; stm) 2 T

0

and (�; stm) 2 T

together imply that (�; stm) does not exe
ute in hT

0

; �

0

i �!

�

hT; �i, i.e., for

all (�

inst

; �

0

) in h, �

0

(id) 6= �(id). By de�nition of Lo
Conf we get (�; stm) 2

Lo
Conf (�(�)(h

inst

)).

If otherwise (�; stm) =2 T

0

, then (�; stm) is exe
uted in hT

0

; �

0

i �!

�

hT; �i.

Sin
e hT; �i is stable in �, (�; stm) also observes its exe
ution in hT

0

; �

0

i �!

�

66 Proofs

hT; �i, i.e., it results from the exe
ution of a multiple assignment, possibly pre-

eded by some
ommuni
ation or obje
t
reation. This assignment updates also

the history h

inst

, i.e., there exists an instan
e state �

inst

su
h that (�

inst

; �) is

ontained in h. Furthermore, sin
e hT

0

; �

0

i is the last
on�guration pre
eding

hT; �i in the
omputation hT

0

; �

0

i �!

�

hT; �i, we know that (�

inst

; �) is the

only element in h with identity �(id). By the de�nition of Lo
Conf we get that

(�; stm) 2 Lo
Conf (�(�)(h

inst

)). Note that sin
e (�; stm) 2 T , either stm 6= � or

(�; stm) represents the terminated initial exe
ution of the main-method or that

of a start-method, i.e., �(id) = (�; 0). Furthermore, sin
e hT; �i is stable in �,

stm represents an interleaving point, and by Lemma 27 �(lo
) � stm.

For the reverse dire
tion, let (�; stm) 2 Lo
Conf (�(�)(h

inst

)). If there is no

instan
e state �

inst

su
h that (�

inst

; �) is in h, then (�; stm) is not exe
uted in

hT

0

; �

0

i �!

�

hT; �i, be
ause otherwise it would have updated the history h

inst

.

Consequently �

0

(id) 6= �(id) for all (�

0

inst

; �

0

) 2 h. By de�nition of Lo
Conf we

have (�; stm) 2 Lo
Conf (�

0

(�)(h

inst

)), and thus by indu
tion (�; stm) 2 T

0

.

Sin
e (�; stm) is not exe
uted in hT

0

; �

0

i �! hT; �i, also (�; stm) 2 T .

Otherwise, if (�

inst

; �) is in h for some instan
e state �

inst

, then (�; stm)

results from the exe
ution of an assignment during hT

0

; �

0

i �!

�

hT; �i that

updates the history. Note that in hT

0

; �

0

i �!

�

hT; �i at most one lo
al
on�gu-

ration with the identity �(id) exe
utes an assignment, i.e., (�

0

inst

; �) is the only

element in h with identity �(id). Furthermore, (�; stm) 2 Lo
Conf (�(�)(h

inst

))

implies by de�nition of Lo
Conf that stm 6= � _ �(id) = (�(this); 0), and thus

(�; stm) 2 T . ut

Proof (of the lo
al merging Lemma 10). Let hT

1

; �

1

i and hT

2

; �

2

i be two rea
h-

able global
on�gurations of prog

0

and (�; stm) 2 T

1

, su
h that both hT

1

; �

1

i

and hT

2

; �

2

i are stable in �(this) 2 dom(�

1

) \ dom(�

2

). Assume furthermore

�

1

(�(this))(h

inst

) = �

2

(�(this))(h

inst

). Then by Lemma 30

f(�

0

; stm

0

) 2 T

1

j �

0

(this) = �(this)g = Lo
Conf (�

1

(�(this))(h

inst

)) ;

f(�

0

; stm

0

) 2 T

2

j �

0

(this) = �(this)g = Lo
Conf (�

2

(�(this))(h

inst

)) :

With �

1

(�(this))(h

inst

) = �

2

(�(this))(h

inst

) and (�; stm) 2 T

1

, we get (�; stm) 2

T

2

. ut

The next lemma roughly states that when an assignment
an interleave with

the pre
ondition of some statement (as given by the predi
ate interleavable from

page 26) then the assignment and the statement o

ur in the same rea
hable

global
on�guration. The lemma is a appli
ation of the lo
al merging lemma

and will be helpful in the
ompleteness of the interferen
e freedom test.

Lemma 31. Let hT

1

; �

1

i be a rea
hable global
on�guration of prog

0

and let

(�

1

; stm; stm

1

) 2 T

1

. Let furthermore stm

ass

be an assignment ~y := ~e or h~y :=

~ei, and let (�

2

; stm

ass

; stm

2

) with �

2

(this) = �

1

(this) = � be enabled in some

rea
hable
on�guration hT

2

; �

2

i with �

2

(�) = �

1

(�) = �

inst

. Assume further a

Proofs 67

lo
al state � with �(u) = �

2

(u) for all u 2 dom(�

2

) and �(u

0

) = �

1

(u) for all

u 2 dom(�

1

), where u

0

are fresh variables. Then

!; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e)

implies that (�

1

; stm; stm

1

) 2 T

2

.

Proof. From the assumptions stated in the lemma together with !; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e) we show that (�

1

; stm; stm

1

) 2 T

2

.

Let hT

0

; �

0

i �!

�

hT

1

; �

1

i and hT

0

; �

0

i �!

�

hT

2

; �

2

i. We start observing that

both
omputations
ontain at least one stable
on�guration. So see this note that

the only
omputation without any stable
on�guration is the empty one, whi
h

ontains just the initial
on�guration and in whi
h only one lo
al
on�guration

exists. This means, �

1

(�) = �

2

(�) = �

init

inst

implies �

1

(id) = �

2

(id),
ontradi
ting

!; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e).

So let hT

0

; �

0

i �!

�

hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i and hT

0

; �

0

i �!

�

hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i su
h that hT

0

1

; �

0

1

i and hT

0

2

; �

0

2

i are the last
on�gurations in the
ompu-

tations that are stable in �.

We distinguish a

ording to the steps in hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i, starting with

the
ase where the sequen
e is empty.

Case: hT

0

2

; �

0

2

i = hT

2

; �

2

i

In this
ase hT

2

; �

2

i is stable in �. Therefore ~y := ~e is enabled in hT

2

; �

2

i

and thus the assignment o

urs outside bra
keted se
tions. Hen
e !; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e) implies that pre(stm) represents an interleaving

point and �

1

(id) 6= �

2

(id).

For the
omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i we know that either

1. it does not exe
ute an assignment in �, and thus �

0

1

(�) = �

1

(�) = �

2

(�), or

2. it exe
utes a self-
ommuni
ation together with the observation of the sender,

but not yet that of the re
eiver part, otherwise hT

1

; �

1

i itself would be stable

in �, i.e., hT

0

1

; �

0

1

i = hT

1

; �

1

i, and the �rst
lause would apply.

In the se
ond
ase the de�nition of augmentation gives �

1

(�)(stable) = false ,

but !; �

inst

; �

2

j=

L

enabled(~y := ~e) implies that �

2

(�)(stable) = true. Thus

�

1

(�) = �

2

(�) leads to a
ontradi
tion, and only the �rst
ase is possible.

That the
omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i exe
utes no assignment in �

means that all lo
al
on�gurations with self-referen
e � involved in the
omputa-

tion represent non-interleaving points. Sin
e (�

1

; stm; stm

1

) 2 T

1

, the statement

stm represents an interleaving point, and therefore (�

1

; stm; stm

1

) is already

ontained in T

0

1

. Using the lo
al merging Lemma 10 with �

0

1

(�) = �

2

(�) we get

(�

1

; stm; stm

1

) 2 T

2

, as required.

Case: New

Assume next that hT

0

2

; �

0

2

i �! hT

2

; �

2

i exe
utes an obje
t
reation statement.

Then, sin
e the assignment ~y := ~e is enabled in hT

2

; �

2

i, the lo
al
on�guration

(�

2

; h~y := ~ei; stm

2

) represents the exe
uting thread:

hT

_

[f� Æ (�

0

2

; hu := new

; ~y := ~ei; stm

2

)g; �

0

2

i �!

hT

_

[f� Æ (�

2

; h~y := ~ei; stm

2

)g; �

2

i :

68 Proofs

As in the above
ase, !; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e) implies that

pre(stm) represents an interleaving point and �

1

(id) 6= �

2

(id). Furthermore,
or-

responding to the above
ase again, �

2

(�)(stable) = true implies that the
om-

putation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any assignment is �, and sin
e

stm represents an interleaving point, thus (�

1

; stm; stm

1

) 2 T

0

1

. Using the lo
al

merging Lemma 10 with �

0

1

(�) = �

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

. Finally,

from �

2

(id) 6= �

1

(id) we
on
lude that (�

1

; stm; stm

1

) 2 T

2

.

Case: Start

skip

In this
ase, hT

0

2

; �

0

2

i �! hT

2

; �

2

i tries to invoke the start-method of an obje
t

whose thread is already started. By Lemma 6, �

0

2

(�)(started) = true. Sin
e

the assignment ~y := ~e is enabled in hT

2

; �

2

i, the lo
al
on�guration (�

2

; h~y :=

~ei; stm

2

) represents the exe
uting thread:

hT

_

[f� Æ (�

2

; he

0

:start(~e

0

); ~y := ~ei; stm

2

)g; �

0

2

i �!

hT

_

[f� Æ (�

2

; h~y := ~ei; stm

2

)g; �

2

i :

From !; �

inst

; � j=

L

interleavable(pre(stm); ~y := ~e) we
on
lude that either the

assertion pre(stm) is at an interleaving point and �

1

(id) 6= �

2

(id), or e

0

evaluates

to � and stm

1

is the body of the start-method of �. But in the se
ond
ase

the pre
ondition of the body of the start-method implies �

1

(�)(started) = false ,

whi
h
ontradi
ts to �

1

(�) = �

2

(�) and �

0

2

(�)(started) = true.

By similar arguments as in the previous
ases, �

2

(�)(stable) = true implies

that the
omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any assignment

is �, and sin
e stm represents an interleaving point, thus (�

1

; stm; stm

1

) 2 T

0

1

.

Using the merging Lemma 10 with �

0

1

(�) = �

0

2

(�), we get (�

1

; stm; stm

1

) 2 T

0

2

.

Finally, from �

2

(id) 6= �

1

(id) we
on
lude that (�

1

; stm; stm

1

) 2 T

2

, as required.

Case: Terminate

In this
ase hT

0

2

; �

0

2

i �! hT

2

; �

2

i
orresponds to the termination of a start-

method or of the initial exe
ution of the main-method. Then, sin
e the assign-

ment ~y := ~e is enabled in hT

2

; �

2

i, the lo
al
on�guration (�

2

; h~y := ~ei; stm

2

)

represents the exe
uting thread:

hT

_

[f(�

2

; hreturn; ~y := ~ei; stm

2

)g; �

0

2

i �!

hT

_

[f(�

2

; h~y := ~ei; stm

2

)g; �

2

i :

The assumption !; �

inst

; �

2

j=

L

interleavable(pre(stm); ~y := ~e) implies that either

pre(stm) represents an interleaving point and �

1

(id) 6= �

2

(id). Note that �

2

(id) =

(�; 0), and thus
allee(�

1

(id))
annot be equal to �

2

(id).

As in the above
ases, �

2

(�)(stable) = true implies that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i

does not exe
ute an assignment in �, and thus (�

1

; stm; stm

1

) 2 T

0

1

. Using

Lemma 10 with �

0

1

(�) = �

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

. Finally, from

�

2

(id) 6= �

1

(id) we
on
lude that (�

1

; stm; stm

1

) 2 T

2

.

Case: Call

In this
ase, hT

0

2

; �

0

2

i �! hT

2

; �

2

i exe
utes a method invo
ation statement and

sin
e ~y := ~e is enabled in hT

2

; �

2

i, the lo
al
on�guration (�

2

; h~y := ~ei; stm

2

)

Proofs 69

represents the
aller thread:

hT

_

[f� Æ (�

0

2

; he

0

:m(~e); ~y := ~ei; stm

2

)g; �

0

2

i �!

hT

_

[f� Æ (�

2

; h~y := ~ei; stm

2

) Æ (�

allee

; body

m;

)g; �

2

i :

The assumption !; �

inst

; �

2

j=

L

interleavable(pre(stm); ~y := ~e) implies that either

pre(stm) represents an interleaving point and �

1

(id) 6= �

2

(id), or stm

1

is the body

of the invoked method m, �

1

(id) =
allee(�

2

(id)), and [[e

0

℄℄

�

0

2

(�);�

0

2

E

= �.

The
ase where stm represents an interleaving point is analogous to the

above
ases: �

2

(�)(stable) = true implies that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not

exe
ute any assignment in �, and thus (�

1

; stm; stm

1

) 2 T

0

1

. Using Lemma 10

with �

0

1

(�) = �

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

. Finally, from �

2

(id) 6= �

1

(id) we

on
lude that (�

1

; stm; stm

1

) 2 T

2

.

Assume now that stm

1

is the body of the invoked method m, �

1

(id) =

allee(�

2

(id)), and [[e

0

℄℄

�

0

2

(�);�

0

2

E

= �. Then also hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i
ontains

the invo
ation of the same method of � with resulting
allee
on�guration

(�

1

; stm; stm

1

). Furthermore, �

2

(�)(stable) = true = �

1

(�)(stable), i.e., hT

0

1

; �

0

1

i

�!

�

hT

1

; �

1

i does not exe
ute any assignment in �. Let (�

aller

; stm

aller

) be the lo-

al
on�guration of the
aller in T

0

1

. Then using �

0

1

(�) = �

1

(�) = �

2

(�) = �

0

2

(�)

and the lo
al merging Lemma 10 we get (�

aller

; stm

aller

) 2 T

0

2

. With �

1

(id) =

allee(�

aller

(id)) and �

1

(id) =
allee(�

2

(id)) we further get �

aller

(id) = �

2

(id),

i.e., (�

aller

; stm

aller

) = (�

0

2

; he

0

:m(~e); ~y := ~ei; stm

2

). Thus hT

0

1

; �

0

1

i�!

�

hT

1

; �

1

i

and hT

0

2

; �

0

2

i�!hT

2

; �

2

i exe
ute the same method invo
ation
reating the same

allee
on�guration (�

1

; stm; stm

1

) = (�

allee

; body

m;

) 2 T

2

.

Case: Call+Ass

Assume next that hT

0

2

; �

0

2

i �!

2

hT

2

; �

2

i exe
utes a method invo
ation statement

and the observation of the
aller. Then, sin
e ~y := ~e is enabled in hT

2

; �

2

i, the

lo
al
on�guration (�

2

; h~y := ~ei; stm

2

) represents the
allee thread before its

observation:

hT

_

[f� Æ (�

0

aller

; he

0

:m(~e); ~y

0

:= ~e

0

i; stm

aller

)g; �

0

2

i �!

hT

_

[f� Æ (�

0

aller

; h~y

0

:= ~e

0

i; stm

aller

) Æ (�

2

; h~y := ~ei; stm

2

)g; �

0

2

i �!

hT

_

[f� Æ (�

aller

; stm

aller

) Æ (�

2

; h~y := ~ei; stm

2

)g; �

2

i :

Then !; �

inst

; �

2

j=

L

interleavable(pre(stm); ~y := ~e) implies that pre(stm) repre-

sents an interleaving point and �

1

(id) 6= �

2

(id).

If �

2

(�)(stable) = true, i.e., the method invo
ation is not a self-
all, then the

omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any assignment in �, and

thus (�

1

; stm; stm

1

) 2 T

0

1

. Otherwise, �

1

(�)(stable) = �

2

(�)(stable) = false and

�

1

(�)(h

inst

) = �

2

(�)(h

inst

) imply that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i exe
utes the same

assignment in the same lo
al
on�guration as hT

0

2

; �

0

2

i �!

2

hT

2

; �

2

i, and thus the

same method invo
ation in the same lo
al
on�guration with identity �

aller

(id).

Thus �

0

1

(�) = �

0

2

(�), and with �

2

(id) =
allee(�

aller

(id)) and �

1

(id) 6= �

2

(id) we

on
lude that (�

1

; stm; stm

1

) is not the
allee
on�guration, i.e., either it is the

aller or (�

1

; stm; stm

1

) 2 T

0

1

. In the �rst
ase, if (�

1

; stm; stm

1

) is the
aller,

then (�

1

; stm; stm

1

) = (�

aller

; stm

aller

) 2 T

2

. Otherwise, if (�

1

; stm; stm

1

) 2 T

0

1

,

70 Proofs

then using again Lemma 10 with �

0

1

(�) = �

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

.

Finally, sin
e (�

1

; stm; stm

1

) is neither the
aller nor the
allee
on�guration, we

on
lude that (�

1

; stm; stm

1

) 2 T

2

.

Case: Return

In this
ase hT

0

2

; �

0

2

i �! hT

2

; �

2

i returns the result of a method. Then, sin
e

the assignment ~y := ~e is enabled in hT

2

; �

2

i, the lo
al
on�guration (�

2

; h~y :=

~ei; stm

2

) represents the
allee thread:

hT

_

[f� Æ (�

0

aller

; hre
eiveu; ~y

0

:= ~e

0

i; stm

aller

) Æ (�

2

; hreturn e

ret

; ~y := ~ei)g; �

0

2

i �!

hT

_

[f� Æ (�

aller

; h~y

0

:= ~e

0

i; stm

aller

) Æ (�

2

; h~y := ~ei)g; �

2

i :

Then !; �

inst

; �

2

j=

L

interleavable(pre(stm); ~y := ~e) implies that either pre(stm)

represents an interleaving point and �

1

(id) 6= �

2

(id) and
allee(�

1

(id)) 6= �

2

(id),

or stm

1

o

urs after a re
eive statement whi
h is pre
eded by the invo
ation of

method m of e

0

,
allee(�

1

(id)) = �

2

(id), and [[e

0

℄℄

�

0

2

(�);�

2

E

= �.

The
ase that stm represents an interleaving point is analogous to the above

ases: �

2

(�)(stable) = true implies that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe-

ute any assignment in �, and thus (�

1

; stm; stm

1

) 2 T

0

1

. Using Lemma 10 with

�

0

1

(�) = �

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

. Finally, from �

1

(id) 6= �

2

(id) and

allee(�

1

(id)) 6= �

2

(id) we
on
lude that (�

1

; stm; stm

1

) 2 T

2

.

Assume now that stm

1

o

urs after a re
eive statement whi
h is pre
eded by

the invo
ation of method m of e

0

,
allee(�

1

(id)) = �

2

(id), and [[e

0

℄℄

�

0

2

(�);�

2

E

= �.

Then also hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i
ontains the return from the same method

of � with resulting
aller
on�guration (�

1

; stm; stm

1

). Note that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any assignments in �: from [[e

0

℄℄

�

0

2

(�);�

2

E

= � we
on
lude

that a self-
ommuni
ation is exe
uted, and �

1

(�) = �

2

(�) and �

2

(�)(stable) =

true imply also �

1

(�)(stable) = true.

Let (�

allee

; stm

allee

) be the lo
al
on�guration of the
allee in T

0

1

. Then using

�

0

1

(�) = �

1

(�) = �

2

(�) = �

0

2

(�) and Lemma 10 we get that (�

allee

; stm

allee

) 2

T

0

2

. From
allee(�

1

(id)) = �

allee

(id) and
allee(�

1

(id)) = �

2

(id) we
on
lude

�

allee

(id) = �

2

(id), i.e., (�

allee

; stm

allee

) = (�

2

; hreturn e

ret

; ~y := ~ei; stm

2

). Thus

hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i and hT

0

2

; �

0

2

i �! hT

2

; �

2

i exe
ute the same return and

re
eive statements and thus (�

1

; stm; stm

1

) = (�

aller

; h~y

0

:= ~e

0

i; stm

aller

) 2 T

2

.

Case: Return+Ass

In this
ase, hT

0

2

; �

0

2

i �!

2

hT

2

; �

2

i returns from a method and exe
utes the

observation of the
allee. Sin
e the assignment ~y := ~e is enabled in hT

2

; �

2

i,

the lo
al
on�guration (�

2

; h~y := ~ei; stm

2

) represents the
aller thread before its

observation:

hT

_

[f� Æ (�

0

2

; hre
eiveu; ~y := ~ei; stm

2

) Æ (�

allee

; hreturn e

ret

; ~y

0

:= ~e

0

i)g; �

0

2

i �!

hT

_

[f� Æ (�

2

; h~y := ~ei; stm

2

) Æ (�

allee

; h~y

0

:= ~e

0

i)g; �

0

2

i �!

hT

_

[f� Æ (�

2

; h~y := ~ei; stm

2

)g; �

2

i :

By the assumption !; �

inst

; �

2

j=

L

interleavable(pre(stm); ~y := ~e), pre(stm) rep-

resents an interleaving point and �

1

(id) 6= �

2

(id).

Proofs 71

If �

2

(�)(stable) = true, i.e., in the
ase of self-
ommuni
ation, hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any assignment in �, and thus (�

1

; stm; stm

1

) 2 T

0

1

.

Otherwise, �

1

(�)(stable) = �

2

(�)(stable) = false and �

1

(�)(h

inst

) = �

2

(�)(h

inst

)

imply that hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i exe
utes the same assignment in the same lo-

al
on�guration as hT

0

2

; �

0

2

i �!

2

hT

2

; �

2

i, and thus the same return in the

same lo
al
on�guration with identity �

allee

(id). Thus �

0

1

(�) = �

0

2

(�), and with

allee(�

2

(id)) = �

allee

(id) and �

1

(id) 6= �

2

(id) we
on
lude that (�

1

; stm; stm

1

)

is not the
aller
on�guration, i.e., (�

1

; stm; stm

1

) 2 T

0

1

. Furthermore, sin
e

(�

1

; stm; stm

1

) 2 T

1

, it is also not the
allee
on�guration. Using again the

merging Lemma 10 with �

0

1

(�)=�

0

2

(�) we get (�

1

; stm; stm

1

) 2 T

0

2

. Sin
e �nally

(�

1

; stm; stm

1

) is neither the
aller nor the
allee
on�guration, we
on
lude that

(�

1

; stm; stm

1

) 2 T

2

. ut

Lemma 32 (Interferen
e freedom). The proof outline prog

0

satis�es the
on-

ditions for interferen
e freedom from De�nition 4.

Proof (of Lemma 32). Assume an arbitrary multiple assignment ~y := ~e in
lass

and an arbitrary statement stm in the same
lass. We prove interferen
e freedom

for the pre
ondition of the statement stm under the exe
ution of ~y := ~e, i.e., we

have to show the veri�
ation
ondition from Equation (5) on page 26 for some

logi
al environment ! together with some instan
e and lo
al states �

inst

and � :

!; �

inst

; � j=

L

pre

0

(stm) ^ pre(~y := ~e) ^ this=this

0

^

interleavable(pre(stm); ~y := ~e) ^ enabled(~y := ~e)! pre

0

(stm)[~e=~y℄ ;

where pre

0

(stm) denotes pre(stm) with all lo
al variables u and this repla
ed by

some fresh lo
al variables u

0

and this

0

, respe
tively.

If stm = �, then by De�nition 9 of the annotation pre(stm)(= pre

0

(stm))

is the
lass invariant, whose invarian
e under exe
ution is shown in the lo
al

orre
tness. So assume stm 6= � in the following.

From !; �

inst

; � j=

L

this = this

0

we get �(this) = �(this

0

), i.e., �

2

(this) =

�(this) for �

2

= � , and �

1

(this) = �(this), where �

1

oin
ides with � modulo

renaming of the lo
al variables, i.e., �

1

(u) = �(u

0

) for all lo
al variables u

0

2

dom(�). Let � = �

1

(this) = �

2

(this).

The �rst
lause !; �

inst

; � j=

L

pre

0

(stm) implies !; �

inst

; �

1

j=

L

pre(stm).

Remember that we assume that the annotation does not
ontain free logi
al

variables, hen
e the logi
al environment ! does not play a role. A

ording to

De�nition 9 of the annotation, !; �

inst

; �

1

j=

L

pre(stm) implies that there exists

a rea
hable
on�guration hT

1

; �

1

i and a lo
al
on�guration (�

1

; stm; stm

1

) 2

T

1

with �

1

(�) = �

inst

. For the assignment ~y := ~e we similarly get using

!; �

inst

; � j=

L

pre(~y := ~e) that there exists a
omputation rea
hing h

^

T

2

; �̂

2

i

with (�

2

; stm

ass

; stm

2

) 2

^

T

2

with stm

ass

= ~y := ~e or stm

ass

= h~y := ~ei su
h

that �̂

2

(�) = �

inst

. It follows that �

1

(�) = �̂

2

(�). Furthermore !; �

inst

; �

2

j=

L

enabled(~y := ~e) implies with Lemma 7 that (�

2

; stm

ass

; stm

2

) is enabled in some

rea
hable hT

2

; �

2

i with �

2

(�) = �

inst

= �

1

(�).

Using Lemma 31 we get (�

1

; stm; stm

1

) 2 T

2

. Furthermore, (�

2

; stm

ass

; stm

2

)

is enabled in hT

2

; �

2

i, and additionally !; �

inst

; � j=

L

interleavable(pre(stm); ~y :=

72 Proofs

~e) implies that �

1

(id) 6= �

2

(id). Thus exe
uting in hT

2

; �

2

i the assignment ~y := ~e

in the lo
al
on�guration (�

2

; stm

ass

; stm

2

) results in a rea
hable global
on�g-

uration hT; �i with (�

1

; stm; stm

1

) 2 T and �(�) = �

2

(�)[~y 7![[~e ℄℄

�

2

(�);�

2

E

℄. We

get !; �

2

(�)[~y 7![[~e ℄℄

�

2

(�);�

2

E

℄; �

1

j=

L

pre(stm), and renaming ba
k the lo
al vari-

ables of pre(stm) also !; �

2

(�)[~y 7![[~e ℄℄

�

2

(�);�

E

℄; � j=

L

pre

0

(stm). Finally, by the

substitution Lemma 1 together with �

2

(�) = �

inst

we get the required property

!; �

inst

; � j=

L

pre

0

(stm)[~e=~y℄. Note that due to renaming, no lo
al variables of ~y

o

ur in pre

0

(stm), and for the same reason �

1

= �

1

[~y 7![[~e℄℄

�

2

(�);�

2

E

℄. ut

Proof (of the global merging Lemma 11). Let hT

1

; �

1

i and hT

2

; �

2

i be two rea
h-

able stable global
on�gurations of prog

0

and � 2 dom(�

1

) \ dom(�

2

) with

�

1

(�)(h

omm

) = �

2

(�)(h

omm

). We show that there exists a rea
hable stable
on-

�guration hT; �i with �(�) = �

1

(�), and �(�) = �

2

(�) for all � 2 dom(�

2

)nf�g.

We pro
eed by indu
tion on the sum of the lengths of the
omputations.

In the base
ase of the �rst rea
hable stable
on�gurations, we are given

hT

1

; �

1

i = hT

2

; �

2

i and the property trivially holds.

For the indu
tive step, assume hT

0

; �

0

i �!

�

hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i and

hT

0

; �

0

i �!

�

hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i as
omputations of prog

0

su
h that hT

0

1

; �

0

1

i

and hT

0

2

; �

0

2

i are the last stable
on�gurations pre
eding hT

1

; �

1

i respe
tively

hT

2

; �

2

i in the
omputations. We distinguish whether in the
omputations from

hT

0

1

; �

0

1

i to hT

1

; �

1

i and from hT

0

1

; �

0

1

i to hT

1

; �

1

i, the
ommuni
ation histories

are updated or not.

Case: �

0

1

(�)(h

omm

) = �

1

(�)(h

omm

)

In this
ase hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute any
ommuni
ation or obje
t

reation involving �. By indu
tion there is a
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i

leading to a stable
on�guration su
h that �

0

(�) = �

0

1

(�) and �

0

(�) = �

2

(�) for

all � 2 dom(�

2

)nf�g.

In
ase hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i does not exe
ute in � at all, i.e., �

0

1

(�) = �

1

(�),

the
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i already satis�es the required properties.

Otherwise, hT

0

1

; �

0

1

i �! hT

1

; �

1

i exe
utes an assignment outside bra
keted

se
tions in �, say in the lo
al
on�guration also (�; stm). For (�; stm) 2 T

0

1

we know �(this) = � and �

0

(�) = �

0

1

(�), and therefore by the lo
al merging

Lemma 10 (�; stm) 2 T

0

. Assignments outside bra
keted se
tions are enabled

in all stable
on�gurations. Thus we
an exe
ute (�; stm) in hT

0

; �

0

i, leading

to the
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i �! hT; �i with �(�) = �

1

(�) and

�(�) = �

0

(�) = �

2

(�) for all � 2 dom(�

2

)nf�g, as required.

Case: �

0

2

(�)(h

omm

) = �

2

(�)(h

omm

)

In this
ase hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i does not exe
ute any
ommuni
ation or obje
t

reation involving �. By indu
tion, there is a
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i

leading to a stable
on�guration su
h that �

0

(�) = �

1

(�) and �

0

(�) = �

0

2

(�) for

all � 2 dom(�

0

2

)nf�g.

If hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i performs a step within �, then a

ording to the

ase assumption it exe
utes an assignment outside bra
keted se
tions within

Proofs 73

�. This means, �

0

2

(�) = �

2

(�) for all � 2 dom(�

2

)nf�g, and the
omputation

hT

0

; �

0

i �!

�

hT

0

; �

0

i already satis�es the required properties.

If otherwise hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i does not exe
ute in �, then all lo
al
on-

�gurations in T

0

2

, whi
h de�ne a self-referen
e di�erent from �, are also in T

0

;

this follows from stability of hT

0

; �

0

i and hT

0

2

; �

0

2

i, from �

0

2

(�) = �

2

(�) for all

� 2 dom(�

2

)nf�g, and with the help of the lo
al merging Lemma 10 applied to

hT

0

; �

0

i and hT

0

2

; �

0

2

i. Furthermore, the enabledness of lo
al
on�gurations, whose

exe
ution does not involve �, are independent of the instan
e state of �. Thus in

hT

0

; �

0

i we
an exe
ute the same
omputation steps as in hT

0

2

; �

0

2

i �! hT

2

; �

2

i,

leading to a rea
hable stable
on�guration hT; �i with the required properties.

Case: �

0

1

(�)(h

omm

) 6= �

1

(�)(h

omm

) and �

0

2

(�)(h

omm

) 6= �

2

(�)(h

omm

)

In this
ase �nally both hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i and hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i exe-

ute some obje
t
reation or
ommuni
ation involving the obje
t �. We show

that in this
ase �

1

(�)(h

omm

) = �

2

(�)(h

omm

) implies also �

0

1

(�)(h

omm

) =

�

0

2

(�)(h

omm

), and thus by indu
tion there is a
omputation leading to a
on�g-

uration hT

0

; �

0

i su
h that �

0

(�) = �

0

1

(�) and �

0

(�) = �

0

2

(�) for all other obje
ts

� 2 dom(�

0

2

)nf�g.

Furthermore,
ombining those
omputation steps in hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i

whi
h exe
ute within � with those in hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i whi
h exe
ute outside

�, we
an de�ne a
omputation hT

0

; �

0

i �!

�

hT; �i resulting in a rea
hable stable

global
on�guration with �(�) = �

1

(�) and �(�) = �

2

(�) for all other obje
ts

� 2 dom(�

2

)nf�g.

We distinguish a

ording to the steps in the
omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i:

Sub
ase: New

In this
ase hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i is the exe
ution of an obje
t
reation statement

and its observation in � of the form

hT

_

[f� Æ (�

0

; hu := new

; ~y := ~ei; stm)g; �

0

1

i �!

hT

_

[f� Æ (�

00

; h~y := ~ei; stm)g; �

00

1

i �!

hT

_

[f� Æ (�; stm)g; �

1

i

with �(this) = �. The assignment ~y := ~e
ontains the
ommuni
ation history

update h

omm

:= h

omm

Æ (kind; id; partner; values), resulting in �

1

(�)(h

omm

) =

�

0

1

(�)(h

omm

) Æ ((new;
); �

0

(id);nil ;
), where
 is the newly
reated obje
t.

Sin
e �

1

(�)(h

omm

) = �

2

(�)(h

omm

), the last element of �

2

(�)(h

omm

)
on-

tains the same information ((new;
); �

0

(id);nil ;
). With the
ase assumption

�

0

2

(�)(h

omm

) 6= �

2

(�)(h

omm

) we additionally know that the tuple represents in-

formation observed in hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i. This means, exe
uting hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i
reates the same new obje
t
 and leaves the states of all obje
ts

from dom(�

0

2

)nf�g untou
hed. By the de�nition of the augmentation it means

�

0

1

(�)(h

omm

) = �

0

2

(�)(h

omm

) and �

0

2

(�) = �

2

(�) for all obje
ts � 2 dom(�

0

2

)

di�erent from �. Thus by indu
tion there is a
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i

with hT

0

; �

0

i stable and where �

0

(�) = �

0

1

(�) and �

0

(�) = �

0

2

(�) = �

2

(�) for all

� 2 dom(�

0

2

)nf�g.

74 Proofs

As �

0

(�) = �

0

1

(�), the lo
al merging Lemma 10 implies that all lo
al
on-

�gurations in T

0

1

with self-referen
e � are also
ontained in T

0

. From the above

observation and the fa
t that for stable
on�gurations the enabledness of exe
u-

tion ex
lusively within � is independent from the instan
e states of other obje
ts,

we
on
lude that the same
omputation steps as in hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i
an be

exe
uted also in hT

0

; �

0

i, leading to a rea
hable stable
on�guration hT; �i with

�(�) = �

1

(�), and �(�) = �

0

(�) = �

2

(�) for all � 2 dom(�

0

2

)nf�g. Finally, for

the newly
reated obje
t we have �(
) = �

2

(
) = �

init

inst

, and thus �(�) = �

2

(�)

for all � 2 dom(�

2

)nf�g.

The
ase for obje
t
reation without storing the identity of the new obje
t

hnew

; ~y := ~ei is similar, where the
ommuni
ation history does not
ontain

information about the identity of the new obje
t. Thus the fa
t that �

1

and �

2

de�ne the same
ommuni
ation history for � does not ensure that the last steps

hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i and hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i
reate a new obje
t with the

same identity. But in this
ase the instan
e states of obje
ts existing prior to

the obje
t
reation do not depend on the identity of the new obje
t, and we
an

repla
e the identity of the new obje
t in � by the one in �

2

, still getting a valid

omputation with the required properties.

Sub
ase: Call

In this
ase hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i exe
utes a method invo
ation and the
orre-

sponding observations:

hT

_

[f� Æ (�

0

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

)g; �

0

1

i �!

hT

_

[f� Æ (�

0

1

; h~y

1

:= ~e

1

i; stm

1

) Æ (�

0

2

; h~y

2

:= ~e

2

i; stm

2

)g; �

0

1

i �!

hT

_

[f� Æ (�

1

; stm

1

) Æ (�

0

2

; h~y

2

:= ~e

2

i; stm

2

)g; �

00

1

i �!

hT

_

[f� Æ (�

1

; stm

1

) Æ (�

2

; stm

2

)g; �

1

i :

Sin
e �

1

(�)(h

omm

) 6= �

0

1

(�)(h

omm

), we know � is involved in the method in-

vo
ation, as
aller or the
allee obje
t, or both.

If the
aller obje
t is � but the
allee is di�erent, then by the semanti
s of

method invo
ation and by the augmentation de�nition

�

1

(�)(h

omm

) = �

0

1

(�)(h

omm

) Æ ((
all;m); �

0

1

(id); �

0

2

(this); �

0

2

(~u)) ;

where ~u are the formal parameters of the invoked method. Correspondingly in

ase the
allee is � and the
aller is di�erent, we have

�

1

(�)(h

omm

) = �

0

1

(�)(h

omm

) Æ ((
alled;m); �

0

2

(id); �

0

1

(this); �

0

2

(~u)) :

Finally, in
ase of a self-
all within � we have

�

1

(�)(h

omm

) = �

0

1

(�)(h

omm

) Æ ((
all;m); �

0

1

(id); �; �

0

2

(~u))

Æ ((
alled;m); �

0

2

(id); �; �

0

2

(~u)) :

The assumption �

0

2

(�)(h

omm

) 6= �

2

(�)(h

omm

) implies, that the last element of

the
ommuni
ation history of � was appended in the
omputation hT

0

2

; �

0

2

i �!

�

Proofs 75

hT

2

; �

2

i. Sin
e �

1

(�)(h

omm

) = �

2

(�)(h

omm

), the
omputation hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i invokes the same method of the same
allee obje
t by the same
aller

obje
t and with the same a
tual parameter list, thereby
reating the same new

lo
al
on�guration representing the method exe
ution. Thus �

0

1

(�)(h

omm

) =

�

0

2

(�)(h

omm

), and by indu
tion there is a
omputation hT

0

; �

0

i �!

�

hT

0

; �

0

i

leading to a stable
on�guration su
h that �

0

(�) = �

0

1

(�), and �

0

(�) = �

0

2

(�) for

all � 2 dom(�

0

2

)nf�g.

Let hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i be of the form

h

^

T

_

[f�

0

Æ (�̂

0

1

; he

0

0

:m(~e

0

); ~y

0

1

:= ~e

0

1

i; stm

0

1

)g; �

0

2

i �!

h

^

T

_

[f�

0

Æ (�̂

0

1

; h~y

0

1

:= ~e

0

1

i; stm

0

1

) Æ (�

0

2

; h~y

2

:= ~e

2

i; stm

2

)g; �

0

2

i �!

h

^

T

_

[f�

0

Æ (�̂

1

; stm

0

1

) Æ (�

0

2

; h~y

2

:= ~e

2

i; stm

2

)g; �

00

2

i �!

h

^

T

_

[f�

0

Æ (�̂

1

; stm

0

1

) Æ (�

2

; stm

2

)g; �

2

i :

where �̂

0

1

(this) = �

0

1

(this). As �

0

(�) = �

0

1

(�), the lo
al merging lemma Lemma 10

implies that all lo
al
on�gurations in T

0

1

with self-referen
e � are also
ontained

in T

0

. Similarly for obje
ts from � 2 dom(�

0

2

)nf�g = dom(�

2

)nf�g, �

0

(�) =

�

0

2

(�) implies that all lo
al
on�gurations in T

0

2

with self-referen
e � are also

ontained in T

0

.

Consequently, if � is the
aller obje
t, then the lo
al
on�guration of the

aller in hT

0

1

; �

0

1

i is enabled in hT

0

; �

0

i. Note that sin
e �

0

2

(�) = �

0

(�) for all

� 2 dom(�

0

2

)nf�g and �

0

1

(�) = �

0

(�), and sin
e the invo
ation of the method

m of the
allee obje
t is enabled both in hT

0

1

; �

0

1

i and in hT

0

2

; �

0

2

i, in the
ase

of a syn
hronized method the lo
k of the
allee obje
t is free in hT

0

; �

0

i. Thus

the same
omputation steps as in hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i
an be exe
uted in

hT

0

; �

0

i leading to a rea
hable stable
on�guration hT; �i with �(�) = �

1

(�),

and �(�) = �

2

(�) for all � 2 dom(�

2

)nf�g.

Similarly, if the
aller obje
t is not �, then the same
omputation steps as

in hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i
an be exe
uted in hT

0

; �

0

i leading to a rea
hable stable

on�guration satisfying the requirements.

The remaining sub
ases are analogous. For the
ase of return, the
omputa-

tion hT

0

; �

0

i �!

�

hT; �i is
onstru
ted from the exe
ution of those lo
al
on�g-

urations with self-referen
e � whi
h exe
ute in hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i, and the

exe
ution of those lo
al
on�gurations with self-referen
e di�erent from � whi
h

exe
ute in hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i. ut

Lemma 33 (Cooperation test: Method
all, return, and terminate).

The annotated program prog

0

and the global invariant GI satisfy the veri�
ation

onditions of the
ooperation test for
ommuni
ation of De�nition 5.

Proof (of Lemma 33). Let he

0

:m(~e); ~y

1

:= ~e

1

i; hre
eive v; ~y

4

:= ~e

4

i be a statement

in a
lass
 of prog

0

with e

0

2 Exp

0

, where method m of

0

is syn
hronized with

formal parameter list ~u, lo
al variables without the formal parameters and this

given by ~v, and body

m;

0

=h~y

2

:= ~e

2

i; stm; hreturn e

ret

; ~y

3

:= ~e

3

i.

76 Proofs

Case: Method
all

Assume

!; � j=

G

GI ^ pre(e

0

:m(~e))[z=this℄ ^ I

0

[z

0

=this℄ ^

e

0

[z=this℄=z

0

^ isfree(z

0

:lo
k; id) ;

where z 2 LVar

and z

0

2 LVar

0

are distin
t fresh logi
al variables.

By de�nition of the global invariant, the assumption !; � j=

G

GI implies that

there exists a rea
hable stable
on�guration hT

0

; �

0

i with dom(�) = dom(�

0

) and

�(�)(h

omm

) = �

0

(�)(h

omm

) for all � 2 dom(�).

Assuming � as the identity of the
aller, i.e., !(z) = �, then !; � j=

G

pre(e

0

:m(~e))[z=this℄ implies

!; �(�); �

1

j=

L

pre(e

0

:m(~e))

by the substitution Lemma 3, for some lo
al state �

1

with �

1

(this) = !(z) = �

and �

1

(u) = !(u) for all lo
al variables o

urring in pre(e

0

:m(~e)). By de�nition of

the pre
ondition, there exists a (not ne
essarily stable) rea
hable
on�guration

hT

1

; �

1

i su
h that �

1

(�) = �(�) and (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

1

. We

de�ne the
on�guration hT

0

1

; �

0

1

i

1. as the last stable global
on�guration in the
omputation leading to hT

1

; �

1

i,

if its instan
e state for �
oin
ides with �

1

(�), and

2. as the next
on�guration following hT

1

; �

1

i after extending the
omputation

by one
omputation step, otherwise. Note that the extension is deterministi
,

sin
e a rea
hable, unstable
on�guration
an pro
eed in only one way.

In the �rst
ase, either hT

1

; �

1

i itself is stable, or the
omputation hT

0

1

; �

0

1

i �!

�

hT

1

; �

1

i exe
utes some obje
t
reation or
ommuni
ation possibly followed by

observations in obje
ts di�erent from �, but it does not exe
ute any obser-

vations in �. From (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

1

we
on
lude that also

(�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

0

1

, sin
e otherwise its statement would begin

with an assignment. Furthermore we know �

1

(�) = �

0

1

(�).

In the se
ond
ase, hT

1

; �

1

i is not stable. Furthermore, sin
e the instan
e

state �

1

(�) di�ers from the instan
e state of � in the last stable
on�guration

in the
omputation, we know that in the last two steps of the
omputation a

ommuni
ation has taken pla
e, where the sender obje
t is � whi
h already

exe
uted its observation, but not yet the re
eiver obje
t.

Sin
e hT

0

; �

0

i is stable, the last element in the sequen
e �

0

(�)(h

omm

) is not

the observation of the sender part of a self-
ommuni
ation. Sin
e �(�)(h

omm

) =

�

0

(�)(h

omm

), the last element in the sequen
e �(�)(h

omm

) = �

1

(�)(h

omm

) is

neither the observation of the sender part of a self-
ommuni
ation. Thus the

re
eiver obje
t di�ers from �. Exe
uting the observation of the re
eiver part

outside of � leads to a
on�guration hT

0

1

; �

0

1

i de�ning the same instan
e state for

� as �

1

and still
ontaining (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

).

Thus we
on
lude that hT

0

1

; �

0

1

i is a rea
hable stable
on�guration su
h that

�

0

1

(�) = �

1

(�) and (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

0

1

.

Proofs 77

Re
all that hT

0

; �

0

i is a rea
hable stable
on�guration with �

0

(
)(h

omm

) =

�(
)(h

omm

) for all
 2 dom(�), espe
ially �

0

(�)(h

omm

) = �(�)(h

omm

) =

�

1

(�)(h

omm

) = �

0

1

(�)(h

omm

). Using the global merging Lemma 11 applied to

hT

0

1

; �

0

1

i and hT

0

; �

0

i we get that there is a rea
hable stable
on�guration hT

00

; �

00

i

with �

00

(�) = �

0

1

(�) = �

1

(�) = �(�) and �

00

(
) = �

0

(
) for all obje
ts
 6= �

from the domain of �

0

, whi
h equals the domain of �. Furthermore, sin
e hT

0

1

; �

0

1

i

and hT

00

; �

00

i are stable, (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

0

1

, �

1

(this) = �, and

�

0

1

(�) = �

00

(�), the lo
al merging Lemma 10 implies that (�

1

; he

0

:m(~e); ~y

1

:=

~e

1

i; stm

1

) 2 T

00

.

We get that hT

00

; �

00

i is a rea
hable stable
on�guration
ontaining the lo
al

on�guration (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

00

, and furthermore �

00

(�) =

�(�) and �

00

(
) = �

0

(
), for all other obje
ts
 6= � from the domain of �

Similarly for the
allee, say �, the assumption !; � j=

G

I

0

[z

0

=this℄ implies

!; �(�); �

2

j=

L

I

0

for some lo
al state �

2

with �

2

(this) = !(z

0

) = �. Note that

I

0

ontains instan
e variables, only. By de�nition of the
lass invariant, there is

a rea
hable global
on�guration hT

2

; �

2

i su
h that �

2

(�) = �(�).

In the
ase of a self-
all, i.e., for � = �, we dire
tly get that hT

00

; �

00

i is

a rea
hable stable
on�guration su
h that �

00

(�) = �(�), �

00

(�) = �(�), and

(�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

00

.

For non-self-
alls, i.e., when � 6= �, we need to fall ba
k upon the two merging

lemmas on
e more to obtain a
ommon rea
hable
on�guration: Analogously to

the
aller part we
an show that there is a rea
hable stable
on�guration hT

0

2

; �

0

2

i

with �

0

2

(�) = �

2

(�) = �(�). The global merging Lemma 11 applied to hT

0

2

; �

0

2

i

and hT

00

; �

00

i yields that there is a rea
hable stable
on�guration hT

000

; �

000

i with

�

000

(�) = �

0

2

(�) = �(�) and �

000

(�) = �

00

(�) = �(�). Furthermore, sin
e hT

00

; �

00

i

and hT

000

; �

000

i are stable, (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

00

1

, �

1

(this) = �,

and �

000

(�) = �

00

(�), the lo
al merging Lemma 10 implies (�

1

; he

0

:m(~e); ~y

1

:=

~e

1

i; stm

1

) 2 T

000

. Thus hT

000

; �

000

i is a rea
hable stable global
on�guration with

�

000

(�) = �(�), �

000

(�) = �(�), and (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

000

.

The ante
edent !; � j=

G

isfree(z

0

:lo
k; id) of the
ooperation test expands to

!; � j=

G

z

0

:lo
k=(nil; 0) _ z

0

:lo
k � id, where id is the identity of the
aller, i.e.,

�(�)(lo
k) = (nil ; 0)_�(�)(lo
k) = �

1

(id). By Lemma 5 isfree(T

000

nf�g; �), where

� is the sta
k with (�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) on top. This means, the lo
al

on�guration of the method invo
ation is enabled in hT

000

; �

000

i. Furthermore, us-

ing the substitution Lemma 3, !; � j=

G

e

0

[z=this℄=z

0

implies that [[e

0

℄℄

�(�);�

1

E

= �.

Exe
uting the method invo
ation results in a rea
hable global
on�guration with

still the same global state �

000

, and
ontaining the lo
al
on�gurations for
aller

and
allee (�

1

; h~y

1

:= ~e

1

i; stm

1

) and (�

init

[this 7!�℄[~u 7![[~e ℄℄

�

000

(�);�

1

E

℄; body

m;

0

).

The de�nition of the augmentation and �

000

(�) = �(�) gives !; �(�); �

1

j=

L

post(e

0

:m(~e)), whi
h by the substitution Lemma 3 yields the required post
on-

dition of the method
all in �:

!; � j=

G

post(e

0

:m(~e))[z=this℄ :

78 Proofs

For the pre
ondition of the
allee's method body we argue similarly: By de�nition

of the pre
ondition of the method body

!; �(�); �

init

[this 7!�℄[~u 7![[~e ℄℄

�

000

(�);�

1

E

℄ j=

L

pre(body

m;

0

) :

De�ning pre

0

(body

m;

0

) = pre(body

m;

0

)[InitVal(~v)=~v℄ gives

!; �(�); � [this 7!�℄[~u 7![[~e ℄℄

�

000

(�);�

1

E

℄ j=

L

pre

0

(body

m;

0

)

for an arbitrary lo
al state � . Note that all variables o

urring in pre

0

(body

m;

0

)

are either instan
e variables, this, or formal parameters, sin
e the remaining

lo
al variables are substituted by their initial values. For the global expression

~

E = ~e[z=this℄ we obtain by the substitution Lemma 3

[[

~

E℄℄

!;�

G

= [[~e[z=this℄℄℄

!;�

G

= [[~e ℄℄

!;�(�);�

1

L

= [[~e℄℄

�

000

(�);�

1

E

;

and further with the same lemma, the pre
ondition of the method body in the

form as required by the
ooperation test:

!; � j=

G

pre

0

(body

m;

0

)[z

0

;

~

E=this; ~u℄ :

Let hT

000

; �

000

i �! hT

000

omm

; �

000

omm

i �! hT

000

obs1

; �

000

obs1

i �! hT

000

obs2

; �

000

obs2

i be

the
omputation exe
uting the method invo
ation in the lo
al
on�guration

(�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

000

and the observations of both the
aller

and the
allee, in this order. Then

�

000

omm

= �

000

;

�

000

obs1

= �

000

omm

[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄ ; and

�

000

obs2

= �

000

obs1

[�:~y

2

7![[~e

2

℄℄

�

000

obs1

(�);�

allee

E

℄ ;

where the lo
al state �

allee

is given by �

init

[this 7!�℄[~u 7![[~e ℄℄

�

000

omm

(�);�

1

E

℄. We have

to show that

!; � j=

G

GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄ ;

where

~

E

1

= ~e

1

[z=this℄ and

~

E

0

2

=~e

0

2

[z

0

;

~

E=this; ~u℄ with ~e

0

2

= ~e

2

[InitVal(~v)=~v℄ and

~

E = ~e[z=this℄. Applying Lemma 2 yields

[[GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄℄℄

!;�

G

= [[GI [

~

E

0

2

=z

0

:~y

2

℄℄℄

!;�[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄

G

= [[GI ℄℄

!;�[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄[�:~y

2

7![[

~

E

0

2

℄℄

!;�[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄

G

℄

G

:

Proofs 79

Let �

obs1

= �[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄ and �

obs2

= �

obs1

[�:~y

2

7![[

~

E

0

2

℄℄

!;�[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄

G

℄.

With the substitution Lemmas 3 and 1 we
an get the following equations.

[[

~

E℄℄

!;�

G

= [[~e[z=this℄℄℄

!;�

G

= [[~e ℄℄

�(�);�

1

E

= [[~e ℄℄

�

000

(�);�

1

E

= [[~e ℄℄

�

000

omm

(�);�

1

E

;

[[

~

E

1

℄℄

!;�

G

= [[~e

1

[z=this℄℄℄

!;�

G

= [[~e

1

℄℄

�(�);�

1

E

= [[~e

1

℄℄

�

000

(�);�

1

E

= [[~e

1

℄℄

�

000

omm

(�);�

1

E

;

[[

~

E

0

2

℄℄

!;�

obs1

G

= [[~e

0

2

[z

0

;

~

E=this; ~u℄℄℄

!;�

obs1

G

= [[~e

2

[InitVal(~v)=~v℄[z

0

;

~

E=this; ~u℄℄℄

!;�

obs1

G

= [[~e

2

℄℄

!;�[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄(�);�

init

[this 7!�℄[~u 7![[

~

E℄℄

!;�

G

℄

L

= [[~e

2

℄℄

!;�

000

obs1

(�);�

init

[this 7!�℄[~u 7![[~e℄℄

�

000

omm

(�);�

1

E

℄

L

= [[~e

2

℄℄

�

000

obs1

(�);�

allee

E

:

This means,

�

obs2

= �[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄[�:~y

2

7![[~e

2

℄℄

�

000

obs1

(�);�

allee

E

℄ :

Remember that

�

000

obs2

= �

000

omm

[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄[�:~y

2

7![[~e

2

℄℄

�

000

obs1

(�);�

allee

E

℄ :

At the end, the
ommuni
ation histories all
oin
ide, i.e., �

000

omm

(
)(h

omm

) =

�

000

(
)(h

omm

) = �(
)(h

omm

) for all
 2 dom(�), and
onsequently �

obs2

agrees

with �

000

obs2

also on all h

omm

values. Consequently, hT

000

obs2

; �

000

obs2

i is a rea
hable

stable
on�guration satisfying �

000

obs2

(
)(h

omm

) = �

obs2

(
)(h

omm

) for all
 2

dom(�), and we get by the de�nition of the annotation !; �

obs2

j=

G

GI , and

�nally !; � j=

G

GI [

~

E

0

2

=z

0

:~y

2

℄[

~

E

1

=z:~y

1

℄, as required

The
ase for non-syn
hronized methods is shown analogously, only the an-

te
edent isfree(z

0

:lo
k; id) is dropped.

The
ase for the invo
ation of start-methods, whose enabledness requires

:started(T

000

; �), we have the additional ante
edent :z

0

:started, whi
h implies

:�

000

(�)(started). So by Lemma 6 implies that started(T

000

; �) i� �

000

(�)(started).

Case: Return

In this
ase assume

!; � j=

G

GI ^ pre

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ ^ pre(re
eive v)[z=this℄ ^

e

0

[z=this℄=z

0

:

By de�nition of the global invariant, !; � j=

G

GI implies that there is a rea
hable

stable
on�guration hT

0

; �

0

i su
h that dom(�) = dom(�

0

) and �(�)(h

omm

) =

�

0

(�)(h

omm

) for all � 2 dom(�).

80 Proofs

Assuming � as the identity of the
aller, i.e., !(z) = �, then Lemma 3

!; � j=

G

pre(re
eive v)[z=this℄ gives

!; �(�); �

1

j=

L

pre(re
eive v)

for some lo
al state �

1

with �

1

(this) = !(z) = � and �

1

(u) = !(u) for all lo
al

variables o

urring in pre(re
eive v). This implies by de�nition of the annotation

that there exists a rea
hable
on�guration hT

1

; �

1

i su
h that �

1

(�) = �(�) and

(�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

1

. Similar as in the
ase for method
alls, we

de�ne the
on�guration hT

0

1

; �

0

1

i

1. as the last stable global
on�guration in the
omputation leading to hT

1

; �

1

i,

if its instan
e state for �
oin
ides with �

1

(�), and

2. as the next
on�guration following hT

1

; �

1

i after extending the
omputa-

tion by one
omputation step, otherwise. Note again that the extension is

deterministi
.

As in the
ase of method invo
ation, we
on
lude that hT

0

1

; �

0

1

i is a rea
hable

stable
on�guration with �

0

1

(�) = �

1

(�) and (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

0

1

.

Re
all that hT

0

; �

0

i is a rea
hable stable
on�guration with �

0

(
)(h

omm

) =

�(
)(h

omm

) for all
 2 dom(�), espe
ially �

0

(�)(h

omm

) = �(�)(h

omm

) =

�

1

(�)(h

omm

) = �

0

1

(�)(h

omm

). Using the global merging Lemma 11 on hT

0

1

; �

0

1

i

and hT

0

; �

0

i we get that there is a rea
hable stable
on�guration hT

00

; �

00

i with

�

00

(�) = �

0

1

(�) = �

1

(�) = �(�) and �

00

(
) = �

0

(
) for all obje
ts
 6= � from

the domain of �

0

, whi
h equals the domain of �. Furthermore, sin
e hT

0

1

; �

0

1

i

and hT

00

; �

00

i are stable, (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

0

1

, �

1

(this) = �, and

�

0

1

(�) = �

00

(�), the lo
al merging Lemma 10 implies that (�

1

; hre
eive v; ~y

4

:=

~e

4

i; stm

1

) 2 T

00

. So hT

00

; �

00

i is a rea
hable stable
on�guration
ontaining the

lo
al
on�guration (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

00

, and with �

00

(�) = �(�)

and �

00

(
) = �

0

(
) for all other obje
ts
 6= � from the domain of �.

Similarly for the
allee, say �, !; � j=

G

pre

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ implies

that !; �(�); �

2

j=

L

pre(return e

ret

) for some lo
al state �

2

with �

2

(this) = !(z

0

) =

�, �

2

(~u) = [[

~

E℄℄

!;�

G

for the formal parameters ~u, and �

2

(~v) = !(~v

0

) for the lo
al

variables ~v without the formal parameters and this. By de�nition of the anno-

tation there is a rea
hable global
on�guration hT

2

; �

2

i su
h that �

2

(�) = �(�)

and (�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

2

.

In the
ase of a self-
all, i.e., if the
aller and the
allee are the same ob-

je
t, we get dire
tly that hT

00

; �

00

i is a rea
hable stable
on�guration su
h that

�

00

(�) = �(�), �

00

(�) = �(�), and (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

00

. Further-

more, by the lo
al merging Lemma 10 using (�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

2

also

(�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

00

.

Assume now that � 6= �. Analogously to the
aller part, we
an show that

there is a rea
hable stable
on�guration hT

0

2

; �

0

2

i with �

0

2

(�) = �

2

(�) = �(�) and

(�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

0

2

. Using the global merging Lemma 11 applied

to hT

0

2

; �

0

2

i and hT

00

; �

00

i we get that there is a rea
hable stable
on�guration

hT

000

; �

000

i with �

000

(�) = �

0

2

(�) = �(�) and �

000

(�) = �

00

(�) = �(�). Furthermore,

Proofs 81

sin
e hT

00

; �

00

i and hT

000

; �

000

i are stable, (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

00

1

,

�

1

(this) = �, and �

000

(�) = �

00

(�), the lo
al merging Lemma 10 implies that

(�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

000

. Correspondingly for the
allee, hT

0

2

; �

0

2

i

and hT

000

; �

000

i are stable, (�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

0

2

, �

2

(this) = �, �

000

(�) =

�

0

2

(�), and the lo
al merging Lemma 10 implies that (�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2

T

000

. Thus hT

000

; �

000

i is a rea
hable stable global
on�guration with �

000

(�) = �(�),

�

000

(�) = �(�), (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

000

, and (�

2

; hreturn e

ret

; ~y

3

:=

~e

3

i) 2 T

000

.

With Lemma 3, the ante
edent !; � j=

G

e

0

[z=this℄=z

0

implies that [[e

0

℄℄

�(�);�

1

E

equals �. Exe
uting the
ommuni
ation of the return value results in a rea
hable

global
on�guration still having the same global state �

000

, and
ontaining the

lo
al
on�guration (�

1

[v 7![[e

ret

℄℄

�

000

(�);�

2

E

℄; h~y

4

:= ~e

4

i; stm

1

) of the
aller, and the

lo
al
on�guration (�

2

; h~y

3

:= ~e

3

i) of the
allee.

By the de�nition of the augmentation and using �

000

(�) = �(�) we get that

!; �(�); �

1

[v 7![[e

ret

℄℄

�

000

(�);�

2

E

℄ j=

L

post(re
eive v). Applying the lifting Lemma 3

on
e more, but in the other dire
tion as before, and using

[[e

ret

℄℄

�

000

(�);�

2

E

= [[e

ret

℄℄

!;�(�);�

2

L

= [[e

0

ret

[z

0

;

~

E=this; ~u℄℄℄

!;�

G

= [[E

0

ret

℄℄

!;�

G

gives

!; � j=

G

post(re
eive v)[z; E

0

ret

=this; v℄ :

Similarly for the
allee, !; �(�); �

2

j=

L

post(return e

ret

). By the de�nition of �

2

we have �

2

(this) = !(z

0

) = �, �

2

(~u) = [[

~

E℄℄

!;�

G

for the formal parameters ~u, and

�

2

(~v) = !(~v

0

) for the lo
al variables ~v without the formal parameters and this.

Applying the lifting Lemma 3 again yield the required post-
ondition from the

ooperation test.

!; � j=

G

post

0

(return e

ret

)[z

0

;

~

E=this; ~u℄ :

For the global invariant, let hT

000

; �

000

i �! hT

000

omm

; �

000

omm

i �! hT

000

obs1

; �

000

obs1

i

�! hT

000

obs2

; �

000

obs2

i be the
omputation exe
uting the return and re
eive state-

ments in the lo
al
on�gurations (�

1

; hre
eive v; ~y

4

:= ~e

4

i; stm

1

) 2 T

000

and

(�

2

; hreturn e

ret

; ~y

3

:= ~e

3

i) 2 T

000

, and the observations of both the
allee and the

aller, in this order. The
ommuni
ation does not
hange any instan
e states,

i.e., �

000

omm

= �

000

. Furthermore, after the exe
ution of the assignment ~y

3

:= ~e

3

in the obje
t � we get �

000

obs1

= �

000

omm

[�:~y

3

7![[~e

3

℄℄

�

000

omm

(�);�

2

E

℄. The exe
ution of

the observation ~y

4

:= ~e

4

in the
aller obje
t � results �nally in the global state

�

000

obs2

de�ned by �

000

obs1

[�:~y

4

7![[~e

4

℄℄

�

000

obs1

(�);�

1

[v 7![[e

ret

℄℄

�

000

omm

(�);�

2

E

℄

E

℄.

We have to show that

!; � j=

G

GI [

~

E

4

=z:~y

4

℄[

~

E

0

3

=z

0

:~y

3

℄ ;

82 Proofs

where

~

E

0

3

=~e

0

3

[z

0

;

~

E=this; ~u℄,

~

E

4

=~e

4

[z; E

0

ret

=this; v℄, E

0

ret

= e

0

ret

[z

0

;

~

E=this; ~u℄, and

e

0

ret

and ~e

0

3

denote the given expressions with every lo
al variable ex
ept the

formal parameters and this repla
ed by a fresh one. Applying Lemma 2 yields

[[GI [

~

E

4

=z:~y

4

℄[

~

E

0

3

=z

0

:~y

3

℄℄℄

!;�

G

= [[GI [

~

E

4

=z:~y

4

℄℄℄

!;�[�:~y

3

7![[

~

E

0

3

℄℄

!;�

G

℄

G

= [[GI ℄℄

!;�[�:~y

3

7![[

~

E

0

3

℄℄

!;�

G

℄[�:~y

4

7![[

~

E

4

℄℄

!;�[�:~y

3

7![[

~

E

0

3

℄℄

!;�

G

℄

G

℄

G

:

Let �

obs1

= �[�:~y

3

7![[

~

E

0

3

℄℄

!;�

G

℄ and �

obs2

= �

obs1

[�:~y

4

7![[

~

E

4

℄℄

!;�[�:~y

3

7![[

~

E

0

3

℄℄

!;�

G

℄

G

℄.

Then we have to show that

!; �

obs2

j=

G

GI :

With the substitution Lemmas 3 and 1, we get the following equations

[[

~

E

0

ret

℄℄

!;�

obs1

G

= [[e

0

ret

[z

0

;

~

E=this; ~u℄℄℄

!;�

obs1

G

= [[e

ret

℄℄

!;�

obs1

(�);�

2

L

= [[e

ret

℄℄

�(�);�

2

E

=

= [[e

ret

℄℄

�

000

omm

(�);�

2

E

;

[[

~

E

4

℄℄

!;�

obs1

G

= [[~e

4

[z; E

0

ret

=this; v℄℄℄

!;�

obs1

G

= [[~e

4

℄℄

�

obs1

(�);�

1

[v 7![[

~

E

0

ret

℄℄

!;�

obs1

G

℄

E

= [[~e

4

℄℄

�

obs1

(�);�

1

[v 7![[e

ret

℄℄

�

000

omm

(�);�

2

E

℄

E

;

[[

~

E

0

3

℄℄

!;�

G

= [[~e

0

3

[z

0

;

~

E=this; ~u℄℄℄

!;�

G

= [[~e

3

℄℄

!;�(�);�

2

L

= [[~e

3

℄℄

�

000

omm

(�);�

2

E

:

This means,

�

obs2

= �[�:~y

3

7![[~e

3

℄℄

�

000

omm

(�);�

2

E

℄[�:~y

4

7![[~e

4

℄℄

�

000

obs1

(�);�

1

[v 7![[e

ret

℄℄

�

000

omm

(�);�

2

E

℄

E

℄ :

Remember that

�

000

obs2

= �

000

omm

[�:~y

3

7![[~e

3

℄℄

�

000

omm

(�);�

2

E

℄[�:~y

4

7![[~e

4

℄℄

�

000

obs1

(�);�

1

[v 7![[e

ret

℄℄

�

000

omm

(�);�

2

E

℄

E

℄ :

Sin
e �

000

omm

(
)(h

omm

) = �

000

(
)(h

omm

) = �(
)(h

omm

) for all obje
ts
 2

dom(�), the state �

obs2

agrees with �

000

obs2

also on all h

omm

values. There-

fore hT

000

obs2

; �

000

obs2

i is a rea
hable stable
on�guration with �

000

obs2

(
)(h

omm

) =

�

obs2

(
)(h

omm

) for all
 2 dom(�), and we get by the de�nition of the an-

notation !; �

obs2

j=

G

GI , and thus �nally !; � j=

G

GI [

~

E

4

=z:~y

4

℄[

~

E

0

3

=z

0

:~y

3

℄, as

required.

The
ase for methods without a return value is shown analogously.

Proofs 83

Case: Start

skip

In
ase the thread is already started, assume the left-hand side of Equation 8

!; � j=

G

GI ^ pre(e

0

:start(~e))[z=this℄ ^ I

0

[z

0

=this℄ ^ e

0

[z=this℄=z

0

^ z

0

:started :

As in the
ase of method invo
ation, we
an show that there is a rea
hable

stable global
on�guration hT

000

; �

000

i with �

000

(�) = �(�), �

000

(�) = �(�), and

(�

1

; he

0

:start(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

000

.

Using the lifting Lemma 3, !; � j=

G

e

0

[z=this℄=z

0

implies that [[e

0

℄℄

�(�);�

1

E

= �.

The additional ante
edent z

0

:started implies �

000

(�)(started), whi
h equals by

Lemma 6 started(T

000

; �). This means, exe
uting e

0

:start(~e) in the lo
al
on�g-

uration (�

1

; he

0

:start(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

000

does not start a new thread and

results in a rea
hable global
on�guration with still the same global state �

000

,

and
ontaining the lo
al
on�guration (�

1

; h~y

1

:= ~e

1

i; stm

1

) of the
aller.

By the de�nition of the augmentation and using �

000

(�) = �(�) we get

!; �(�); �

1

j=

L

post(e

0

:m(~e)). Applying the lifting Lemma 3 on
e more gives

the required post-
ondition

!; � j=

G

post(e

0

:m(~e))[z=this℄

For the global invariant, let hT

000

; �

000

i �! hT

000

omm

; �

000

omm

i �! hT

000

obs1

; �

000

obs1

i

be the
omputation exe
uting the method invo
ation in the lo
al
on�guration

(�

1

; he

0

:m(~e); ~y

1

:= ~e

1

i; stm

1

) 2 T

000

and the observations of the
aller. Then

�

000

omm

= �

000

and �

000

obs1

= �

000

omm

[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄. We have to show that

!; � j=

G

GI [

~

E

1

=z:~y

1

℄ ;

where

~

E

1

= ~e

1

[z=this℄. Applying Lemma 2 yields

[[GI [

~

E

1

=z:~y

1

℄℄℄

!;�

G

= [[GI ℄℄

!;�[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄

G

:

Let �

obs1

= �[�:~y

1

7![[

~

E

1

℄℄

!;�

G

℄. For the expression

~

E

1

we get using the lifting

Lemma 3

[[

~

E

1

℄℄

!;�

G

= [[~e

1

[z=this℄℄℄

!;�

G

= [[~e

1

℄℄

�(�);�

1

E

= [[~e

1

℄℄

�

000

(�);�

1

E

= [[~e

1

℄℄

�

000

omm

(�);�

1

E

:

This means,

�

obs1

= �[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄ :

Remember that

�

000

obs1

= �

000

omm

[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄ :

Furthermore, �

000

omm

(
)(h

omm

) = �

000

(
)(h

omm

) = �(
)(h

omm

) for all
 2

dom(�), and thus �[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄ agrees also on all h

omm

values with

84 Proofs

�

000

obs2

= �

000

omm

[�:~y

1

7![[~e

1

℄℄

�

000

omm

(�);�

1

E

℄. Therefore hT

000

obs1

; �

000

obs1

i is a rea
hable sta-

ble
on�guration satisfying the requirement �

000

obs2

(
)(h

omm

) = �

obs2

(
)(h

omm

)

for all
 2 dom(�), and we get by the de�nition of the annotation !; �

obs1

j=

G

GI , and thus !; � j=

G

GI [

~

E

1

=z:~y

1

℄.

Case: Terminate

This proof
ase is analogous to the proof
ase of Start

skip

, where the additional

ante
edent id = (z

0

; 0) implies by the de�nition of the augmentation, that the

return statement is exe
uted in a lo
al
on�guration being on the bottom of its

sta
k. This means, the thread terminates, and Rule Terminate applies. ut

Lemma 34 (Cooperation test: Instantiation). The annotated program prog

0

and the global invariant GI satisfy the veri�
ation
onditions of the
ooperation

test for obje
t
reation of De�nition 6.

Proof (of Lemma 34). Let hu := new

; ~y := ~ei be a statement in a
lass

0

of

prog

0

, and assume

!; � j=

G

9z

0

�

Fresh(z

0

; u) ^ (GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

�

with fresh logi
al variables z 2 LVar

0

and z

0

2 LVar

list Obje
t

. Let !(z) = � and

!(u) = �. A

ording to the semanti
s of assertions we have that

!

0

; � j=

G

Fresh(z

0

; u) ^ (GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

for some logi
al environment !

0

that assigns to z

0

a sequen
e of obje
ts from

dom

Obje
t

nil

(�) =

S

dom

nil

(�), and agrees on the values of all other variables

with !. The assertion Fresh(z

0

; u) is de�ned by

u 62 z

0

^ InitState(u) ^ 8v(v 2 z

0

_ v = u) ;

where InitState(u) expands into u 6= nil ^

V

x2IVar

u:x = InitVal(x). Thus, !

0

; �

j=

G

Fresh(z

0

; u) implies that � 2 dom

(�) with �(�) = �

init

inst

, and dom

Obje
t

nil

(�) =

!

0

(z

0

)

_

[f�g. Let �

0

be the global state with domain dom

Obje
t

(�

0

) given as

dom

Obje
t

(�)nf�g and su
h that �

0

(
) = �(
) for all
 2 dom

Obje
t

(�)nf�g.

Then � = �

0

[� 7!�

init

inst

℄, and from

!

0

; � j=

G

(GI ^ 9u(pre(u := new

)[z=this℄)) # z

0

we get with Lemma 8

!; �

0

j=

G

GI ^ 9u(pre(u := new

)[z=this℄) :

By de�nition of the annotation, !; �

0

j=

G

GI implies that there is a rea
hable

stable
on�guration hT

1

; �

1

i su
h that dom(�

1

) = dom(�

0

) and �

1

(
)(h

omm

) =

�

0

(
)(h

omm

) for all
 2 dom(�

0

).

The pre
ondition of the obje
t
reation statement

!; �

0

j=

G

9u(pre(u := new

)[z=this℄)

Proofs 85

implies

![u 7!Z℄; �

0

j=

G

pre(u := new

)[z=this℄

for some Z 2 dom

Obje
t

nil

(�

0

). Applying the lifting Lemma 3 we get that

!; �

0

(�); � j=

L

pre(u := new

)

for a lo
al state � with �(this) = !(z) = �, �(u) = Z, and �(v) = !(v) for

all other lo
al variables v. By de�nition of the annotation, there is a rea
hable

global
on�guration hT

2

; �

2

i su
h that �

2

(�) = �

0

(�) and (�; hu := new

; ~y :=

~ei; stm) 2 T

2

.

To be able to apply the global merging lemma and analogous to the situation

in the proof of the
ooperation test for
ommuni
ation (Lemma 33), we de�ne

the
on�guration hT

0

2

; �

0

2

i either

1. as the last stable global
on�guration in the
omputation leading to hT

2

; �

2

i,

if it de�nes the same instan
e state for � as �

2

, or

2. as the
on�guration following hT

2

; �

2

i when extending the
omputation by

one
omputation step, otherwise. Again note that the extension is determin-

isti
.

In the �rst
ase, either hT

2

; �

2

i itself is stable or the
omputation hT

0

2

; �

0

2

i �!

�

hT

2

; �

2

i exe
utes some obje
t
reation or
ommuni
ation possibly followed by

observations in obje
ts di�erent from �, but it does not exe
ute any obser-

vations in �. From (�; hu := new

; ~y := ~ei; stm) 2 T

2

we
on
lude that also

(�; hu := new

; ~y := ~ei; stm) 2 T

0

2

(otherwise its statement would begin with an

assignment), and that �

2

(�) = �

0

2

(�). In the se
ond
ase, hT

2

; �

2

i is not stable

sin
e otherwise the �rst
ase would apply. Furthermore, sin
e the instan
e state

�

2

(�) di�ers from the instan
e state of � in the last stable
on�guration in the

omputation, we know that in the last two steps of the
omputation a
ommu-

ni
ation has taken pla
e, where the sender obje
t is � whi
h already exe
uted

its observation, but not yet the re
eiver obje
t.

Sin
e hT

1

; �

1

i is stable, the last element in the sequen
e �

1

(�)(h

omm

) is not

the observation of the sender part of a self-
ommuni
ation. Sin
e �

2

(�)(h

omm

) =

�

0

(�)(h

omm

) = �

1

(�)(h

omm

), neither is the last element in �

2

(�)(h

omm

). Thus

the re
eiver obje
t di�ers from �. Exe
uting the observation of the re
eiver part

outside � leads to a
on�guration hT

0

2

; �

0

2

i with the same instan
e state for � as

�

2

and still
ontaining (�; hu := new

; ~y := ~ei; stm).

Thus we
on
lude that hT

0

2

; �

0

2

i is a rea
hable stable
on�guration su
h that

�

0

2

(�) = �

2

(�) = �

0

(�) and (�; hu := new

; ~y := ~ei; stm) 2 T

0

2

.

Re
all that hT

1

; �

1

i is a rea
hable stable
on�guration with �

1

(
)(h

omm

) =

�

0

(
)(h

omm

) for all
 2 dom(�

0

), espe
ially �

1

(�)(h

omm

) = �

0

(�)(h

omm

) =

�

2

(�)(h

omm

) = �

0

2

(�)(h

omm

). Using the global merging Lemma 11 applied to

the rea
hable stable global
on�gurations hT

0

2

; �

0

2

i and hT

1

; �

1

i we get that there

is a rea
hable stable
on�guration hT

3

; �

3

i with �

3

(�) = �

0

2

(�) = �

2

(�) = �

0

(�)

86 Proofs

and �

3

(
) = �

1

(
) for all obje
ts
 di�erent from � from the domain of �

1

, whi
h

equals the domain of �

0

. Furthermore, sin
e hT

0

2

; �

0

2

i and hT

3

; �

3

i are stable,

(�; hu := new

; ~y := ~ei; stm) 2 T

0

2

, �(this) = �, and �

0

2

(�) = �

3

(�), the lo
al

merging Lemma 10 implies that (�; hu := new

; ~y := ~ei; stm) 2 T

3

.

So we know that hT

3

; �

3

i is a rea
hable stable
on�guration
ontaining the

lo
al
on�guration (�; hu := new

; ~y := ~ei; stm) 2 T

3

, and de�ning �

3

(�) = �

0

(�)

and �

3

(�) = �

1

(
) for all other obje
ts
 di�erent from � from the domain of

�. Now exe
uting the instantiation statement in the lo
al
on�guration (�; hu :=

new

; ~y := ~ei; stm) in hT

3

; �

3

i
reates a new obje
t � =2 dom(�

3

) and results in

a new global
on�guration hT

0

3

; �

0

3

i with �

0

3

= �

3

[� 7!�

init

inst

℄. Espe
ially, hT

0

3

; �

0

3

i

is a rea
hable global
on�guration with �

0

3

(�) = �

3

(�) = �

0

(�) = �(�) and

(�; h~y := ~ei; stm) in hT

3

; �

3

i 2 T

0

3

, i.e.,

!; �(�); � j=

L

post(u := new

) :

and with the lifting Lemma 3 together with the de�nition of � this means

!; � j=

G

post(u := new

)[z=this℄

as required in the
ooperation test.

As hT

0

3

; �

0

3

i is a rea
hable global
on�guration with �

0

3

(�) = �(�) = �

init

inst

we

know

!; �(�); �

0

j=

L

I

for some lo
al state � with �(this) = �. Applying the lifting Lemma 3 again with

!(u) = � yields the required
ondition for the
lass invariant.

!; � j=

G

I

[u=this℄ ;

as required.

To show �nally satisfa
tion of the global invariant, let hT

3

; �

3

i �! hT

0

3

; �

0

3

i

�! hT

00

3

; �

00

3

i be the
omputation exe
uting the obje
t
reation and its obser-

vation in the lo
al
on�guration (�; hu := new

; ~y := ~ei; stm) 2 T

3

su
h that

� =2 dom(�

3

) is the identity of the new obje
t. Then �

0

3

= �

3

[� 7!�

init

inst

℄, and

�

00

3

= �

0

3

[�:~y 7![[~e ℄℄

�

0

3

(�);�

E

℄. We have to show that

!; � j=

G

GI [

~

E=z:~y℄ ;

where

~

E = ~e[z=this℄. Applying the substitution Lemma 2 yields

[[GI [

~

E=z:~y℄℄℄

!;�

G

= [[GI ℄℄

!;�[�:~y 7![[

~

E℄℄

!;�

G

℄

G

:

Now let �

00

= �[�:~y 7![[

~

E℄℄

!;�

G

℄. Transforming the expression

~

E

[[

~

E℄℄

!;�

G

= [[~e[z=this℄℄℄

!;�

G

= [[~e ℄℄

�(�);�

E

= [[~e ℄℄

�

3

(�);�

E

= [[~e℄℄

�

0

3

(�);�

E

;

Proofs 87

with the help of the lifting Lemma 3 and the de�nition of � , this means

�

00

= �

0

[� 7!�

init

inst

℄[�:~y 7![[~e ℄℄

�

0

3

(�);�

E

℄ :

Remember that

�

00

3

= �

3

[� 7!�

init

inst

℄[�:~y 7![[~e℄℄

�

0

3

(�);�

E

℄ :

Furthermore, �

0

3

(
)(h

omm

) = �

3

(
)(h

omm

) = �(
)(h

omm

) for all
 2 dom(�

0

),

and
onsequently �

00

agrees also on all h

omm

values with �

00

3

.

Thus hT

00

3

; �

00

3

i is a rea
hable stable
on�guration su
h that �

00

3

(
)(h

omm

) =

�

00

(
)(h

omm

) for all
 2 dom(�), and we get by the de�nition of the annotation

!; �

00

j=

G

GI , and thus !; � j=

G

GI [

~

E=z:~y℄, as required. ut

88 Notation

C Notation

typ. element, symbol de�nition, explanation

notation domain

Syntax

 C
lass names

m M method names

t T types

x IVar

t

instan
e variables

u; v TVar

t

lo
al variables

y Var

t

lo
al or instan
e variables

f F operators

e Exp

t

expressions

sexp SExp

t

side-e�e
t expressions

stm Stm

statements

meth Meth

methods

lass Class
lasses

prog program

Semanti
s

� Val

obje
t identities

Val

t

values of type t

Val

S

t

Val

t

all values (ex
ept nil)

nil

empty referen
e of type

Val

nil

Val

_

[fnil

g identities or empty referen
e

val Val

nil

S

t

fVal

t

nil

g all values

� �

lo

TVar

_

[fthisg* Val

nil

lo
al state

�

inst

�

inst

IVar * Val

nil

instan
e state

� �

S

Val

* �

inst

global state

(�

inst

; �) �

inst

��

lo

instan
e lo
al state

dom

(�) 2

Val

existing instan
es of
 in �

dom

t

(�) 2

Val

t

existing values of type t

dom(�) 2

Val

existing values

dom

nil

(�) 2

Val

nil

existing values in
luding nil

(�; stm) �

lo

� Stm lo
al
on�guration

� Thread Sta
k of �

lo

� Stm thread
on�guration

hT; �i 2

Thread

�� global
on�guration

[[℄℄

E

(�

inst

��

lo

)! (Exp * Val

nil

) lo
al evaluation fun
tion

isfree 2

Thread

�

S

Val

! Bool entering possible?

started 2

Thread

�

S

Val

! Bool thread of an obje
t started?

syn
 C �M! Bool m of
 syn
hronized?

Assertions (syntax)

z LVar

t

logi
al var's

e LExp lo
al expressions

p; q LAss lo
al assertions

E GExp global expressions

P;Q GAss global assertions

Assertions (semanti
s)

!
 LVar * Val

nil

logi
al environment

[[℄℄

L

(
 ��

inst

��

lo

)!

(LExp [LAss * Val

nil

) lo
al evaluation

[[℄℄

G

(
 ��)! (GExp [GAss * Val

nil

) global evaluation

Notation 89

90 Example

D Example

The following
lass implements interfa
es for read and write a

ess to some

database. Several threads may
on
urrently read the database. Before entering

the reading se
tion the threads must log in for reading, whi
h in
reases a
ounter

named readers by one; after �nishing reading, the threads log out by de
reasing

the
ounter.

Entering the
riti
al se
tion of writing is possible only if there are no threads

urrently reading, i.e., if the
ounter readers has the value 0. Sin
e the meth-

ods for write a

ess and for logging in for reading are syn
hronized, no threads

an log in for reading or begin to write if another thread is
urrently writ-

ing. Thus we
on
lude that write a

ess is mutually ex
lusive wrt. reading and

writing, whereas
on
urrent reading is possible. The example is formulated in

Java-syntax, whi
h is slightly di�erent from Java

MT

.

lass Resour
ef

private int readers = 0;

publi
 void read()f

login read();

// Criti
al se
tion of reading

logout read();

g

private syn
hronized void login read()f

readers = readers + 1;

g

private void logout read()f

readers = readers � 1;

g

publi
 syn
hronized void write()f

while (readers != 0) f;g

// Criti
al se
tion of writing

g

g

To de�ne an indu
tive assertion network expressing the program proper-

ties mentioned above, we �rst have to transform the program. In the following

transformation the type Id denotes the type Obje
t� Int of the auxiliary formal

parameter id; the type list Id is denoted by IdSequen
e. The operation "Æ" ap-

plied to a sequen
e of type IdSequen
e and an identity of type Id appends the

given identity at the end of the sequen
e. The operator "�" applied again to

a sequen
e of type IdSequen
e and an identity of type Id removes exa
tly one

o

urren
e of the given identity from the sequen
e, if any, and lets the sequen
e

untou
hed otherwise.

Besides the built-in transformation introdu
ing the expli
it
ommuni
ation

statements with their bra
keted se
tions and the augmentation with the built-in

auxiliary variables, we introdu
e the auxiliary instan
e variable reader threads,

Example 91

whi
h we use to store the identities of all
urrently reading threads. For the

sake of readability, we don't show the augmentation with the auxiliary variables

allerobj, lo
k, started, and stable, sin
e they don't o

ur in the annotation, and

thus their values do not in
uen
e the indu
tiveness of the network.

lass Resour
ef

private int readers = 0;

private IdSequen
e reader threads;

publi
 void read(Id id)f

hlogin read(
allee(id))i; hre
eivei;

// Criti
al se
tion of reading

hlogout read(
allee(id))i; hre
eivei;

hreturni;

g

private syn
hronized void login read(Id id)f

readers, reader threads = readers + 1, reader threads Æ id;

hreturni;

g

private void logout read(Id id)f

readers, reader threads = readers � 1, reader threads � id;

hreturni;

g

publi
 syn
hronized void write(Id id)f

while (readers != 0) f;g

// Criti
al se
tion of writing

hreturni;

g

g

Ea
h reading thread is logged in, and
onsequently its identity is appended

to the sequen
e reader threads. Using the fa
t that a thread
an remove only

its own identity from the sequen
e reader threads, we state as invariant that

the identity of a thread is represented in reader threads i� the thread is logged

in for reading. Thus we observe that the value of reader threads of ea
h in-

stan
e of the
lass Resour
e
ontains the identities of all threads that are
ur-

rently logged in for reading. Its length equals the number of reading threads,

i.e., readers = jreader threads j. Combining the above observations leads to the

following annotation of the transformed program:

lass Resour
ef I = (readers = jreader threads j)

private int readers = 0;

private IdSequen
e reader threads;

publi
 void read(Id id)f fIg

hlogin read(
allee(id))i; fIg hre
eivei; f
allee(id) 2 reader threads ^ Ig

// Criti
al se
tion of reading f
allee(id) 2 reader threads ^ Ig

hlogout read(
allee(id))i; fIg hre
eivei; fIg

92 Example

hreturni; fIg

g

private syn
hronized void login read(Id id)f fIg

readers, reader threads = readers + 1, reader threads Æ id;

fid 2 reader threads ^ Ig

hreturni; fIg

g

private void logout read(Id id)f fid 2 reader threads ^ Ig

readers, reader threads = readers � 1, reader threads � id;

fIg

hreturni; fIg

g

publi
 syn
hronized void write(Id id)f fIg

while (readers != 0) f;g freaders = 0 ^ Ig

// Criti
al se
tion of writing freaders = 0 ^ Ig

hreturni; fIg

g

g

Next we show that the above transformed and annotated
lass de�nition sat-

is�es the veri�
ation
onditions. Initial and lo
al
orre
tness are straightforward.

For the interferen
e freedom test we have to show the invarian
e of assertions un-

der the exe
ution of the assignments in the methods login read and logout read.

Invarian
e of the
lass invariant is straightforward. Invarian
e of the assertion

allee(id) 2 reader threads ^ I under appending an element to reader threads in

the method login read is easy to see. The assertion is also invariant under the

exe
ution of the assignment in logout read whi
h removes an element from the se-

quen
e, sin
e the assertion interleavable in the veri�
ation
ondition implies that

the assertion des
ribes a thread di�erent from the one exe
uting the assignment.

I.e., :samethread(id

0

; id), and thus
allee(id

0

) 6= id, where id

0

denotes the identity

of the thread des
ribed by the assertion, and id is the identity of the thread

exe
uting the assignment. The same arguments apply to the invarian
e of the

assertion id 2 reader threads ^ I . The assertion readers = 0^ I
annot interfere

with the exe
ution of any assignments: Sin
e the methods write and login read

are both syn
hronized, the assertion interleavable applied to readers = 0^ I and

the assignment in login read evaluates to false , and thus we don't have to show

interferen
e freedom for this
ase. Finally, the assertion readers = 0 ^ I imply

that the sequen
e reader threads is empty, that
ontradi
ts to the pre
ondition

id 2 reader threads ^ I of the assignment in the method logout read. Thus the

veri�
ation
onditions of the interferen
e freedom test are satis�ed.

For the
ooperation test we de�ne the trivial global invariant GI = true.

The
ooperation test for the invo
ation of login read and for returning from

logout read are straightforward. The
ooperation test de�nes the following
on-

dition for returning from the method login read invoked by a thread exe
uting

Example 93

the method read:

!; � j=

G

(id 2 reader threads ^ I)[z

0

;
allee(id)=this; id℄ ^ I [z=this℄ ^

this[z=this℄ = z

0

^ z 6=nil ^ z

0

6=nil

! I [z

0

;
allee(id)=this; id℄ ^ (
allee(id) 2 reader threads ^ I)[z=this℄ ;

i.e.,

!; � j=

G

allee(id) 2 z

0

:reader threads ^ I [z

0

=this℄ ^ I [z=this℄ ^ z = z

0

! I [z

0

=this℄ ^
allee(id) 2 z:reader threads ^ I [z=this℄ ;

whose satisfa
tion is easy to see. Similarly for the invo
ation of the method

logout read by a thread exe
uting the method read we have to show that

!; � j=

G

(
allee(id) 2 reader threads ^ I)[z=this℄ ^ I [z

0

=this℄ ^

this[z=this℄ = z

0

^ z 6= nil ^ z

0

6= nil

! I [z=this℄ ^ (id 2 reader threads ^ I)[z

0

;
allee(id)=this; id℄ ;

i.e.,

!; � j=

G

allee(id) 2 z:reader threads ^ I [z=this℄ ^ I [z

0

=this℄ ^ z = z

0

! I [z=this℄ ^
allee(id) 2 z

0

:reader threads ^ I [z

0

=this℄ ;

whose validity is again straightforward.

This example shows that with our proof method we
an prove properties

of instan
es of a
lass without expli
itly de�ning the whole program, i.e., the

ontext of the
lass. The pre
onditions of the methods in the
lass de�ne as-

sumptions about the behavior of the
ontext. The obje
t properties of instan
es

of the
lass are invariant, if these assumptions are satis�ed for all invo
ations of

instan
e methods by the
ontext.

