
INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK

LEHRSTUHL FÜR SOFTWARETECHNOLOGIE

A Compositional Operational Semantics

for JavaMT

Erika Ábrahám-Mumm

Frank S. de Boer

Willem-Paul de Roever

Martin Steffen

Bericht Nr. TR-ST-02-02

15. Mai 2002

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

A Compositional Operational Semantis

for Java

MT

?

May 14, 2002

Erika

�

Abrah�am-Mumm

1

, Frank S. de Boer

2

,

Willem-Paul de Roever

1

, and Martin Ste�en

1

1

Christian-Albrehts-University Kiel, Germany

2

CWI Amsterdam, The Netherlands

Abstrat. Besides the features of a lass-based objet-oriented lan-

guage, Java integrates onurreny via its thread-lasses, allowing for

a multithreaded ow of ontrol. The onurreny model inludes shared-

variable onurreny via instane variables, oordination via reentrant

synhronization monitors, synhronous message passing, and dynami

thread reation.

This report ontains a ompositional version of the semantis of Java

MT

from [1℄.

1 Introdution

The semantial foundations of Java [4℄ have been thoroughly studied ever sine

the language gained widespread popularity (see e.g. [2, 7, 3℄). The researh on-

erning Java's proof theory mainly onentrates` on various aspets of sequential

sublanguages (see e.g. [5, 8, 6℄). As a �rst step towards a ompositional proof sys-

tem, this paper presents a ompositional operational semantis for multithreaded

Java programs.

Conentrating on the issues of onurreny, we investigate an abstrat pro-

gramming language Java

MT

[1℄, a subset of Java, featuring dynami objet re-

ation, method invoation, objet referenes with aliasing, and spei�ally on-

urreny. Threads, the units of onurreny, are reated as instanes of spei�

thread-lasses and share the instane variables of objets.

As a mehanism of onurreny ontrol, methods an be delared as syn-

hronized, where synhronized methods within a single objet are exeuted by

di�erent threads mutually exlusive. A all hain orresponding to the exeu-

tion of a single thread an ontain several invoations of synhronized methods

within the same objet. This orresponds to the notion of re-entrant monitors

and eliminates the possibility that a single thread deadloks itself on an objet's

synhronization barrier.

To support a lean interfae between internal and external behavior, Java

MT

does not allow quali�ed referenes to instane variables. As a onsequene,

?

Part of this work has been �nanially supported by IST projet Omega (IST-2001-

33522) and NWO/DFG projet Mobi-J (RO 1122/9-1, RO 1122/9-2)

2 The programming language Java

MT

shared-variable onurreny is aused by simultaneous exeution within a single

objet, but not aross objet boundaries. The same aess disipline was fol-

lowed in [1℄ to obtain a modular proof system, leanly separating veri�ation

onditions on the level of instanes from those on a global level, dealing with

objet strutures and ommuniation.

Even if the proof system was split into a loal and a global level in op. it.,

the semantis was presented on a global level, only. In this note, we reast the

semantis of [1℄ in a ompositional way. This means, the operational semantis

is desribed in two stages: �rst we de�ne omputations of a single instane, and

afterwards speify rules for omposing the behavior of sets of instanes, where

ommuniation between di�erent instanes is synhronized by transition labels

whih uniquely identify the ommuniation partners. The semantis serves as a

stepping stone to a ompositional proof-system.

2 The programming language Java

MT

In this setion we desribe the language Java

MT

(\Multi-Threaded Java"); the

syntax orresponds to the one in [1℄. We start with highlighting the features of

Java

MT

and its relationship to full Java, before formally desribing its abstrat

syntax.

2.1 Introdution

Java

MT

is a multithreaded sublanguage of Java. Programs, as in Java, are given

by a olletion of lasses ontaining instane variable and method delarations.

Instanes of the lasses, i.e., objets, are dynamially reated, and ommuniate

via method invoation, i.e., synhronous message passing. As we fous on the

onurreny aspets of Java, all lasses in Java

MT

are thread lasses in the sense

of Java: Eah lass ontains a start-method that an be invoked only one for

eah objet, resulting in a new thread of exeution. The new thread starts to

exeute the start-method of the given objet while the initiating thread ontinues

its own exeution.

As a mehanism of onurreny ontrol, methods an be delared as synhro-

nized. The exeution of synhronized methods within a single objet by di�erent

threads is mutually exlusive, whereas non-synhronized methods do not require

suh oordination. Note that reursive invoations of synhronized methods on

the same objet are allowed, as they are exeuted in a single all hain by the

same thread. This orresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., eah method invoked on

an objet must be supported by the objet, the types of the formal and atual

parameters of the invoation must math, et. As the stati relationships between

lasses are orthogonal to multithreading aspets, we ignore in Java

MT

the issues

of inheritane, and onsequently subtyping, overriding, and late-binding. For

simpliity, we neither allow method overloading, i.e., we require that eah method

name is assigned a unique list of formal parameter types and a return type. In

The programming language Java

MT

3

short, being onerned with the veri�ation of the run-time behavior, we assume

a simple monomorphi type disipline for Java

MT

.

2.2 Abstrat syntax

As Java, the language Java

MT

is strongly typed and supports lass types and

primitive, i.e., non-referene types. As built-in primitive types we restrit to

Int and Bool. Besides the built-in types for integers and booleans, the set of

user-de�nable types is given by a set of lass names C, with typial element .

Furthermore, the language allows pairs of type t

1

�t

2

and sequenes of type list t.

Side-e�et expressions without a value, i.e., methods without a return value, will

get the type Void. Thus the set of all types T with typial element t is given by

the following abstrat grammar:

t ::= Void j Int j Bool j j t� t j list t

For eah type, the orresponding value domain is equipped with a standard

set F of operators with typial element f. Eah operator f has a unique type

t

1

�� � ��t

n

! t and a �xed interpretation f , where onstants are operators of zero

arity. Apart from the standard repertoire of arithmetial and boolean operations,

the set F of operators also ontains operations on tuples and sequenes like

projetion, onatenation, et.

Sine Java

MT

is strongly typed, all program onstruts of the abstrat syntax

|variables, expressions, statements, methods, lasses| are silently assumed to

be well-typed. In other words, we work with a type-annotated abstrat syntax

where we omit the expliit mentioning of types when no onfusion an arise.

For variables, we notationally distinguish between instane and loal vari-

ables. Instane variables hold the state of an objet and exist throughout the

objet's lifetime. We do not allow quali�ed referenes to instane variables in

Java

MT

, i.e., objets do not have diret aess to instane variables of other

objets. Loal variables are stak-alloated. They play the role of formal param-

eters and variables of method de�nitions and exist only during the exeution of

the method to whih they belong.

The set of variablesVar = IVar

_

[TVar with typial element y is given as the

disjoint union of instane and loal variables. The identity of an objet is stored

in its lass-typed onstant this =2 Var . The set Var

t

ontains all variables of type

t, and orrespondingly for IVar

t

and TVar

t

. As we assume a monomorphi type

disipline, Var

t

\ Var

t

0

= ; for distint types t and t

0

. We use x; x

0

; x

1

; : : : as

typial elements from IVar , and u; u

0

; u

1

; : : : as typial elements from TVar .

Besides using instane and loal variables, side-e�et free expressions e 2 Exp

are built from this, nil, and from subexpressions using the given operators. We

use Exp

t

to denote the set of well-typed expressions of type t. The expression

this is used for self-referene within an objet, and nil is a onstant representing

an empty referene. Expressions with side-e�ets sexp 2 SExp ontain lauses

for objet reation and method invoation. The expression new

stands for the

4 The programming language Java

MT

referene to a new instane of lass . An invoation of a method with name m

on objet e

0

with atual parameters e

1

; : : : ; e

n

is written as e

0

:m(e

1

; : : : ; e

n

),

where M is an in�nite set of method names ontaining main, start, and run.

Besides the mentioned simpli�ations on the type system, we impose for

tehnial reasons the following restritions: We require that method invoation

and objet reation statements ontain only loal variables, i.e., that none of the

expressions e

0

; : : : ; e

n

ontains instane variables, and that formal parameters

do not our on the left-hand side of assignments. This restrition implies that

during the exeution of a method the values of the atual and formal parameters

are not hanged. Finally, the result of an objet reation or method invoation

statement may not be assigned to instane variables. This restrition allows for

a proof system with separated veri�ation onditions for interferene freedom

and ooperation. It should be lear that it is possible to transform a program to

adhere to this restritions at the expense of additional loal variables and thus

new interleaving points.

Statements stm 2 Stm are built from side-e�et expressions and assignments

of the form x := e, u := e, and u := sexp by using standard ontrol onstruts

like sequential omposition, onditional statements, and iteration, to form om-

posite statements. Espeially, we will use � to denote the empty statement.

A method de�nition modif m(u

1

; : : : ; u

n

)f stm; rexp g 2 Meth onsists of a

method name m, a list of formal parameters u

1

; : : : ; u

n

, and a method body

body

m;

of the form stm; rexp. The set Meth

ontains the methods of lass .

To simplify the proof system we require that method bodies are terminated by a

single return statement, either giving bak a value using return e, or not, written

as return. Additionally, methods are deorated by a modi�ermodif distinguishing

between non-synhronized and synhronized methods.

3

We use syn(;m) to

state that method m in lass is synhronized. In the sequel we also refer to

statements in the body of a synhronized method as being synhronized. A lass

fmeth

1

: : :meth

n

meth

start

meth

run

g is de�ned by its name and its methods,

whose names are assumed to be distint. As mentioned earlier, all lasses in

Java

MT

are thread lasses; all lasses ontain a start-method meth

start

and a run-

method meth

run

without return values. A program hlass

1

: : : lass

n

lass

main

i,

�nally, is a olletion of lass de�nitions having di�erent lass names, where

lass

main

is the entry point of the program exeution. This lass spei�ally

ontains a main-method meth

main

without return value. We all its body, written

as body

main

, the main statement of the program.

The set of instane variables IVar

of a lass ontains all instane variables

ourring in that lass. Correspondingly for methods, the set of loal variables

TVar

m;

of a method m in lass is given by the set of all loal variables

ourring in that method.

The syntax is summarized in Table 1.

3

Java does not have the \non-synhronized" modi�er: methods are non-synhronized

by default.

Semantis 5

exp ::= x j u j this j nil j f(exp; : : :; exp) e2Exp expressions

sexp ::= new

j exp:m(exp; : : :; exp) sexp2SExp side-e�et exp

stm ::= sexp j x := exp j u := exp j u := sexp

j � j stm; stm j if exp then stm else stm

j while exp do stm : : : stm2Stm statements

modif ::= nsyn j syn modi�ers

rexp ::= return j return exp

meth ::= modif m(u; : : :; u)f stm ; rexpg meth2Meth methods

meth

run

::= modif run()f stm; return g meth

run

2Meth run-meth.

meth

start

::= nsyn start()f this:run(); return g meth

start

2Meth start-meth.

meth

main

::= nsyn main()f stm; return g meth

main

2Meth main-meth.

lass ::= fmeth : : :meth meth

run

meth

start

g lass2Class lass defn's

lass

main

::= fmeth : : :meth meth

run

meth

start

meth

main

g lass

main

2Class main-lass

prog ::= hlass: : :lass lass

main

i programs

Table 1. Java

MT

abstrat syntax

3 Semantis

Next, we de�ne ompositionally the operational semantis of Java

MT

, espeially,

the mehanisms of multithreading, dynami objet reation, method invoation,

and oordination via synhronization. After introduing the semanti domains,

we desribe states and on�gurations in the following setion. The operational

semantis is presented in Setion 3.2 by labeled transitions between program

on�gurations. The semantis is given in two levels. Transitions on the loal

level desribe the behavior of a single instane, where we distinguish self-alls

from non-self-alls. The ombined behavior of olletions of instanes is formu-

lated on the global level, where di�erent objets ommuniate by label synhro-

nization. The semantis desribed here is equivalent to the one presented non-

ompositionally in [1℄, where the behavior was given by a number of interating

threads or exeution staks, working on a global state.

3.1 States and on�gurations

To give meaning to variables, we �rst �x the domains Val

t

of the various types t.

Thus Val

Int

and Val

Bool

denote the set of integers and booleans, Val

list t

are �nite

sequenes over values from Val

t

, and Val

t

1

�t

2

stands for the produt Val

t

1

�

Val

t

2

. For lass names 2 C, the set Val

with typial elements �; �; : : : denotes

an in�nite set of objet identi�ers, where the domains for di�erent lass names

are assumed to be disjoint. We will write Val

Objet

for

S

2C

Val

. For eah lass

name , nil

=2 Val

represents the value of nil in the orresponding type. In

general we will just write nil , when is lear from the ontext. We de�ne Val

nil

as Val

_

[fnil

g, and orrespondingly for ompound types. The set of all possible

non-nil values

S

t

Val

t

is written as Val , and Val

nil

denotes

S

t

Val

t

nil

.

6 Semantis

The on�guration of a program is haraterized by the on�gurations of all

existing instanes, where in eah instane, a number threads may be exeuting,

eah with its own loal state and all sharing the instane state.

A loal state � 2 �

lo

of a thread holds the values of its loal variables and

is modeled as a partial funtion of type TVar * Val

nil

. We denote by �

init

loal states whih assign to eah lass-typed loal variable of type

0

from their

domain the value of nil

0

, to eah boolean variable the value false , and to eah

integer variable the value 0. Pairs are initialized orrespondingly; sequenes are

initially empty. A loal on�guration (�; stm) of a thread spei�es, in addition

to its loal state, its point of exeution represented by the statement stm.

The state of an objet is haraterized by its instane state �

inst

2 �

inst

of type IVar

_

[fthisg * Val

nil

whih assigns values to its instane variables;

we require that this 2 dom(�

inst

) and that �

inst

(this) 2 Val

Objet

.

4

The initial

instane state �

init

inst

assigns to eah variable from its domain of type

0

, Bool, and

Int the initial values nil

0

, false , and 0, respetively. Pairs are initialized orre-

spondingly; sequenes are initially empty. An instane on�guration (�

inst

;

lo

)

onsists of an instane state paired with a �nite set

lo

of loal on�gurations

of the threads urrently exeuting within the instane.

Finally, a global on�guration spei�es a �nite set of instane on�gurations.

Given a global on�guration , we an use the values for the self-referenes

this in the instane states to de�ne what it means for an objet to exist in

. So let the set of existing objets of type de�ned as dom

() = f� 2

Val

j 9(�

inst

;

lo

) 2 : �

inst

(this) = �g; the set dom

nil

() is given by

dom

() [fnil

g. For the set of objets

S

dom

() we write dom

Objet

(), and

orrespondingly for dom

Objet

nil

(). For the built-in types Int and Bool we de�ne

dom

t

and dom

t

nil

, independently of , as the set of pre-existing values Val

Int

and Val

Bool

, respetively. For ompound types, dom

t

and dom

t

nil

are de�ned

orrespondingly. We refer to the set

S

t

dom

t

() by dom(); dom

nil

() denotes

S

t

dom

t

nil

().

Expressions e 2 Exp are evaluated with respet to an instane loal state

(�

inst

; �) 2 �

inst

� �

lo

, where the instane state de�nes the identity and val-

ues of the instane variables of the objet �

inst

(this) in whih the expression is

evaluated, and � gives values to the loal variables. This means, the semanti

funtion [[℄℄

E

: (�

inst

� �

lo

) ! (Exp * Val) shown in Table 2 evaluates in

the ontext of an instane loal state (�

inst

; �) all expressions ontaining only

variables from dom(�

inst

) [dom(�): Instane variables x and loal variables

u are evaluated to �

inst

(x) and �(u), respetively. The value of this refers to

the objet in whih the expression is evaluated, the value of nil is given by the

empty referene nil . Finally, the evaluation of ompound expressions is de�ned

by homomorphi lifting.

For a loal state �, a loal variable u 2 dom(�) of type t, and a value

v 2 Val

t

nil

, we denote by �[u 7! v℄ the loal state whih assigns v to u and agrees

4

In Java, this is a \�nal" instane variable, whih for instane implies, it annot be

assigned to.

Semantis 7

[[x℄℄

�

inst

;�

E

= �

inst

(x)

[[u℄℄

�

inst

;�

E

= �(u)

[[this℄℄

�

inst

;�

E

= �

inst

(this)

[[nil℄℄

�

inst

;�

E

= nil

[[f(e

1

; : : : ; e

n

)℄℄

�

inst

;�

E

= f([[e

1

℄℄

�

inst

;�

E

; : : : ; [[e

n

℄℄

�

inst

;�

E

)

Table 2. Expression evaluation

with � on the values of all other variables . The semanti update �

inst

[x 7! v℄

of instane states is de�ned analogously. We use these operators analogously for

setting the values of a sequene of variables. We use �[~y 7!~v℄ also for arbitrary

variable sequenes, where instane variables are untouhed, i.e., �[~y 7!~v℄ is de-

�ned by �[~u 7!~v

u

℄, where ~u is the sequene of the loal variables in ~y and ~v

u

the orresponding value sequene. Similarly, for instane states, �

inst

[~y 7!~v℄ is

de�ned by �

inst

[~x 7!~v

x

℄ where ~x is the sequene of the instane variables in ~y

and ~v

x

the orresponding value sequene.

3.2 Operational semantis

Computation steps of a program are represented by labeled transitions between

global on�gurations. The operational semantis is given in two stages: �rst we

desribe the behavior of a single instane and afterwards the ombined behavior

of sets of instanes, both as labeled transition system between instane on�gu-

rations, respetively between global on�gurations.

To be able to synhronize ommuniating partners in the parallel omposition

semantis, we have to identify loal on�gurations being in aller-allee relation-

ship. To do so, we extend the loal state domains with the variables allerobj

and id of types Objet and Objet� Int, resp., whih may not our in programs.

The value of allerobj stores the identity of the aller objet in the loal state of

the allee. We identify a loal on�guration by the thread to whih it belongs

together with its position in the thread's all hain. Thus the �rst omponent

of id identi�es the exeuting thread via the objet in whih it has begun its ex-

eution and the seond omponent stores the position of the loal on�guration

in the all hain of the thread. Note that this identi�ation is unique, sine at

most one thread an begin its exeution in a single objet.

Using these identities, we de�ne the prediates allee(�; n) = (�; n+ 1) and

aller (�; n + 1) = (�; n), for all n � 0. For the �rst loal on�guration in a all

hain we de�ne aller (�; 0) = (nil ; 0). With the above identi�ation mehanism

we an express that two loal on�gurations belong to the same thread using the

prediate samethread ((�

1

; n

1

); (�

2

; n

2

)) i� �

1

= �

2

. That a loal on�guration

ours earlier than another in the all hain of a single thread, is aptured by

(�

1

; n

1

) < (�

2

; n

2

) i� �

1

= �

2

and n

1

< n

2

.

8 Semantis

As synhronization labels, we distinguish �!m(�; id ; ~v) and �?m(�; id ; ~v) for

sending and reeiving method alls, respetively, where method m of the allee

objet � is invoked with atual parameters ~v, and where the loal on�guration

of the aller exeuting in the objet � is identi�ed by id . In analogy, we use

�!(�; id ; v) and �?(�; id ; v) for sending, resp. reeiving the value v exhanged

when returning to � from a method of � exeuted in the loal on�guration

identi�ed by id . For methods without a return value the value v is omitted.

For a terminating thread, the aller objet to whih the ontrol returns is given

by the value nil . Though the fat that a thread terminates is aptured by the

label nil !(�; id).

5

Creating a new instane � is indiated by the label new(�).

Finally, we use � to label internal steps. We write Lab for the set of labels

with l as typial element. Furthermore, we will use l

om

as typial element for

labels representing ommuniation, i.e., di�erent from � and all objet reation

labels new(�), and write sender (l

om

) and reeiver(l

om

) to denote the sender,

respetively the reeiver, of the message, as �xed in l

om

.

Now, Tables 3 and 4 de�ne the transition relation �!

l

between instane

on�gurations and Table 5 between global on�gurations. For notational onve-

niene, we will later simple write �! when leaving l unspei�ed.

We start with the rules for transitions for one instane. Assignments to in-

stane and loal variables update the instane state, respetively the loal state

(f. Ass

inst

and Ass

lo

). Exeuting u := new

, as shown in rule New,

6

has no

loal e�et exept that it stores the new objet's identity in the loal variable u.

The reation of the new objet itself and the initialization of its instane vari-

ables is dealt with at the global level. The prediate fresh expresses that a given

on�guration does not refer to an objet identity, i.e., that the objet identity is

fresh in the given ontext. Formally, for an objet � and a value v 2 Val

nil

we

de�ne:

fresh(v; �) =

8

>

>

<

>

>

:

false if v = �

true if v 6=� ^ v2Val

Bool

[Val

Int

[Val

Objet

nil

fresh(v

1

; �)^fresh(v

2

; �) if v=(v

1

; v

2

)2

S

t

1

;t

2

Val

t

1

�t

2

nil

8v

i

2 v:fresh(v

i

; �) if v 2

S

t

Val

list t

nil

:

5

A thread of a well-typed program annot return a value when terminating, sine

the start-method is of type Void. Therefore, v is left out of the label. Note also,

that a terminating thread will send as id the value (�; 0), sine terminating means,

popping-o� from topmost frame with depth 0 from the all-stak.

6

The statement new

is handled similarly but without hanging the loal state.

Semantis 9

Ass

inst

(�

inst

;

lo

_

[f(�; x := e; stm)g) �!

�

(�

inst

[x 7![[e℄℄

�

inst

;�

E

℄;

lo

_

[f(�; stm)g)

Ass

lo

(�

inst

;

lo

_

[f(�; u := e; stm)g) �!

�

(�

inst

;

lo

_

[f(�[u 7![[e℄℄

�

inst

;�

E

℄; stm)g)

fresh((�

inst

;

lo

_

[f(�; u := new; stm)g); �)

New

(�

inst

;

lo

_

[f(�; u := new; stm)g) �!

new(�)

(�

inst

;

lo

_

[f(�[u 7!�℄; stm)g)

[[e

0

℄℄

�

inst

;�

E

= � 6= nil �

inst

(this) = � 6= � id = �(id) ~v = [[~e ℄℄

�

inst

;�

E

if m = start then stm

0

= stm else stm

0

= return?u; stm �

Call

out

(�

inst

;

lo

_

[f(�; u := e

0

:m(~e); stm)g) �!

�!m(�;id;~v)

(�

inst

;

lo

_

[f(�; stm

0

)g)

�

inst

(this) = � 2 Val

� 6= � 2 Val

Objet

modif m(~u)f body g 2 Meth

syn(;m)! isfree(

lo

; id)

(m 6=start) !

0

lo

= f(�

init

[~u 7!~v℄[id 7! allee(id)℄[allerobj 7!�℄; body)g

(m=start ^ started (

lo

; �)) !

0

lo

= ;

(m=start ^ :started (

lo

; �)) !

0

lo

= f(�

init

[id 7!(�; 0)℄[allerobj 7! nil ℄; body)g

Call

in

(�

inst

;

lo

) �!

�?m(�;id;~v)

(�

inst

;

lo

_

[

0

lo

)

�

inst

(this) = � 6= � = �(allerobj) id = �(id) 6= (�; 0) v = �(u)

Return

out

(�

inst

;

lo

_

[f(�; returnu)g) �!

�!(�;id;v)

(�

inst

;

lo

)

�

inst

(this) = � 6= � 2 Val

Objet

id = �(id)

Return

in

(�

inst

;

lo

_

[f(�; return?u; stm)g) �!

�?(�;allee(id);v)

(�

inst

;

lo

_

[f(�[u 7! v℄; stm)g)

�

inst

(this) = � �(allerobj) = nil

Terminate

(�

inst

;

lo

_

[f(�; return)g) �!

nil !(�;id)

(�

inst

;

lo

_

[f(�; �)g)

Table 3. Operational semantis of an instane

10 Semantis

For loal states �, instane on�gurations (�

inst

;

lo

), and global on�gurations

, the prediate fresh is de�ned by

fresh(�; �) () 8u 2 dom(�):fresh(�(u); �)

fresh(�

inst

; �) () 8x 2 dom(�

inst

):fresh(�

inst

(x); �)

fresh((�

inst

;

lo

); �) () fresh(�

inst

; �) ^ 8(�; stm) 2

lo

:fresh(�; �))

fresh(; �) () 8(�

inst

;

lo

) 2 :fresh((�

inst

;

lo

); �):

Objets ommuniate by method alls, i.e., method invoation and the orre-

sponding returning of the result. For both types of ommuniation, an instane

an play the role of the sender or of the reeiver, and the transitions arry appro-

priate labels to de�ne the omposed behavior. For method invoation, the aller

determines the allee objet and evaluates the method arguments loally. When

reeiving a method invoation, the allee objet reates a new loal on�gura-

tion to evaluate the body. The identity of the aller objet and the aller loal

on�guration is ommuniated together with the atual parameter values via the

synhronizing label to the allee objet as show in the Call-rules of Table 3.

7

The handing-bak of the return value, using the aller/allee identi�ation, is

desribed in the two Return-rules of the same table.

Di�erent threads exeute synhronized methods mutually exlusive on a given

objet. So in ase of a synhronized method, the invoation is suessful only if

the lok is urrently free, or the invoation is exeuted by a thread that already

possesses the lok. Whether a loal on�guration of a thread identi�ed by id

is allowed to exeute a method all on an instane with loal on�guration set

lo

, is formalized by the prediate isfree , de�ned as isfree(

lo

; id) = true i� all

loal on�gurations in

lo

with a synhronized statement have an identity less

or equal id .

The start-method is speial in two respets. First, it an e�etively be invoked

only one on eah objet; further invoations of the start-method are without

e�et.

8

Seondly, its invoation gives rise to a new all hain, i.e., a new thread

of exeution. Hene, the identity of the loal state is initialized to (�; 0). The

loal variable allerobj is set to nil , sine after termination of the start-method

the whole thread terminates; thus the ontrol will not be given bak to the aller.

Returning from a start-method or from the initial invoation of the main-method

is handled by the rule Terminate, where the loal on�guration remains in the

loal on�guration set with an empty statement, representing the terminated

thread.

Left-out in Table 3 is the semantis of self-alls and self-returns; they are

handled separately in Table 4 as they are loal to one instane. Consequently,

the steps are all labeled with � . The rule Call

self

is the ounter-piee for the

7

A rule similar to Call

out

not shown in the table takes are about the invoation

e

0

:m(~e) of methods without storing the return value. Note that for methods without

formal parameters ~e and ~v are empty.

8

In Java an exeption is thrown if the thread is already terminated.

Semantis 11

pair Call

out

and Call

in

when aller and allee objet math, and similar for

returning. Note that the start-method an be invoked by a self-all (Start

self

and Start

skip

self

). Nevertheless we do not need a orresponding rule for returning

from a start-method, sine it does not return to the aller.

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) 2 Val

id = �(id)

modif m(~u)f body g 2 Meth

m 6= start syn(;m)! isfree(

lo

; id)

�

0

= �

init

[~u 7![[~e℄℄

�

inst

;�

E

℄[id 7! allee(id)℄[allerobj 7!�℄

Call

self

(�

inst

;

lo

_

[f(�; u := e

0

:m(~e); stm)g) �!

�

(�

inst

;

lo

_

[f(�; return?u; stm); (�

0

; body)g)

�

inst

(this) = �

0

(allerobj) �(id) = allee(�

0

(id))

�

00

= �

0

[u 7![[e℄℄

�

inst

;�

E

℄

Return

self

(�

inst

;

lo

_

[f(�; return e); (�

0

; return?u; stm)g) �!

�

(�

inst

;

lo

_

[f(�

00

; stm)g)

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) 2 Val

:started (

lo

_

[f(�; e

0

:start(); stm)g; �)

�

0

= �

init

[id 7!(�; 0)℄[allerobj 7! nil ℄

Start

self

(�

inst

;

lo

_

[f(�; e

0

:start(); stm)g) �!

�

(�

inst

;

lo

_

[f(�; stm); (�

0

; body

start;

)g)

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) started (

lo

_

[f(�; e

0

:start(); stm)g; �)

Start

skip

self

(�

inst

;

lo

_

[f(�; e

0

:start(); stm)g) �!

�

(�

inst

;

lo

_

[f(�; stm)g)

Table 4. Operational semantis of an instane (2)

We elide the rules for the remaining sequential onstruts |sequential om-

position, onditional statement, and iteration| sine they are standard.

As for the omposed behavior of more than one objet, the rules are displayed

in Table 5. Two instanes an perform their steps interleaved, when not fored

to synhronize. A omponent an proeed by an internal step independently

of other instanes (f. rule Interleave

�

) and similarly for instantiation steps

(r. rule Interleave

new

). For ommuniation, the sender objet proeeds on

its own by ommuniating to the environment, if the reeiver of the message is

not ontained in the system (f. rule Interleave

omm

). If both ommuniation

partners are existing within the system, they synhronize on the ommon label

(rule Syn

all

and Syn

return

). A new instane on�guration in its initial state

�nally is added in rule Syn

New

.

Sine global on�gurations are de�ned as sets, parallel omposition means set

union, and thus k is symmetri and assoiative. To maintain uniqueness of objet

identities in global on�gurations, we throughout assume in writing

1

k

2

that

dom

Objet

(

1

) and dom

Objet

(

2

) are disjoint.

12 Semantis

(�

inst

;

lo

) �!

l

(�

0

inst

;

0

lo

)

Base

f(�

inst

;

lo

)g �!

l

f(�

0

inst

;

0

lo

)g

1

�!

�

0

1

Interleave

�

1

k

2

�!

�

0

1

k

2

1

�!

new(�)

0

1

fresh(

2

; �)

Interleave

new

1

k

2

�!

new(�)

0

1

k

2

1

�!

l

om

0

1

reeiver(l

om

) =2 dom(

2

) ^ sender (l

om

) =2 dom(

2

)

Interleave

omm

1

k

2

�!

l

om

0

1

k

2

1

�!

�!m(�;id;~v)

0

1

2

�!

�?m(�;id;~v)

0

2

Syn

all

1

k

2

�!

�

0

1

k

0

2

1

�!

�!(�;id;v)

0

1

2

�!

�?(�;id;v)

0

2

Syn

return

1

k

2

�!

�

0

1

k

0

2

 �!

new(�)

0

fresh(; �)

Syn

new

 �!

�

0

k f(�

init

inst

[this 7!�℄; ;)g

Table 5. Parallel omposition

Conlusion 13

We onlude with the de�nition of initial and reahable on�gurations. We

all a on�guration

0

reahable from the on�guration i� there exists a ompu-

tation �!

�

0

, where �!

�

is the reexive transitive losure of �!; we write

reah() for the set of global on�gurations reahable from . A on�guration

 of a program is reahable, if 2 reah(

0

), where

0

is the initial on�gura-

tion (�

init

inst

; f(�

init

[id 7!(�; 0)℄[allerobj 7!nil ℄; body

main

)g) with main lass and

� 2 Val

.

In Java, the main method of a program is stati. Sine Java

MT

does not

have stati methods and variables, we de�ne the initial on�guration as having

a single initial objet in that an initial thread starts to exeute its main-method.

Note that aording to the de�nition of the started prediate, the start-method

of the initial objet annot be invoked.

4 Conlusion

The paper presented a ompositional operational semantis of Java

MT

, where

the semantis of a system is desribed ompositionally from the behavior of its

instanes. The semantis oinides with the one presented non-ompositionally in

[1℄. The formalization presented here, i.e., the thread-identi�ation mehanism,

the design of the operational rules, the information added to the labels et.,

was inspired by the modular proof-system of [1℄. We onsider this work as an

important step towards a ompositional proof-system for Java

MT

.

As further work, we plan to extend Java

MT

by further onstruts, espeially

adding further synhronization primitives for monitor synhronization suh as

wait and notify, but also extending the language in the diretion of \objet-

orientedness", adding inheritane, subtyping, and other onepts featured in

Java.

Referenes

1. E.

�

Abrah�am-Mumm, F. de Boer, W.-P. de Roever, and M. Ste�en. Veri�ation

for Java's reentrant multithreading onept. In M. Nielsen and U. H. Engberg,

editors, Proeedings of Foundations of Software Siene and Computation Strutures

(FoSSaCS'02), volume 2303 of Leture Notes in Computer Siene, pages 4{20.

Springer-Verlag, Apr. 2002.

2. J. Alves-Foss, editor. Formal Syntax and Semantis of Java. LNCS State-of-the-

Art-Survey. Springer-Verlag, 1999.

3. P. Ceniarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based strutural

operational semantis of multi-threaded Java. In Alves-Foss [2℄.

4. J. Gosling, B. Joy, and G. Steele. The Java Language Spei�ation. Addison-Wesley,

1996.

5. M. Huisman. Java Program Veri�ation in Higher-Order Logi with PVS and Is-

abelle. PhD thesis, University of Nijmegen, 2001.

6. A. Poetzsh-He�ter and P. M�uller. A programming logi for sequential Java. In

S. Swierstra, editor, Programming Languages and Systems, volume 1576 of Leture

Notes in Computer Siene, pages 162{176. Springer, 1999.

14 Conlusion

7. R. St�ark, J. Shmid, and E. B�orger. Java and the Java Virtual Mahine. Springer-

Verlag, 2001.

8. D. von Oheimb and T. Nipkow. Hoare logi for NanoJava: Auxiliary variables, side

e�ets and virtual methods revisited. submitted for publiation, 2002.

Notation 15

A Notation

typ. element symbol de�nition explanation

Semantis

� Val

objet identities

Val

nil

Val

_

[fnil

g identities or nil

v Val

t

values of type t

Val

S

t

Val

t

all values (exept nil 's)

Val

nil

S

t

Val

t

nil

all values

� �

lo

TVar * Val

nil

loal state

(�; stm) �

lo

� Stm loal on�guration

�

inst

�

inst

IVar

_

[fthisg* Val

nil

; instane state

inst

= (�

inst

;

lo

) �

inst

�

inst

� 2

�

lo

�Stm

instane on�guration

 � 2

�

inst

global on�guration

dom() 2

Val

existing values in

dom

() 2

Val

existing instanes of lass

(�

inst

; �) �

inst

��

lo

instane loal state

[[℄℄

E

(�

inst

��

lo

) ! Exp * Val

nil

loal evaluation funtion

id Val

Objet

� Int originating objet � depth

started 2

�

lo

�Stm

�Val

! Bool

fresh 2

�

lo

�Stm

�Val

! Bool

allee Val

Objet

� Int ! Val

Objet

� Int \ + 1

00

aller Val

Objet

� Int * Val

Objet

� Int \� 1

00

l Lab labels

