INSTITUT FUR INFORMATIK UND PRAKTISCHE MATHEMATIK
LEHRSTUHL FUR SOFTWARETECHNOLOGIE

A Compositional Operational Semantics
for Javayr

Erika Abrahdm-Mumm
Frank S. de Boer
Willem-Paul de Roever
Martin Steffen

Bericht Nr. TR-ST-02-02
15. Mai 2002

CHRISTIAN-ALBRECHTS-UNIVERSITAT ZU KIEL

A Compositional Operational Semantics
for Javayr*
May 14, 2002

Erika Abrahdm-Mumm'!, Frank S. de Boer?,
Willem-Paul de Roever!, and Martin Steffen!

! Christian-Albrechts-University Kiel, Germany
2 CWI Amsterdam, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-
variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.

This report contains a compositional version of the semantics of Javayr
from [1].

1 Introduction

The semantical foundations of Java [4] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [2,7,3]). The research con-
cerning Java’s proof theory mainly concentrates‘ on various aspects of sequential
sublanguages (see e.g. [5,8,6]). As a first step towards a compositional proof sys-
tem, this paper presents a compositional operational semantics for multithreaded
Java programs.

Concentrating on the issues of concurrency, we investigate an abstract pro-
gramming language Javayr([1], a subset of Java, featuring dynamic object cre-
ation, method invocation, object references with aliasing, and specifically con-
currency. Threads, the units of concurrency, are created as instances of specific
thread-classes and share the instance variables of objects.

As a mechanism of concurrency control, methods can be declared as syn-
chronized, where synchronized methods within a single object are executed by
different threads mutually exclusive. A call chain corresponding to the execu-
tion of a single thread can contain several invocations of synchronized methods
within the same object. This corresponds to the notion of re-entrant monitors
and eliminates the possibility that a single thread deadlocks itself on an object’s
synchronization barrier.

To support a clean interface between internal and external behavior, Javayr
does not allow qualified references to instance variables. As a consequence,

* Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2)

2 The programming language Javayr

shared-variable concurrency is caused by simultaneous execution within a single
object, but not across object boundaries. The same access discipline was fol-
lowed in [1] to obtain a modular proof system, cleanly separating verification
conditions on the level of instances from those on a global level, dealing with
object structures and communication.

Even if the proof system was split into a local and a global level in op. cit.,
the semantics was presented on a global level, only. In this note, we recast the
semantics of [1] in a compositional way. This means, the operational semantics
is described in two stages: first we define computations of a single instance, and
afterwards specify rules for composing the behavior of sets of instances, where
communication between different instances is synchronized by transition labels
which uniquely identify the communication partners. The semantics serves as a
stepping stone to a compositional proof-system.

2 The programming language Javayr

In this section we describe the language Javayr (“Multi- Threaded Java”); the
syntax corresponds to the one in [1]. We start with highlighting the features of
Javayr and its relationship to full Java, before formally describing its abstract
syntax.

2.1 Introduction

Javayr is a multithreaded sublanguage of Java. Programs, as in Java, are given
by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate
via method invocation, i.e., synchronous message passing. As we focus on the
concurrency aspects of Java, all classes in Javayr are thread classes in the sense
of Java: Each class contains a start-method that can be invoked only once for
each object, resulting in a new thread of execution. The new thread starts to
execute the start-method of the given object while the initiating thread continues
its own execution.

As a mechanism of concurrency control, methods can be declared as synchro-
nized. The execution of synchronized methods within a single object by different
threads is mutually exclusive, whereas non-synchronized methods do not require
such coordination. Note that recursive invocations of synchronized methods on
the same object are allowed, as they are executed in a single call chain by the
same thread. This corresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., each method invoked on
an object must be supported by the object, the types of the formal and actual
parameters of the invocation must match, etc. As the static relationships between
classes are orthogonal to multithreading aspects, we ignore in Javaysr the issues
of inheritance, and consequently subtyping, overriding, and late-binding. For
simplicity, we neither allow method overloading, i.e., we require that each method
name is assigned a unique list of formal parameter types and a return type. In

The programming language Javayr 3

short, being concerned with the verification of the run-time behavior, we assume
a simple monomorphic type discipline for Javayr.

2.2 Abstract syntax

As Java, the language Javayr is strongly typed and supports class types and
primitive, i.e., non-reference types. As built-in primitive types we restrict to
Int and Bool. Besides the built-in types for integers and booleans, the set of
user-definable types is given by a set of class names C, with typical element c.
Furthermore, the language allows pairs of type t; X 2 and sequences of type list ¢.
Side-effect expressions without a value, i.e., methods without a return value, will
get the type Void. Thus the set of all types 7 with typical element % is given by
the following abstract grammar:

t::=Void | Int | Bool | ¢ |t x t | listt

For each type, the corresponding value domain is equipped with a standard
set ' of operators with typical element f. Each operator f has a unique type
t1 X --Xt, — t and a fixed interpretation f, where constants are operators of zero
arity. Apart from the standard repertoire of arithmetical and boolean operations,
the set F' of operators also contains operations on tuples and sequences like
projection, concatenation, etc.

Since Javayr is strongly typed, all program constructs of the abstract syntax
—variables, expressions, statements, methods, classes— are silently assumed to
be well-typed. In other words, we work with a type-annotated abstract syntax
where we omit the explicit mentioning of types when no confusion can arise.

For variables, we notationally distinguish between instance and local vari-
ables. Instance variables hold the state of an object and exist throughout the
object’s lifetime. We do not allow qualified references to instance variables in
Javayr, i.e., objects do not have direct access to instance variables of other
objects. Local variables are stack-allocated. They play the role of formal param-
eters and variables of method definitions and exist only during the execution of
the method to which they belong.

The set of variables Var = IVar U TVar with typical element y is given as the
disjoint union of instance and local variables. The identity of an object is stored
in its class-typed constant this ¢ Var. The set Var' contains all variables of type
t, and correspondingly for IVar® and TVar'. As we assume a monomorphic type
discipline, Var' N Var' = 0 for distinct types t and t'. We use z,2',z1,... as
typical elements from IVar, and u,u’,uq,... as typical elements from TVar.

Besides using instance and local variables, side-effect free expressions e € Fxp
are built from this, nil, and from subexpressions using the given operators. We
use Ezp’ to denote the set of well-typed expressions of type t. The expression
this is used for self-reference within an object, and nil is a constant representing
an empty reference. Expressions with side-effects sexp € SExp contain clauses
for object creation and method invocation. The expression new® stands for the

4 The programming language Javayr

reference to a new instance of class ¢. An invocation of a method with name m
on object ey with actual parameters e,... , e, is written as eg.m(e1,...,en),
where M is an infinite set of method names containing main, start, and run.

Besides the mentioned simplifications on the type system, we impose for
technical reasons the following restrictions: We require that method invocation
and object creation statements contain only local variables, i.e., that none of the
expressions ey, ..., e, contains instance variables, and that formal parameters
do not occur on the left-hand side of assignments. This restriction implies that
during the execution of a method the values of the actual and formal parameters
are not changed. Finally, the result of an object creation or method invocation
statement may not be assigned to instance variables. This restriction allows for
a proof system with separated verification conditions for interference freedom
and cooperation. It should be clear that it is possible to transform a program to
adhere to this restrictions at the expense of additional local variables and thus
new interleaving points.

Statements stm € Stm are built from side-effect expressions and assignments
of the form = := e, u := e, and u := sexp by using standard control constructs
like sequential composition, conditional statements, and iteration, to form com-
posite statements. Especially, we will use € to denote the empty statement.

A method definition modif m(us,... ,un){ stm;rexp } € Meth consists of a
method name m, a list of formal parameters w1, ... ,uy, and a method body
body,, . of the form stm;rexp. The set Meth. contains the methods of class c.
To simplify the proof system we require that method bodies are terminated by a
single return statement, either giving back a value using return e, or not, written
as return. Additionally, methods are decorated by a modifier modif distinguishing
between non-synchronized and synchronized methods.> We use sync(c,m) to
state that method m in class ¢ is synchronized. In the sequel we also refer to
statements in the body of a synchronized method as being synchronized. A class
c{methy ... meth,methsgarmethyn} is defined by its name ¢ and its methods,
whose names are assumed to be distinct. As mentioned earlier, all classes in
Javayr are thread classes; all classes contain a start-method methgax and a run-
method meth,,, without return values. A program (class: ... classyclassmain),
finally, is a collection of class definitions having different class names, where
classmain is the entry point of the program execution. This class specifically
contains a main-method methmain without return value. We call its body, written
as body,.in, the main statement of the program.

The set of instance variables IVar, of a class ¢ contains all instance variables
occurring in that class. Correspondingly for methods, the set of local variables
TVar,, . of a method m in class ¢ is given by the set of all local variables

occurring in that method.

The syntax is summarized in Table 1.

% Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

Semantics 5

erp =z | u | this | nil | f(ezp,.. ., ezp) e€Exp expressions
serp = new® | ezp.m(exp, ..., exp) sexp€SETp side-effect exp
stm = sexp | x = exp | u = exp | u := sexp
| €| stm;stm | if exp then stm else stm
| whileezpdostm... stme Stm statements
modif ::= nsync | sync modifiers
rezp ::= return | return ezp
meth ::= modif m(u,...,u){ stm;rexp} meth€ Meth methods
methwn ::= modif run(){ stm;return } methwn € Meth run-meth.
methsan ::= nsync start(){ this.run(); return } methstart € Meth start-meth.
methmain ::= nsync main(){ stm;return } methmain € Meth main-meth.
class ::= c{meth...meth methwun methsar } class€ Class class defn’s
classmain ::= c{meth...meth methun methsar methmain} classmain€ Class main-class
prog ::= (class. . .class classmain) programs

Table 1. Javayr abstract syntax

3 Semantics

Next, we define compositionally the operational semantics of Javayr, especially,
the mechanisms of multithreading, dynamic object creation, method invocation,
and coordination via synchronization. After introducing the semantic domains,
we describe states and configurations in the following section. The operational
semantics is presented in Section 3.2 by labeled transitions between program
configurations. The semantics is given in two levels. Transitions on the local
level describe the behavior of a single instance, where we distinguish self-calls
from non-self-calls. The combined behavior of collections of instances is formu-
lated on the global level, where different objects communicate by label synchro-
nization. The semantics described here is equivalent to the one presented non-
compositionally in [1], where the behavior was given by a number of interacting
threads or execution stacks, working on a global state.

3.1 States and configurations

To give meaning to variables, we first fix the domains Val® of the various types .
Thus Val'™ and Vai®°® denote the set of integers and booleans, Val™! are finite
sequences over values from Val’, and Val''*'? stands for the product Val'' x
Val'. For class names ¢ € C, the set Val® with typical elements o, 3, ... denotes
an infinite set of object identifiers, where the domains for different class names
are assumed to be disjoint. We will write Val®®* for U.ec Val®. For each class
name ¢, nil® ¢ Val® represents the value of nil in the corresponding type. In
general we will just write nil, when c is clear from the context. We define Val;
as Val® U {nil}, and correspondingly for compound types. The set of all possible
non-nil values J, Val' is written as Val, and Val,,; denotes |J, Val.

6 Semantics

The configuration of a program is characterized by the configurations of all
existing instances, where in each instance, a number threads may be executing,
each with its own local state and all sharing the instance state.

A local state n € Xj,. of a thread holds the values of its local variables and
is modeled as a partial function of type TVar — Val,;. We denote by ni"
local states which assign to each class-typed local variable of type ¢’ from their
domain the value of m'lc’, to each boolean variable the value false, and to each
integer variable the value 0. Pairs are initialized correspondingly; sequences are
initially empty. A local configuration (1, stm) of a thread specifies, in addition
to its local state, its point of execution represented by the statement stm.

The state of an object is characterized by its instance state 0,,,; € Xinst
of type I'Var U {this} — Val,; which assigns values to its instance variables;
we require that this € dom(o;,,,) and that o;,,, (this) € Val®**. 4 The initial
instance state o™ assigns to each variable from its domain of type ¢’, Bool, and
Int the initial values m'lcl, false, and 0, respectively. Pairs are initialized corre-
spondingly; sequences are initially empty. An instance configuration (0,4, Yioc)
consists of an instance state paired with a finite set ~;,. of local configurations
of the threads currently executing within the instance.

Finally, a global configuration v specifies a finite set of instance configurations.

Given a global configuration 7, we can use the values for the self-references
this in the instance states to define what it means for an object to exist in
v. So let the set of existing objects of type ¢ defined as dom‘(y) = {a €
Val® | 3(iner»Vioe) € 7 - i (this) = a}; the set domi;(y) is given by
dom®(v) U {nil°}. For the set of objects |J, dom®(7y) we write dom®®**(v), and
correspondingly for domgiblj(ECt
dom!' and domﬁm, independently of 7y, as the set of pre-existing values Va
and ValB°°|, respectively. For compound types, dom' and dom';”-l are defined

correspondingly. We refer to the set |J, dom®(y) by dom(y); domy () denotes
U, domy; (7).

Expressions e € Fzxp are evaluated with respect to an instance local state
(CinstsN) € Tinst X Xioe, where the instance state defines the identity and val-
ues of the instance variables of the object o, (this) in which the expression is
evaluated, and 7 gives values to the local variables. This means, the semantic
function [z : (Zinst X Zioe) = (Exp — Val) shown in Table 2 evaluates in
the context of an instance local state (o;,.,n) all expressions containing only
variables from dom(o,,,,) U dom(n): Instance variables z and local variables
u are evaluated to o, (z) and n(u), respectively. The value of this refers to
the object in which the expression is evaluated, the value of nil is given by the
empty reference nil. Finally, the evaluation of compound expressions is defined
by homomorphic lifting.

For a local state n, a local variable u € dom(n) of type t, and a value

v € Val';;, we denote by nfu — v] the local state which assigns v to u and agrees

(7). For the built-in types Int and Bool we define
llnt

* In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.

Semantics 7

Hm]]gin.m‘,’" = O inst (CL‘)
|Iu]];in.st‘n = ’I](u)

[[this]]ginsw" = O ins (this)
[[n”]];mgt’" = nil

[[f(el, L ,en)]lgmmﬂ — f(ﬂelﬂ;in.st’n’ e ﬂen];in.stan)

Table 2. Expression evaluation

with n on the values of all other variables . The semantic update o, [z +— v]
of instance states is defined analogously. We use these operators analogously for
setting the values of a sequence of variables. We use n[§ — @] also for arbitrary
variable sequences, where instance variables are untouched, i.e., n[f— 7] is de-
fined by n[d+ ¥,], where @ is the sequence of the local variables in § and @,
the corresponding value sequence. Similarly, for instance states, ¢, [¢+> 7] is
defined by o, [+ U,] where Z is the sequence of the instance variables in §
and 7, the corresponding value sequence.

3.2 Operational semantics

Computation steps of a program are represented by labeled transitions between
global configurations. The operational semantics is given in two stages: first we
describe the behavior of a single instance and afterwards the combined behavior
of sets of instances, both as labeled transition system between instance configu-
rations, respectively between global configurations.

To be able to synchronize communicating partners in the parallel composition
semantics, we have to identify local configurations being in caller-callee relation-
ship. To do so, we extend the local state domains with the variables callerobj
and id of types Object and Object x Int, resp., which may not occur in programs.
The value of callerobj stores the identity of the caller object in the local state of
the callee. We identify a local configuration by the thread to which it belongs
together with its position in the thread’s call chain. Thus the first component
of id identifies the executing thread via the object in which it has begun its ex-
ecution and the second component stores the position of the local configuration
in the call chain of the thread. Note that this identification is unique, since at
most one thread can begin its execution in a single object.

Using these identities, we define the predicates callee(a,n) = (a,n + 1) and
caller(a,n +1) = (a,n), for all n > 0. For the first local configuration in a call
chain we define caller(a,0) = (nil,0). With the above identification mechanism
we can express that two local configurations belong to the same thread using the
predicate samethread((a1,n1), (q2,n2)) iff a3 = as. That a local configuration
occurs earlier than another in the call chain of a single thread, is captured by
(a1,m1) < (g, n9) iff a1 = az and ny < na.

8 Semantics

As synchronization labels, we distinguish B!m(a, id,v) and 87m(«, id,) for
sending and receiving method calls, respectively, where method m of the callee
object 3 is invoked with actual parameters ¢, and where the local configuration
of the caller executing in the object « is identified by id. In analogy, we use
al(B,id,v) and «a?(f,id,v) for sending, resp. receiving the value v exchanged
when returning to a from a method of 3 executed in the local configuration
identified by id. For methods without a return value the value v is omitted.
For a terminating thread, the caller object to which the control returns is given
by the value nil. Though the fact that a thread terminates is captured by the
label nil!(8,id).5 Creating a new instance « is indicated by the label new(«).
Finally, we use 7 to label internal steps. We write Lab for the set of labels
with [as typical element. Furthermore, we will use .., as typical element for
labels representing communication, i.e., different from 7 and all object creation
labels new(a), and write sender(l.om) and receiver(l.,m) to denote the sender,
respectively the receiver, of the message, as fixed in .pp,-

Now, Tables 3 and 4 define the transition relation —3' between instance
configurations and Table 5 between global configurations. For notational conve-
nience, we will later simple write — when leaving [unspecified.

We start with the rules for transitions for one instance. Assignments to in-
stance and local variables update the instance state, respectively the local state
(cf. ASSinst and ASSj,.). Executing u := new®, as shown in rule NEW,% has no
local effect except that it stores the new object’s identity in the local variable u.
The creation of the new object itself and the initialization of its instance vari-
ables is dealt with at the global level. The predicate fresh expresses that a given
configuration does not refer to an object identity, i.e., that the object identity is
fresh in the given context. Formally, for an object o and a value v € Val,; we
define:

false if v=a
: Bool Int Object
fresh(v,) = true }f vEa AveVal™ U VatllXtt,l Val, 7
fresh(vy, a)Afresh(va, a) if ’U=(’U1,’U2)€.Ut1’t2 Val,,
Yv; € v.fresh(vi, @) if vel, Vall;lsitlt ‘

5 A thread of a well-typed program cannot return a value when terminating, since
the start-method is of type Void. Therefore, v is left out of the label. Note also,
that a terminating thread will send as id the value (3,0), since terminating means,
popping-off from topmost frame with depth 0 from the call-stack.

6 The statement new® is handled similarly but without changing the local state.

Semantics 9

- o . ASSinst
(Tinsats Yioe U {(n, 2 := €; 5tm)}) —7 (oimare =[elg™""], yi0e U {(n, stm)})
: - : — ASSioc
(o-iTLShﬂleC U {(n7u =€ Stm)}) — (Uinstapyloc U {(n[u'_)lle]].f'mgt,]a Stm)})
fresh((inst> Yioe U {(n, u := new; stm)}), @)
NEW

(Timsts Yioe U {(m, u := new; stm)}) —"“) (g0, Yioe U {(n]u >], stm)})

[eolZ™ " =B # mil oulthis) =a# 8 id=n(d) 7= [FF"

if m = start then stm' = stm else stm’ = return?u; stm fi

- — - CALLout
(Uinstz’yloc u {(nyu = eOm(g); Stm)}) —)B!m(a,ld,v) (Uinstz’leC U {(17’ Stm,)})

Oimst(this) = B € Val® B # a e Valok= modif m(@){ body } € Meth.
sync(c,m) — isfree(Vioc, id)
(m#start) = v, = {(n™"* @ — 7][id = callee(id)][callerobj — a], body)}
(m=start A started (Yioe, 8)) = YVipe = 0
(m=start A =started (Yioe, B8)) = Vioe = {(n™*[id (8, 0)][callerobj — nil], body)}

—— - CALL;n
(Uinst) 'yloc) _>B?m(a,zd,v) (Uinsty Yioc U V;GC)
Tinst (this) = B # a =n(callerobj) id =n(id) # (8,0) v =rn(u)
- 5 RETURN ut
(Uinstz'yloc U {(77: return U)}) _)aA(»id,v) (Uinsta'yloc)
Conet(this) = a # B € Val® id = y(id)
RETURN;,

(T inst> Yioe U {(n, return?u; stm)}) — 3@ 7(B,callee(id),v) (Tinsts Yioe U {(n[uv], stm)})

Tinst(this) = B n(callerobj) = nil
(Tinst> Yioe U {(m, return)}) —™ G D (5 voe U {(n, €)})

TERMINATE

Table 3. Operational semantics of an instance

10 Semantics

For local states 7, instance configurations (0, Vioc), and global configurations
v, the predicate fresh is defined by

fresh(n,a) <= Yu € dom(n).fresh(n(u),a)
fresh(o e, @) <= VY € dom(0,,.)-fresh(o,,. (), @)
Jresh((T sty Vioe), @) <> fresh(0,,e, @) AY(n, stm) € vioc.fresh(n, a))
fresh(y,a) <= V(Ging;Vioc) € V-Jresh((Tingr, Vioe), @)-

Objects communicate by method calls, i.e., method invocation and the corre-
sponding returning of the result. For both types of communication, an instance
can play the role of the sender or of the receiver, and the transitions carry appro-
priate labels to define the composed behavior. For method invocation, the caller
determines the callee object and evaluates the method arguments locally. When
receiving a method invocation, the callee object creates a new local configura-
tion to evaluate the body. The identity of the caller object and the caller local
configuration is communicated together with the actual parameter values via the
synchronizing label to the callee object as show in the CALL-rules of Table 3.7
The handing-back of the return value, using the caller/callee identification, is
described in the two RETURN-rules of the same table.

Different threads execute synchronized methods mutually exclusive on a given
object. So in case of a synchronized method, the invocation is successful only if
the lock is currently free, or the invocation is executed by a thread that already
possesses the lock. Whether a local configuration of a thread identified by id
is allowed to execute a method call on an instance with local configuration set
Yioe, is formalized by the predicate isfree, defined as isfree(7ioc, id) = true iff all
local configurations in v;,. with a synchronized statement have an identity less
or equal id.

The start-method is special in two respects. First, it can effectively be invoked
only once on each object; further invocations of the start-method are without
effect. ® Secondly, its invocation gives rise to a new call chain, i.e., a new thread
of execution. Hence, the identity of the local state is initialized to (£,0). The
local variable callerobj is set to nil, since after termination of the start-method
the whole thread terminates; thus the control will not be given back to the caller.
Returning from a start-method or from the initial invocation of the main-method
is handled by the rule TERMINATE, where the local configuration remains in the
local configuration set with an empty statement, representing the terminated
thread.

Left-out in Table 3 is the semantics of self-calls and self-returns; they are
handled separately in Table 4 as they are local to one instance. Consequently,
the steps are all labeled with 7. The rule CALLgey is the counter-piece for the

" A rule similar to CALLyy not shown in the table takes care about the invocation
eo.m(€) of methods without storing the return value. Note that for methods without
formal parameters € and ¥ are empty.

8 In Java an exception is thrown if the thread is already terminated.

Semantics 11

pair CALL,y: and CALL;, when caller and callee object match, and similar for
returning. Note that the start-method can be invoked by a self-call (STARTeys
and STARTjZ}’). Nevertheless we do not need a corresponding rule for returning

from a start-method, since it does not return to the caller.

[eolz™"" = a = s (this) € Val® id = n(id)
modif m(i){ body } € Meth. m # start sync(c,m) — isfree(Vioe, id)
7' = ™t E s [E]z"][id = callee(id)][callerobj — a]

- - CALLSE[f

(Cinsts Yioe U {(m,u := e0.m(&); stm)}) —" (Tinsts Yioe U {(1, return?u; stm), (1, body)})
0 st (this) = 1’ (callerobj) n(id) = callee(n’ (id))
0" =n'Tu—]z

- - RETURN ¢
(Ginst> Yioe U {(n, return e), (1, return?u; stm)}) —" (Ginsts Yioe U {(1"', stm)})
[[eo]]gi“"n = 8 = 0, (this) € Val® —started (Y. U {(n, eo.start(); stm)}, B)

7' = n™*[id — (B, 0)][callerobj — nil]
START i

T

(Uinsty Yioc U {(77) eo.start(); Stm)}) — (Uinst) Yioc U {(777 Stm): (77’, bOdystart,c)})

[eolz™*" = B = 0ype (this) started (i, U {(n, eo.start(); stm)}, B)
(T inst> Yioe U {(n, eo.start(); stm)}) —7 (Finsts Yioe U {(n, stm)})

skip
START)f

Table 4. Operational semantics of an instance (2)

We elide the rules for the remaining sequential constructs —sequential com-
position, conditional statement, and iteration— since they are standard.

As for the composed behavior of more than one object, the rules are displayed
in Table 5. Two instances can perform their steps interleaved, when not forced
to synchronize. A component can proceed by an internal step independently
of other instances (cf. rule INTERLEAVE,) and similarly for instantiation steps
(cr. rule INTERLEAVEy¢y,). For communication, the sender object proceeds on
its own by communicating to the environment, if the receiver of the message is
not contained in the system (cf. rule INTERLEAVE comm). If both communication
partners are existing within the system, they synchronize on the common label
(rule SYNCeqi and SYNCyretyrn). A new instance configuration in its initial state
finally is added in rule SYNCpeq -

Since global configurations are defined as sets, parallel composition means set
union, and thus || is symmetric and associative. To maintain uniqueness of object
identities in global configurations, we throughout assume in writing 7, || 72 that
dom®%*(~,) and dom®"*(v,) are disjoint.

12 Semantics

l ’ ! ’
(Uinst) 'yloc) et ? T Y1
BASE INTERLEAVE-

{(Uinstz’yloc)} —>l {(Ugnsta'y;oc)} e ” 72 —7 ’71 || 72

(Uinst 3 'yloc) —

=" AL fresh(ye, @)

INTERLEAVE 0
new(a)

v — Y1l e

Y1 —yleom i receiver(lcom) & dom(y2) A sender(lcom) ¢ dom(7y2)

z - INTERLEAVE comm
Y llve — " [e

" _)B!m(a,id,'ﬁ) ,yi 7o _)B?m(a,id,'i) ,yé

-/ ; SYNCcall
Al —" 7l 72

" _)a!(ﬁ,id,'u) ,yi ¥ _yx?(ﬁ,id,v) ’)’3

|| PR || ; SYNCTeturn
Yl Y2 = Yl 72

y —m @)y fresh(y, @)
v —7 4 || {(o%[this— o], 0)}

SYNChew

Table 5. Parallel composition

Conclusion 13

We conclude with the definition of initial and reachable configurations. We
call a configuration «' reachable from the configuration -y iff there exists a compu-
tation v —* +' , where —* is the reflexive transitive closure of —; we write
reach(7y) for the set of global configurations reachable from . A configuration
v of a program is reachable, if v € reach(vo), where 7y is the initial configura-
tion (o2 {(n™[id —(a, 0)][callerobj ~ nil], body ,,i,)}) Wwith main class ¢ and
a € Val.

In Java, the main method of a program is static. Since Javayr does not
have static methods and variables, we define the initial configuration as having
a single initial object in that an initial thread starts to execute its main-method.
Note that according to the definition of the started predicate, the start-method
of the initial object cannot be invoked.

4 Conclusion

The paper presented a compositional operational semantics of Javayr, where
the semantics of a system is described compositionally from the behavior of its
instances. The semantics coincides with the one presented non-compositionally in
[1]. The formalization presented here, i.e., the thread-identification mechanism,
the design of the operational rules, the information added to the labels etc.,
was inspired by the modular proof-system of [1]. We consider this work as an
important step towards a compositional proof-system for Javapsr.

As further work, we plan to extend Javayr by further constructs, especially
adding further synchronization primitives for monitor synchronization such as
wait and notify, but also extending the language in the direction of “object-
orientedness”, adding inheritance, subtyping, and other concepts featured in
Java.

References

1. E. Abrahdm-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In M. Nielsen and U. H. Engberg,
editors, Proceedings of Foundations of Software Science and Computation Structures
(FoSSaCS’02), volume 2303 of Lecture Notes in Computer Science, pages 4-20.
Springer-Verlag, Apr. 2002.

2. J. Alves-Foss, editor. Formal Syntaz and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer-Verlag, 1999.

3. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [2].

4. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley,
1996.

5. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and Is-
abelle. PhD thesis, University of Nijmegen, 2001.

6. A. Poetzsch-Heffter and P. Miiller. A programming logic for sequential Java. In
S. Swierstra, editor, Programming Languages and Systems, volume 1576 of Lecture
Notes in Computer Science, pages 162-176. Springer, 1999.

14 Conclusion

7. R. Stark, J. Schmid, and E. Bérger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

8. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables, side
effects and virtual methods revisited. submitted for publication, 2002.

Notation

A Notation

15

typ. element symbol definition explanation
Semantics
a Val® object identities
Vals,; Val® U {nil} identities or nil
v Valt values of type ¢
Val J, Val' all values (except nil’s)
Val,; U, Vally all values
N Y TVar — Val,, local state
(7, stm) Yioe X Stm local configuration

O inst Eiﬂ-‘)‘i
Yinst = (oingty "Yloc) Finst

IVar U {this} = Val,;,
Zinst x ZZ‘IOCXStm

instance state
instance configuration

y r 2Tms global configuration
dom(y) g Val existing values in
dom®(~y) g Val® existing instances of class ¢
(TinstsN) Yinst X Xioe instance local state
[e (Xinst X Xioe) = Exp — Val,;; local evaluation function
id Val®® x Int originating object x depth
started 2% e XSt o Va1¢ — Bool
fresh 2% 10 XSt o Va1 — Bool
callee Val®% x Int — Val®% x Int “+ 1"
caller Val®€t x Int — Val®%t x Ing «—1"
l Lab labels

