
INSTITUT FÜR INFORMATIK UND PRAKTISCHE MATHEMATIK

LEHRSTUHL FÜR SOFTWARETECHNOLOGIE

A Compositional Operational Semantics

for JavaMT

Erika Ábrahám-Mumm

Frank S. de Boer

Willem-Paul de Roever

Martin Steffen

Bericht Nr. TR-ST-02-02

15. Mai 2002

CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL

A Compositional Operational Semanti
s

for Java

MT

?

May 14, 2002

Erika

�

Abrah�am-Mumm

1

, Frank S. de Boer

2

,

Willem-Paul de Roever

1

, and Martin Ste�en

1

1

Christian-Albre
hts-University Kiel, Germany

2

CWI Amsterdam, The Netherlands

Abstra
t. Besides the features of a
lass-based obje
t-oriented lan-

guage, Java integrates
on
urren
y via its thread-
lasses, allowing for

a multithreaded
ow of
ontrol. The
on
urren
y model in
ludes shared-

variable
on
urren
y via instan
e variables,
oordination via reentrant

syn
hronization monitors, syn
hronous message passing, and dynami

thread
reation.

This report
ontains a
ompositional version of the semanti
s of Java

MT

from [1℄.

1 Introdu
tion

The semanti
al foundations of Java [4℄ have been thoroughly studied ever sin
e

the language gained widespread popularity (see e.g. [2, 7, 3℄). The resear
h
on-

erning Java's proof theory mainly
on
entrates` on various aspe
ts of sequential

sublanguages (see e.g. [5, 8, 6℄). As a �rst step towards a
ompositional proof sys-

tem, this paper presents a
ompositional operational semanti
s for multithreaded

Java programs.

Con
entrating on the issues of
on
urren
y, we investigate an abstra
t pro-

gramming language Java

MT

[1℄, a subset of Java, featuring dynami
 obje
t
re-

ation, method invo
ation, obje
t referen
es with aliasing, and spe
i�
ally
on-

urren
y. Threads, the units of
on
urren
y, are
reated as instan
es of spe
i�

thread-
lasses and share the instan
e variables of obje
ts.

As a me
hanism of
on
urren
y
ontrol, methods
an be de
lared as syn-

hronized, where syn
hronized methods within a single obje
t are exe
uted by

di�erent threads mutually ex
lusive. A
all
hain
orresponding to the exe
u-

tion of a single thread
an
ontain several invo
ations of syn
hronized methods

within the same obje
t. This
orresponds to the notion of re-entrant monitors

and eliminates the possibility that a single thread deadlo
ks itself on an obje
t's

syn
hronization barrier.

To support a
lean interfa
e between internal and external behavior, Java

MT

does not allow quali�ed referen
es to instan
e variables. As a
onsequen
e,

?

Part of this work has been �nan
ially supported by IST proje
t Omega (IST-2001-

33522) and NWO/DFG proje
t Mobi-J (RO 1122/9-1, RO 1122/9-2)

2 The programming language Java

MT

shared-variable
on
urren
y is
aused by simultaneous exe
ution within a single

obje
t, but not a
ross obje
t boundaries. The same a

ess dis
ipline was fol-

lowed in [1℄ to obtain a modular proof system,
leanly separating veri�
ation

onditions on the level of instan
es from those on a global level, dealing with

obje
t stru
tures and
ommuni
ation.

Even if the proof system was split into a lo
al and a global level in op.
it.,

the semanti
s was presented on a global level, only. In this note, we re
ast the

semanti
s of [1℄ in a
ompositional way. This means, the operational semanti
s

is des
ribed in two stages: �rst we de�ne
omputations of a single instan
e, and

afterwards spe
ify rules for
omposing the behavior of sets of instan
es, where

ommuni
ation between di�erent instan
es is syn
hronized by transition labels

whi
h uniquely identify the
ommuni
ation partners. The semanti
s serves as a

stepping stone to a
ompositional proof-system.

2 The programming language Java

MT

In this se
tion we des
ribe the language Java

MT

(\Multi-Threaded Java"); the

syntax
orresponds to the one in [1℄. We start with highlighting the features of

Java

MT

and its relationship to full Java, before formally des
ribing its abstra
t

syntax.

2.1 Introdu
tion

Java

MT

is a multithreaded sublanguage of Java. Programs, as in Java, are given

by a
olle
tion of
lasses
ontaining instan
e variable and method de
larations.

Instan
es of the
lasses, i.e., obje
ts, are dynami
ally
reated, and
ommuni
ate

via method invo
ation, i.e., syn
hronous message passing. As we fo
us on the

on
urren
y aspe
ts of Java, all
lasses in Java

MT

are thread
lasses in the sense

of Java: Ea
h
lass
ontains a start-method that
an be invoked only on
e for

ea
h obje
t, resulting in a new thread of exe
ution. The new thread starts to

exe
ute the start-method of the given obje
t while the initiating thread
ontinues

its own exe
ution.

As a me
hanism of
on
urren
y
ontrol, methods
an be de
lared as syn
hro-

nized. The exe
ution of syn
hronized methods within a single obje
t by di�erent

threads is mutually ex
lusive, whereas non-syn
hronized methods do not require

su
h
oordination. Note that re
ursive invo
ations of syn
hronized methods on

the same obje
t are allowed, as they are exe
uted in a single
all
hain by the

same thread. This
orresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., ea
h method invoked on

an obje
t must be supported by the obje
t, the types of the formal and a
tual

parameters of the invo
ation must mat
h, et
. As the stati
 relationships between

lasses are orthogonal to multithreading aspe
ts, we ignore in Java

MT

the issues

of inheritan
e, and
onsequently subtyping, overriding, and late-binding. For

simpli
ity, we neither allow method overloading, i.e., we require that ea
h method

name is assigned a unique list of formal parameter types and a return type. In

The programming language Java

MT

3

short, being
on
erned with the veri�
ation of the run-time behavior, we assume

a simple monomorphi
 type dis
ipline for Java

MT

.

2.2 Abstra
t syntax

As Java, the language Java

MT

is strongly typed and supports
lass types and

primitive, i.e., non-referen
e types. As built-in primitive types we restri
t to

Int and Bool. Besides the built-in types for integers and booleans, the set of

user-de�nable types is given by a set of
lass names C, with typi
al element
.

Furthermore, the language allows pairs of type t

1

�t

2

and sequen
es of type list t.

Side-e�e
t expressions without a value, i.e., methods without a return value, will

get the type Void. Thus the set of all types T with typi
al element t is given by

the following abstra
t grammar:

t ::= Void j Int j Bool j
 j t� t j list t

For ea
h type, the
orresponding value domain is equipped with a standard

set F of operators with typi
al element f. Ea
h operator f has a unique type

t

1

�� � ��t

n

! t and a �xed interpretation f , where
onstants are operators of zero

arity. Apart from the standard repertoire of arithmeti
al and boolean operations,

the set F of operators also
ontains operations on tuples and sequen
es like

proje
tion,
on
atenation, et
.

Sin
e Java

MT

is strongly typed, all program
onstru
ts of the abstra
t syntax

|variables, expressions, statements, methods,
lasses| are silently assumed to

be well-typed. In other words, we work with a type-annotated abstra
t syntax

where we omit the expli
it mentioning of types when no
onfusion
an arise.

For variables, we notationally distinguish between instan
e and lo
al vari-

ables. Instan
e variables hold the state of an obje
t and exist throughout the

obje
t's lifetime. We do not allow quali�ed referen
es to instan
e variables in

Java

MT

, i.e., obje
ts do not have dire
t a

ess to instan
e variables of other

obje
ts. Lo
al variables are sta
k-allo
ated. They play the role of formal param-

eters and variables of method de�nitions and exist only during the exe
ution of

the method to whi
h they belong.

The set of variablesVar = IVar

_

[TVar with typi
al element y is given as the

disjoint union of instan
e and lo
al variables. The identity of an obje
t is stored

in its
lass-typed
onstant this =2 Var . The set Var

t

ontains all variables of type

t, and
orrespondingly for IVar

t

and TVar

t

. As we assume a monomorphi
 type

dis
ipline, Var

t

\ Var

t

0

= ; for distin
t types t and t

0

. We use x; x

0

; x

1

; : : : as

typi
al elements from IVar , and u; u

0

; u

1

; : : : as typi
al elements from TVar .

Besides using instan
e and lo
al variables, side-e�e
t free expressions e 2 Exp

are built from this, nil, and from subexpressions using the given operators. We

use Exp

t

to denote the set of well-typed expressions of type t. The expression

this is used for self-referen
e within an obje
t, and nil is a
onstant representing

an empty referen
e. Expressions with side-e�e
ts sexp 2 SExp
ontain
lauses

for obje
t
reation and method invo
ation. The expression new

stands for the

4 The programming language Java

MT

referen
e to a new instan
e of
lass
. An invo
ation of a method with name m

on obje
t e

0

with a
tual parameters e

1

; : : : ; e

n

is written as e

0

:m(e

1

; : : : ; e

n

),

where M is an in�nite set of method names
ontaining main, start, and run.

Besides the mentioned simpli�
ations on the type system, we impose for

te
hni
al reasons the following restri
tions: We require that method invo
ation

and obje
t
reation statements
ontain only lo
al variables, i.e., that none of the

expressions e

0

; : : : ; e

n

ontains instan
e variables, and that formal parameters

do not o

ur on the left-hand side of assignments. This restri
tion implies that

during the exe
ution of a method the values of the a
tual and formal parameters

are not
hanged. Finally, the result of an obje
t
reation or method invo
ation

statement may not be assigned to instan
e variables. This restri
tion allows for

a proof system with separated veri�
ation
onditions for interferen
e freedom

and
ooperation. It should be
lear that it is possible to transform a program to

adhere to this restri
tions at the expense of additional lo
al variables and thus

new interleaving points.

Statements stm 2 Stm are built from side-e�e
t expressions and assignments

of the form x := e, u := e, and u := sexp by using standard
ontrol
onstru
ts

like sequential
omposition,
onditional statements, and iteration, to form
om-

posite statements. Espe
ially, we will use � to denote the empty statement.

A method de�nition modif m(u

1

; : : : ; u

n

)f stm; rexp g 2 Meth
onsists of a

method name m, a list of formal parameters u

1

; : : : ; u

n

, and a method body

body

m;

of the form stm; rexp. The set Meth

ontains the methods of
lass
.

To simplify the proof system we require that method bodies are terminated by a

single return statement, either giving ba
k a value using return e, or not, written

as return. Additionally, methods are de
orated by a modi�ermodif distinguishing

between non-syn
hronized and syn
hronized methods.

3

We use syn
(
;m) to

state that method m in
lass
 is syn
hronized. In the sequel we also refer to

statements in the body of a syn
hronized method as being syn
hronized. A
lass

fmeth

1

: : :meth

n

meth

start

meth

run

g is de�ned by its name
 and its methods,

whose names are assumed to be distin
t. As mentioned earlier, all
lasses in

Java

MT

are thread
lasses; all
lasses
ontain a start-method meth

start

and a run-

method meth

run

without return values. A program h
lass

1

: : :
lass

n

lass

main

i,

�nally, is a
olle
tion of
lass de�nitions having di�erent
lass names, where

lass

main

is the entry point of the program exe
ution. This
lass spe
i�
ally

ontains a main-method meth

main

without return value. We
all its body, written

as body

main

, the main statement of the program.

The set of instan
e variables IVar

of a
lass

ontains all instan
e variables

o

urring in that
lass. Correspondingly for methods, the set of lo
al variables

TVar

m;

of a method m in
lass
 is given by the set of all lo
al variables

o

urring in that method.

The syntax is summarized in Table 1.

3

Java does not have the \non-syn
hronized" modi�er: methods are non-syn
hronized

by default.

Semanti
s 5

exp ::= x j u j this j nil j f(exp; : : :; exp) e2Exp expressions

sexp ::= new

j exp:m(exp; : : :; exp) sexp2SExp side-e�e
t exp

stm ::= sexp j x := exp j u := exp j u := sexp

j � j stm; stm j if exp then stm else stm

j while exp do stm : : : stm2Stm statements

modif ::= nsyn
 j syn
 modi�ers

rexp ::= return j return exp

meth ::= modif m(u; : : :; u)f stm ; rexpg meth2Meth methods

meth

run

::= modif run()f stm; return g meth

run

2Meth run-meth.

meth

start

::= nsyn
 start()f this:run(); return g meth

start

2Meth start-meth.

meth

main

::= nsyn
 main()f stm; return g meth

main

2Meth main-meth.

lass ::=
fmeth : : :meth meth

run

meth

start

g
lass2Class
lass defn's

lass

main

::=
fmeth : : :meth meth

run

meth

start

meth

main

g
lass

main

2Class main-
lass

prog ::= h
lass: : :
lass
lass

main

i programs

Table 1. Java

MT

abstra
t syntax

3 Semanti
s

Next, we de�ne
ompositionally the operational semanti
s of Java

MT

, espe
ially,

the me
hanisms of multithreading, dynami
 obje
t
reation, method invo
ation,

and
oordination via syn
hronization. After introdu
ing the semanti
 domains,

we des
ribe states and
on�gurations in the following se
tion. The operational

semanti
s is presented in Se
tion 3.2 by labeled transitions between program

on�gurations. The semanti
s is given in two levels. Transitions on the lo
al

level des
ribe the behavior of a single instan
e, where we distinguish self-
alls

from non-self-
alls. The
ombined behavior of
olle
tions of instan
es is formu-

lated on the global level, where di�erent obje
ts
ommuni
ate by label syn
hro-

nization. The semanti
s des
ribed here is equivalent to the one presented non-

ompositionally in [1℄, where the behavior was given by a number of intera
ting

threads or exe
ution sta
ks, working on a global state.

3.1 States and
on�gurations

To give meaning to variables, we �rst �x the domains Val

t

of the various types t.

Thus Val

Int

and Val

Bool

denote the set of integers and booleans, Val

list t

are �nite

sequen
es over values from Val

t

, and Val

t

1

�t

2

stands for the produ
t Val

t

1

�

Val

t

2

. For
lass names
 2 C, the set Val

with typi
al elements �; �; : : : denotes

an in�nite set of obje
t identi�ers, where the domains for di�erent
lass names

are assumed to be disjoint. We will write Val

Obje
t

for

S

2C

Val

. For ea
h
lass

name
, nil

=2 Val

represents the value of nil in the
orresponding type. In

general we will just write nil , when
 is
lear from the
ontext. We de�ne Val

nil

as Val

_

[fnil

g, and
orrespondingly for
ompound types. The set of all possible

non-nil values

S

t

Val

t

is written as Val , and Val

nil

denotes

S

t

Val

t

nil

.

6 Semanti
s

The
on�guration of a program is
hara
terized by the
on�gurations of all

existing instan
es, where in ea
h instan
e, a number threads may be exe
uting,

ea
h with its own lo
al state and all sharing the instan
e state.

A lo
al state � 2 �

lo

of a thread holds the values of its lo
al variables and

is modeled as a partial fun
tion of type TVar * Val

nil

. We denote by �

init

lo
al states whi
h assign to ea
h
lass-typed lo
al variable of type

0

from their

domain the value of nil

0

, to ea
h boolean variable the value false , and to ea
h

integer variable the value 0. Pairs are initialized
orrespondingly; sequen
es are

initially empty. A lo
al
on�guration (�; stm) of a thread spe
i�es, in addition

to its lo
al state, its point of exe
ution represented by the statement stm.

The state of an obje
t is
hara
terized by its instan
e state �

inst

2 �

inst

of type IVar

_

[fthisg * Val

nil

whi
h assigns values to its instan
e variables;

we require that this 2 dom(�

inst

) and that �

inst

(this) 2 Val

Obje
t

.

4

The initial

instan
e state �

init

inst

assigns to ea
h variable from its domain of type

0

, Bool, and

Int the initial values nil

0

, false , and 0, respe
tively. Pairs are initialized
orre-

spondingly; sequen
es are initially empty. An instan
e
on�guration (�

inst

;

lo

)

onsists of an instan
e state paired with a �nite set

lo

of lo
al
on�gurations

of the threads
urrently exe
uting within the instan
e.

Finally, a global
on�guration
 spe
i�es a �nite set of instan
e
on�gurations.

Given a global
on�guration
, we
an use the values for the self-referen
es

this in the instan
e states to de�ne what it means for an obje
t to exist in

. So let the set of existing obje
ts of type
 de�ned as dom

(
) = f� 2

Val

j 9(�

inst

;

lo

) 2
 : �

inst

(this) = �g; the set dom

nil

(
) is given by

dom

(
) [fnil

g. For the set of obje
ts

S

dom

(
) we write dom

Obje
t

(
), and

orrespondingly for dom

Obje
t

nil

(
). For the built-in types Int and Bool we de�ne

dom

t

and dom

t

nil

, independently of
, as the set of pre-existing values Val

Int

and Val

Bool

, respe
tively. For
ompound types, dom

t

and dom

t

nil

are de�ned

orrespondingly. We refer to the set

S

t

dom

t

(
) by dom(
); dom

nil

(
) denotes

S

t

dom

t

nil

(
).

Expressions e 2 Exp are evaluated with respe
t to an instan
e lo
al state

(�

inst

; �) 2 �

inst

� �

lo

, where the instan
e state de�nes the identity and val-

ues of the instan
e variables of the obje
t �

inst

(this) in whi
h the expression is

evaluated, and � gives values to the lo
al variables. This means, the semanti

fun
tion [[℄℄

E

: (�

inst

� �

lo

) ! (Exp * Val) shown in Table 2 evaluates in

the
ontext of an instan
e lo
al state (�

inst

; �) all expressions
ontaining only

variables from dom(�

inst

) [dom(�): Instan
e variables x and lo
al variables

u are evaluated to �

inst

(x) and �(u), respe
tively. The value of this refers to

the obje
t in whi
h the expression is evaluated, the value of nil is given by the

empty referen
e nil . Finally, the evaluation of
ompound expressions is de�ned

by homomorphi
 lifting.

For a lo
al state �, a lo
al variable u 2 dom(�) of type t, and a value

v 2 Val

t

nil

, we denote by �[u 7! v℄ the lo
al state whi
h assigns v to u and agrees

4

In Java, this is a \�nal" instan
e variable, whi
h for instan
e implies, it
annot be

assigned to.

Semanti
s 7

[[x℄℄

�

inst

;�

E

= �

inst

(x)

[[u℄℄

�

inst

;�

E

= �(u)

[[this℄℄

�

inst

;�

E

= �

inst

(this)

[[nil℄℄

�

inst

;�

E

= nil

[[f(e

1

; : : : ; e

n

)℄℄

�

inst

;�

E

= f([[e

1

℄℄

�

inst

;�

E

; : : : ; [[e

n

℄℄

�

inst

;�

E

)

Table 2. Expression evaluation

with � on the values of all other variables . The semanti
 update �

inst

[x 7! v℄

of instan
e states is de�ned analogously. We use these operators analogously for

setting the values of a sequen
e of variables. We use �[~y 7!~v℄ also for arbitrary

variable sequen
es, where instan
e variables are untou
hed, i.e., �[~y 7!~v℄ is de-

�ned by �[~u 7!~v

u

℄, where ~u is the sequen
e of the lo
al variables in ~y and ~v

u

the
orresponding value sequen
e. Similarly, for instan
e states, �

inst

[~y 7!~v℄ is

de�ned by �

inst

[~x 7!~v

x

℄ where ~x is the sequen
e of the instan
e variables in ~y

and ~v

x

the
orresponding value sequen
e.

3.2 Operational semanti
s

Computation steps of a program are represented by labeled transitions between

global
on�gurations. The operational semanti
s is given in two stages: �rst we

des
ribe the behavior of a single instan
e and afterwards the
ombined behavior

of sets of instan
es, both as labeled transition system between instan
e
on�gu-

rations, respe
tively between global
on�gurations.

To be able to syn
hronize
ommuni
ating partners in the parallel
omposition

semanti
s, we have to identify lo
al
on�gurations being in
aller-
allee relation-

ship. To do so, we extend the lo
al state domains with the variables
allerobj

and id of types Obje
t and Obje
t� Int, resp., whi
h may not o

ur in programs.

The value of
allerobj stores the identity of the
aller obje
t in the lo
al state of

the
allee. We identify a lo
al
on�guration by the thread to whi
h it belongs

together with its position in the thread's
all
hain. Thus the �rst
omponent

of id identi�es the exe
uting thread via the obje
t in whi
h it has begun its ex-

e
ution and the se
ond
omponent stores the position of the lo
al
on�guration

in the
all
hain of the thread. Note that this identi�
ation is unique, sin
e at

most one thread
an begin its exe
ution in a single obje
t.

Using these identities, we de�ne the predi
ates
allee(�; n) = (�; n+ 1) and

aller (�; n + 1) = (�; n), for all n � 0. For the �rst lo
al
on�guration in a
all

hain we de�ne
aller (�; 0) = (nil ; 0). With the above identi�
ation me
hanism

we
an express that two lo
al
on�gurations belong to the same thread using the

predi
ate samethread ((�

1

; n

1

); (�

2

; n

2

)) i� �

1

= �

2

. That a lo
al
on�guration

o

urs earlier than another in the
all
hain of a single thread, is
aptured by

(�

1

; n

1

) < (�

2

; n

2

) i� �

1

= �

2

and n

1

< n

2

.

8 Semanti
s

As syn
hronization labels, we distinguish �!m(�; id ; ~v) and �?m(�; id ; ~v) for

sending and re
eiving method
alls, respe
tively, where method m of the
allee

obje
t � is invoked with a
tual parameters ~v, and where the lo
al
on�guration

of the
aller exe
uting in the obje
t � is identi�ed by id . In analogy, we use

�!(�; id ; v) and �?(�; id ; v) for sending, resp. re
eiving the value v ex
hanged

when returning to � from a method of � exe
uted in the lo
al
on�guration

identi�ed by id . For methods without a return value the value v is omitted.

For a terminating thread, the
aller obje
t to whi
h the
ontrol returns is given

by the value nil . Though the fa
t that a thread terminates is
aptured by the

label nil !(�; id).

5

Creating a new instan
e � is indi
ated by the label new(�).

Finally, we use � to label internal steps. We write Lab for the set of labels

with l as typi
al element. Furthermore, we will use l

om

as typi
al element for

labels representing
ommuni
ation, i.e., di�erent from � and all obje
t
reation

labels new(�), and write sender (l

om

) and re
eiver(l

om

) to denote the sender,

respe
tively the re
eiver, of the message, as �xed in l

om

.

Now, Tables 3 and 4 de�ne the transition relation �!

l

between instan
e

on�gurations and Table 5 between global
on�gurations. For notational
onve-

nien
e, we will later simple write �! when leaving l unspe
i�ed.

We start with the rules for transitions for one instan
e. Assignments to in-

stan
e and lo
al variables update the instan
e state, respe
tively the lo
al state

(
f. Ass

inst

and Ass

lo

). Exe
uting u := new

, as shown in rule New,

6

has no

lo
al e�e
t ex
ept that it stores the new obje
t's identity in the lo
al variable u.

The
reation of the new obje
t itself and the initialization of its instan
e vari-

ables is dealt with at the global level. The predi
ate fresh expresses that a given

on�guration does not refer to an obje
t identity, i.e., that the obje
t identity is

fresh in the given
ontext. Formally, for an obje
t � and a value v 2 Val

nil

we

de�ne:

fresh(v; �) =

8

>

>

<

>

>

:

false if v = �

true if v 6=� ^ v2Val

Bool

[Val

Int

[Val

Obje
t

nil

fresh(v

1

; �)^fresh(v

2

; �) if v=(v

1

; v

2

)2

S

t

1

;t

2

Val

t

1

�t

2

nil

8v

i

2 v:fresh(v

i

; �) if v 2

S

t

Val

list t

nil

:

5

A thread of a well-typed program
annot return a value when terminating, sin
e

the start-method is of type Void. Therefore, v is left out of the label. Note also,

that a terminating thread will send as id the value (�; 0), sin
e terminating means,

popping-o� from topmost frame with depth 0 from the
all-sta
k.

6

The statement new

is handled similarly but without
hanging the lo
al state.

Semanti
s 9

Ass

inst

(�

inst

;

lo

_

[f(�; x := e; stm)g) �!

�

(�

inst

[x 7![[e℄℄

�

inst

;�

E

℄;

lo

_

[f(�; stm)g)

Ass

lo

(�

inst

;

lo

_

[f(�; u := e; stm)g) �!

�

(�

inst

;

lo

_

[f(�[u 7![[e℄℄

�

inst

;�

E

℄; stm)g)

fresh((�

inst

;

lo

_

[f(�; u := new; stm)g); �)

New

(�

inst

;

lo

_

[f(�; u := new; stm)g) �!

new(�)

(�

inst

;

lo

_

[f(�[u 7!�℄; stm)g)

[[e

0

℄℄

�

inst

;�

E

= � 6= nil �

inst

(this) = � 6= � id = �(id) ~v = [[~e ℄℄

�

inst

;�

E

if m = start then stm

0

= stm else stm

0

= return?u; stm �

Call

out

(�

inst

;

lo

_

[f(�; u := e

0

:m(~e); stm)g) �!

�!m(�;id;~v)

(�

inst

;

lo

_

[f(�; stm

0

)g)

�

inst

(this) = � 2 Val

� 6= � 2 Val

Obje
t

modif m(~u)f body g 2 Meth

syn
(
;m)! isfree(

lo

; id)

(m 6=start) !

0

lo

= f(�

init

[~u 7!~v℄[id 7!
allee(id)℄[
allerobj 7!�℄; body)g

(m=start ^ started (

lo

; �)) !

0

lo

= ;

(m=start ^ :started (

lo

; �)) !

0

lo

= f(�

init

[id 7!(�; 0)℄[
allerobj 7! nil ℄; body)g

Call

in

(�

inst

;

lo

) �!

�?m(�;id;~v)

(�

inst

;

lo

_

[

0

lo

)

�

inst

(this) = � 6= � = �(
allerobj) id = �(id) 6= (�; 0) v = �(u)

Return

out

(�

inst

;

lo

_

[f(�; returnu)g) �!

�!(�;id;v)

(�

inst

;

lo

)

�

inst

(this) = � 6= � 2 Val

Obje
t

id = �(id)

Return

in

(�

inst

;

lo

_

[f(�; return?u; stm)g) �!

�?(�;
allee(id);v)

(�

inst

;

lo

_

[f(�[u 7! v℄; stm)g)

�

inst

(this) = � �(
allerobj) = nil

Terminate

(�

inst

;

lo

_

[f(�; return)g) �!

nil !(�;id)

(�

inst

;

lo

_

[f(�; �)g)

Table 3. Operational semanti
s of an instan
e

10 Semanti
s

For lo
al states �, instan
e
on�gurations (�

inst

;

lo

), and global
on�gurations

, the predi
ate fresh is de�ned by

fresh(�; �) () 8u 2 dom(�):fresh(�(u); �)

fresh(�

inst

; �) () 8x 2 dom(�

inst

):fresh(�

inst

(x); �)

fresh((�

inst

;

lo

); �) () fresh(�

inst

; �) ^ 8(�; stm) 2

lo

:fresh(�; �))

fresh(
; �) () 8(�

inst

;

lo

) 2
:fresh((�

inst

;

lo

); �):

Obje
ts
ommuni
ate by method
alls, i.e., method invo
ation and the
orre-

sponding returning of the result. For both types of
ommuni
ation, an instan
e

an play the role of the sender or of the re
eiver, and the transitions
arry appro-

priate labels to de�ne the
omposed behavior. For method invo
ation, the
aller

determines the
allee obje
t and evaluates the method arguments lo
ally. When

re
eiving a method invo
ation, the
allee obje
t
reates a new lo
al
on�gura-

tion to evaluate the body. The identity of the
aller obje
t and the
aller lo
al

on�guration is
ommuni
ated together with the a
tual parameter values via the

syn
hronizing label to the
allee obje
t as show in the Call-rules of Table 3.

7

The handing-ba
k of the return value, using the
aller/
allee identi�
ation, is

des
ribed in the two Return-rules of the same table.

Di�erent threads exe
ute syn
hronized methods mutually ex
lusive on a given

obje
t. So in
ase of a syn
hronized method, the invo
ation is su

essful only if

the lo
k is
urrently free, or the invo
ation is exe
uted by a thread that already

possesses the lo
k. Whether a lo
al
on�guration of a thread identi�ed by id

is allowed to exe
ute a method
all on an instan
e with lo
al
on�guration set

lo

, is formalized by the predi
ate isfree , de�ned as isfree(

lo

; id) = true i� all

lo
al
on�gurations in

lo

with a syn
hronized statement have an identity less

or equal id .

The start-method is spe
ial in two respe
ts. First, it
an e�e
tively be invoked

only on
e on ea
h obje
t; further invo
ations of the start-method are without

e�e
t.

8

Se
ondly, its invo
ation gives rise to a new
all
hain, i.e., a new thread

of exe
ution. Hen
e, the identity of the lo
al state is initialized to (�; 0). The

lo
al variable
allerobj is set to nil , sin
e after termination of the start-method

the whole thread terminates; thus the
ontrol will not be given ba
k to the
aller.

Returning from a start-method or from the initial invo
ation of the main-method

is handled by the rule Terminate, where the lo
al
on�guration remains in the

lo
al
on�guration set with an empty statement, representing the terminated

thread.

Left-out in Table 3 is the semanti
s of self-
alls and self-returns; they are

handled separately in Table 4 as they are lo
al to one instan
e. Consequently,

the steps are all labeled with � . The rule Call

self

is the
ounter-pie
e for the

7

A rule similar to Call

out

not shown in the table takes
are about the invo
ation

e

0

:m(~e) of methods without storing the return value. Note that for methods without

formal parameters ~e and ~v are empty.

8

In Java an ex
eption is thrown if the thread is already terminated.

Semanti
s 11

pair Call

out

and Call

in

when
aller and
allee obje
t mat
h, and similar for

returning. Note that the start-method
an be invoked by a self-
all (Start

self

and Start

skip

self

). Nevertheless we do not need a
orresponding rule for returning

from a start-method, sin
e it does not return to the
aller.

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) 2 Val

id = �(id)

modif m(~u)f body g 2 Meth

m 6= start syn
(
;m)! isfree(

lo

; id)

�

0

= �

init

[~u 7![[~e℄℄

�

inst

;�

E

℄[id 7!
allee(id)℄[
allerobj 7!�℄

Call

self

(�

inst

;

lo

_

[f(�; u := e

0

:m(~e); stm)g) �!

�

(�

inst

;

lo

_

[f(�; return?u; stm); (�

0

; body)g)

�

inst

(this) = �

0

(
allerobj) �(id) =
allee(�

0

(id))

�

00

= �

0

[u 7![[e℄℄

�

inst

;�

E

℄

Return

self

(�

inst

;

lo

_

[f(�; return e); (�

0

; return?u; stm)g) �!

�

(�

inst

;

lo

_

[f(�

00

; stm)g)

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) 2 Val

:started (

lo

_

[f(�; e

0

:start(); stm)g; �)

�

0

= �

init

[id 7!(�; 0)℄[
allerobj 7! nil ℄

Start

self

(�

inst

;

lo

_

[f(�; e

0

:start(); stm)g) �!

�

(�

inst

;

lo

_

[f(�; stm); (�

0

; body

start;

)g)

[[e

0

℄℄

�

inst

;�

E

= � = �

inst

(this) started (

lo

_

[f(�; e

0

:start(); stm)g; �)

Start

skip

self

(�

inst

;

lo

_

[f(�; e

0

:start(); stm)g) �!

�

(�

inst

;

lo

_

[f(�; stm)g)

Table 4. Operational semanti
s of an instan
e (2)

We elide the rules for the remaining sequential
onstru
ts |sequential
om-

position,
onditional statement, and iteration| sin
e they are standard.

As for the
omposed behavior of more than one obje
t, the rules are displayed

in Table 5. Two instan
es
an perform their steps interleaved, when not for
ed

to syn
hronize. A
omponent
an pro
eed by an internal step independently

of other instan
es (
f. rule Interleave

�

) and similarly for instantiation steps

(
r. rule Interleave

new

). For
ommuni
ation, the sender obje
t pro
eeds on

its own by
ommuni
ating to the environment, if the re
eiver of the message is

not
ontained in the system (
f. rule Interleave

omm

). If both
ommuni
ation

partners are existing within the system, they syn
hronize on the
ommon label

(rule Syn

all

and Syn

return

). A new instan
e
on�guration in its initial state

�nally is added in rule Syn

New

.

Sin
e global
on�gurations are de�ned as sets, parallel
omposition means set

union, and thus k is symmetri
 and asso
iative. To maintain uniqueness of obje
t

identities in global
on�gurations, we throughout assume in writing

1

k

2

that

dom

Obje
t

(

1

) and dom

Obje
t

(

2

) are disjoint.

12 Semanti
s

(�

inst

;

lo

) �!

l

(�

0

inst

;

0

lo

)

Base

f(�

inst

;

lo

)g �!

l

f(�

0

inst

;

0

lo

)g

1

�!

�

0

1

Interleave

�

1

k

2

�!

�

0

1

k

2

1

�!

new(�)

0

1

fresh(

2

; �)

Interleave

new

1

k

2

�!

new(�)

0

1

k

2

1

�!

l

om

0

1

re
eiver(l

om

) =2 dom(

2

) ^ sender (l

om

) =2 dom(

2

)

Interleave

omm

1

k

2

�!

l

om

0

1

k

2

1

�!

�!m(�;id;~v)

0

1

2

�!

�?m(�;id;~v)

0

2

Syn

all

1

k

2

�!

�

0

1

k

0

2

1

�!

�!(�;id;v)

0

1

2

�!

�?(�;id;v)

0

2

Syn

return

1

k

2

�!

�

0

1

k

0

2

 �!

new(�)

0

fresh(
; �)

Syn

new

 �!

�

0

k f(�

init

inst

[this 7!�℄; ;)g

Table 5. Parallel
omposition

Con
lusion 13

We
on
lude with the de�nition of initial and rea
hable
on�gurations. We

all a
on�guration

0

rea
hable from the
on�guration
 i� there exists a
ompu-

tation
 �!

�

0

, where �!

�

is the re
exive transitive
losure of �!; we write

rea
h(
) for the set of global
on�gurations rea
hable from
. A
on�guration

 of a program is rea
hable, if
 2 rea
h(

0

), where

0

is the initial
on�gura-

tion (�

init

inst

; f(�

init

[id 7!(�; 0)℄[
allerobj 7!nil ℄; body

main

)g) with main
lass
 and

� 2 Val

.

In Java, the main method of a program is stati
. Sin
e Java

MT

does not

have stati
 methods and variables, we de�ne the initial
on�guration as having

a single initial obje
t in that an initial thread starts to exe
ute its main-method.

Note that a

ording to the de�nition of the started predi
ate, the start-method

of the initial obje
t
annot be invoked.

4 Con
lusion

The paper presented a
ompositional operational semanti
s of Java

MT

, where

the semanti
s of a system is des
ribed
ompositionally from the behavior of its

instan
es. The semanti
s
oin
ides with the one presented non-
ompositionally in

[1℄. The formalization presented here, i.e., the thread-identi�
ation me
hanism,

the design of the operational rules, the information added to the labels et
.,

was inspired by the modular proof-system of [1℄. We
onsider this work as an

important step towards a
ompositional proof-system for Java

MT

.

As further work, we plan to extend Java

MT

by further
onstru
ts, espe
ially

adding further syn
hronization primitives for monitor syn
hronization su
h as

wait and notify, but also extending the language in the dire
tion of \obje
t-

orientedness", adding inheritan
e, subtyping, and other
on
epts featured in

Java.

Referen
es

1. E.

�

Abrah�am-Mumm, F. de Boer, W.-P. de Roever, and M. Ste�en. Veri�
ation

for Java's reentrant multithreading
on
ept. In M. Nielsen and U. H. Engberg,

editors, Pro
eedings of Foundations of Software S
ien
e and Computation Stru
tures

(FoSSaCS'02), volume 2303 of Le
ture Notes in Computer S
ien
e, pages 4{20.

Springer-Verlag, Apr. 2002.

2. J. Alves-Foss, editor. Formal Syntax and Semanti
s of Java. LNCS State-of-the-

Art-Survey. Springer-Verlag, 1999.

3. P. Cen
iarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based stru
tural

operational semanti
s of multi-threaded Java. In Alves-Foss [2℄.

4. J. Gosling, B. Joy, and G. Steele. The Java Language Spe
i�
ation. Addison-Wesley,

1996.

5. M. Huisman. Java Program Veri�
ation in Higher-Order Logi
 with PVS and Is-

abelle. PhD thesis, University of Nijmegen, 2001.

6. A. Poetzs
h-He�ter and P. M�uller. A programming logi
 for sequential Java. In

S. Swierstra, editor, Programming Languages and Systems, volume 1576 of Le
ture

Notes in Computer S
ien
e, pages 162{176. Springer, 1999.

14 Con
lusion

7. R. St�ark, J. S
hmid, and E. B�orger. Java and the Java Virtual Ma
hine. Springer-

Verlag, 2001.

8. D. von Oheimb and T. Nipkow. Hoare logi
 for NanoJava: Auxiliary variables, side

e�e
ts and virtual methods revisited. submitted for publi
ation, 2002.

Notation 15

A Notation

typ. element symbol de�nition explanation

Semanti
s

� Val

obje
t identities

Val

nil

Val

_

[fnil

g identities or nil

v Val

t

values of type t

Val

S

t

Val

t

all values (ex
ept nil 's)

Val

nil

S

t

Val

t

nil

all values

� �

lo

TVar * Val

nil

lo
al state

(�; stm) �

lo

� Stm lo
al
on�guration

�

inst

�

inst

IVar

_

[fthisg* Val

nil

; instan
e state

inst

= (�

inst

;

lo

) �

inst

�

inst

� 2

�

lo

�Stm

instan
e
on�guration

 � 2

�

inst

global
on�guration

dom(
) 2

Val

existing values in

dom

(
) 2

Val

existing instan
es of
lass

(�

inst

; �) �

inst

��

lo

instan
e lo
al state

[[℄℄

E

(�

inst

��

lo

) ! Exp * Val

nil

lo
al evaluation fun
tion

id Val

Obje
t

� Int originating obje
t � depth

started 2

�

lo

�Stm

�Val

! Bool

fresh 2

�

lo

�Stm

�Val

! Bool

allee Val

Obje
t

� Int ! Val

Obje
t

� Int \ + 1

00

aller Val

Obje
t

� Int * Val

Obje
t

� Int \� 1

00

l Lab labels

