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Abstract. Besides the features of a class-based object-oriented lan-
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1 Introduction

Since the Java language is increasingly used also in safety-critical applications,
the development of verification techniques for Java programs becomes more
and more important. Java has several interesting and challenging features likes
object-orientation, inheritance, and exception handling. Furthermore, Java in-
tegrates concurrency via its Thread-class, allowing for a multithreaded flow of
control.

To reason about safety properties of multithreaded Java programs, this work
introduces a tool-supported assertional proof method for a concurrent sublan-
guage of Java. The language includes dynamic object creation, method invoca-
tion, object references with aliasing, concurrency, Java’s monitor discipline, and
exception handling, but excludes inheritance and subtyping. The concurrency
model includes shared-variable concurrency via instance variables, coordination
via reentrant synchronization monitors, synchronous message passing, and dy-
namic thread creation.

A program specifies a set of classes, where each class declares its own meth-
ods and instance variables. The behavior of a Java program results from the
concurrent execution of methods.

To support a clean interface between internal and external object behavior,
we exclude qualified references to instance variables. I.e., the values of instance
variables of an object can be accessed and modified only within the object. As
a consequence, shared-variable concurrency is caused by simultaneous execution
within a single object, only, but not across object boundaries.

In order to capture program behavior in a modular way, the assertional logic
and the proof system are formulated at two levels, a local and a global one.
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The local assertion language describes the internal object behavior. The global
behavior, including the communication topology of objects, is expressed in the
global language. As in the Object Constraint Language (OCL) [57], properties
of object-structures are described in terms of a navigation or dereferencing op-
erator.

The assertional proof system is formulated in terms of proof outlines [44],
i.e., of programs augmented by auxiliary variables and annotated with Hoare-
style assertions [24, 25]. The satisfaction of the program properties specified by
the assertions is guaranteed by the verification conditions of the proof system.
The initial correctness conditions cover satisfaction of the properties in the ini-
tial program configuration. The execution of a single method body in isolation
is captured by standard local correctness conditions, using the local assertion
language. Interference between concurrent method executions is covered by the
interference freedom test [44, 33], formulated also in the local language. It has
especially to accommodate for reentrant code and the specific synchronization
mechanism. Possibly affecting more than one instance, communication and ob-
ject creation is treated in the cooperation test, using the global language. The
communication can take place within a single object or between different ob-
jects. As these cases cannot be distinguished syntactically, our cooperation test
combines elements from similar rules in [14] and in [33] for CSP.

Our proof method is modular in the sense that it allows for separate interfer-
ence freedom and cooperation tests. This modularity, which in practice simplifies
correctness proofs considerably, is obtained by disallowing the assignment of the
result of communication and object creation to instance variables. Clearly, such
assignments can be avoided by additional assignments to fresh local variables
and thus at the expense of new interleaving points. This restriction could be
released, without loosing the mentioned modularity, but it would increase the
complexity of the proof system. Computer-support is given by the tool Verger
(VERification condition GEneratoR), taking a proof outline as input and gen-
erating the verification conditions as output. We use the interactive theorem
prover PVS [45] to verify the conditions, for which we only need to encode the
semantics of the assertion language.

To transparently describe the proof system, we present it incrementally in
four stages: We start with a proof method for a sequential sublanguage of Java,
allowing for dynamic object creation and method invocation. This first stage
shows how to handle activities of a single thread of execution. In the second
stage we additionally allow dynamic thread creation, leading to multithreaded
execution. The corresponding proof system extends the one for the sequential
case with conditions handling dynamic thread creation and the new interleaving
aspects. We integrate Java’s monitor synchronization mechanism in the third
stage. Finally, we include Java’s exception handling in the last stage. We also
show how to express deadlock freedom, and give some examples. The proof system
is shown to be sound and complete.

This incremental development shows how the proof system can be extended
stepwise to deal with additional features of the programming language. Further
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extensions by, for example, the concepts of inheritance and subtyping are topics
for future work.

1.1 Related work

This work extends earlier results. In [6] we develop a proof system for a con-
current sublanguage of Java, but without reentrant monitors. Reentrant syn-
chronization was incorporated in [9]; the work [2] integrates also Java’s monitor
methods wait, notify, and notifyAll. An incremental description of the proof sys-
tem, starting with a sequential language and stepwise adding additional language
features, but excluding exception handling, is given in [8]. In [8] we also introduce
proof conditions for deadlock freedom. The work is summarized in Ábrahám’s
PhD thesis [1] and the theoretical aspects in [5]. We discuss the proof system
also in [7] and in [3]. We formalize the semantics of our programming language
in a compositional manner in [4]. This work extends the above ones by including
exception handling.

The semantical foundations of Java have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [10, 55, 23]). The research
concerning Java’s proof theory mainly concentrated on various aspects of se-
quential sub-languages. To the best of our knowledge, our work defines the first
sound and complete assertional proof method for a multithreaded sublanguage
of Java including its monitor discipline and exception handling.

De Boer [19] presents a sound and complete proof system in weakest precon-
dition formulation for a parallel object-based language, i.e., without inheritance
and subtyping, and also without reentrant method calls. Later work [48, 21, 20]
and especially the PhD thesis of Pierik [47] includes more features, especially
catering for a Hoare logic for inheritance and subtyping.

The aim of the work in the Loop project (Logic of Object-Oriented Pro-
gramming) [34] is to specify and verify properties of classes in object-oriented
languages. The project research concentrates on a sequential subpart of Java;
the main focus of application is JavaCard.

A compiler [17] translates programs and their specifications into PVS [30]
and Isabelle/HOL [16]. The translation is based on the embedding of a denota-
tional semantics of the sequential Java subset into Higher Order Logic (HOL).
Soundness of the representation is shown in [26]. Loop specifications formalized
in JML are represented in HOL by a set of proof rules [32]. Jacobs presents also
a coalgebraic view of exceptions in [29]. Modeling inheritance in higher order
logic is the topic of [27]. The Loop tool and methodology has been applied to
several case studies; see e.g. [54, 53, 18, 28, 31].

Instead of the denotational semantics, our work is based on an operational
semantics. Though research within the Loop project deals with many of the
complexities of Java, they don’t handle recursive calls and concurrency, and
don’t investigate completeness.

The project Bali [15] is concerned with the formalization of various aspects
of Java in the theorem prover Isabelle/HOL [46]. Nipkow and von Oheimb [37,
42] prove type soundness of their Javalight subset, a large sequential sublanguage
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of Java. They formalize its abstract syntax, type system, and well-formedness
conditions. Instead of the denotational semantics in works of the Loop project,
they develop an operational semantics. Based on this formalization, they express
and prove type soundness within the theorem prover Isabelle/HOL. To comple-
ment the operational semantics of Javalight , von Oheimb presents an axiomatic
semantics [39, 40], and proves soundness and completeness of the latter with
respect to the operational semantics. With µJava, Nipkow et al. [38] offer an
Isabelle/HOL embedding of Java’s imperative core with classes. They present a
static and a dynamic semantics of the language both at the Java level and the
JVM level.

Based on [38], von Oheimb [41] presents a Hoare-style calculus for a JavaC-
ard subset and proves soundness and completeness in Isabelle/HOL. Nipkow
[36] selects some of the technically difficult language features and deals with
their Hoare logic in isolation. The combination of [41] and [36] in one language
(NanoJava) is formulated in [43].

In contrast to our approach, the Bali project aims to cover only sequential
subsets of Java. Furthermore, they use a semantic representation of assertions;
program execution is specified by state transformations. Our proof system uses
a syntactic representation, and substitution operators instead of state transfor-
mations.

Similarly to our proof system, also Poetzsch-Heffter and Müller use a syntac-
tical representation of assertions [49–52]. They develop a Hoare-style program-
ming logic for a sequential kernel of Java, featuring interfaces, subtyping, and
inheritance. Translating the operational and the axiomatic semantics into the
HOL theorem prover allows a computer-assisted soundness proof. Neither this
group deals with concurrent sublanguages of Java.

1.2 Overview

The work is organized as follows: Section 2 describes syntax and semantics of
a sequential sublanguage of Java. After introducing the assertional logic, we
present a proof system for the sequential case. Section 3 extends the results to
a concurrent sublanguage. The language introduced in Section 4 includes Java’s
monitor synchronization mechanism. Section 5 covers also exception handling.
The verification conditions in the above sections are formulated as standard
Hoare-triples. Section 6 defines the formal semantics of Hoare-triples, given by
means of a weakest precondition calculus, and reformulates the verification con-
ditions. Soundness and completeness are discussed in Section 7. Section 8 shows
how we can prove deadlock freedom, and gives some examples. Section 9 con-
tains some concluding remarks. The appendix contains proofs of soundness and
completeness.

2 The sequential language

In this section we introduce a sequential sublanguage Javaseq of Java. We define
its syntax in Section 2.1, and its semantics in Section 2.2. After defining the
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assertion language in Section 2.3, we introduce a proof system for verifying
safety properties of the language in Section 2.4.

Programs, as in Java, are given by a collection of classes containing instance
variable and method declarations. Instances of the classes, i.e., objects, are dy-
namically created, and communicate via method invocation, i.e., synchronous
message passing.

We ignore in Javaseq the issues of concurrency, inheritance, and consequently
subtyping, overriding, and late-binding. For simplicity, we neither allow method
overloading, i.e., we require that each method name is assigned a unique list of
formal parameter types and a return type. In short, being concerned with the
verification of the run-time behavior, we assume a simple monomorphic type
discipline for Javaseq .

2.1 Syntax

Javaseq is a strongly typed language; besides class types c, it supports booleans
Bool and integers Int as primitive types, and pairs t×t and lists list t as composite
types. The type of methods without return value is Void. Since Javaseq is strongly
typed, all program constructs of the abstract syntax are silently assumed to be
well-typed. In other words, we work with a type-annotated abstract syntax where
we omit the explicit mentioning of types when this causes no confusion.

For each type, the corresponding value domain is equipped with a standard
set of operators with typical element f. Each operator f has a unique type t1×· · ·×
tn → t and a fixed interpretation f , where constants are operators of zero arity.
Apart from the standard repertoire of arithmetical and boolean operations, the
set of operators also contains operations on tuples and sequences like projection,
concatenation, etc.

For variables, we notationally distinguish between instance variables x ∈
IVar and local (temporary) variables u ∈ TVar . Instance variables hold the
state of an object and exist throughout the object’s lifetime. Local variables
are stack-allocated; they play the role of formal parameters and variables of
method definitions and only exist during the execution of the method to which
they belong. We use Var = IVar ∪̇ TVar for the set of program variables with
typical element y, where ∪̇ is the disjoint union operator.

The abstract syntax is summarized in Table 1. It slightly differs from Java
syntax. Though we use the abstract syntax for the theoretical part of this work,
our tool supports Java syntax.

Besides using instance and local variables, expressions exp ∈ Exp are built
from the self-reference this, the empty reference null, and from subexpressions
using the given operators.We use e as typical element for expressions. To support
a clean interface between internal and external object behavior, Javaseq does not
allow qualified references to instance variables. Note that all expressions of the
language are side-effect free, i.e., their evaluation does not modify the program
state. Only the execution of statements may have such an effect.
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exp ::= x | u | this | null | f(exp, . . ., exp)
expret ::= ǫ | exp
stm ::= x := exp | u := exp | u := newc

| u := exp.m(exp, . . ., exp) | exp.m(exp, . . ., exp)
| ǫ | stm ; stm | if exp then stm else stm fi | while exp do stm od . . .

meth ::= m(u, . . ., u){ stm; return expret}
meth run ::= run(){ stm ; return }

class ::= class c{meth . . .meth}
classmain ::= c{meth . . .meth meth run}

prog ::= 〈class . . .class classmain〉

Table 1. Javaseq abstract syntax

As statements stm ∈ Stm , we allow assignments, object creation, method
invocation, and standard control constructs like sequential composition, condi-
tional statements, and iteration. We write ǫ for the empty statement.

A method definition m(u1, . . . , un){stm; return eret} specifies the method’s
name m, a list of formal parameters u1, . . . , un, and a method body of the form
stm; return eret , i.e., we require that method bodies are terminated by a single
return statement, giving back the control and possibly a return value. The set
Methc contains the methods of class c. We denote the body of method m of class
c by bodym,c. Sometimes we explicitly mention the types of formal parameters
and of the return value in Java-style t m(t1 u1, . . . , tn un){bodym,c}.

A class is defined by its name c and its methods, whose names are assumed to
be distinct. A program, finally, is a collection of class definitions having different
class names, where classmain defines by its run-method the entry point of the
program execution. We call the body of the run-method of the main class the
main statement of the program.3 The run-method cannot be called.

The set IVar c of instance variables of a class c is given implicitly by the
instance variables occurring in the class; the set of local variables of method
declarations is given similarly. In the examples we explicitly define variables in
Java-style.

Besides the mentioned simplifications on the type system, we impose for tech-
nical reasons the following restrictions: We require that method invocation state-
ments contain only local variables, i.e., that none of the expressions e0, . . . , en in
a method invocation e0.m(e1, . . . , en) contains instance variables. Furthermore,
formal parameters must not occur on the left-hand side of assignments. These
restrictions imply that during the execution of a method the values of the actual
and formal parameters are not changed. Finally, the result of object creation

3 In Java, the entry point of a program is given by the static main-method of the main
class. Relating the abstract syntax to that of Java, we assume that the main class
is a Thread-class whose main-method just creates an instance of the main class and
starts its thread. The reason to make this restriction is, that Java’s main-method is
static, but our proof system does not support static methods and variables.
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and method invocation may not be stored in instance variables. This restriction
allows for a proof system with separated verification conditions for interference
freedom and cooperation. It should be clear that it is possible to transform a
program to adhere to this restrictions at the expense of additional local vari-
ables and thus new interleaving points. The above restrictions could be released,
without loosing the mentioned modularity, but it would increase the complexity
of the proof system.

2.2 Semantics

In this section, we define the operational semantics of Javaseq . After introducing
the semantic domains, we describe states and configurations. The operational
semantics is presented by transitions between program configurations.

States and configurations Let Val t be the disjoint domains of the various
types t. For class names c, the disjunct sets Valc with typical elements α, β, . . .
denote infinite sets of object identifiers. The value of null of type c is nullc /∈ Valc.
In general we will just write null , when c is clear from the context. We define
Valcnull as Valc ∪̇ {nullc}, and correspondingly for compound types. The set
of all possible non-null values

⋃
t Val

t is written as Val , and Valnull denotes⋃
t Val

t
null . Let Init : Var → Valnull be a function assigning an initial value

to each variable y ∈ Var , i.e., null , false , and 0 for class, boolean, and integer
types, respectively, and analogously for compound types, where sequences are
initially empty. We define this /∈ Var , such that the self-reference is not in the
domain of Init .4

The configuration of a program consists of the set of existing objects and the
values of their instance variables, and the configuration of the executing thread.
Before formalizing the global configurations of a program, we define local states
and local configurations. In the sequel we identify the occurrence of a statement
in a program with the statement itself.

A local state τ ∈ Σloc of a method execution holds the values of the method’s
local variables and is modeled as a partial function of type TVar ⇀ Valnull . We
refer to local states of method m of class c by τm,c. The initial local state
τ initm,c assigns to each local variable u from its domain the value Init(u). A local
configuration (α, τ, stm) of a method of an object α 6= null specifies, in addition
to its local state τ , its point of execution represented by the statement stm. A
thread configuration ξ = (α0, τ0, stm0)(α1, τ1, stm1) . . . (αn, τn, stmn) is a stack
of local configurations, representing the chain of method invocations of the given
thread. We write ξ ◦ (α, τ, stm) for pushing a new local configuration onto the
stack.

Objects are characterized by their instance states σinst ∈ Σinst of type IVar ∪̇
{this} ⇀ Valnull ; we require that this is in the domain dom(σinst ) of σinst . We

4 In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.
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write σc
inst to denote states of instances of class c. The semantics will maintain

σc
inst (this) ∈ Valc as invariant. The initial instance state σc,init

inst assigns a value
from Valc to this, and to each of its remaining instance variables x the value
Init(x).

A global state σ ∈ Σ of type (
⋃

cVal
c) ⇀ Σinst stores for each currently ex-

isting object, i.e., an object belonging to the domain of σ, its instance state.
The set of existing objects of type c in a state σ is given by Valc(σ), and
Valcnull (σ) = Valc(σ) ∪̇ {nullc}. For the remaining types, Val t(σ) and Val tnull (σ)
are defined correspondingly. We refer to the set

⋃
t Val

t(σ) by Val (σ); Valnull (σ)
denotes

⋃
t Val

t
null (σ). The instance state of an object α ∈ Val (σ) is given by

σ(α) with the invariant property σ(α)(this) = α. We require that, given a global
state, no instance variable in any of the existing objects refers to a non-existing
object, i.e., σ(α)(x) ∈ Valnull (σ) for all classes c, objects α ∈ Valc(σ), and in-
stance variables x ∈ IVarc. This will be an invariant of the operational semantics
of the next section.

A global configuration 〈T, σ〉 describes the currently existing objects by the
global state σ, where the set T contains the configuration of the executing thread.
For the concurrent languages of the later sections, T will be the set of configura-
tions of all currently executing threads. Analogously to the restriction on global
states, we require that local configurations (α, τ, stm) in 〈T, σ〉 refer only to ex-
isting object identities, i.e., α ∈ Val (σ) and τ(u) ∈ Valnull (σ) for all variables u
from the domain of τ ; again this will be an invariant of the operational seman-
tics. In the following, we write (α, τ, stm) ∈ T if there exists a local configuration
(α, τ, stm) within one of the execution stacks of T .

The semantic function [[ ]] ,
E : (Σinst ×Σloc) → (Exp ⇀ Valnull ) evaluates in

the context of an instance local state (σinst , τ) expressions containing variables
from dom(σinst ) ∪ dom(τ): Instance variables x and local variables u are eval-
uated to σinst (x) and τ(u), respectively; this evaluates to σinst (this), and null
has the null-reference as value, where compound expressions are evaluated by
homomorphic lifting (see Table 2).

[[x]]
σinst ,τ

E = σinst (x)

[[u]]
σinst ,τ

E = τ (u)

[[this]]
σinst ,τ

E = σinst (this)

[[null]]
σinst ,τ

E = null

[[f(e1, . . . , en)]]
σinst ,τ

E = f([[e1]]
σinst ,τ

E , . . . , [[en]]
σinst ,τ

E )

Table 2. Semantics of program expressions

We denote by τ [u 7→ v] the local state which assigns the value v to u and agrees
with τ on the values of all other variables; σinst [x 7→ v] is defined analogously,
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where σ[α.x 7→ v] results from σ by assigning v to the instance variable x of object
α. We use these operators analogously for vectors of variables. We use τ [~y 7→~v]
also for arbitrary variable sequences, where instance variables are untouched;
σinst [~y 7→~v] and σ[α.~y 7→~v] are analogous. Finally for global states, σ[α 7→σinst ]
equals σ except on α; note that in case α /∈ Val (σ), the operation extends the
set of existing objects by α, which has its instance state initialized to σinst .

Operational semantics The operational semantics of Javaseq is given induc-
tively by the rules of Table 3 as transitions between global configurations. The
rules are formulated such a way that we can re-use them also for the concurrent
languages of the later sections. Note that for the sequential language, the sets
T in the rules are empty, since there is only one single thread in global configu-
rations. We elide the rules for the remaining sequential constructs —sequential
composition, conditional statement, and iteration— as they are standard.

Assinst
〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x 7→[[e]]

σ(α),τ
E ]〉

Assloc
〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→[[e]]

σ(α),τ
E ], stm)}, σ〉

β ∈ Val c\Val (σ) σinst = σc,init
inst [this 7→ β] σ′ = σ[β 7→ σinst ]

New
〈T ∪̇ {ξ ◦ (α, τ, u:=newc; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→ β], stm)}, σ′〉

m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Val c(σ) τ ′ = τ init

m,c[~u 7→[[~e]]
σ(α),τ
E ]

Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret ]]
σ(β),τ ′
E ]

Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret )}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

Returnrun

〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ǫ)}, σ〉

Table 3. Javaseq operational semantics

Before having a closer look at the semantical rules for the transition relation
−→, let us start by defining the starting point of a program. The initial config-
uration 〈T0, σ0〉 of a program satisfies dom(σ0) = {α}, σ0(α) = σc,init

inst [this 7→α],
and T0 = {(α, τ initrun,c, body run,c)}, where c is the main class, and α ∈ Valc.
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We call a configuration 〈T, σ〉 of a program reachable iff there exists a com-
putation 〈T0, σ0〉−→∗〈T, σ〉 such that 〈T0, σ0〉 is the initial configuration of the
program and −→∗ the reflexive transitive closure of −→. A local configuration
(α, τ, stm) ∈ T is enabled in 〈T, σ〉, if it can be executed, i.e., if there is a com-
putation step 〈T, σ〉 → 〈T ′, σ′〉 executing stm in the local state τ and object
α.

Assignments to instance or local variables update the corresponding state
component, i.e., either the instance state or the local state (rules Assinst and
Assloc). Object creation by u := newc, as shown in rule New, creates a new
object of type c with a fresh identity stored in the local variable u, and initializes
the instance variables of the new object. Invoking a method extends the call chain
by a new local configuration (rule Call). After initializing the local state and
passing the parameters, the thread begins to execute the method body. When
returning from a method call (rule Return), the callee evaluates its return
expression and passes it to the caller which subsequently updates its local state.
The method body terminates its execution and the caller can continue. We have
similar rules not shown in the table for the invocation of methods without return
value. The executing thread ends its lifespan by returning from the run-method
of the initial object (rule Returnrun).

2.3 The assertion language

In this section we introduce assertions to specify program properties. The asser-
tion logic consists of a local and a global sublanguage. Local assertions describe
instance local states, and are used to annotate methods in terms of their local
variables and of the instance variables of the class to which they belong. Global
assertions describe the global state, i.e., a whole system of objects and their
communication structure.

To be able to argue about communication histories, represented as lists of
objects, we add the type Object as the supertype of all classes into the assertion
language. Note that we allow this type solely in the assertion language, but not in
the programming language, thus preserving the assumption of monomorphism.

Syntax In the language of assertions, we introduce a countably infinite set LVar
of well-typed logical variables with typical element z, where we assume that
instance variables, local variables, and this are not in LVar . We use LVar t for
the set of logical variables of type t. Logical variables are used for quantification
in both the local and the global language. Besides that, they are used as free
variables to represent local variables in the global assertion language: To express
a local property on the global level, each local variable in a given local assertion
will be replaced by a fresh logical variable.

Table 4 defines the syntax of the assertion language. For readability, we use
the standard syntax of first order logic in the theoretical part; the Verger tool
supports an adaptation of JML.

Local expressions expl ∈ LExp are expressions of the programming language
possibly containing logical variables. The set of local expressions of type t is
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denoted by LExpt. In abuse of notation, we use e, e′ . . . not only for program
expressions of Table 1, but also for typical elements of local expressions. Local
assertions ass l ∈ LAss , with typical elements p, p′, q, . . ., are standard logical
formulas over boolean local expressions. We allow three forms of quantification
over logical variables: Unrestricted quantification ∃z. p is solely allowed for do-
mains without object references, i.e., z is required to be of type Int, Bool, or
compound types built from them. For reference types c, this form of quantifi-
cation is not allowed, as for those types the existence of a value dynamically
depends on the global state, something one cannot speak about on the local
level, or more formally: Disallowing unrestricted quantification for object types
ensures that the value of a local assertion indeed only depends on the values of
the instance and local variables, but not on the global state. Nevertheless, one
can assert the existence of objects on the local level satisfying a predicate, pro-
vided one is explicit about the set of objects to range over. Thus, the restricted
quantifications ∃z ∈ e. p and ∃z ⊑ e. p assert the existence of an element, respec-
tively, the existence of a subsequence of a given sequence e, for which a property
p holds.

Global expressions expg ∈ GExp , with typical elements E,E′, . . ., are con-
structed from logical variables, null, operator expressions, and qualified refer-
ences E.x to instance variables x of objects E. We write GExpt for the set of
global expressions of type t. Global assertions assg ∈ GAss , with typical ele-
ments P,Q . . ., are logical formulas over boolean global expressions. Unlike the
local language, the meaning of the global one is defined in the context of a global
state. Thus unrestricted quantification is allowed for all types and is interpreted
to range over the set of existing values, i.e., the set of values Valnull (σ) in a
global configuration 〈T, σ〉.

expl ::= z | x | u | this | null | f(exp l, . . . , expl) e ∈ LExp
ass l ::= expl | ¬ass l | ass l ∧ ass l

| ∃z. ass l | ∃z ∈ expl. ass l | ∃z ⊑ expl. ass l p ∈ LAss

expg ::= z | null | f(expg, . . . , expg) | expg.x E ∈ GExp
assg ::= expg | ¬assg | assg ∧ assg | ∃z. assg P ∈ GAss

Table 4. Syntax of assertions

We sometimes write quantification over t-typed values in the form ∀(z : t). p
to make the domain of the quantification explicit; we use the same notation also
in the global language.

Semantics Next, we define the interpretation of the assertion language. The
semantics is fairly standard, except that we have to cater for dynamic object
creation when interpreting quantification.
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Logical variables are interpreted relative to a logical environment ω ∈ Ω, a
partial function of type LVar ⇀ Valnull , assigning values to logical variables.
We denote by ω[~z 7→~v] the logical environment that assigns the values ~v to the
variables ~z, and agrees with ω on all other variables. Similarly to local and
instance state updates, the occurrence of instance and local variables in ~z is
without effect. For a logical environment ω and a global state σ we say that ω
refers only to values existing in σ, if ω(z) ∈ Valnull (σ) for all z ∈ dom(ω). This
property matches with the definition of quantification which ranges only over
existing values and null , and with the fact that in reachable configurations local
variables may refer only to existing values or to null .

The semantic function [[ ]] , ,
L of type (Ω ×Σinst ×Σloc) → (LExp ∪ LAss ⇀

Valnull ) evaluates local expressions and assertions in the context of a logical
environment ω and an instance local state (σinst , τ) (cf. Table 5). The evalua-
tion function is defined for expressions and assertions that contain only variables
from dom(ω) ∪ dom(σinst ) ∪ dom(τ). The instance local state provides the con-
text for giving meaning to programming language expressions as defined by the
semantic function [[ ]]E ; the logical environment evaluates logical variables. An
unrestricted quantification ∃z. p with z ∈ LVar t is evaluated to true in the logical
environment ω and instance local state (σinst , τ) if and only if there exists a value
v ∈ Val t such that p holds in the logical environment ω[z 7→ v] and instance local
state (σinst , τ), where for the type t of z only Int, Bool, or compound types built
from them are allowed. The evaluation of a restricted quantification ∃z ∈ e. p
with z ∈ LVar t and e ∈ LExp list t is defined analogously, where the existence of
an element in the sequence is required. An assertion ∃z ⊑ e. p with z ∈ LVar list t

and e ∈ LExp list t states the existence of a subsequence of e for which p holds. In
the following we also write ω, σinst , τ |=L p for [[p]]

ω,σinst ,τ
L = true. By |=L p we

express that ω, σinst , τ |=L p holds for arbitrary logical environments, instance
states, and local states.

Since global assertions do not contain local variables and non-qualified ref-
erences to instance variables, the global assertional semantics does not refer to
instance local states but to global states. The semantic function [[ ]] ,

G of type
(Ω × Σ) ⇀ (GExp ∪ GAss ⇀ Valnull ), shown in Table 6, gives meaning to
global expressions and assertions in the context of a global state σ and a logical
environment ω. To be well-defined, ω is required to refer only to values existing
in σ, and the expression respectively assertion may only contain free variables5

from the domain of ω. Logical variables, null, and operator expressions are eval-
uated analogously to local assertions. The value of a global expression E.x is
given by the value of the instance variable x of the object referred to by the
expression E. The evaluation of an expression E.x is defined only if E refers
to an object existing in σ. Note that when E and E′ refer to the same object,
that is, E and E′ are aliases, then E.x and E′.x denote the same variable. The
semantics of negation and conjunction is standard. A quantification ∃z. P with
z ∈ LVar t evaluates to true in the context of ω and σ if and only if P evaluates
to true in the context of ω[z 7→ v] and σ, for some value v ∈ Val tnull (σ). Note

5 In global expressions E.x we treat x as a bound variable.
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[[z]]
ω,σinst ,τ

L = ω(z)

[[x]]
ω,σinst ,τ

L = σinst (x)

[[u]]
ω,σinst ,τ

L = τ (u)

[[this]]
ω,σinst ,τ

L = σinst (this)

[[null]]
ω,σinst ,τ

L = null

[[f(e1, . . . , en)]]
ω,σinst ,τ

L = f([[e1]]
ω,σinst ,τ

L , . . . , [[en]]
ω,σinst ,τ

L )

([[¬p]]ω,σinst ,τ

L =true) iff ([[p]]
ω,σinst ,τ

L =false)

([[p1 ∧ p2]]
ω,σinst ,τ

L =true) iff ([[p1]]
ω,σinst ,τ

L =true and [[p2]]
ω,σinst ,τ

L =true)

([[∃z. p]]ω,σinst ,τ

L =true) iff ([[p]]
ω[z 7→ v],σinst ,τ

L =true for some v ∈ Valnull)

([[∃z∈e. p]]ω,σinst ,τ

L =true) iff ([[z∈e∧p]]ω[z 7→ v],σinst ,τ

L =true for some v∈Valnull)
([[∃z⊑e. p]]

ω,σinst ,τ

L =true) iff ([[z⊑e∧p]]ω[z 7→ v],σinst ,τ

L =true for some v∈Valnull)

Table 5. Local evaluation

that quantification over objects ranges over the set of existing objects and null ,
only.

[[z]]ω,σ
G = ω(z)

[[null]]ω,σ
G = null

[[f(E1, . . . , En)]]
ω,σ
G = f([[E1]]

ω,σ
G , . . . , [[En]]

ω,σ
G )

[[E.x]]ω,σ
G = σ([[E]]ω,σ

G )(x)
([[¬P ]]ω,σ

G = true) iff ([[P ]]ω,σ
G = false)

([[P1 ∧ P2]]
ω,σ
G = true) iff ([[P1]]

ω,σ
G = true and [[P2]]

ω,σ
G = true)

([[∃z. P ]]ω,σ
G = true) iff ([[P ]]

ω[z 7→ v],σ
G = true for some v ∈ Valnull(σ))

Table 6. Global evaluation

For a global state σ and a logical environment ω referring only to values
existing in σ we write ω, σ |=G P when P is true in the context of ω and σ. We
write |=G P if P holds for arbitrary global states σ and logical environments ω
referring only to values existing in σ.

To express a local property p in the global assertion language, we define
the substitution p[z/this] by simultaneously replacing in p all occurrences of the
self-reference this by the logical variable z, which is assumed not to occur in p,
and transforming all occurrences of instance variables x into qualified references
z.x. For notational convenience we view the local variables occurring in the
global assertion p[z/this] as logical variables. Formally, these local variables are
replaced by fresh logical variables. We write P (z) for p[z/this], and similarly
for expressions. For unrestricted quantifications (∃z′. p)[z/this] the substitution
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applies to the assertion p. Local restricted quantifications are transformed into
global unrestricted ones where the relations ∈ and ⊑ are expressed at the global
level as operators. The main cases of the substitution are defined as follows:

this[z/this] = z

x[z/this] = z.x

u[z/this] = u

(∃z′. p)[z/this] = ∃z′. p[z/this]
(∃z′ ∈ e. p)[z/this] = ∃z′. (z′ ∈ e[z/this] ∧ p[z/this])

(∃z′ ⊑ e. p)[z/this] = ∃z′. (z′ ⊑ e[z/this] ∧ p[z/this]) ,

where z is fresh.
This substitution will be used to combine properties of instance local states

on the global level. The substitution preserves the meaning of local assertions,
provided the meaning of the local variables is matchingly represented by the
logical environment:

Lemma 1 (Lifting substitution). Let σ be a global state, ω and τ a logical
environment and local state, both referring only to values existing in σ. Let fur-
thermore p be a local assertion containing local variables ~u. If τ(~u) = ω(~u) and
z a fresh logical variable, then

ω, σ |=G p[z/this] iff ω, σ(ω(z)), τ |=L p .

The proof can be found in Appendix A.

2.4 The proof system

The proof system has to accommodate for dynamic object creation, aliasing,
method invocation, and recursion. The following section defines how to augment
and annotate programs resulting in proof outlines, before Section 2.4 describes
the proof method.

For technical convenience, we first formulate verification conditions as stan-
dard Hoare-triples. The statements of these Hoare-triples may also contain as-
signments involving qualified references as given by the global assertion language.
The formal semantics is given in Chapter 6 by means of a weakest precondition
calculus [19].

Proof outlines For a complete proof system it is necessary that the transition
semantics of Javaseq can be encoded in the assertion language. As the assertion
language reasons about the local and global states, we have to augment the pro-
gram with fresh auxiliary variables to represent information about the control
points and stack structures within the local and global states. Invariant pro-
gram properties are specified by the annotation. An augmented and annotated
program is called a proof outline or an asserted program.
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Augmentation An augmentation extends a program by atomically executed mul-
tiple assignments ~y := ~e to distinct auxiliary variables, which we call observa-
tions. Furthermore, the observations have, in general, to be “attached” to state-
ments they observe in an atomic manner. For object creation this is syntactically
represented by the augmentation u := newc 〈~y := ~e〉new which attaches the ob-
servation to the object creation statement. Observations ~y1 := ~e1 of a method
call and observations ~y4 := ~e4 of the corresponding reception of a return value
are denoted by u := e0.m(~e) 〈~y1 := ~e1〉!call 〈~y4 := ~e4〉?ret . The augmentation
〈~y2 := ~e2〉?call stm; return eret〈~y3 := ~e3〉!ret of method bodies specifies ~y2 := ~e2
as the observation of the reception of the method call and ~y3 := ~e3 as the ob-
servation attached to the return statement. Assignments can be observed using
~y := ~e 〈~y′ := ~e ′〉ass . A stand-alone observation not attached to any statement is
written as 〈~y := ~e〉 . It can be inserted at any point in the program.

Note that we could also use the same syntax for all kinds of observations.
However, such a notation would be disadvantageous for partial augmentations,
i.e., for the specification of augmentations where not all statements are ob-
served. For example, using the notation introduced above, the augmentation
e0.m(~e) 〈stm〉 uniquely specifies stm as an alone-standing observation following
an unobserved method call; using the same augmentation syntax 〈stm〉 for all
kinds of observations, we would have to write e0.m(~e) 〈〉 〈〉 〈stm〉 to specify the
same setting. The same remark can be made also for the annotation syntax,
introduced below.

The augmentation does not influence the control flow of the program but en-
force a particular scheduling policy. An assignment statement and its observation
are executed simultaneously. Object creation and its observation are executed
in a single computation step, in this order. For method call, communication,
sender, and receiver observations are executed in a single computation step, in
this order (see Figure 2 on page 25 and Figure 3 of page 26). Points between a
statement and its observation are no control points, since they are executed in a
single computation step; we call them auxiliary points.

To exclude the possibility, that two multiple assignments get executed in a
single computation step in the same object, we require that the caller observation
in a self-communication may not change the values of instance variables. Without
this restriction, we would have to show interference freedom under assignment-
pairs, which would increase the complexity of the proof system. Formally, in each
observation of a method invocation statement e0.m(~e), assignments to instance
variables must have the form x := if e0 = this then x else e fi.

In the following we call assignment statements with their observations, unob-
served assignments, alone-standing observations, or observations of communica-
tion or object creation general as multiple assignments, since they are executed
simultaneously.

Example 1. Extending an assignment x := e to x := e 〈u := x〉ass stores the
value of x prior to the execution of x := e in the auxiliary variable u. Extending
it to x := e 〈u := x〉 stores the value of x in u after the execution of x := e.
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Example 2. We can store the number of objects created by an instance of a class
c using an auxiliary integer instance variable n with initial value 0, and extending
each object creation statement u := newc′ in c to u := newc′ 〈n := n+ 1〉new .

Example 3. We extend Example 2 by additionally observing each call u :=
e0.m(~e) in c by u := e0.m(~e) 〈k := n〉!call 〈k := n − k〉?ret . Then the value
of the auxiliary local integer variable k after method call, but before return
stores the number of objects created up to the call. After return, it stores the
number of objects created during method evaluation.

Example 4. Let l be an auxiliary integer instance variable of a class c. We
can count the number of local configurations executing in an instance of c
by augmenting the body stm; return eret of each method in class c resulting in
〈l := l + 1〉?call stm; return eret 〈l := l− 1〉!ret .

The above examples show how to count objects, local configurations in an
object, etc. But this information is not sufficient for a complete proof system:
we have to be able to identify those entities. We identify a local configuration by
the object in which it executes together with the value of its built-in auxiliary
local variable conf storing a unique object-internal identifier. Its uniqueness is
assured by the auxiliary instance variable counter, incremented for each new local
configuration in that object. The callee receives the “return address” as auxiliary
formal parameter caller of type Object × Int, storing the identities of the caller
object and the calling local configuration. The run-method of the initial object
is executed with the parameter caller having the value (null , 0).

Syntactically, each method declaration m(~u){stm; return eret} gets extended
by the built-in augmentation to m(~u, caller){〈conf, counter := counter, counter+
1〉?call stm; return eret}. Correspondingly for method calls u := e0.m(~e), the ac-
tual parameter lists get extended resulting in u := e0.m(~e, (this, conf)). The val-
ues of the built-in auxiliary variables must not be changed by the user-defined
augmentation but may be used in the augmentation and annotation. In the ex-
amples of the following sections we don’t list the built-in augmentation; they are
meant to be automatically included in all proof outlines.

Annotation To specify invariant properties of the system, the augmented pro-
grams are annotated by attaching local assertions to each control and auxiliary
point. We use the triple notation {p} stm {q} and write pre(stm) and post(stm)
to refer to the pre- and the post-condition of a statement. For assertions at
auxiliary points we use the following notation: The annotation

{p0} u := newc {p1}new 〈~y := ~e〉new {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
where p1 at the auxiliary point should hold directly after object creation but
before its observation. The annotation

{p0}u := e0.m(~e) {p1}!call 〈~y1 := ~e1〉!call {p2}wait {p3}?ret 〈~y4 := ~e4〉?ret {p4}



19

assigns p0 and p4 as pre- and postconditions to the method invocation; p1 is
assumed to hold directly after method call, but prior to its observation; p2 de-
scribes the control point of the caller after method call and before return; finally,
p3 specifies the state directly after return but before its observation. The anno-
tation of method bodies stm; return eret is as follows:

{p0}?call 〈~y2 := ~e2〉?call {p1} stm; {p2} return eret {p3}!ret 〈~y3 := ~e3〉!ret {p4}

The callee postcondition of the method call is p1; the callee pre- and postcondi-
tions of return are p2 and p4. The assertions p0 respectively p3 specify the states
of the callee between method call respectively return and its observation.

Besides pre- and postconditions, for each class c, the annotation defines a lo-
cal assertion Ic called class invariant, specifying invariant properties of instances
of c in terms of its instance variables.6 We require that for each method of a
class, the class invariant is the precondition of the method body.

Finally, a global assertion GI called the global invariant specifies proper-
ties of communication between objects. As such, it should be invariant under
object-internal computation. For that reason, we require that for all qualified
references E.x in GI with E of type c, all assignments to x in class c occur in
the observations of communication or object creation. We require furthermore
that in the annotation no free logical variables occur. In the following we will use
also partially annotated statements; assertions which are not explicitly specified
are by definition true.

Example 5. The (partial) annotation u := newc {u 6= this} of an object creation
statement in a class c′ expresses that the new object’s identity differs from the
identity of the creator object. This annotation is invariant, independently of the
rest of the program, since the new object’s identity is fresh and the only shared
variable in the assertion is the self-reference, which may not be assigned to.

The same property can be expressed using the class invariant. Since the class
invariant may refer to instance variables only, we have to store the new object’s
identity in an auxiliary instance variable x in order to refer to it in the class
invariant. We define the annotation u := newc 〈x := u〉new {x = u} and the class
invariant by x 6= this. In this case, invariance of the given assertions depends also
on the rest of the class definition: an observation x := this executed in the same
object would of course heart the class invariant. This annotation is useful, if
different assertions in the same class refer to x, and especially if the information
expressed by the class invariant is needed to show properties of incoming method
calls.

Also the global invariant can be used to express the above property: Assume
again u := newc 〈x := u〉new {x = u} and let the global invariant be defined
by ∀(z : c′). z.x 6= z. Again, the invariance of the annotation depends on the

6 The notion of class invariant commonly used for sequential object-oriented languages
differs from our notion: In a sequential setting, it would be sufficient that the class
invariant holds initially and is preserved by whole method calls, but not necessarily
in between.
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rest of the class. But now it additionally depends also on the definition of other
classes, possibly creating new instances of c′, thereby extending the domain of
the quantification. Such annotations are used to express dependencies between
different instance states.

Verification conditions The proof system formalizes a number of verification
conditions which inductively ensure that for each reachable configuration the
local assertions attached to the current control points in the thread configuration
as well as the global and the class invariants hold. The conditions are grouped,
as usual, into initial conditions, and for the inductive step into local correctness
and tests for interference freedom and cooperation.

Before specifying the verification conditions, we first list some notation. Let
Init be a syntactical operator with interpretation Init (cf. page 9). Given IVar c
as the set of instance variables of class c without the self-reference, and z a
logical variable of type c, let InitState(z) be the global assertion z 6= null ∧∧

x∈IVarc
z.x = Init(x), expressing that the object denoted by z is in its initial

instance state.
Finally, arguing about two different local configurations makes it necessary to

distinguish between their local variables, since they may have the same names;
in such cases we will rename the local variables in one of the local states. We use
primed assertions p′ to denote the given assertion p with every local variable u
replaced by a fresh one u′, and correspondingly for expressions.

Initial correctness A proof outline is initially correct, if the precondition of the
main statement, the class invariant of the initial object, and the global invariant
are satisfied initially, i.e., in the initial global configuration after the execution
of the callee observation at the beginning of the main statement. Furthermore,
the precondition of the observation should be satisfied prior to its execution.

Definition 1 (Initial correctness). Let the body of the run-method of the main
class c be {p2}?call 〈~y2 := ~e2〉?call {p3} stm; return with local variables ~v without
the formal parameters, z ∈ LVarc, and z′ ∈ LVarObject. A proof outline is ini-
tially correct, if

|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (1)

~v, caller := Init(~v), (null, 0)

{P2(z)}
|=G {InitState(z) ∧ ∀z′. z′ = null ∨ z = z′} (2)

~v, caller := Init(~v), (null, 0); z.~y2 := ~E2(z)

{GI ∧ P3(z) ∧ Ic(z)}
The assertion InitState(z) ∧ ∀z′. z′ = null ∨ z = z′ states that the initial global
state defines exactly one existing object z being in its initial instance state. Ini-
tialization of the local configuration is represented by the assignment ~v, caller :=
Init(~v), (null, 0). The observation ~y2 := ~e2 at the beginning of the run-method of

the initial object z is represented by the assignment z.~y2 := ~E2(z).
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Example 6. Assume the following proof outline:

{∃(z1 : Initial ). z1 6= null ∧ ∀(z2 : Initial). z2 6= null → z1 = z2} // global invariant

class Initial {
Int x;

{started} //class invariant

Void run(){
Int v;

〈Int u; 〉

{u = 0 ∧ v = 0 ∧ x = 0}?call // precondition of observation

〈u := 1〉?call //observation of call

{u = 1 ∧ v = 0 ∧ x = 0} //postcondition of observation
...

}
}

Note that the built-in augmentation extends the observation {u := 1}?call to
{u, started := 1, true}?call . The first initial condition

|=G {z 6= null ∧ z.x = 0 ∧ ∀(z′ : Object). z′ = null ∨ z = z′}
v, u, caller := 0, 0, (null, 0)

{u = 0 ∧ v = 0 ∧ z.x = 0}

assures that the precondition of the observation holds after initialization but
prior to its execution. The second condition

|=G {z 6= null ∧ z.x = 0 ∧ ∀(z′ : Object). z′ = null ∨ z = z′}
v, u, caller := 0, 0, (null, 0); u, z.started := 1, true

{GI ∧ (u = 1 ∧ v = 0 ∧ x = 0) ∧ (z.started)}

assures that the global invariant, the postcondition of the observation, and the
class invariant hold after the observation. Satisfaction of the global invariant can
be shown by instantiation with z.

Local correctness A proof outline is locally correct, if the properties of method
instances as specified by the annotation are invariant under their own execution,
i.e., if the usual verification conditions [13] for standard sequential constructs
hold. For example, the precondition of an assignment must imply its postcon-
dition after its execution. The following condition should hold for all multiple
assignments being an assignment statement with its observation, an unobserved
assignment, or an alone-standing observation:

Definition 2 (Local correctness: Assignment). A proof outline is locally
correct, if for all multiple assignments {p1} ~y := ~e {p2} in class c, which is not
the observation of object creation or communication,

|=L {p1} ~y := ~e {p2} . (3)

The conditions for loops and conditional statements are similar. Note that we
have no local verification conditions for observations of communication and ob-
ject creation. The postconditions of such statements express assumptions about



22

the communicated values. These assumptions will be verified in the cooperation
test.

Example 7. Assume the following augmented and annotated method which com-
putes the faculty u! for its parameter u:

Int fac(Int u){
Int result;

{u > 0}
result :=1; {result = 1 ∧ u > 0}
v:=u; {u! = result ∗ v! ∧ u > 0 ∧ v > 0}
while (v>1) do {u! = result ∗ v! ∧ u > 0 ∧ v > 1}

result :=result*v; {u! = result ∗ (v − 1)! ∧ u > 0 ∧ v > 1}
v:=v-1; {u! = result ∗ v! ∧ u > 0 ∧ v > 0}

od; {u! = result}
return result

}

The above proof outline satisfies the conditions of local correctness. There are
7 local correctnes conditions (there are no initial correctness, interference free-
dom, and cooperation test conditions for this example). For example, for the
assignment result := result ∗ v local correctness defines the verification condition

|=L {u! = result ∗ v! ∧ u > 0 ∧ v > 1}
result := result ∗ v {u! = result ∗ (v − 1)! ∧ u > 0 ∧ v > 1} ,

whose satisfaction is easy to see.

The interference freedom test Invariance of local assertions under computation
steps in which they are not involved is assured by the proof obligations of the
interference freedom test. Its definition covers also invariance of the class invari-
ants. Since Javaseq does not support qualified references to instance variables,
we only have to deal with invariance under execution within the same object.
Affecting only local variables, communication and object creation do not change
the instance states of the executing objects. Thus we only have to cover invari-
ance of assertions at control points over assignments, including observations of
communication and object creation. To distinguish local variables of the different
local configurations, we rename those of the assertion.

Let q be an assertion at a control point and ~y := ~e a multiple assignment
in the same class c. In which cases does q have to be invariant under the ex-
ecution of the assignment? Since the language is sequential, i.e., q and ~y := ~e
belong to the same thread, the only assertions endangered are those at control
points waiting for return earlier in the current execution stack. Invariance of a
local configuration under its own execution, however, need not be considered
and is excluded by requiring conf 6= conf′. Interference with the matching re-
turn statement in a self-communication need also not be considered, because
communicating partners execute simultaneously. Let caller obj be the first and
caller conf the second component of caller. We define waits for ret(q, ~y := ~e) by

– conf′ 6= conf, for assertions {q}wait attached to control points waiting for
return, if ~y := ~e is not the observation of return;
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– conf′ 6= conf ∧ (this 6= caller obj ∨ conf′ 6= caller conf), for assertions {q}wait ,
if ~y := ~e observes return;

– false, otherwise.

For the example configuration intuitively shown in Fig. 1, the assertion p3 at-
tached to a control point waiting for return, has to be invariant under the ex-
ecution of the assignment by its callee, while p4 does not have to be invariant
under its own execution. However, if the assignment would observe returning,
then p3 would not have to be invariant under the assignment. The assertions p1
and p2 are automatically invariant, since they describe an object different from
the executing one. Note that satisfaction of p5 after execution is assured by the
local correctness conditions.

Fig. 1. Interference for a single thread

The interference freedom test can now be formulated as follows:

Definition 3 (Interference freedom). A proof outline is interference free,
if for all classes c and multiple assignments ~y := ~e with precondition p in c,

|=L {p ∧ Ic} ~y := ~e {Ic} . (4)

Furthermore, for all assertions q at control points in c,

|=L {p ∧ q′ ∧ waits for ret(q, ~y := ~e)} ~y := ~e {q′} . (5)

Note that if we would allow qualified references in program expressions, we
would have to show interference freedom of all assertions under all assignments
in programs, not only for those occurring in the same class. For a program with
n classes where each class contains k assignments and l assertions at control
points, the number of interference freedom conditions is in O(c · k · l), instead of
O((c · k) · (c · l)) with qualified references.
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Example 8. Let {p1} this.m(~e) {p2}!call 〈stm1〉!call {p3}wait {p4}?ret 〈stm2〉?ret {p5}
be an annotated method call statement in a method m′ of a class c with an in-
teger auxiliary instance variable x, such that all assertions imply conf = x. I.e.,
the identity of the executing local configuration is stored in the instance variable
x. The annotation expresses that the method m′ of c is not called recursively.
That means, no pairs of control points in m′ of c can be simultaneously reached.

The assertions p2 and p4 do not have to be shown invariant, since they are
attached to auxiliary points. Interference freedom neither requires invariance of
the assertions p1 and p5, since they are not at control points waiting for return,
and thus the antecedents of the corresponding conditions evaluate to false. In-
variance of p3 under the execution of the observation stm1 with precondition p2
requires validity of |=L {p2∧p′3∧waits for ret(p3, stm1)} stm1 {p′3}. The assertion
p2 ∧ p′3 ∧waits for ret(p3, stm1) implies (conf = x)∧ (conf′ = x)∧ (conf′ 6= conf),
which evaluates to false. Invariance of p3 under stm2 is analogous.

Example 9. Assume a partially7 annotated method invocation statement of the
form {p1} this.m(~e) {conf = x ∧ p2}wait {p3} in a class c with an integer aux-
iliary instance variable x, and assume that method m of c has the annotated
return statement {q1} return {caller = (this, x)}!ret 〈stm〉!ret {q2} . The annota-
tion expresses that the local configurations containing the above statements are
in caller-callee relationship. Thus upon return, the control point of the caller
moves from the point at conf = x ∧ p2 to that at p3, i.e, conf = x ∧ p2 does not
have to be invariant under the observation of the return statement.

Again, the assertion caller = (this, x) at an auxiliary point does not have to be
shown invariant. For the assertions p1, p3, q1, and q2, which are not at a control
point waiting for return, the antecedent is false. Invariance of conf = x ∧ p2
under the observation stm with precondition caller = (this, x) is covered by the
interference freedom condition

|=L { caller = (this, x) ∧ (conf′ = x ∧ p′2)∧
waits for ret((conf = x ∧ p2), stm) } stm {conf′ = x ∧ p′2} .

The waits for ret assertion implies caller 6= (this, conf′), which contradicts the
assumptions caller = (this, x) and conf′ = x; thus the antecedent of the condition
is false.

Satisfaction of caller = (this, x) directly after communication and satisfaction
of p3 and q2 after the observation is assured by the cooperation test.

The cooperation test Whereas the interference freedom test assures invariance of
assertions under steps in which they are not involved, the cooperation test deals
with inductivity for communicating partners, assuring that the global invariant
and the preconditions of the involved statements imply their postconditions after
the joint step. Additionally, the preconditions of the corresponding observations
must hold immediately after communication.

The global invariant refers to auxiliary instance variables which are allowed
to be changed by observations of communication, only. Consequently, the global

7 As already mentioned, missing assertions are by definition true.
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invariant is automatically invariant under the execution of non-communicating
statements. For communication and object creation, however, the invariance
must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. The semantics
of method call and returning from a method is intuitively shown in Figures 2
and 3. After communication, i.e., after creating and initializing the callee local
configuration and passing on the actual parameters, first the caller, and then
the callee execute their corresponding observations, all in a single computation
step. Correspondingly for return, after communicating the result value, first the
callee and then the caller observation gets executed. Since different objects may
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Fig. 2. Execution of a method call {p1}u := e0.m(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}wait

with callee method body {q2}?call 〈~y2 := ~e2〉?call {q3} stm; return e ′.
Control points are marked by a circle.

be involved, the cooperation test is formulated in the global assertion language.
Local properties are expressed in the global language using the lifting substitu-
tion. As already mentioned, we use the shortcuts P (z) for p[z/this], Q′(z′) for
q′[z′/this], and similarly for expressions. To avoid name clashes between local
variables of the partners, we rename those of the callee.

Let z and z′ be logical variables representing the caller, respectively the callee
object in a method call. We assume the global invariant and the preconditions
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Fig. 3. Execution of return for a method call
{p1}u := e0.m(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}wait {p4}?ret 〈~y4 := ~e4〉?ret {p5}
with callee method body
{q2}?call 〈~y2 := ~e2〉?call {q3} stm; {q4} return e ′ {q5}!ret 〈~y3 := ~e3〉!ret {q6} .
Control points are marked by a circle.

of the communicating statements to hold prior to communication. For method
invocation, the precondition of the callee is its class invariant. That the two
statements indeed represent communicating partners is captured in the asser-
tion comm, which depends on the type of communication: For method invocation
e0.m(~e), the assertion E0(z) = z′ states, that z′ is indeed the callee object. Re-
member that method invocation hands over the return address, and that the
values of formal parameters remain unchanged. Furthermore, actual parameters
may not contain instance variables, i.e., their interpretation does not change
during method execution. Therefore, the formal and actual parameters can be
used at returning from a method to identify partners being in caller-callee rela-
tionship, using the built-in auxiliary variables. Thus for the return case, comm
additionally states ~u′ = ~E(z), where ~u and ~e are the formal and the actual
parameters. Returning from the run-method terminates the executing thread,
which does not have communication effects.

As in the previous conditions, state changes are represented by assignments.
For the example of method invocation, communication is represented by the
assignment ~u′ := ~E(z), where initialization of the remaining local variables ~v
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is covered by ~v′ := Init(~v). The assignments z.~y1 := ~E1(z) and z′.~y′2 := ~E′
2(z

′)
stand for the caller and callee observations ~y1 := ~e1 and ~y2 := ~e2, executed in
the objects z and z′, respectively. Note that we rename all local variables of the
callee to avoid name clashes.

Definition 4 (Cooperation test: Communication). A proof outline sat-
isfies the cooperation test for communication, if

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}
fcomm

{P2(z) ∧Q′
2(z

′)} (6)

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}
fcomm ; fobs1 ; fobs2

{GI ∧ P3(z) ∧Q′
3(z

′)} (7)

holds for distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc
′
, in the

following cases:

1. Call: For all statements {p1}uret := e0.m(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}wait

(or such without receiving a value) in class c with e0 of type c′, where method
m of c′ has body {q2}?call 〈~y2 := ~e2〉?call {q3} stm; return eret , formal param-
eters ~u, and local variables ~v except the formal parameters. The callee class
invariant is q1 = Ic′ . The assertion comm is given by E0(z) = z′. Further-
more, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z), and fobs2 is

z′.~y′2 := ~E′
2(z

′).
2. Return: For all uret := e0.m(~e) 〈stm〉!call {p1}wait {p2}?ret 〈~y4 := ~e4〉?ret {p3}

(or such without receiving a value) occurring in c with e0 of type c′, such
that method m of c′ has the return statement {q1} return eret {q2}!ret 〈~y3 :=
~e3〉!ret {q3} , and formal parameter list ~u, the above equations must hold with

comm given by E0(z) = z′ ∧ ~u′ = ~E(z), and where fcomm is uret := E′
ret(z

′),
fobs1 is z′.~y′3 := ~E′

3(z
′), and fobs2 is z.~y4 := ~E4(z).

3. Returnrun : For {q1} return {q2}!ret 〈~y3 := ~e3〉!ret {q3} occurring in the run-
method of the main class, p1 = p2 = p3 = true, comm = true, and further-
more fcomm and fobs2 are the empty statement, and fobs1 is z

′.~y′3 := ~E′
3(z

′).

Example 10. This example illustrates how one can prove properties of parameter
passing. Let {p} e0.m(v,~e), with p given by v > 0, be a (partially) annotated
statement in a class c with e0 of type c′, and let method m(u, ~w) of c′ have the
body {q} stm; return where q is u > 0. Inductivity of the proof outline requires
that if p is valid prior to the call (besides the global and class invariants), then
q is satisfied after the invocation. Omitting irrelevant details, Condition 7 of the
cooperation test requires proving |=G {P (z)} u′ := v {Q′(z′)}, which expands to
|=G {v > 0} u′ := v {u′ > 0}.
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Example 11. The following example demonstrates how one can express depen-
dencies between instance states in the global invariant and use this information
in the cooperation test.

Let {p} e0.m(~e), with p given by x > 0 ∧ e0 = o, be an annotated state-
ment in a class c with e0 of type c′, x an integer instance variable, and o
an instance variable of type c′, and let method m(~u) of c′ have the anno-
tated body {q} stm; return where q is y > 0 and y an integer instance vari-
able. Let furthermore z ∈ LVarc and let the global invariant be given by
∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0. Inductivity requires that
if p and the global invariant are valid prior to the call, then q is satisfied after
the invocation (again, we omit irrelevant details). The cooperation test Condi-

tion 7, i.e., |=G {GI ∧ P (z) ∧ comm ∧ z 6= null ∧ z′ 6= null} ~u′ := ~E(z) {Q′(z′)}
expands to

|=G {(∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0)∧
(z.x > 0 ∧ E0(z) = z.o) ∧ E0(z) = z′ ∧ z 6= null ∧ z′ 6= null }

~u′ := ~E(z)

{z′.y > 0}

Instantiating the quantification by z, the antecedent implies z.o.y > 0∧z′ = z.o,
i.e., z′.y > 0. Invariance of the global invariant is straightforward.

Example 12. This example illustrates how the cooperation test handles obser-
vations of communication. Let {¬b} this.m(~e){b}wait be an annotated statement
in a class c with boolean auxiliary instance variable b and let m(~u) of c have
the body {¬b}?call 〈b := true〉?call {b} stm; return. Condition 6 of the cooperation
test assures inductivity for the precondition of the observation. We have to show
|=G {¬z.b ∧ comm}~u′ := ~E(z){¬z′.b}, i.e., since it is a self-call, |=G {¬z.b ∧ z =

z′}~u′ := ~E(z){¬z′.b}, which is trivially satisfied. Condition 7 of the cooperation

test for the postconditions requires |=G {comm}~u′ := ~E(z); z′.b := true{z.b∧z′.b}
which expands to |=G {z = z′}~u′ := ~E(z); z′.b := true{z.b ∧ z′.b}, whose validity
is easy to see.

Besides method calls and returns, the cooperation test needs to handle ob-
ject creation, taking care of the preservation of the global invariant, the post-
condition of the new statement and its observation, and the new object’s class
invariant. We can assume that the precondition of the object creation statement
and the global invariant hold in the configuration prior to instantiation. The
extension of the global state with a freshly created object is formulated in a
strongest postcondition style, i.e., it is required to hold immediately after the
instantiation. We use existential quantification to refer to the old value: z′ of
type LVar listObject represents the existing objects prior to the extension. More-
over, that the created object’s identity stored in u is fresh and that the new
instance is properly initialized is expressed by the global assertion Fresh(z′, u)
defined as InitState(u)∧u 6∈ z′∧∀v. v ∈ z′∨v = u (see page 20 for the definition
of InitState). To express that an assertion refers to the set of existing objects
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prior to the extension of the global state, we need to restrict any existential
quantification in the assertion to range over objects from z′, only. So let P be
a global assertion and z′ ∈ LVar listObject a logical variable not occurring in P .
Then P ↓ z′ is the global assertion P with all quantifications ∃z. P ′ replaced
by ∃z. obj(z) ⊆ z′ ∧ P ′, where obj (v) denotes the set of objects occurring in the
value v. The following lemma formulates the basic property of the projection
operator:

Lemma 2. Assume a global state σ, an extension σ′ = σ[α 7→σc,init
inst ] for some

α ∈ Valc, α /∈ Val (σ), and a logical environment ω referring only to values exist-
ing in σ. Let v be the sequence consisting of all elements of

⋃
c Val

c
null (σ). Then

for all global assertions P and logical variables z′ ∈ LVar listObject not occurring
in P ,

ω, σ |=G P iff ω[z′ 7→ v], σ′ |=G P ↓ z′.

The proof can be found in Appendix A. Thus a predicate (∃u. P ) ↓ z′, evaluated
immediately after the instantiation, expresses that P holds prior to the creation
of the new object. This leads to the following definition of the cooperation test
for object creation:

Definition 5 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes c′ and statements
{p1}u := newc {p2}new 〈~y := ~e〉new {p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

)

→ P2(z) ∧ Ic(u) (8)

|=G {z 6=null ∧ z 6=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

)
}

z.~y := ~E(z)

{GI ∧ P3(z)} (9)

with z ∈ LVarc
′
and z′ ∈ LVar list Object fresh.

Example 13. Assume a statement u := newc{u 6= this} in a program, where
the class invariant of c is x ≥ 0 for an integer instance variable x. Condi-
tion 8 of the cooperation test for object creation assures that the class in-
variant of the new object holds after its creation. We have to show validity
of |=G (∃z′. Fresh(z′, u)) → u.x ≥ 0, i.e., |=G u.x = 0 → u.x ≥ 0, which is trivial.
For the postcondition, Condition 9 requires |=G {z 6= u}ǫ{u 6= z} with ǫ the
empty statement (no observations are executed), which is true.

3 The concurrent language

In this section we extend the language Javaseq to a concurrent language Javaconc
by allowing dynamic thread creation. Again, we define syntax and semantics of
the language, before formalizing the proof system for the concurrent language.
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3.1 Syntax

Expressions and statements can be constructed as in Javaseq. The abstract syn-
tax of the remaining constructs is summarized in Table 7. As we focus on con-

meth ::= m(u, . . ., u){ stm; return expret}
meth run ::= run(){ stm; return }

class ::= class c{meth . . .meth meth run meth start}
classmain ::= class

prog ::= 〈class. . .class classmain〉

Table 7. Javaconc abstract syntax

currency aspects, all classes are Thread classes in the sense of Java: Each class
contains a pre-defined start-method that can be invoked only once for each ob-
ject, resulting in a new thread of execution. The new thread starts to execute the
user-defined run-method of the given object while the initiating thread continues
its own execution. The run-methods cannot be invoked directly. The parameter-
less start-method without return value is not implemented syntactically; see the
next section for its semantics. Note, that the syntax does not allow qualified
references to instance variables. As a consequence, shared-variable concurrency
is caused by simultaneous execution within a single object, only, but not across
object boundaries.

3.2 Semantics

The operational semantics of Javaconc extends the semantics of Javaseq by dy-
namic thread creation. The additional rules are shown in Table 8. The invoca-

β = [[e]]
σ(α),τ
E ∈ Val c(σ) ¬started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Callstart
〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ init

run,c, body run,c)}, σ〉

β = [[e]]
σ(α),τ
E ∈ Val (σ) started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Callskipstart〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 8. Javaconc operational semantics

tion of a start-method brings a new thread into being (rule Callstart). Only
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the first invocation of the start-method has this effect (rule Callskipstart).
8 This

is captured by the predicate started(T, β) which holds iff there exists a stack
(α0, τ0, stm0) . . . (αn, τn, stmn) ∈ T such that β = α0. A thread ends its lifespan
by returning from a run-method (rule Returnrun of Table 3).9

3.3 The proof system

In contrast to the sequential language, the proof system additionally has to ac-
commodate for dynamic thread creation and shared-variable concurrency. Before
describing the proof method, we show how to extend the built-in augmentation
of the sequential language.

Proof outlines To get a complete proof system, for the concurrent language we
additionally have to be able to identify threads. We identify a thread by the object
in which it has begun its execution. We use the type Thread thus as abbreviation
for the type Object. This identification is unique, since an object’s thread can
be started only once. During a method call, the callee thread receives its own
identity as an auxiliary formal parameter thread. Additionally, we extend the
auxiliary formal parameter caller by the caller thread identity, i.e., let caller be
of type Object×Int×Thread, storing the identities of the caller object, the calling
local configuration, and the caller thread. Note that the thread identities of caller
and callee are the same in all cases but the invocation of a start-method. The
run-method of the initial object is executed with the parameters (thread, caller)
having the values (α0, (null , 0, null)), where α0 is the initial object. The boolean
instance variable started, finally, remembers whether the object’s start-method
has already been invoked.

Syntactically, each formal parameter list ~u in the original program gets ex-
tended to (~u, thread, caller). Correspondingly for the caller, each actual parame-
ter list ~e in statements invoking a method different from start gets extended to
(~e, thread, (this, conf, thread)). The invocation of the parameterless start-method
of an object e0 gets the actual parameter list (e0, (this, conf, thread)). Finally, the
callee observation at the beginning of the run-method executes started := true.
The variables conf and counter are updated as in the previous section.

Remember that the caller observation of self-calls may not modify the in-
stance state, as required in Section 2.4. Invoking the start-method by a self-call
is specific in that, when the thread is already started, the caller is the only active
entity. In this case, it has to be the caller that updates the instance state; the
corresponding observation has the form x := if e0 = this∧¬started then x else e fi.

Since a thread calling a start method does not wait for return but continues
execution, the augmentation and annotation of such method invocations have
the form {p1} e0.start(~e) {p2}!call 〈stm〉!call {p3} .
8 In Java an exception is thrown if the thread is already started but not yet terminated.
9 The worked-off local configuration (α, τ, ǫ) is kept in the global configuration to
ensure that the thread of α cannot be started twice.
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Verification conditions Initial correctness changes only, in that the formal
parameters thread and caller get the initial values z and (null , 0, null). Local
correctness is not influenced by the new issue of concurrency. Note that local
correctness applies now to all concurrently executing threads.

The interference freedom test Interference of a single thread under its own exe-
cution remains the same as for the sequential language. However, we additionally
have to deal with invariance of properties of a thread under the execution of a
different thread. Note that assertions at auxiliary points do not have to be shown
invariant. Again, to distinguish local variables of the different local configura-
tions, we rename those of the assertion which we show to be invariant.

An assertion q at a control point has to be invariant under an assignment ~y :=
~e in the same class only if the local configuration described by the assertion is not
active in the computation step executing the assignment. If q and ~y := ~e belong
to the same thread, i.e., thread = thread′, then we have the same antecedent as for
the sequential language. If the assertion and the assignment belong to different
threads, interference freedom must be shown in any case except for the self-
invocation of the start-method: The precondition of such a method invocation
cannot interfere with the corresponding observation of the callee. To describe
this setting, we define self start(q, ~y := ~e) by caller = (this, conf′, thread′) iff q is
the precondition of a method invocation e0.start(~e) and the assignment is the
callee observation at the beginning of the run-method, and by false otherwise.

For the example of Fig. 4, both p2 and p4, describing a thread different from
the executing one, have to be invariant under the assignment. Also p7 has to be
invariant, if the assignment does not observe return. The assertion p8 does not
have to be invariant, where satisfaction of p9 after execution is assured by local
correctness. We don’t have to show invariance of p1, p3, p5, and p6, since they
describe objects different from the one in which the assignment is executed.
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Fig. 4. Interference between threads
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Definition 6 (Interference freedom). A proof outline is interference free,
if the conditions of Definition 3 hold with waits for ret(q, ~y := ~e) replaced by

interleavable(q, ~y := ~e)
def
= thread = thread′ → waits for ret(q, ~y := ~e) ∧

thread 6= thread′ → ¬self start(q, ~y := ~e) .

Example 14. Assume an assignment {p} stm in an annotated method m of c, and
an assertion q at a control point in the same method, which is not waiting for
return, such that both p and q imply thread = this. I.e., the method is executed
only by the thread of the object to which it belongs. Clearly, p and q cannot
be simultaneously reached by the same thread. For invariance of q under the
assignment stm, the antecedent of the interference freedom condition implies
p∧ q′ ∧ interleavable(q, stm). From p∧ q′ we conclude thread = thread′, and thus
by the definition of interleavable(q, stm) the assertion q should be at a control
point waiting for return, which is not the case, and thus the antecedent of the
condition evaluates to false.

The cooperation test The cooperation test for object creation is not influenced
by adding concurrency, but we have to extend the cooperation test for com-
munication by defining additional conditions for thread creation. Invoking the
start-method of an object whose thread is already started does not have com-
munication effects. The same holds for returning from a run-method, which is
already included in the conditions for the sequential language as for the termi-
nation of the only thread. Note that this condition applies now to all threads.

Definition 7 (Cooperation test: Communication). A proof outline satis-
fies the cooperation test for communication, if the conditions of Definition 4 hold
for the statements listed there with m 6= start, and additionally in the following
cases:

1. Callstart : For all statements {p1} e0.start(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}
in class c with e0 of type c′, comm is given by E0(z) = z′ ∧ ¬z′.started,
where {q2}?call 〈~y2 := ~e2〉?call {q3} stm; return is the body of the run-method
of c′ having formal parameters ~u, and local variables ~v except the formal
parameters. The callee class invariant is q1 = Ic′ . Furthermore, fcomm is
~u′, ~v′ := ~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z), and fobs2 is z′.~y′2 := ~E′

2(z
′).

2. Callskipstart : For the above statements, the equations must additionally hold
with the assertion comm given by E0(z) = z′ ∧ z′.started, q2 = q3 = true, q1
and fobs1 as above, and fcomm and fobs2 are the empty statement.

4 Reentrant monitors

In this section we extend the concurrent language with monitor synchroniza-
tion. Again, we define syntax and semantics of the language Javasynch , before
formalizing the proof system.
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As a mechanism of concurrency control, methods can be declared as syn-
chronized. Each object has a lock which can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread which owns
the lock of that object. If the thread does not own the lock, it has to wait until
the lock gets free. A thread owning the lock of an object can recursively invoke
several synchronized methods of that object, which corresponds to the notion of
reentrant monitors.

Besides mutual exclusion, using the lock-mechanism for synchronized meth-
ods, objects offer the methods wait, notify, and notifyAll as means to facilitate
efficient thread coordination at the object boundary. A thread owning the lock
of an object can block itself and free the lock by invoking wait on the given ob-
ject. The blocked thread can be reactivated by another thread owning the lock
via the object’s notify method; the reactivated thread must re-apply for the lock
before it may continue its execution. The method notifyAll, finally, generalizes
notify in that it notifies all threads blocked on the object.

4.1 Syntax

Expressions and statements can be constructed as in the previous languages.
The abstract syntax of the remaining constructs is summarized in Table 9.

modif ::= nsync | sync
meth ::= modifm(u, . . ., u){ stm; return expret}

meth run ::= nsync run(){ stm; return }
methwait ::= nsyncwait(){ ?signal; returngetlock }
methnotify ::= nsync notify(){ !signal ; return }

methnotifyAll ::= nsync notifyAll(){ !signal all; return }
methpredef ::= meth start methwait methnotify methnotifyAll

class ::= class c{meth . . .meth meth run methpredef }
classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 9. Javasynch abstract syntax

Methods get decorated by a modifier modif distinguishing between non-
synchronized and synchronized methods.10 In the sequel we also refer to state-
ments in the body of a synchronized method as being synchronized. Further-
more, we consider the additional predefined methods wait, notify, and notifyAll,
whose definitions use the auxiliary statements !signal, !signal all, ?signal, and
returngetlock .

11

10 Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

11 Java’s Thread class additionally support methods for suspending, resuming, and
stopping a thread, but they are deprecated and thus not considered here.
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4.2 Semantics

The operational semantics extends the semantics of Javaconc by the rules of
Table 10, where the Call rule is replaced. For synchronized method calls, the

m /∈ {start, run,wait, notify, notifyAll} modifm(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E ∈ Val c(σ) τ ′ = τ init

m,c[~u 7→[[~e]]
σ(α),τ
E ] (modif=sync) → ¬owns(T, β)

Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

m ∈ {wait, notify, notifyAll}
β = [[e]]

σ(α),τ
E ∈ Val c(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)

Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ init

m,c, bodym,c)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ ′, returngetlock )}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm ′)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm ′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 10. Javasynch Operational semantics

lock of the callee object has to be free or owned by the executing thread, as
expressed by the predicate owns , defined below.

The remaining rules handle the semantics of the monitor methods wait, notify,
and notifyAll. In all three cases the caller must own the lock of the callee ob-
ject (rule Callmonitor ). A thread can block itself on an object whose lock it
owns by invoking the object’s wait-method, thereby relinquishing the lock and
placing itself into the object’s wait set. Formally, the wait set wait(T, α) of
an object is given as the set of all stacks in T with a top element of the form
(α, τ, ?signal; stm). After having put itself on ice, the thread awaits notification by
another thread which invokes the notify-method of the object. The !signal state-
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ment in the notify-method thus reactivates a non-deterministically chosen single
thread waiting for notification on the given object (rule Signal). Analogously to
the wait set, the notified set notified(T, α) of α is the set of all stacks in T with
top element of the form (α, τ, returngetlock), i.e., threads which have been noti-
fied and are trying to get hold of the lock again. According to rule Returnwait ,
the receiver can continue after notification in executing returngetlock only if the
lock is free. Note that the notifier does not hand over the lock to the one being
notified but continues to own it. This behavior is known as signal-and-continue
monitor discipline [12]. If no threads are waiting on the object, the !signal of
the notifier is without effect (rule Signalskip). The notifyAll-method generalizes
notify in that all waiting threads are notified via the !signal all-broadcast (rule
SignalAll). The effect of this statement is given by defining signal(T, α) as
(T \ wait(T, α)) ∪ {ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate: A
thread ξ owns the lock of β iff ξ executes some synchronized method of β, but not
its wait-method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T and
a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β) ∪ notified(T, β). The
definition is used analogously for single threads. An invariant of the semantics
is that at most one thread can own the lock of an object at a time.

4.3 The proof system

The proof system has additionally to accommodate for synchronization, reen-
trant monitors, and thread coordination. First we define how to extend the
augmentation of Javaconc, before we describe the proof method.

Proof outlines To capture mutual exclusion and the monitor discipline, the
instance variable lock of type Thread× Int stores the identity of the thread who
owns the lock, if any, together with the number of synchronized calls in its call
chain. The initial lock value free = (null , 0) indicates that the lock is free. The
instance variables wait and notified of type list(Thread× Int) are the analogues of
the wait - and notified -sets of the semantics and store the threads waiting at the
monitor, respectively those having been notified. Besides the thread identity, the
number of synchronized calls is stored. In other words, these variables remember
the old lock-value prior to suspension which is restored when the thread becomes
active again. All auxiliary variables are initialized as usual. For values thread of
type Thread and wait of type list(Thread× Int), we will also write thread ∈ wait
instead of (thread , n) ∈ wait for some n. If the order of the elements of a sequence
is not relevant, we apply also set theoretical operations to them.

Syntactically, besides the augmentation of the previous section, the callee
observation at the beginning and at the end of each synchronized method body
executes lock := inc(lock) and lock := dec(lock), respectively. The semantics of
incrementing the lock [[inc(lock)]]

σinst ,τ
E is (τ(thread), n+1) for σinst (lock) = (α, n).

Decrementing dec(lock) is inverse: [[dec(lock)]]
σinst ,τ
E with σinst (lock) = (α, n) is

(α, n− 1) if n > 1, and free otherwise.
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Instead of the auxiliary statements of the semantics, notification is repre-
sented in the proof system by auxiliary assignments operating on the wait and
notified variables. That means, the auxiliary ?signal, !signal, and !signal all state-
ments get replaced by auxiliary assignments12 Entering the wait-method gets
the observation wait, lock := wait ∪ {lock}, free; returning from the wait-method
observes lock, notified := get(notified, thread), notified\{get(notified, thread)}. For
a thread α ∈ ValThread and a list notified ∈ Val list(Thread×Int), get(notified , α)
retrieves the value (α, n) from the list. The semantics assures uniqueness of
the association. The !signal statement of the notify-method is represented by
the auxiliary assignment wait, notified := notify(wait, notified), where the value
notify(wait , notified) is the pair of the given sets with one element, chosen nonde-
terministically, moved from the wait into the notified set; if the wait set is empty,
it is the identity function. Finally, the !signal all statement of the notifyAll-method
is represented by the auxiliary assignment notified,wait := notified ∪ wait, ∅.

Verification conditions Initial and local correctness agree with those for
Javaconc. In case of notification, local correctness covers also invariance for the
notifying thread, as the effect of notification is captured by an auxiliary assign-
ment.

The interference freedom test Synchronized methods of a single object can be
executed concurrently only if one of the corresponding local configurations is
waiting for return: If the executing threads are different, then one of the threads
is in the wait or notified set of the object; otherwise, both executing local con-
figurations are in the same call chain. Thus we assume that either not both the
assignment and the assertion occur in a synchronized method, or the assertion
is at a control point waiting for return.13

Definition 8 (Interference freedom). A proof outline is interference free,
if Definition 6 holds in all cases, such that either not both p and q occur in a
synchronized method, or q is at a control point waiting for return.

For notification, we require also invariance of the assertions for the notified
thread. We do so, as notification is described by an auxiliary assignment executed
by the notifier. That means, both the waiting and the notified status of the
suspended thread are represented by a single control point in the wait-method.
The two statuses can be distinguished by the values of the wait and notified
variables. The invariance of the precondition of the return statement in the wait-
method under the assignment in the notify-method represents the notification
process, whereas invariance of that assertion over assignments changing the lock

12 In Java, the implementation of the monitor methods are syntactically not included
in class definitions. Their augmentation and annotation can be specified by special
comments.

13 This condition is not necessary for a minimal proof system, but reduces the number
of verification conditions.
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represents the synchronization mechanism. Information about the lock value will
be imported from the cooperation test as this information depends on the global
behavior.

Example 15. This example shows how the fact, that at most one thread can own
the lock of an object, can be used to show mutual exclusion. We use the assertion
owns(thread, lock) for thread 6= null ∧ thread(lock) = thread, where thread(lock )
is the first component of the lock value. Let furthermore free for(thread, lock) be
thread 6= null ∧ (owns(thread, lock) ∨ lock = free).

Let q, given by owns(thread, lock), be an assertion at a control point and let

{p}?call 〈stm〉?call with p
def
= free for(thread, lock) be the callee observation at the

beginning of a synchronized method in the same class. Note that the observation
stm changes the lock value. The interference freedom condition |=L {p ∧ q′ ∧
interleavable(q, stm)}stm{q′} assures invariance of q under the observation stm.
The assertions p and q′ imply thread = thread′. The points at p and q can be
simultaneously reached by the same thread only if q describes a point waiting for
return. This fact is mirrored by the definition of the interleavable predicate: If q
is not at a control point waiting for return, then the antecedent of the condition
evaluates to false. Otherwise, after the execution of the built-in augmentation
lock := inc(lock) in stm we have owns(thread, lock), i.e., owns(thread′, lock), which
was to be shown.

The cooperation test We extend the cooperation test for Javaconc with synchro-
nization and the invocation of the monitor methods. In the previous languages,
the assertion comm expressed, that the given statements indeed represent com-
municating partners. In the current language with monitor synchronization, com-
munication is not always enabled. Thus the assertion comm has additionally to
capture enabledness of the communication: In case of a synchronized method in-
vocation, the lock of the callee object has to be free or owned by the caller. This
is expressed by z′.lock = free∨thread(z′.lock) = thread, where thread is the caller
thread, z′ is the callee object, and where thread(z′.lock) is the first component
of the lock value, i.e., the thread owning the lock of z′. For the invocation of
the monitor methods we require that the executing thread is holding the lock.
Returning from the wait-method assumes that the thread has been notified and
that the callee’s lock is free. Note that the global invariant is not affected by the
object-internal monitor signaling mechanism, which is represented by auxiliary
assignments.

Definition 9 (Cooperation test: Communication). A proof outline sat-
isfies the cooperation test for communication, if the conditions of Definition 7
hold for the statements listed there with the exception of the Call-case, and
additionally in the following cases:

1. Call: For all statements {p1}uret := e0.m(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}wait

(or such without receiving a value) in class c with e0 of type c′, where
method m /∈ {start,wait, notify, notifyAll} of c′ is synchronized with body
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{q2}?call 〈~y2 := ~e2〉?call {q3} stm; return eret , formal parameters ~u, and lo-
cal variables ~v except the formal parameters. The callee class invariant is
q1 = Ic′ . The assertion comm is given by E0(z) = z′ ∧ (z′.lock = free ∨
thread(z′.lock) = thread). Furthermore, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1
is given by z.~y1 := ~E1(z), and fobs2 is z′.~y′2 := ~E′

2(z
′). If m is not synchro-

nized, z′.lock = free ∨ thread(z′.lock) = thread in comm is dropped.

2. Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread.

3. Returnwait : For {q1} returngetlock {q2}!ret 〈~y3 := ~e3〉!ret {q3} in a wait-

method, comm is E0(z) = z′∧~u′ = ~E(z)∧z′.lock = free∧thread′ ∈ z′.notified.

Example 16. Assume the invocation of a synchronized method m of a class c,
where m of c has the body 〈stm〉?call {thread(lock) = thread} stm ′; return. Note
that the built-in augmentation in stm sets the lock owner by the assignment
lock := inc(lock). Omitting irrelevant details again, the cooperation test requires
|=G {true}z′.lock := inc(z′.lock){thread(z′.lock) = thread′}, which holds by the
definition of inc.

5 Exception handling

In this section we extend the previous language with exception handling. Again,
we define syntax and semantics of the language Javaexc, before formalizing the
proof system.

5.1 Syntax

We introduce additional statements for exception throwing and handling, as
shown in Table 9. The abstract syntax of the remaining constructs is as for the
previous language.

stm ::= x := e | u := e | u := newc

| u := e.m(e, . . ., e) | e.m(e, . . ., e)
| throw e | try stm catch (c u) stm . . . catch (c u) stm finally stm yrt
| ǫ | stm; stm | if e then stm else stm fi | while e do stm od . . .

Table 11. Javaexc abstract syntax
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τ ′ = τ [exc 7→ τ (exc) ◦ null ]
Try

〈T ∪̇ {ξ ◦ (α, τ, try stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm
′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′, stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm
′)}, σ〉

0 ≤ n
Finally

〈T ∪̇ {ξ ◦ (α, τ, catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt; stm)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ, stmn+1 yrt; stm)}, σ〉

τ (exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→β0 ◦ . . . ◦ βk][top 7→βk+1]

if τ ′(top) = null then stm ′ = stm else stm ′ = throw top; stm fi
Yrt

〈T ∪̇ {ξ ◦ (α, τ, yrt; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′, stm ′)}, σ〉

Table 12. Javaexc Operational semantics (1)

5.2 Semantics

Exceptions allow a special form of error handling: If something unexpected or
unallowed happens, the executing thread may throw an exception, which is an
object of an arbitrary14 type. The empty reference cannot be thrown.15 If an
exception has been thrown by a thread, then the normal flow of control gets
interrupted, and control tries to find the “nearest” exception handler handling
exceptions of the given type, as explained below.

The operational semantics extends the semantics of Javasynch by the rules of
the Tables 12 and 13, covering exception handling. In the semantics of exception
handling we add the type Object as the supertype of all classes. Note that no
objects of type Object can be created, thus preserving monomorphism.

Throwing and catching exceptions are syntactically represented by throw
statements and by try-catch-finally blocks. During the execution of a try-catch-
finally block try stm0 catch (c1 u1) stm1 . . .; catch (cn un) stmn finally stmn+1 yrt, the
corresponding local configuration contains an “open” try-construct like e.g. stm ′

0; catch (c1 u1) stm1 . . .; catch (cn
(rule Try). We call such blocks also statements, even if they are no statements
in a strong syntactical sense.16 Statements in which no such open try blocks
occur are called try-closed.

The semantics uses the local variable exc of types listObject with initial value
ǫ, to store thrown but not yet caught exceptions. In nested try-catch-finally
statements, each try-catch-finally statement has its own element in the sequence
exc which is used to remember if there is an exception throw in that block which
is not yet caught; a null-reference means the absence of such an exception. The

14 In Java only objects extending Throwable may be thrown.
15 In Java, a NullPointerException is thrown in this case.
16 Note that for example catch (c2 u2) stm2 is not a statement.
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stm is try-closed stm ′ = catch (c1 u1) stm1 . . .; catch (cn un) stmn finally stmn+1 yrt

1 ≤ i ≤ n [[e]]
σ(α),τ
E ∈ Val ci ∀1 ≤ j < i. [[e]]

σ(α),τ
E /∈ Valcj

τ ′ = τ [ui 7→[[e]]
σ(α),τ
E ]

Throw1

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm ; stm ′; stm ′′)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ ′, stm i; finally stmn+1 yrt; stm

′′)}, σ〉

stm is try-closed stm ′ = catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally stmn+1 yrt

[[e]]
σ(α),τ
E 6= null 0 ≤ n ∀1 ≤ i ≤ n. [[e]]

σ(α),τ
E /∈ Val ci

τ (exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→ β0 ◦ . . . ◦ βk ◦ [[e]]σ(α),τ
E ]

Throw2

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm ; stm ′; stm ′′)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ ′, stmn+1 yrt; stm

′′)}, σ〉

stm is try-closed

[[e]]
σ(α),τ
E 6= null τ (exc) = β0 ◦ . . . ◦ βk ◦ βk+1 τ ′ = τ [exc 7→β0 ◦ . . . ◦ βk ◦ [[e]]σ(α),τ

E ]
Throw3

〈T ∪̇ {ξ ◦ (α, τ, throw e; stm yrt; stm ′)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ ′, yrt; stm ′)}, σ〉

stm ′ is try-closed [[e]]
σ(β),τ ′
E 6= null τ ′′ = τ [top 7→[[e]]

σ(β),τ ′
E ]

Throw4

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, throw e; stm ′)}, σ〉 −→
〈T ∪̇ {ξ ◦ (α, τ ′′, throw top; stm)}, σ〉

stm is try-closed [[e]]
σ(α),τ
E 6= null

Throw5

〈T ∪̇ {(α, τ, throw e; stm; return)}, σ〉 −→ 〈T ∪̇ {(α, τ, return)}, σ〉

Table 13. Javaexc Operational semantics (2)

additional variable top of type Object is used to store the value of an exception
which should be rethrown.

Entering a try-catch-finally block appends a null-reference to the value of exc,
expressing that there is no thrown but not yet caught exception in that block
(cf. rule Try).

The execution of a try-catch-finally block consists of the execution of the
try statement until an exception is thrown or the try statement terminates. If
an exception is thrown, and if there is a corresponding catch-clause handling
exceptions of the given type, then this catch-clause (cf. rule Throw1) and the
finally clause (cf. rule Finally with n = 0) get executed. Otherwise, if no excep-
tions have been thrown (cf. rules Finally) or if there is no corresponding catch
clause (cf. rule Throw2), then the finally clause gets executed. Also throwing an
exception in a catch-clause (cf. rule Throw2 with n = 0) causes the control to
move to the finally block. Throwing an exception in the finally-clause overwrites
exceptions thrown in the try- or catch-clauses (cf. rule Throw3).
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Exiting a try-catch-finally block removes the last element of exc and stores
it in the variable top (cf. rule Yrt). If the value of top is different from the null
reference, i.e., if there was a thrown but not caught exception in the block, then
the exception gets rethrown.

Throwing an exception outside try-catch-finally blocks causes the control to
return to the caller, and to rethrow the exception there (cf. rule Throw4). For
run-methods, throwing such an exception terminates the executing thread (cf.
rule Throw5).

If, due to a thrown exception, control returns to the caller, and if the callee
local configuration is the only one in the stack which executes a synchronized
method of the callee object, then its termination gives the lock free like nor-
mal termination. This happens after evaluating the corresponding finally clause
within the method, if any. Note that returning from a method due to exception
handling does not hand over the return value as specified in the return statement.

5.3 The proof system

The proof system has to accommodate additionally for exception handling. First
we define how to extend the augmentation of Javasynch , before we describe the
proof method.

Proof outlines We extend the local and the global assertion language with
assertions of the form hastype(e, c) and hastype(E, c), respectively, which state
that the value of e respectively E is of type c; we need this construct to be
able to express which type of expression has been thrown. Remember that the
programming language is monomorph, and thus the association is unique.

Furthermore, we extend the syntax of augmentation and annotation of the
previous section to exception throwing and handling statements. Augmentation
and annotation for exception throwing via the throw statement is of the form

{p0} throw u {p1}throw 〈~y := ~e〉throw {p2} .

Exception throwing and its observation are executed in a single computation
step, in this order. The assertion p0 is the precondition of the throw statement.
Note that the control point annotated by the postcondition p2 is not reachable.
The assertion p1 describes the auxiliary point directly after exception throwing
and before its observation ~y := ~e.

Furthermore, we extend the augmentation and annotation of method call
statements, in order to logically capture the control flow if control returns to the
caller due to an exception, which gets rethrown:

{p0} u := e0.m(~e) {p1}!call 〈~y1 := ~e1〉!call
{p2}wait {p3}?ret 〈~y4 := ~e4〉?ret
{p4}exc {p5}rethrow 〈~ythr := ~ethr〉rethrow
{p6} .
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Again, after control returns but before the corresponding observation the as-
sertion p3 should hold. If control returns due to an exception, the assertion p4
should hold after the observation. In this case the exception has to be rethrown;
p5 describes the state directly after rethrowing the exception in top prior to its
observation ~ythr := ~ethr. Note that this observation does not have a postcon-
dition, because the control point after the observation is not reachable. Note
furthermore that only p0, p2, p4, and p6 annotate a control points. If control
returns due to normal method termination, the assertion p6 should hold after
the observation ~y4 := ~e4.

The augmentation and annotation of try-catch-finally statements is of the
form

{p0} try {p1}try 〈~ytry := ~etry〉try {p2} stmtry; {p3}
catch(c1 u1) {p4} stm1; {p5}
· · ·
catch(cn un) {p′4} stmn; {p′5}
finally {p6} stmn+1 {p7}
yrt {p8}yrt 〈~yyrt := ~eyrt〉yrt

{p9}exc {p10}rethrow 〈~ythr := ~ethr〉rethrow
{p11} .

The assertion p0 is the precondition of the try-catch-finally block. The asser-
tion p1 should hold after entering the try-block and before the corresponding
observation ~ytry := ~etry, where the assertion p2 describes the control point after
observation, and p3 is the postcondition of the whole try-block. The pre- and
postconditions of the first and of the last catch blocks are p4 and p5 respectively
p′4 and p′5. The finally block has the pre- and postconditions p6 and p7. After
exiting the finally block, p8 should hold prior to the observation ~yyrt := ~eyrt of
exiting. If there is an exception to be rethrown, the assertion p9 is required to
hold after the observation of yrt, p10 should hold after rethrowing and prior to its
observation ~ythr := ~ethr. Again, this observation does not have a postcondition,
because the control point after the observation is not reachable. Note that p1,
p8, and p10 annotate auxiliary points. If there is no exception to be rethrown,
the assertion p11 should hold after exiting the finally-block and executing the
corresponding observation.

Remember that the local variable exc of type listObject with initial value
ǫ stores the thrown but not yet caught exceptions in nested try-catch-finally
blocks. The variable top stores the value of an exception to be rethrown. We use
the assertion thrown as a shortcut for tail(exc) 6= null, where the function tail(v)
gives the last element of the sequence v. We use also the function head(v) which
returns the sequence v without its last element17. Note that the variables exc
and top are local. In the concurrent setting, all threads have their own exception
mechanism, which are independent of each other.

The augmentation for the built-in auxiliary variable lock gets extended to
capture the case when a thread terminates the execution of a synchronized

17 These functions are applied to non-empty sequences only.
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method due to a thrown exception: We additionally observe each throw state-
ment outside try-catch-finally blocks in a synchronized method by the assign-
ment lock := dec(lock).

Since the global invariant should describe object-external behavior, we re-
quired that instance variables occurring in the global invariant may be changed
by observations of communication or object creation only. Since the execution
of throw statements outside try-catch-finally blocks cause the control to move to
the caller, i.e., its effect is also object-external, the observations of such throw
statements may also change the values of instance variables referred to in the
global invariant.

Verification conditions Initial correctness and interference freedom agree with
those for Javasynch . Note that exception throwing and handling do not modify
instance states. Invariance under their observations, which are multiple assign-
ments, is already included in the interference freedom test conditions of the
previous section.

Local correctness Additionally to the local correctness conditions of the previ-
ous section, we introduce new conditions to cover the control flow of exception
handling.

Entering a try block pushes an empty reference on the exception stack (cf.
rule Try); thus the precondition of a try-catch-finally statement should imply
the precondition of the try block after entering the block and executing the
observation of the try keyword as stated in Condition (11). Furthermore, the
precondition of the observation should hold directly after entering the block,
prior to the observation, as formalized in Condition (10).

If no exceptions has been thrown in a try or in a catch block, then after ter-
mination of the block execution continues in the finally block (cf. rule Finally);
the postcondition of each try and catch block should imply the precondition of
the finally block, as required by Condition (12).

Exiting the finally block (cf. rule Yrt) is covered by the Conditions (13)-
(15). Condition (13) assures that pyrt holds after exiting the finally block but
before its observation. Remember that in case of a thrown but not yet caught
exception the exception is stored in the variable top, and becomes rethrown after
the block; in this case the assertion pexc is required to hold after the observation
of yrt and prior to rethrowing, as stated in Condition (15). If no exceptions must
be rethrown, Condition (14) assures that the assertion p′ is satisfied after the
termination of the try-catch-finally block.

If an exception has been thrown in a try block (cf. rules Throw1 and
Throw2), then the precondition of the throw statement must imply the pre-
condition of the corresponding catch block, if any, after throwing and its ob-
servation, and the precondition of the finally block otherwise; these cases are
covered by the Conditions (17) and (19). Satisfaction of the preconditions of
the corresponding observations is covered by the Conditions (16) and (18). The
conditions for exception throwing in a catch block, in a finally block, or outside
try-catch-finally blocks in run methods are modifications of the above conditions.
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Remember that if an exception is thrown but not yet caught, the execution
will not continue after the try-catch-finally block, but move to the next outer try-
catch-finally block or to the caller configuration. The latter (cf. rule Throw4)
is covered by the conditions of the cooperation test for exception handling.

Definition 10 (Local correctness: Exception handling). A proof outline
is locally correct under exception handling, if for all statements stm of the form

{p} try {ptry}try 〈~ytry := ~etry〉try {p0} stmtry; {p′0}
catch(c1 u1) {p1} stm1; {p′1}
· · ·
catch(cn un) {pn} stmn; {p′n}
finally {pfin} stmfin {p′fin}
yrt {pyrt}yrt 〈~yyrt := ~eyrt〉yrt

{pexc}exc {pthr}rethrow 〈~ythr := ~ethr〉rethrow
{p′} ,

and for all 0 ≤ i ≤ n,

|=L {p} exc := exc ◦ null {ptry} , (10)

|=L {p} exc := exc ◦ null; ~ytry := ~etry {p0} , (11)

|=L p′i → pfin , (12)

|=L {p′fin} exc, top := head(exc), tail(exc) {pyrt} , (13)

|=L {pfin′ ∧ tail(exc) = null} exc, top := head(exc), tail(exc); ~yyrt := ~eyrt {p′} , (14)

|=L {p′fin ∧ tail(exc) 6= null} exc, top := head(exc), tail(exc); ~yyrt := ~eyrt {pexc} , (15)

and for all statements {q0} throw e {q1}throw 〈~y := ~e〉throw in stmtry which do not
occur in an inner try-catch-finally block inside stmtry, and for all 1 ≤ i ≤ n,

|=L {q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)} (16)

ui := e

{q1} ,
|=L {q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)} (17)

ui := e; ~y := ~e

{pi} ,
|=L {q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)} (18)

exc := head(exc) ◦ e
{q1} ,

|=L {q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)} (19)

exc := head(exc) ◦ e; ~y := ~e

{pfin} .

For statements {q0} throw e {q1}throw 〈~y := ~e〉throw in catch blocks, (18) and
(19) are required to hold without the antecedent ∀1 ≤ j ≤ n.¬ hastype(e, cj). For
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throw statements in finally blocks, (18) and (19) should hold without the above
antecedent and with pfin replaced by p′fin. The above conditions (16)-(19) should
hold also for statements of the form {q0}exc {q1}rethrow 〈~y := ~e〉rethrow , where
the expression e in the conditions is replaced by top. Finally, for statements
of the form {q0} throw e {q1}throw 〈~y := ~e〉throw outside try-catch-finally blocks
in a run-method with body stm ′; return, (18) and (19) should hold without the
above antecedent, with pfin replaced by pre(return), and without the update of
exc. The above conditions must hold also for all statements {q0} {q1}rethrow 〈~y :=
~e〉rethrow , where the expression e in the conditions is replaced by top.

The cooperation test To cover exception handling, we extend the cooperation test
conditions for Javasynch with additional conditions, collected in the cooperation
test for exception handling. The cooperation test for exception handling covers
exception throwing if it is not in the scope of any try-catch-finally block, i.e., if
it causes the control to return to the caller configuration.

Assume a method call and a throw statement outside any try-catch-finally
block in the invoked method:

caller: uret := e0.m(~e) . . . {p1}wait {p2}?ret 〈~y4 := ~e4〉?ret {p3}exc . . .
callee: . . . {q1} throw e {q2}throw 〈~y3 := ~e3〉throw . . .

We assume that the global invariant, the precondition q1 of the throw statement,
and the assertion p1 of the caller at the control point waiting for return hold
prior to exception throwing. Exception throwing communicates the identity of
the thrown exception. Directly after exception throwing, the preconditions p2
and q2 of the corresponding observations must hold, as required by Condition
(20) of the cooperation test below. After the throw statement, its observation,
and the observation of the caller have been executed, the global invariant and
the postcondition p3 of the caller observation is required to hold, as formalized
in Condition (21). Note that the control point after the callee observation is not
reachable, thus the assertion at this point is not required to hold.

Let the fresh logical variables z and z′ denote the caller respectively the
callee object. Since these objects are in general different, the cooperation test is
formulated in the global language. Local assertions are expressed in the global
language using the lifting substitution. For example, the assertion p1 of the
caller is expressed on the global level by P1(z) = p1[z/this]. To distinguish local
variables of caller and callee, we rename those of the callee; the result we denote
by primed variables, expressions, and assertions. For example, to reason about
q1 in the cooperation test we rename all local variables in q1 resulting in q′1,
where Q′

1(z
′) = q′1[z

′/this] is q′1 expressed in the global language.
That the identity of the thrown exception is stored in the local variable top

of the caller is represented by the assignment top := E′(z′). The callee and

the caller observations are represented by the assignments z′.~y′3 := ~E′
3(z

′) and

z.~y4 := ~E4(z), respectively. Note that if the invoked method is synchronized,

than the observation z′.~y′3 := ~E′
3(z

′) decrements the value of the lock of z′ by
the built-in augmentation.
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We use the assertion comm to express that the local configurations described
by p1 and q1 are indeed communication partners: By E0(z) = z′ we require that
the value of z′ is indeed the callee object of the invocation e0.m(~e). Remem-
ber that method call statements must not contain instance variables, and that
formal parameters must not be assigned to. That means, the values of e0, and
the values of the formal and actual parameters do not change during method
evaluation. The assertion ~u′ = ~E(z) states that the values of the formal and
of the actual parameters agree, which implies that the primed built-in auxiliary
formal parameter caller′ of the callee stores (z, conf, thread) identifying the caller.

I.e., the assertion E0(z) = z′ ∧ ~u′ = ~E(z) assures that the local configurations
are in caller-callee relationship. Furthermore, E′(z′) 6= null expresses that the
exception to be thrown is not the null reference, i.e., that exception throwing is
enabled.

Definition 11 (Cooperation test: Exception handling). A proof out-
line satisfies the cooperation test for exception handling, if for all statements
uret := e0.m(~e) 〈stm〉!call {p1}wait {p2}?ret 〈~y4 := ~e4〉?ret {p3}exc (or such with-
out receiving a value) occurring in class c with m 6= start and e0 of type c′, and
for all {q1} throw e {q2}throw 〈~y3 := ~e3〉throw in m(~u) of c′ which are not inside
any try-catch-finally statement,

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm} (20)

top := E′(z′)

{P2(z) ∧Q′
2(z

′)} and

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm} (21)

top := E′(z′); z′.~y′3 := ~E′
3(z

′); z.~y4 := ~E4(z)

{GI ∧ P3(z)}

must hold with distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc
′
, and

with comm given by E0(z) = z′ ∧ ~u′ = ~E(z)∧E′(z′) 6= null∧ z 6= null∧ z′ 6= null.
Furthermore, the same conditions must hold also for statements of the form

{q1}exc {q2}rethrow 〈~y3 := ~e3〉rethrow under the same requirements, where e in the
conditions is replaced by top.

Example 17. In the proof outline below, the main class Inc offers a method inc,
which increases the value of the instance variable x, if its value is not 100, and
throws an exception of type E, otherwise. Thus the first 100 invocations of inc
will increase x, and each further invocation throws an exception.

The run method of the class calls inc in an infinite loop. Control can exit
this loop only if an exception has been thrown. The proof outline satisfies the
conditions of the proof system, and thus assures that, if the run method termi-
nates, then x has the value 100. Unspecified assertions are by definition true. The
built-in augmentation is not listed in the code. We explicitly define the instance
and local variables in Java-style.
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class Inc{
int x;
public void run(){

try {
while (true) {

inc() {x = 100 ∧ hastype(exc, E) }exc
} {false}

}

catch (E u){ {x = 100} }

finally { {x = 100} } {x = 100}exc {x = 100}
return ; }

public synchronized void inc(){
E v;

if (x==100) { {x = 100}
v = new E(); {x = 100 ∧ hastype(v, E) }
throw v; {false}

} {x 6= 100}
x = x+1;
return ; }

}

class E{. . .}

We only deal with the conditions for exception throwing and handling. The
conditions for assertions which are by definition true are trivial. For the only
try-catch-finally block, Condition (12) yields

|=L false → (x = 100)

for i = 0 and

|=L (x = 100) → (x = 100)

for i = 1. Condition (14) for exiting the block states

|=L {x = 100} exc, top := head(exc), tail(exc) {x = 100} .

For re-throwing after the method call in the run method, the local correctness
Condition (17) requires

|=L {x = 100 ∧ hastype(top, E)} u := top {x = 100} .

The antecedent of Condition (19) leads to a type contradiction. Rethrowing an
exception after the try-catch-finally block terminates the given thread. The local
correctness Condition 19 requires

(x = 100 ∧ top 6= null) → (x = 100)

for this case.
The throw statement in the inc method is outside any try-catch-finally

blocks, thus we have to apply the cooperation test to show inductivity. Con-
dition 21 assures validity of the postcondition of the caller by the requirement

|=G {(z′.x = 100 ∧ hastype(v′, E)) ∧ z = z′ ∧ v′ 6= null ∧ z 6= null ∧ z′ 6= null}
top := v′; z′.lock := dec(z′.lock) {z.x = 100 ∧ hastype(top, E)} .



49

6 Weakest precondition calculus

The verification conditions of the previous sections were formulated as standard
Hoare-triples. In this section we define their formal semantics, given by means
of a weakest precondition calculus. To do so, first we introduce substitutions
in Section 6.1, before re-formulating the verification conditions for Javaexc in
Section 6.2 to logical implications, using the substitutions. The proofs of the
lemmas in this section can be found in Appendix A.

6.1 Substitution operations

The verification conditions defined in the next section involve three substitution
operations: the local, the global, and the lifting substitution. The lifting substi-
tution is already defined in Section 2.3. The local substitution will be used to
express the effect of assignments in local assertions. The global substitution is
used similarly for global assertions.

The local substitution p[~e/~y] is the standard capture-avoiding substitution,
replacing in the local assertion p all occurrences of the given distinct variables ~y
by the local expressions ~e. We apply the substitution also to local expressions.
The following lemma expresses the standard property of the above substitution,
relating it to state-update. The relation between substitution and update for-
mulated in the lemma asserts that p[~e/~y] is the weakest precondition of p wrt.
to the assignment ~y := ~e. The lemma is formulated for assertions, but the same
property holds for expressions.

Lemma 3 (Local substitution). For arbitrary logical environments ω and
instance local states (σinst , τ) we have

ω, σinst , τ |=L p[~e/~y] iff ω, σinst [~y 7→[[~e]]
ω,σinst ,τ
L ], τ [~y 7→[[~e]]

ω,σinst ,τ
L ] |=L p .

The effect of assignments is expressed on the global level by the global substi-
tution P [ ~E/z.~x], which replaces in the global assertion P the instance variables

~x of the object referred to by z by the global expressions ~E. To accommodate
properly for the effect of assignments, though, we must not only syntactically
replace the occurrences z.xi of the instance variables, but also all their aliases
E′.xi, when z and the result of the substitution applied to E′ refer to the same
object. As the aliasing condition cannot be checked syntactically, we define the
main case of the substitution by a conditional expression [11]:

(E′.xi)[ ~E/z.~x] = (if E′[ ~E/z.~x] = z then Ei else (E′[ ~E/z.~x]).xi fi) .

The substitution is extended to global assertions homomorphically. We will also
use the substitution P [ ~E/z.~y] for arbitrary variable sequences ~y possibly con-
taining logical variables, whose semantics is defined by the simultaneous substi-
tutions [ ~Ex/z.~x] and [ ~Eu/~u], where ~x and ~u are the sequences of the instance

and logical variables18 of ~y, and ~Ex and ~Eu the corresponding subsequences of

18 Local variables are viewed as logical ones in the global assertion language.
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~E and [ ~Eu/~u] is the usual capture-avoiding substitution like in the local substi-

tution; if only logical variables are substituted, we simply write P [ ~E/~u]. That
the substitution accurately catches the semantical update, and thus represents
the weakest precondition relation, is expressed by the following lemma:

Lemma 4 (Global substitution). For arbitrary global states σ and logical
environments ω referring only to values existing in σ we have

ω, σ |=G P [ ~E/z.~y] iff ω′, σ′ |=G P ,

where ω′ = ω[~y 7→[[ ~E]]ω,σ
G ] and σ′ = σ[[[z]]ω,σ

G .~y 7→[[ ~E]]ω,σ
G ].

6.2 Verification conditions

In the local verification conditions, the effect of an assignment ~y := ~e is ex-
pressed by substituting ~e for ~y in the assertions. In the global conditions of the
cooperation test, the effect of communication, changing local states only, is ex-
pressed by simultaneously substituting the variables, which will store the result,
by the communicated values. I.e., for the case of method call, the formal pa-
rameters get replaced by the actual ones expressed in the global language. The
effect of the caller observation 〈~y := ~e〉!call to a global assertion P is expressed

by the substitution P [ ~E(z)/z.~y], where z represents the caller. The effect of the
callee-observation is handled similarly. Note the order: first communication takes
place, followed by the sender, and then the receiver observation. To describe the
common effect, we first have to substitute for the receiver, then for the sender
observation, and finally for communication. For method call, we additionally
have to substitute for the initialization of the local variables.

For readability, in the following definitions we will use the notation p ◦ f
with f = [~e/~y] for the substitution p[~e/~y]; we use a similar notation for global
assertions. Note that the substitution binds stronger than logical operators.

Definition 12 (Initial correctness). A proof outline is initially correct, if

|=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) → (22)

P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ Ic(z)) ◦ fobs ◦ finit ,
where c is the main class, {p2}?call 〈~y2 := ~e2〉?call {p3} stm; return is the body and
~v the local variables of the run-method of c, z ∈ LVarc, and z′ ∈ LVarObject.
Furthermore,

finit = [z, (null, 0, null)/thread, caller][Init(~v)/~v] , and

fobs = [ ~E2(z)/z.~y2] .

Definition 13 (Local correctness: Assignment). A proof outline is locally
correct, if for all multiple assignments {p1} ~y := ~e {p2} in class c, being an un-
observed assignment, an alone-standing observation, or an observed assignment,

|=L p1 → p2 ◦ fass , (23)

with fass = [~e/~y].
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Definition 14 (Local correctness: Exception handling). A proof outline
is locally correct under exception handling, if for all statements stm of the form

{p} try {ptry}try 〈~ytry := ~etry〉try {p0} stmtry; {p′0}
catch(c1 u1) {p1} stm1; {p′1}
· · ·
catch(cn un) {pn} stmn; {p′n}
finally {pfin} stmfin {p′fin}
yrt {pyrt}yrt 〈~yyrt := ~eyrt〉yrt

{pexc}exc {pthr}rethrow 〈~ythrow := ~ethrow〉rethrow
{p′} ,

and for all 0 ≤ i ≤ n,

|=L p → ptry[exc ◦ null/exc] ∧ p0[~etry/~ytry][exc ◦ null/exc] , (24)

|=L p′i → pfin , (25)

|=L p′fin → pyrt[head(exc), tail(exc)/exc, top] , (26)

|=L (p′fin ∧ tail(exc) = null) → p′[~eyrt/~yyrt][head(exc), tail(exc)/exc, top] , (27)

|=L (p′fin ∧ tail(exc) 6= null) → pexc[~eyrt/~yyrt][head(exc), tail(exc)/exc, top] , (28)

and for all statements {q0} throw e {q1}throw 〈~y := ~e〉throw in stmtry which does
not occur in an inner try-catch-finally block inside stmtry, and for all 1 ≤ i ≤ n,

|=L (q0 ∧ e 6= null ∧ hastype(e, ci)∧∀1 ≤ j < i.¬ hastype(e, cj)) → (29)

q1[e/ui] ∧ pi[~e/~y][e/ui] ,

|=L (q0 ∧ e 6= null ∧ ∀1 ≤ j ≤ n.¬ hastype(e, cj)) → (30)

q1[head(exc) ◦ e/exc] ∧ pfin[~e/~y][head(exc) ◦ e/exc] .

For statements {q0} throw e {q1}throw 〈~y := ~e〉throw in catch blocks, (30) is re-
quired to hold without the antecedent ∀1 ≤ j ≤ n.¬ hastype(e, cj). For throw
statements in finally blocks, (30) should hold without the above antecedent and
with pfin replaced by p′fin. The above conditions (29) and (30) should hold also
for statements of the form {q0} {q1}rethrow 〈~y := ~e〉rethrow , where the expres-
sion e in the conditions is replaced by top. Finally, for statements of the form
{q0} throw e {q1}throw 〈~y := ~e〉throw outside try-catch-finally blocks in a run-
method with body stm ′; return, Condition (30) should hold without the above
antecedent, without the update of exc, and with the assertion pfin replaced by
pre(return). For statements {q0} {q1}rethrow 〈~y := ~e〉rethrow the same conditions
must hold where we additionally replace e by top.

Definition 15 (Interference freedom). A proof outline is interference free,
if for all classes c, and for all multiple assignments ~y := ~e with precondition p
in c,

|=L p ∧ Ic → Ic ◦ fass , (31)
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with fass = [~e/~y]. Furthermore, for all assertions q at control points in c, such
that either not both p and q occur in a synchronized method, or q is at a control
point waiting for return,

|=L p ∧ q′ ∧ interleavable(q, ~y := ~e) → q′ ◦ fass . (32)

Definition 16 (Cooperation test: Communication). A proof outline sat-
isfies the cooperation test for communication, if

|=G GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm ∧ z 6=null ∧ z′ 6=null →
(P2(z) ∧Q′

2(z
′)) ◦ fcomm ∧

(GI ∧ P3(z) ∧Q′
3(z

′)) ◦ fobs2 ◦ fobs1 ◦ fcomm (33)

holds for distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc
′
, in the

following cases:

1. (a) Call: For all calls {p1}uret := e0.m(~e) {p2}!call 〈~y1 := ~e1〉!call {p3}wait

(or such without receiving a value) in class c with e0 of type c′, where
method m /∈ {start,wait, notify, notifyAll} of c′ is synchronized with body
{q2}?call 〈~y2 := ~e2〉?call {q3} stm; return eret , formal parameters ~u, and lo-
cal variables ~v except the formal parameters. The callee class invariant
is q1 = Ic′ . The assertion comm is given by E0(z) = z′∧ (z′.lock = free∨
thread(z′.lock) = thread). Furthermore, fcomm = [ ~E(z), Init(~v)/~u′, ~v′],
fobs1 = [ ~E1(z)/z.~y1], fobs2 = [ ~E′

2(z
′)/z′.~y′2]. If m is not synchronized,

z′.lock = free ∨ thread(z′.lock) = thread in comm is dropped.
(b) Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =

z′ ∧ thread(z′.lock) = thread.
(c) Callstart : For m = start, comm is E0(z) = z′ ∧ ¬z′.started, where

{q2}?call 〈~y2 := ~e2〉?call {q3} stm; return is the body of the run-method of
c′.

(d) Callskipstart : For m = start, additionally, (33) must hold with comm given
by E0(z) = z′ ∧ z′.started, q2 = q3 = true, and fcomm and fobs2 are the
identity functions.

2. (a) Return: For all method call statements
uret := e0.m(~e) 〈~y1 := ~e1〉!call {p1}wait {p2}?ret 〈~y4 := ~e4〉?ret {p3} (or
such without receiving a value) occurring in c with e0 of type c′, such that
method m(~u) of c′ has the return statement {q1} return eret {q2}!ret 〈~y3 :=
~e3〉!ret {q3} , Equation (33) must hold with comm given by E0(z) = z′ ∧
~u′ = ~E(z), and where fcomm = [E′

ret(z
′)/uret ], fobs1 = [ ~E′

3(z
′)/z′.~y′3],

and fobs2 = [ ~E4(z)/z.~y4][null/top].
(b) Returnwait : For {q1} returngetlock {q2}!ret 〈~y3 := ~e3〉!ret {q3} in a wait-

method, comm is E0(z) = z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈
z′.notified.

(c) Returnrun : For {q1} return {q2}!ret 〈~y3 := ~e3〉!ret {q3} occurring in a
run-method, p1 = p2 = p3 = true, comm = true, and furthermore fcomm

and fobs2 the identity function.
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Definition 17 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes c′ and statements
{p1}u := newc {p2}new 〈~y := ~e〉new {p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

)
→

P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z)) ◦ fobs , (34)

with z ∈ LVarc
′
and z′ ∈ LVar list Object fresh , and where fobs = [ ~E(z)/z.~y].

Definition 18 (Cooperation test: Exception handling). A proof out-
line satisfies the cooperation test for exception handling, if for all statements
uret := e0.m(~e) 〈stm〉!call {p1}wait {p2}?ret 〈~y4 := ~e4〉?ret {p3} (or such without
receiving a value) occurring in class c with m 6= start and e0 of type c′, and
for all {q1} throw e {q2}throw 〈~y3 := ~e3〉throw in m(~u) of c′ which is not in the
try-block of any try-catch-finally statement,

|=G GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm

→ (P2(z) ∧Q′
2(z

′)) ◦ fthrow ∧ (GI ∧ P3(z)) ◦ fobs2 ◦ fobs1 ◦ fthrow

must hold with distinct fresh logical variables z ∈ LVarc and z′ ∈ LVarc
′
, and

with comm given by E0(z) = z′ ∧ ~u′ = ~E(z) ∧ E′(z′) 6= null ∧ z 6= null ∧ z′ 6=
null. Furthermore, fthrow is [E′(z′)/top], fobs1 is [ ~E′

3(z
′)/z′.~y′3], and fobs2 is

[ ~E4(z)/z.~y4]. Rethrowing outside try-catch-finally blocks in run methods is sim-
ilar.

7 Soundness and completeness

This section contains soundness and completeness of the proof method of Sec-
tion 6.2. Given a program together with its annotation, the proof system stip-
ulates a number of induction conditions for the various types of assertions and
program constructs. Soundness of the proof system means that for a proof out-
line satisfying the verification conditions, all configurations reachable in the op-
erational semantics satisfy the given assertions. Completeness conversely means
that if a program does satisfy an annotation, this fact is provable. For conve-
nience, let us introduce the following notations: Given a program prog , we will
write ϕprog or just ϕ for its annotation, and write prog |= ϕ, if prog satisfies all
requirements stated in the assertions, and prog ′ ⊢ ϕ′, if prog ′ with annotation
ϕ′ satisfies the verification conditions of the proof system:

Definition 19. Given a program prog with annotation ϕ, then prog |= ϕ iff for
all reachable configurations 〈T, σ〉 of prog, for all (α, τ, stm) ∈ T , and for all
logical environments ω referring only to values existing in σ:

1. ω, σ(α), τ |=L pre(stm), and
2. ω, σ |=G GI .

Furthermore, for all classes c, objects β ∈ Valc(σ), and local states τ ′:
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3. ω, σ(β), τ ′ |=L Ic .

For proof outlines, we write prog ′ ⊢ ϕ′ iff prog ′ with annotation ϕ′ satisfies the
verification conditions of the proof system.

In the following sections we discuss the basic ideas of the soundness and
completeness proofs. The formal proofs can be found in the appendix.

7.1 Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their
assertions for an annotated program that has been verified using the proof con-
ditions. Soundness of the method is proved by a straightforward, albeit tedious,
induction on the computation steps.

Before embarking upon the soundness formulation and its proof, we need
to clarify the connection between the original program and the proof outline,
i.e., the one extended by auxiliary variables, and decorated with assertions. The
transformation is done for the sake of verification, only, and as far as the un-
augmented portion of the states and the configurations is concerned, the behavior
of the original and the transformed program are the same.

To make the connection between original program and the proof outline
precise, we define a projection operation ↓ prog , that jettisons all additions
of the transformation. So let prog ′ be a proof outline for prog , and 〈T ′, σ′〉 a
global configuration of prog ′. Then σ′ ↓ prog is defined by removing all auxil-
iary instance variables from the instance state domains. For the set of thread
configurations, T ′ ↓ prog is given by restricting the domains of the local states
to non-auxiliary variables and removing all augmentations. Additionally, for lo-
cal configurations (α, τ, returngetlock〈stm〉!ret ) ∈ T ′, if the executing thread is in
the wait set, i.e., if (τ(thread), n) ∈ σ′(α)(wait) for some n, then the statement
returngetlock gets replaced by ?signal; returngetlock . Furthermore, for local config-
urations (α, τ, stm; return 〈stm′〉!ret ) ∈ T ′ with stm 6= ǫ an auxiliary assignment
in the notify- or the notifyAll-method, the auxiliary assignment stm gets replaced
by !signal and !signal all, respectively. The following lemma expresses that the
transformation does not change the behavior of programs:

Lemma 5. Let prog ′ be a proof outline for a program prog. Then 〈T, σ〉 is a
reachable configuration of prog iff there exists a reachable configuration 〈T ′, σ′〉
of prog ′ with 〈T ′ ↓ prog , σ′ ↓ prog〉 = 〈T, σ〉.

The augmentation introduced a number of specific auxiliary variables that
reflect the predicates used in the semantics. That the semantics is faithfully
represented by the variables is formulated in the following lemmas.

Lemma 6 (Identification). Let 〈T, σ〉 be a reachable configuration of a proof
outline. Then

1. for all stacks ξ and ξ′ in T and for all local configurations (α, τ, stm) ∈ ξ
and (α′, τ ′, stm ′) ∈ ξ′ we have τ(thread) = τ ′(thread) iff ξ = ξ′, and
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2. for each stack (α0, τ0, stm0) . . . (αn, τn, stmn) in T and indices 0 ≤ i, j ≤ n,
(a) τi(thread) = α0;
(b) i < j and αi = αj implies τi(conf) < τj(conf) < σ(αi)(counter),
(c) 0 < j implies τj(caller) = (αj−1, τj−1(conf), τj−1(thread)), and
(d) proj(τ0(caller), 3) 6= τ0(thread),

where proj (v, i) is the ith component of the tuple v.

Lemma 7 (Lock, Wait, Notify). Let 〈T, σ〉 be a reachable configuration of a
proof outline for the original program prog, α ∈ Val (σ) an object identity, and
let ξ = (α0, τ0, stm0) ◦ ξ′ ∈ T . Let furthermore n be the number synchronized
method executions of ξ in α, i.e., n = |{(α, τ, stm) ∈ ξ | stm synchr.}|. Then

1. (a) ¬owns(T ↓ prog , α) iff σ(α)(lock) = free
(b) owns(ξ ↓ prog , α) iff σ(α)(lock) = (α0, n)

2. (a) ξ ∈ wait(T ↓ prog , α) iff (α0, n) ∈ σ(α)(wait)
(b) ξ ∈ notified(T ↓ prog , α) iff (α0, n) ∈ σ(α)(notified)
(c) proj (σ(α)(wait)[i], 1) = proj (σ(α)(wait)[j], 1) implies i = j
(d) proj (σ(α)(notified)[i], 1) = proj (σ(α)(notified)[j], 1) implies i = j
(e) if (α0,m) ∈ σ(α)(wait) or (α0,m) ∈ σ(α)(notified) then m = n
(f) σ(α)(wait) ∩ σ(α)(notified) = ∅,

where s[i] is the ith element of the sequence s.

The above Lemma assures disjunctness of the sequences stored in the wait and
notified variables; if the order of the elements is unimportant, in the following
we sometimes use set notation for their values.

Lemma 8 (Started). For all reachable configurations 〈T, σ〉 of a proof outline
for a program prog, and all objects α ∈ Val (σ), we have started(T ↓ prog , α) iff
σ(α)(started).

Let prog be a program with annotation ϕ, and prog ′ a a corresponding proof
outline with annotation ϕ′. Let GI ′ be the global invariant of ϕ′, I ′c denote its
class invariants, and for an assertion p of ϕ let p′ denote the assertion of ϕ′

associated with the same control point. We write |= ϕ′ → ϕ iff |=G GI ′ → GI ,
|=L I ′c → Ic for all classes c, and |=L p′ → p, for all assertions p of ϕ associated
with some control point. To give meaning to the auxiliary variables, the above
implications are evaluated in the context of states of the augmented program.
The following theorem states the soundness of the proof method.

Theorem 1 (Soundness). Let prog ′ be a proof outline with annotation ϕprog′ .

If prog ′ ⊢ ϕprog′ then prog ′ |= ϕprog′ .

The soundness proof is basically an induction on the length of computation,
simultaneously on all three parts from Definition 19. For the inductive step,
we assume that the verification conditions are satisfied and assume a reachable
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configuration satisfying the annotation. We make case distinction on the kind
of the next computation step: If the computation step executes an assignment,
then we use the local correctness conditions for inductivity of the executing local
configuration’s properties, and the interference freedom test for all other local
configurations and the class invariants. For communication, invariance for the
executing partners and the global invariant is shown using the cooperation test
for communication. Exception handling and communication itself does not affect
the global state; invariance of the remaining properties under the correspond-
ing observations is shown again with the help of the interference freedom test.
Finally for object creation, invariance for the global invariant, the creator local
configuration, the created object’s class invariant is assured by the conditions
of the cooperation test for object creation; all other properties are shown to be
invariant using the interference freedom test.

Theorem 1 is formulated for reachability of augmented programs. With the
help of Lemma 5, we immediately get:

Corollary 1. If prog ′ ⊢ ϕprog′ and |= ϕprog′ → ϕprog , then prog |= ϕprog .

7.2 Completeness

Next we conversely show that if a program satisfies the requirements asserted
in its proof outline, then this is indeed provable, i.e., then there exists a proof
outline which can be shown to hold and which implies the given one:

∀prog . prog |= ϕprog ⇒ ∃prog ′. prog ′ ⊢ ϕprog′ ∧ |= ϕprog′ → ϕprog .

Given a program satisfying an annotation prog |= ϕprog , the consequent can be
uniformly shown, i.e., independently of the given assertional part ϕprog , by in-
stantiating ϕprog′ to the strongest annotation still provable, thereby discharging
the last clause |= ϕprog′ → ϕprog . Since the strongest annotation still satisfied
by the program corresponds to reachability, the key to completeness is to

1. augment each program with enough information (see Definition 20 below),
to be able to

2. express reachability in the annotation, i.e., annotate the program such that
a configuration satisfies its local and global assertions exactly if reachable
(see Definition 21 below), and finally

3. to show that this augmentation indeed satisfies the verification conditions.

We begin with the augmentation, using the transformation from Section 5.3
as starting point, where the programs are augmented with the specific auxil-
iary variables. To facilitate reasoning, we introduce an additional auxiliary local
variable loc, which stores the current control point of the execution of a local
configuration. Given a function which assigns to all control points unique lo-
cation labels, we extend each assignment with the update loc := l, where l is
the label of the control point after the given occurrence of the assignment. Also
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unobserved statements are extended with the update. We write l ≡ stm if l
represents the control point in front of stm.

The standard way for completeness augmentation is to add information into
the states about the way how it has been reached, i.e., the history of the com-
putation leading to the configuration. This information is recorded using history
variables.

The assertional language is split into a local and a global level, and likewise
the proof system is tailored to separate local proof obligations from global ones
to obtain a modular proof system. The history will be recorded in instance
variables, and thus each instance can keep track only of its own past. To mirror
the split into a local and a global level in the proof system, the history per
instance is recorded separately for internal and external behavior. The sequence
of internal state changes local to that instance is recorded in the local history
and the external behavior in the communication history.

The local history keeps track of the state updates. We store in the local
history the updated local and instance states of the executing local configuration
and the object in which the execution takes place. Note that the local history
stores also the values of the built-in auxiliary variables, and thus the identities
of the executing thread and the executing local configuration.

The communication history keeps information about the kind of communica-
tion, the communicated values, and the identity of the communication partners
involved. For the kind of communication, we distinguish as cases object creation,
ingoing and outgoing method calls, and likewise ingoing and outgoing commu-
nication for the return value. We use the set

⋃
c∈C {newc} ∪⋃

m∈M {!m, ?m} ∪
{!return, ?return, ! throw, ? throw} of constants for this purpose, where C and M
are the sets of all class and method names, respectively. Notification does not
update the communication history, since it is object-internal computation. For
the same reason, we don’t record self-communication in hcomm . Note in pass-
ing that the information stored in the communication history matches exactly
the information needed to decorate the transitions in order to obtain a compo-
sitional variant of the operational semantics of Section 4.2. See [4] for such a
compositional semantics.

Definition 20 (Augmentation with histories). Every class is further ex-
tended by two auxiliary instance variables hinst and hcomm , both initialized to
the empty sequence. They are updated as follows:

1. Each multiple assignment ~y := ~e in each class c that is not the observation
of a method call or of the reception of a return value is extended with

hinst := hinst ◦ ((~x,~v)[~e/~y]) ,

where ~x are the instance variables of class c containing also hcomm but with-
out hinst , and ~v are the local variables. Observations ~y := ~e of uret :=
e0.m(~e ′) and of the corresponding reception of the return value get extended
with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((~x,~v)[~e/~y]) fi ,
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instead, if m 6= start. For e0.start(~e
′); 〈~y := ~e〉!call we use the same update

with the condition e0 = this replaced by e0 = this ∧ ¬started.
2. Every observation of communication, object creation, or of a throw statement

outside try-catch-finally blocks in a method different from run gets extended
by

hcomm := if (partner = this) then hcomm else

hcomm ◦ (sender, receiver, values) fi ,

where the expressions partner, sender, receiver, and values depend on the kind
of communication as follows:

communication partner sender receiver values

u := newc null this null newc u, thread
uret := e0.m(~e) e0 this e0 !m(~e)
receive return e0 e0 this if top = null then

? returnuret , thread
else ? throw top, thread fi

receive call m(~u) caller obj caller obj this ?m(~u)
return eret caller obj this caller obj ! return eret , thread
throw e caller obj this caller obj ! throw e, thread

with caller obj given by the first component of the variable caller.

In the update of the history variable hinst , the expression (~x, ~u)[~e/~y] identifies the
active thread and local configuration by the local variables thread and conf, and
specifies its instance local state after the execution of the assignment. Note that
especially the values of the auxiliary variables introduced in the augmentation
are recorded in the local history. In the following we will also write (σinst , τ)
when referring to elements of hinst .

Note furthermore that the communication history records also the identities
of the communicating threads in values.

Next we introduce the annotation for the augmented program.

Definition 21 (Reachability annotation). We define the following annota-
tion for the augmented program:

1. ω, σ |=G GI iff there exists a reachable 〈T, σ′〉 such that Val (σ) = Val (σ′),
and for all α ∈ Val (σ), σ(α)(hcomm) = σ′(α)(hcomm).

2. For each class c, let ω, σinst , τ |=L Ic iff there is a reachable 〈T, σ〉 such that
σ(α) = σinst , where α = σinst (this). For each class c and method m of c, the
pre- and postconditions of m are given by Ic.

3. For assertions at control points, ω, σinst , τ |=L pre(stm) iff there is a reach-
able 〈T, σ〉 with σ(α) = σinst for α = σinst (this), and (α, τ, stm; stm ′) ∈ T .

4. For preconditions p of observations observing a statement stm which is not
an assignment, let ω, σinst , τ |=L p iff there is a reachable 〈T, σ〉 with σ(α) =
σinst for α = σinst (this), and with (α, τ ′, stm; stm ′) ∈ T enabled to execute
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resulting in the local state τ directly after the execution of the statement but
before its observation.
For observing the reception of a method call, instead of the existence of the
enabled (α, τ ′, stm; stm ′) ∈ T , we require that a call of the method of α is
enabled in 〈T, σ〉 with resulting callee local state τ directly after communica-
tion19.

It can be shown that these assertions are expressible in the assertion language
[56]. The augmented program together with the above annotation build a proof
outline that we denote by prog ′.

What remains to be shown for completeness is that the proof outline prog ′

indeed satisfies the verification conditions of the proof system. Initial and local
correctness are straightforward.

Completeness for the interference freedom test and the cooperation test are
more complex, since, unlike initial and local correctness, the verification condi-
tions in these cases mention more than one local configuration in their respective
antecedents. Now, the reachability assertions of prog ′ guarantee that, when sat-
isfied by an instance local state, there exists a reachable global configuration
responsible for the satisfaction. So a crucial step in the completeness proof for
interference freedom and the cooperation test is to show that individual reach-
ability of two local configurations implies that they are reachable in a common
computation. This is also the key property for the history variables: they record
enough information such that they allow to uniquely determine the way a con-
figuration has been reached; in the case of instance history, uniqueness of course,
only as far as the chosen instance is concerned. This property is stated formally
in the following local merging lemma.

Lemma 9 (Local merging lemma). Assume two reachable global configura-
tions 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and (α, τ, stm) ∈ T1 with α ∈ Val (σ1) ∩
Val (σ2). Then σ1(α)(hinst ) = σ2(α)(hinst ) implies (α, τ, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different
instances, we need an analogous property for the communication histories. Argu-
ing on the global level, the cooperation test can assume that two control points
are individually reachable but agreeing on the communication histories of the
objects. This information must be enough to ensure common reachability. Such a
common computation can be constructed, since the internal computations of dif-
ferent objects are independent from each other, i.e., in a global computation, the
local behavior of an object is interchangeable, as long as the external behavior
does not change. This leads to the following lemma:

Lemma 10 (Global merging lemma). Assume two reachable global configu-
rations 〈T1, σ1〉 and 〈T2, σ2〉 of prog ′ and α ∈ Val (σ1) ∩ Val (σ2) with the prop-
erty σ1(α)(hcomm) = σ2(α)(hcomm). Then there exists a reachable configura-

19 For the precondition of the observation stm at the beginning of the run-method of
the main class, 〈T, σ〉 can also be the initial configuration before the execution of
the observation stm .
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tion 〈T, σ〉 with Val (σ) = Val (σ2), σ(α) = σ1(α), and σ(β) = σ2(β) for all
β ∈ Val (σ2)\{α}.

Note that together with the local merging lemma this implies that all local
configurations in 〈T1, σ1〉 executing in α and all local configurations in 〈T2, σ2〉
executing in β 6= α are contained in the commonly reached configuration 〈T, σ〉.

This brings us to the completeness result:

Theorem 2 (Completeness). For a program prog, the proof outline prog ′ sat-
isfies the verification conditions of the proof system from Section 6.2.

8 Proving deadlock freedom

The previous sections described a proof system which can be used to prove safety
properties of Javasynch programs. In this section we show how to apply the proof
system to prove deadlock freedom.

8.1 Expressing deadlock freedom

A system of processes is in a deadlocked configuration, if no one of them is
enabled to compute, but not yet all processes are terminated. A typical deadlock
situation can occur, if two threads t1 and t2 both try to gather the locks of
two objects z1 and z2, but in reverse order: t1 first applies for access to the
synchronized methods of z1, and then for those of z2, while t2 first collects the
lock of z2, and tries to become the lock owner of z1. Now, it can happen, that
t1 gets the lock of z1, t2 gets the lock of z2, and both are waiting for the other
lock, which will never become free. Another typical source of deadlock situations
are threads which suspended themselves by calling wait and which will never get
notified.

So, what kind of statements can be disabled and under which conditions?
The important cases, to which we restrict, are

– the invocation of synchronized methods, if the lock of the callee object is
neither free nor owned by the executing thread,

– if a thread tries to invoke a monitor method of an object whose lock it doesn’t
own, or

– if a thread tries to return from a wait-method, but either the lock is not free
or the thread is not yet notified.

To be exact, the semantics specifies method calls to be disabled also, if the callee
object is the empty reference. However, we won’t deal with this case; it can be
excluded in the preconditions by stating that the callee object is not null.

Assume a proof outline with global invariant GI . For a logical variable z
of type Object, let I(z) = I[z/this] be the class invariant of z expressed on
the global level. Let the assertion terminated(z) express that the thread of z is
already terminated. Formally, we define terminated(z) by ∃~v. q[z/thread][z/this],
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where q is the postcondition of the run-method of z, and ~v its local variables. For
assertions p in z′ let furthermore blocked(z, z′, p) express that the thread of z is
disabled in the object z′ at control point p. Formally, we define blocked(z, z′, p)
by

– ∃~v. p[z/thread][z′/this] ∧ e0.lock 6= free ∧ thread(e0.lock) 6= thread if p is the
precondition of a call invoking a synchronized method of e0,

– ∃~v. p[z/thread][z′/this]∧ thread(e0.lock) 6= thread if p is the precondition of a
call invoking a monitor method of e0,

– ∃~v. p[z/thread][z′/this]∧(z′.lock 6= free∨z /∈ z′.notified) if p is the precondition
of the return statement in the wait-method, and

– false otherwise,

where ~v is the vector of local variables in the given assertion, and z and z′ fresh.
Note that thread is substituted and thus the quantification over thread is without
effect. Let finally blocked(z, z′) express that the thread of object z is blocked in
the object z′. It is defined by the assertion

∨
p∈Ass(z′) blocked(z, z

′, p), where
Ass(z′) is the set of all assertions in z′. Now we can formalize the verification
condition for deadlock freedom:

Definition 22. A proof outline satisfies the test for deadlock freedom, if

|=G (GI ∧ (35)

(∀z. z 6= null → (I(z) ∧
(z.started → (terminated(z) ∨ (∃z′. z′ 6= null ∧ blocked(z, z′)))))) ∧

(∃z. z 6= null ∧ z.started ∧ (∃z′. z′ 6= null ∧ blocked(z, z′))))

→ false .

Soundness of the above condition, i.e., that the condition indeed assures
absence of deadlock, is easy to show. Completeness results from the completeness
of the proof method.

8.2 Deadlock freedom proof examples

For readability, we define the following functions, which describe properties of
synchronization:

owns : (Thread× (Thread× Int)) → Bool,

owns(thread , lock )
def
= thread 6= null ∧ proj (lock , 1) = thread

not owns : (Thread× (Thread× Int)) → Bool,

not owns(thread , lock )
def
= thread 6= null ∧ proj (lock , 1) 6= thread

depth : (Thread× Int) → Int,

depth(lock )
def
= proj (lock , 2)
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The function proj is defined in Lemma 6; the owns function is already used in
Example 15. In the following we apply the test for deadlock freedom to some ex-
amples. All examples are verified in PVS. The built-in augmentation is not listed
in the code. We additionally list instance and local variable declarations type

name;, where 〈type name;〉 declares auxiliary variables. We sometimes skip re-
turn statements without giving back a value, and write explicitly ∀(z : t).p for
quantification over t-typed values. All missing assertions are by definition true.
An empty auxiliary observation 〈〉 in a notify- or notifyAll-method represents the
built-in auxiliary assignment in the given method.

Reentrant monitors To demonstrate the basic idea of proving absence of
deadlock, we first define a simple program, which does the following: The initial
object, an instance of class Main, creates an instance of class Synch, starts its
thread, and calls its synchronized m1 method. The thread of the created instance
also invokes m1, which simply calls the synchronized method m2 of itself. Since
synchronized methods cannot be executed simultaneously by different threads,
either the initial thread or the thread of the new object calls m1, and then
m2. The other thread has to wait until control returns from m1, before it can
execute the invocations. The program is deadlock free, since Java’s monitor
concept is reentrant, i.e., a thread owning the lock of an object may invoke
several synchronized methods of that object.

Appendix D.1 contains a proof outline which satisfies the verification condi-
tions and which implies the following invariant program properties:

class Main{

〈 boolean in_Synch ; 〉
〈 Synch created ; 〉

nsync Void run(){
Synch obj;

obj := newSynch; 〈created = obj 〉new
obj.start();

{(¬in Synch) ∧ created = obj ∧ thread = this ∧ obj 6= null ∧ obj 6= this}
obj.m1() 〈in Synch = (if obj = this then in Synch else true fi)〉!call

〈in Synch = (if obj = this then in Synch else false fi)〉?ret
{¬in Synch}

}
}

class Synch{
sync Void m1(){

{owns(thread, lock)}
m2()

}

sync Void m2(){}

nsync Void run(){

{not owns(thread, lock) ∧ thread = this ∧ started}
m1()

{not owns(thread, lock)}
}

}

with global invariant

GI
def
=
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(∀(z : Synch). z 6= null → (z.lock = (null , 0)∨
(∃(t : Main). owns(t, z.lock) ∧ t.started ∧ t.created = z)∨
(owns(z, z.lock) ∧ z.started)))∧

(∀(t : Main). (t 6= null ∧ (¬t.in Synch)) → (t.created = null ∨ not owns(t, t.created.lock)))∧
(∀(t : Main). t 6= null → (∀(z : Synch). (z 6= null ∧ owns(t, z.lock)) → t.created = z)).

The annotation shows properties at control points with terminated or possibly
disabled execution, and implies, that a disabled or terminated thread owns the
lock of a Synch-instance only if its current control point is in a synchronized
method of the object. For threads of Main-instances this property cannot be
expressed locally, thus we use the boolean auxiliary instance variable in Synch

to remember if the control point of the thread of the Main-instance is in itself or
in the Synch-instance obj. To be able to refer to the identity of obj in the global
language, we store the same identity in the auxiliary instance variable created.
The global invariant GI combines properties of Main- and Synch-instances, stat-
ing that the lock of Synch-instances is either free, or owned by the creator of
the instance or by the instance itself. Furthermore, if the variable in Synch of a
Main-instance z has the value false, than the thread of z does not hold the lock
of z.created; Main-instances can own only the lock of the Synch-instance which
they have been created.

The condition for deadlock freedom implies that there is an object z 6= null
whose thread is already started and whose execution is disabled in another object
z′ 6= null, i.e., blocked(z, z′). First assume that z′ is a Main-instance. Then the
assertion blocked(z, z′) implies that z = z′ is of type Main, and the thread of
z tries to invoke method m1 of z′.created 6= null, where the lock of z′.created is
neither free nor owned by z, and we have ¬z′.in Synch. Using the global invariant
we get that there is an already started thread which owns the lock of z′.created.

The antecedent of the deadlock freedom condition assures, that the execution
of the lock owner is either disabled, or terminated. Let the current control point
of the lock owner be in an object z′′. This object cannot be a Main-instance:
The assertions at both possible control points imply that the executing thread
is the thread of z′′ and that ¬z′′.in Synch. With the global invariant we get on
the one hand z′′.created = null ∨ not owns(z′′, z′′.created.lock), and on the other
hand GI states that the lock of z′.created can be owned by the object itself or
by its creator, i.e., the assumption owns(z′′, z′.created.lock) implies z′′.created =
z′.created, which leads to a contradiction. Thus the lock owner executes in a
Synch-instance. We have three possible control points of the lock owner:

– The first possibility, prior to the invocation of m2 in m1 of z′′, directly leads to
a contradiction by the definition of the assertion blocked: The precondition
of the invocation states that the thread does own the lock of z′′, and blocked
extends this assertion by the assumption that the execution is not enabled,
i.e., that the thread does not own the given lock.

– In the second case the lock owner is about to invoke m1 in the run-method of
z′′. From the precondition of the invocation we get that the executing thread
is the thread of z′′. The global invariant implies that Synch-instances cannot
own the lock of other Synch-instances. Now, by assumption z′′ owns the lock
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of z′.created, and with the above observation we get that z′′ = z′.created,
i.e., z′′ owns its own lock. But the precondition of the invocation implies,
that the thread does not own the lock of z′′, which leads to a contradiction.

– In the third case, the lock owner is the thread of z′′ and is terminated. Again,
the assumption that the executing thread, i.e., z′′, owns the lock of z′.created
implies with GI that z′′ = z′.created, i.e., that z′′ owns its own lock. But
the precondition implies that z′′ does not own its own lock, which leads to
a contradiction.

For the case that z′ is a Synch-instance, we get from blocked(z, z′) that the
lock of z′ is not free, but z is not the owner. The global invariant implies again,
that there is an object whose thread is started and owns the lock of z′. The rest
is analogous to the above case, where z′.created gets replaced by z′.

A simple wait-notify example Now let’s have a look at an example demon-
strating deadlock freedom for a notification process. Assume a program which
defines two classes: The initial instance of the main class Main creates an instance
of the class Monitor, and invokes its synchronized method m1, which starts its
thread, and suspends the executing thread, thereby giving the lock free. Now
the thread of the Monitor-instance can execute the synchronized method m2,
probably producing some results which the other thread is waiting for. After the
computation is completed, the lock owner sends a notification, and returns from
m2. Now the other thread can continue its execution and use the produced data.

Again, Appendix D.2 lists a proof outline, which satisfies the verification
conditions, and which implies the following invariant program properties:

GI
def
=

(∀(z1, z2 : Main).(z1 6= null ∧ z2 6= null) → z1 = z2)∧
(∀(z1, z2 : Monitor).(z1 6= null ∧ z2 6= null) → z1 = z2)∧
(∀(z : Main).z 6= null → (

z.started∧
(z.x = 1 → (z.created 6= null ∧ z.created.lock = (null , 0)))∧
(z.x = 3 → (z.created 6= null ∧ z.created.x = 8))))∧

(∀(z1 : Main).z1 6= null → (∀(z2 : Monitor).(z2 6= null ∧ owns(z1, z2.lock)) → z2 = z1.created))∧

(∀(z1 : Monitor).z1 6= null → (∀(z2 : Monitor).(z2 6= null ∧ owns(z1, z2.lock)) → (z1.started ∧ z2 = z1)))

IMonitor
def
=

((x = 2 ∨ x = 7) → (lock = (creator, 1) ∧ started))∧
((x = 4 ∨ x = 5) → (lock = (this, 1) ∧ started))∧
(x = 6 → (lock = (null , 0) ∧ creator ∈ notified ∧ started)))∧
((x = 3 ∨ x = 8) → lock = (null , 0) ∧ started)

class Main{

〈 int x; 〉
〈 Monitor created ; 〉

nsync Void run(){
Monitor obj;

obj = newMonitor; 〈created = obj ;x = 1〉new
{x = 1 ∧ thread = this ∧ created = obj ∧ obj 6= null}
obj.m1() 〈x = (if obj = this then x else 2 fi)〉!call

〈x = (if obj = this then x else 3 fi)〉?ret
{x = 3}

}
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}

class Monitor {

〈 Main creator ; 〉
〈 int x; 〉

nsync Void wait(){

〈x = 3〉?call
{3 ≤ x ∧ x ≤ 6 ∧ thread = creator}
returngetlock 〈x = 7〉!ret

}

nsync Void notify (){ 〈〉 return 〈x = 5〉!ret }

sync Void m1(){

〈creator = thread;x = 1〉?call
start();

{x = 2 ∧ thread = creator}
wait();

return 〈x = 8〉!ret
}

nsync Void run(){

〈x = 2〉?call
{(x = 2 ∨ x = 3) ∧ thread = this}
m2()

{x = 6 ∨ x = 7 ∨ x = 8}
}

sync Void m2(){

〈x = 4〉?call
{x = 4 ∧ thread = this}
notify ();

return 〈x = 6〉!ret
}

}

Note that the precondition of the method invocation in the run-method of
Main together with the global invariant implies that the lock of the callee is free,
i.e., threads cannot be blocked at this control point. Furthermore, the precondi-
tions of both monitor method calls in Monitor imply with the class invariant that
the executing thread owns the lock, i.e., also at these control points execution is
always enabled.

We start again with the assumption that there is an object z whose thread
is started but not yet terminated, and whose execution is disabled in the object
z′, where both z and z′ are different from the empty reference. The object z can
be an instance of one of the classes Main or Monitor. According to the above
observations, z′ must be an instance of Monitor, and the control point is in the
wait-method or prior to the invocation of m2 in the run-method.

In the first case, the local assertion attached to the control point in the
wait-method implies that z = z′.creator, an instance of Main, does not own
the lock of z′ and that the thread of z′ is started. Due to the assumptions of
the deadlock freedom condition, the execution of the thread of z′ is disabled or
terminated. However, using the annotation, termination would imply z′.x = 6
and by the class invariant the execution of the thread of z would be enabled. The
thread of z′ can neither be in the wait-method, because the local assertion there



66

implying thread = creator would lead to a type contradiction. Thus the thread
of z′ executes the run-method of z′, and is going to invoke the synchronized
method m2. Since z = z′.creator does not own the lock of z′ by assumption, the
precondition of the invocation and the class invariant imply that the lock is free,
and thus that the execution of z′ is enabled.

The second case, when the thread of z is in the run-method of z′ prior to the
call of m2, is similar.

A producer-consumer example The proof outline below defines two classes
Producer and Consumer, where Producer is the main class. The initial thread of
the initial Producer-instance creates a Consumer-instance and calls its synchro-
nized produce method. This method starts the consumer thread and enters a
non-terminating loop, producing some results, notifying the consumer, and sus-
pending itself by calling wait. After the producer suspended itself, the consumer
thread calls the synchronized consumemethod, which consumes the result of the
producer, notifies, and calls wait, again in a non-terminating loop.

Again, we only list a partial annotation and augmentation, which already
implies deadlock freedom; see Appendix D.3 for the complete inductive proof
outline.

GI
def
=

(∀(p : Producer).(p 6= null ∧ ¬p.outside ∧ p.consumer 6= null) → p.consumer .lock = (null , 0))∧
(∀(c : consumer).(c 6= null ∧ c.started) → (c.producer 6= null ∧ c.producer.started))∧
(∀(c1 : consumer).(c1 6= null → (∀(c2 : consumer).c2 6= null → c1 = c2))

IProducer
def
= true

IConsumer
def
= (lock = (null , 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer, lock))∧

length(wait) ≤ 1

class Producer {

〈 Consumer consumer ; 〉
〈 boolean outside ; 〉

nsync Void wait(){ {false} }

nsync Void run(){
Consumer c;

c = newConsumer; 〈consumer = c〉new
{c = consumer ∧ ¬outside ∧ consumer 6= null ∧ consumer 6= this ∧ thread = this}
c.produce (); 〈outside = (if c = this then outside else true fi)〉!call
{false}

}
}

class Consumer {
int buffer;

〈 Producer producer ; 〉

nsync Void wait(){

{started ∧ not owns(thread, lock) ∧ (thread = this ∨ thread = producer)∧
(thread ∈ wait ∨ thread ∈ notified)}

}

sync Void produce (){
int i;

〈producer = proj (caller, 1)〉?call
i=0;
start();
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while (true){
//produce i here
buffer = i;

{owns(thread, lock)}
notify ();

{owns(thread, lock)}
wait()

}
}

nsync Void run(){

{not owns(thread, lock) ∧ thread = this}
consume ();

{false}
}

sync Void consume (){
int i;

while (true){
i = buffer;
//consume i here

{owns(thread, lock)}
notify ();

{owns(thread, lock)}
wait()

}
}

}

Both run-methods have false as postcondition, stating that the corresponding
threads don’t terminate. The preconditions of all monitor method invocations
express that the executing thread owns the lock, and thus execution cannot be
enabled at these control points. The wait-method of Producer-instances is not
invoked; we define false as the precondition of its return statement, implying
that disabledness is excluded also at this control point.

The condition for deadlock freedom assumes that there is a thread which is
started but not yet terminated, and whose execution is disabled. This thread is
either the thread of a Producer-instance, or that of a Consumer-instance.

We discuss only the case that the disabled thread belongs to a Producer-
instance z different from the empty reference; the other case is similar. Note that
the control of the thread of z cannot stay in the run-method of a Consumer-
instance, since the corresponding local assertion implies thread = this, which
would contradict to the type assumptions. Thus the thread can have its control
point prior to the method call in the run-method of a Producer-instance, or in
the wait-method of a Consumer-instance. In the first case, the corresponding
local assertion and the global invariant imply that the lock of the callee is free,
i.e., that the execution is enabled, which is a contradiction. In the second case,
if the thread of z executes in the wait-method of a Consumer-instance z′, the
local assertion in wait together with the type assumptions implies z′.started ∧
not owns(z, z′.lock) ∧ z = z′.producer, and that z is either in the wait- or in the
notified-set of z′.

According to the assumptions of the deadlock freedom condition, also the
started thread of z′ is disabled or terminated; its control point cannot be in a
Producer-instance, since that would contradict to the type assumptions. Thus
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the control of z′ stays in the run- or in the wait-method of a Consumer-instance;
the annotation implies that the instance is z′ itself.

If the control stays in the run-method, then the corresponding local assertion
and the class invariant imply that the lock is free, since neither the producer,
nor the consumer owns it, which leads to a contradiction, since in this case the
execution of the thread of z′ would be enabled. Finally, if the control of the
thread of z′ stays in the wait-method of z′, then the annotation assures that the
thread doesn’t own the lock of z′; again, using the class invariant we get that
the lock is free.

Now, both threads of z and z′ have their control points in the wait-method
of z′, and the lock of z′ is free. Furthermore, both threads are disabled, and are
in the wait- or in the notified set. If one of them is in the notified set, than its
execution is enabled, which is a contradiction. If both threads are in the wait
set, then from z 6= z′ we imply that the wait-set of z′ has at least two elements,
which contradicts to the class invariant of z′.

Thus the assumptions lead to a contradiction, which was to show.

9 Conclusion

In this work we presented a tool-supported assertional proof method for a Java
sublanguage including multithreading and exception handling. We introduced
the language and the proof system incrementally in four steps: We started with
a sequential Java sublanguage and its proof system. In the next step we included
dynamic thread creation, resulting in a multithreaded sublanguage. In the next
staged we extended the language and the proof system to covermonitor synchro-
nization and exception handling. We gave proofs of soundness and completeness.
The proof system supports also showing absence of deadlock.

We illustrated the use of our assertional proof system on a small number
of examples, which have been verified using the tool Verger. The tool takes an
augmented and annotated Java program, a so-called proof outline, as input and
generates the verification conditions, which assure invariance of the annotation.
We used the theorem prover PVS to verify the conditions.

Future work The preceding sections on possible extensions and on related work
show, that there are a lot of challenging and interesting research topics in the
field, which need further analysis. The incremental development illustrated how
to extend the language and the proof system to deal with additional language
features. As to future work, we plan to extend the programming language by
further constructs, like inheritance and subtyping. We are also interested on the
development of a compositional proof system. Also further development of the
tool is of interest.
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A Proofs of properties of substitutions and projection

Proof of Lemma 1: By induction on the structure of local expressions and
assertions. The base cases for local expressions are listed below, where the ones
for instance and local variables are covered by the respective provisos of the
lemma.

[[x[z/this]]]ω,σ
G = [[z.x]]ω,σ

G = σ([[z]]ω,σ
G )(x) = σ(ω(z))(x) = [[x]]

ω,σ(ω(z)),τ
L

[[u[z/this]]]ω,σ
G = [[u]]ω,σ

G = ω(u) = τ(u) = [[u]]
ω,σ(ω(z)),τ
L

[[this[z/this]]]ω,σ
G = [[z]]ω,σ

G = ω(z) = [[this]]
ω,σ(ω(z)),τ
L

[[null[z/this]]]ω,σ
G = null = [[null]]

ω,σ(ω(z)),τ
L

[[z′[z/this]]]ω,σ
G = [[z′]]ω,σ

G = ω(z′) = [[z′]]ω,σ(ω(z)),τ
L .

Compound expressions are treated by straightforward induction:

[[f(e1, . . . , en)[z/this]]]
ω,σ
G

= f ([[e1[z/this]]]
ω,σ
G , . . . , [[en[z/this]]]

ω,σ
G ) semantics of assertions

= f ([[e1]]
ω,σ(ω(z)),τ
L , . . . , [[en]]

ω,σ(ω(z)),τ
L ) by induction

= [[f(e1, . . . , en)]]
ω,σ(ω(z)),τ
L semantics of assertions .

For local assertions, negation and conjunction are straightforward. Unrestricted
quantification ∃z′. p in the local assertion language is only allowed for variables
of type t ∈ {Int,Bool} and for types composed from them, for which Val tnull (σ) =
Val t. We get

[[(∃z′. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. p[z/this]]]ω,σ
G = true def. substitution

⇐⇒ [[p[z/this]]]
ω[z′ 7→ v],σ
G = true for some v ∈ Val t assertion semantics

⇐⇒ [[p]]
ω[z′ 7→ v],σ(ω(z)),τ
L = true for some v ∈ Val t by induction

⇐⇒ [[∃z′. p]]ω,σ(ω(z)),τ
L = true assertion semantics.

For restricted quantification over elements of a sequence let z′ ∈ LVar t . Then

[[(∃z′ ∈ e. p)[z/this]]]ω,σ
G = true

⇐⇒ [[∃z′. z′ ∈ e[z/this] ∧ p[z/this]]]ω,σ
G = true by definition

⇐⇒ [[z′ ∈ e[z/this] ∧ p[z/this]]]ω
′,σ

G = true semantics
for some v ∈ Val tnull(σ) and ω′ = ω[z′ 7→ v]

⇐⇒
(
[[z′]]ω

′,σ
G ∈ [[e[z/this]]]ω

′ ,σ
G ∧ [[p[z/this]]]ω

′,σ
G

)
= true semantics

for some v ∈ Val tnull(σ) and ω′ = ω[z′ 7→ v]

⇐⇒
(
[[z′]]ω

′,σ(ω(z)),τ
L ∈ [[e]]

ω′,σ(ω(z)),τ
L ∧ [[p]]

ω′,σ(ω(z)),τ
L

)
= true by induction

for some v ∈ Val tnull(σ) and ω′ = ω[z′ 7→ v]

⇐⇒ [[(z′ ∈ e) ∧ p]]
ω′,σ(ω(z)),τ
L = true semantics

for some v ∈ Val tnull(σ) and ω′ = ω[z′ 7→ v]

⇐⇒ [[∃z′ ∈ e. p]]
ω,σ(ω(z)),τ
L = true semantics .
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The last equation uses the assumption that the local state τ and the instance
state σ(ω(z)) assign values from Valnull (σ) to all variables, i.e., e does not refer
to values of non-existing objects (see Lemma 11). Consequently, v ∈ Val tnull
together with [[z′ ∈ e]]

ω[z′ 7→ v],σ(ω(z)),τ
L = true implies v ∈ Val tnull (σ). The case

for restricted quantification over subsequences is analogous.

Proof of Lemma 3: We proceed by straightforward induction on the structure

of local assertions. Let σ́inst = σ̀inst [~y 7→[[~e]]
ω,σ̀inst ,τ̀
L ] and τ́ = τ̀ [~y 7→[[~e]]

ω,σ̀inst ,τ̀
L ]. In

the case for local variables u = yi we get

[[u[~e/~y]]]
ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= τ́ (u)

= [[u]]
ω,σ́inst ,τ́
L .

For instance variables x = yi similarly:

[[x[~e/~y]]]
ω,σ̀inst ,τ̀
L = [[ei]]

ω,σ̀inst ,τ̀
L

= σ́inst (x)

= [[x]]
ω,σ́inst ,τ́
L .

The remaining cases are straightforward.

Proof of Lemma 4: Let ώ = ὼ[~y 7→[[ ~E]]ὼ,σ̀
G ] and σ́ = σ̀[[[z]]ὼ,σ̀

G .~y 7→[[ ~E]]ὼ,σ̀
G ]. We

proceed by induction on the structure of global expressions and assertions. The
base cases for null and z′ are straightforward. For the induction cases, we start
with the crucial one for qualified reference to instance variables. For expressions
E′.x[ ~E/z.~y] with x not in ~y the property holds by induction. So assume that x
is in ~y:

[[(E′.yi)[ ~E/z.~y]]]ὼ,σ̀
G = [[if E′[ ~E/z.~y] = z thenEi else (E′[ ~E/z.~y]).yi fi]]

ὼ,σ̀
G .

This conditional assertion evaluates to [[Ei]]
ὼ,σ̀
G if [[E′[ ~E/z.~y]]]ὼ,σ̀

G = [[z]]ὼ,σ̀
G and to

[[(E′[ ~E/z.~y]).yi]]
ὼ,σ̀
G otherwise. So in the first case we get

[[(E′.yi)[ ~E/z.~y]]]ὼ,σ̀
G = [[Ei]]

ὼ,σ̀
G

= σ́([[z]]ὼ,σ̀
G )(yi) by def. of σ́

= σ́([[E′[ ~E/z.~y]]]ὼ,σ̀
G )(yi) by the case assumption

= σ́([[E′]]ώ,σ́
G )(yi) by induction

= [[E′.yi]]
ώ,σ́
G by def. of [[ ]]G .

If otherwise [[E′[ ~E/z.~y]]]ὼ,σ̀
G 6= [[z]]ὼ,σ̀

G , then

[[(E′.yi)[ ~E/z.~y]]]ὼ,σ̀
G = [[(E′[ ~E/z.~y]).yi]]

ὼ,σ̀
G

= σ̀([[E′[ ~E/z.~y]]]ὼ,σ̀
G )(yi) by def. of [[ ]]G

= σ́([[E′[ ~E/z.~y]]]ὼ,σ̀
G )(yi) case assumption+def. σ́

= σ́([[E′]]ώ,σ́
G )(yi) by induction

= [[E′.yi]]
ώ,σ́
G by def. of [[ ]]G .
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For operator expressions we get:

[[(f(E1, . . . , En))[ ~E/z.~y]]]ὼ,σ̀
G

= [[f(E1[ ~E/z.~y], . . . , En[ ~E/z.~y])]]ὼ,σ̀
G def. substitution

= f([[E1[ ~E/z.~y]]]ὼ,σ̀
G , . . . , [[En[ ~E/z.~y]]]ὼ,σ̀

G ) def. [[ ]]G
= f([[E1]]

ώ,σ́
G , . . . , [[En]]

ώ,σ́
G ) by induction

= [[f(E1, . . . , En)]]
ώ,σ́
G def. [[ ]]G .

For global assertions, the cases of negation and conjunction are straightforward.
For quantification,

[[(∃z′. P )[ ~E/z.~y]]]ὼ,σ̀
G = true

⇐⇒ [[∃z′. P [ ~E/z.~y]]]ὼ,σ̀
G = true def. substitution

⇐⇒ [[P [ ~E/z.~y]]]
ὼ[z′ 7→ v],σ̀
G = true for some v∈Valnull (σ̀) def. [[ ]]G

⇐⇒ [[P ]]
ώ[z′ 7→ v],σ́
G = true for some v ∈ Valnull (σ̀) by induction

⇐⇒ [[∃z′. P ]]ώ,σ́
G = true , Val (σ̀)=Val (σ́)

where z′ is not in ~y (otherwise the substitution renames z′).

Lemma 11. Let σ be a global state and ω a logical environment referring only
to values existing in σ. Then [[E]]ω,σ

G ∈ Valnull (σ) for all global expressions E ∈
GExp that can be evaluated in the context of ω and σ.

Proof of Lemma 11: By structural induction on the global assertion. The case
for logical variables z ∈ LVar t is immediate by the assumption about ω, the ones
for null and operator expressions are trivial, respectively follows by induction.
For qualified references E.x with E ∈ GExpc and x an instance variable of type t
in class c, if E.x can be evaluated in the context of ω and σ, then [[E]]ω,σ

G 6= null .
Hence by induction [[E]]ω,σ

G ∈ Valnull (σ), more specifically [[E]]ω,σ
G ∈ Val (σ).

Therefore by definition of global states σ([[E]]ω,σ
G )(x) ∈ Valnull (σ).

Proof of Lemma 2: We prove the lemma by structural induction on global
assertions. Assume a global state σ̀, and let σ́ = σ̀[α 7→σc,init

inst ] be an extension
of σ̀ with a new object α ∈ Valc, α /∈ Val (σ̀). Assume furthermore a logical
environment ω referring only to values existing in σ̀, and let v be the sequence
consisting of all elements of

⋃
c Val

c
null (σ̀). Let finally P be a global assertion,

z′ ∈ LVar listObject a logical variable not occurring in P , and ώ = ὼ[z′ 7→ v]. Since

z′ is fresh in P , we have for all logical variables z in P that [[z]]ὼ,σ̀
G = ὼ(z) =

ώ(z) = [[z]]ώ,σ́
G = [[z ↓ z′]]ώ,σ́

G . For qualified references to instance variables, the
argument is as follows:

[[E.x]]ὼ,σ̀
G = σ̀([[E]]ὼ,σ̀

G )(x) semantics

= σ́([[E]]ὼ,σ̀
G )(x) [[E]]ὼ,σ̀

G 6=α by Lemma 11 and α/∈Val (σ̀)
= σ́([[E ↓ z′]]ώ,σ́

G )(x) by induction

= [[(E ↓ z′).x]]ώ,σ́
G semantics

= [[(E.x) ↓ z′]]ώ,σ́
G def. ↓ z′ .
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The interesting case is the one for quantification. For z ∈ LVar t :

ὼ, σ̀ |=G ∃z. P
⇐⇒ ὼ[z 7→u], σ̀ |=G P for some u ∈ Val tnull (σ̀) semantics
⇐⇒ ώ[z 7→u], σ́ |=G P ↓ z′ for some u ∈ Val tnull (σ̀) induction
⇐⇒ ώ[z 7→u], σ́ |=G obj(z) ⊆ z′∧P ↓ z′ obj (u) ⊆ v

for some u ∈ Val tnull (σ̀)
⇐⇒ ώ, σ́ |=G ∃z. obj(z) ⊆ z′ ∧ P ↓ z′ semantics
⇐⇒ ώ, σ́ |=G (∃z. P ) ↓ z′.

The remaining cases are straightforward.

B Soundness proof

This section contains the inductive proof of soundness of the proof method.
We start with some ancillary lemmas about basic invariant properties of proof
outlines, for instance properties of the built-in auxiliary variables added in the
transformation. Afterwards, we show soundness of the proof system.

B.1 Invariant properties

Proof of the transformation Lemma 5: We proceed for both directions by
straightforward induction on the length of reduction. The only interesting prop-
erty of the transformation is the representation of notification by a single auxil-
iary assignment of the notifier. For this case we use Lemma 7 showing soundness
of the representation of the wait and notified sets by the auxiliary instance vari-
ables wait and notified.

Proof of Lemma 6: All parts by straightforward induction on the steps of
proof outlines.

Proof of Lemma 7: The cases 2a and 2b are satisfied by the definition of the
projection operator. Inductivity for the cases 2c and 2d are easy to show using
Lemma 6 and the cases 2a and 2b of this lemma. If the order of the elements is
unimportant, in the following we also use set notation for the values of the wait
and notified variables. Correctness of the projection operation uses the results of
this lemma and is formulated in Lemma 5. For the other cases we proceed by
induction on the length of the run 〈T0, σ0〉−→∗〈T́ , σ́〉 of the proof outline prog ′.

In the base case of an initial configuration 〈T0, σ0〉 (cf. page 11), the set T0

contains exactly one thread (α, τ, stm), executing the non-synchronized main-
statement of the program, i.e., ¬owns(T0 ↓ prog , α), and initially the lock of the
only object α is set to free. Furthermore, the instance variables wait and notified
of the initial object are set to ∅, and the wait and notified sets of the semantics
are also empty.

For the inductive step, assume 〈T0, σ0〉−→∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉. We distinguish
on the kind of the last computation step.
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Case: Callstart , Callskipstart , Returnrun , Try, Finally, Yrt, Throw1,
Throw2, Throw3, Throw5

In these cases none of the concerned variables or predicates are touched, and the
property follows directly by induction.

Case: Assinst , Assloc
Note that this case handles assignments, but not the observations of communi-
cation, object creation, and exception handling. Remember furthermore that the
signaling mechanism is implemented in proof outlines by auxiliary assignments,
and thus this case covers also the rules Signal, Signalskip , and SignalAll.

If the assignment is not in a notify- or in a notifyAll-method representing
notification, then the case is analogous to the above one.

Assume first that the assignment in the last computation step represents no-
tification in a notify-method of the proof outline. If the wait set σ̀(α)(wait) is
empty, then no notification takes place; the property follows directly by induc-
tion. Thus assume that the wait set is not empty. I.e., a thread ξ1 ∈ T̀ notifies
another thread ξ2 = (α2, τ, stm) ◦ ξ′2 ∈ T̀ in the wait set of α. Remember that
notification is represented by a single assignment of the notifier, and thus the
stack of the notified thread ξ2 does not change. However, according to the pro-
jection definition, as the notifier changes the value of wait of α, the projection
ξ2 ↓ prog represents a thread being in the wait set in 〈T̀ , σ̀〉 and being in the
notified set in 〈T́ , σ́〉.

The only relevant effect of the step is moving (α2, n) ∈ σ̀(α)(wait) from
the wait set into the notified set of α, where n is by induction the number
of synchronized invocations of ξ2 in α. Thus the properties 1a, 1b and 2e are
automatically invariant. Induction implies also uniqueness of the representation
of the wait and notified sets, i.e., α2 is contained neither in σ̀(α)(notified) nor
in σ́(α)(wait). Thus moving the thread of α2 from the wait into the notified set
does not violate uniqueness of the representation.

The case for the assignment in the notifyAll-method is analogous, with the
difference that all threads in the wait set get notified by ξ1. The notifier sets
the value of the auxiliary instance variable notified of α to σ̀(α)(notified) ∪̇
σ̀(α)(wait), whereas the corresponding wait variable gets the value ∅. By induc-
tion we have σ̀(α)(notified) ∩ σ̀(α)(wait) = ∅, and thus the required properties
are invariant under notification.

Case: New
Assume that the last step creates a new object, and executes the corresponding
observation. Let α ∈ dom(σ́). Then α either references the newly created object,
or α ∈ dom(σ̀). In the first case α /∈ dom(σ̀), and by the definition of global
configurations (cf. page 10) there is no local configuration (α, τ, stm) ∈ T̀ , and
the wait and notified set of α in T̀ are empty. Since the last step doesn’t add
any local configurations to T̀ , we have α 6= β for all (β, τ, stm) ∈ T́ and thus
¬owns(T́ ↓ prog , α). Since the lock of the new object is initialized to free, and
wait and notified of α get the value ∅, the required property holds for the new
object. In the second case, if α ∈ dom(σ̀), the property follows directly by
induction.
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Case: Call
Let α ∈ dom(σ́). Then also α ∈ dom(σ̀). If α is not the callee object, then the
property holds directly by induction. If α is the callee object, the only new local
configuration (α, τ, stm) in T́ represents the execution of the invoked method.

If the invoked method is non-synchronized, then the property follows by in-
duction (invocations of monitor methods are covered by the Callmonitor case
below). In the case of a synchronized method, let ξ ∈ T̀ be the executing thread.
The antecedent ¬owns(T̀ \{ξ} ↓ prog , α) implies by induction that, if there is no
local configuration in the thread’s stack executing a synchronized method of α
then σ̀(α)(lock) = free, and σ̀(α)(lock) = (α0, n) otherwise, where (α0, τ0, stm0)
is the deepest configuration in the thread’s stack and n the number of synchro-
nized method invocations in the stack ξ. If in the state prior to the method
invocation σ̀(α)(lock) = free, then (α, τ, stm) is the only local configuration
in T́ representing the execution of a synchronized method of α by a thread
not in the wait or notified sets of α. Furthermore, the callee observation sets
σ́(α)(lock) = (α0, 1), and thus the required property holds. In the second case,
using the fact that the callee configuration is on top of its stack, the callee ob-
servation changes σ̀(α)(lock) = (α0, n) to σ́(α)(lock) = (α0, n + 1), and we get
the property by Lemma 6 and by induction.

Case: Callmonitor

Similarly to the case Call, for α ∈ dom(σ́) also α ∈ dom(σ̀), and if α is not
the callee object, then the property holds by induction. In the case of the non-
synchronized notify- and notifyAll-methods, none of the concerned variables or
predicates are touched, and thus the property holds by induction again. So let
ξ ∈ T̀ be the executing thread invoking the non-synchronized wait-method of α.

The antecedent owns(ξ ↓ prog , α) implies by induction σ̀(α)(lock) = (α0, n),
where (α0, τ0, stm0) is the deepest configuration in the stack ξ and n is the
number of its synchronized method invocations in α. Furthermore, since ξ does
not yet execute a wait-method prior to the call, from ξ /∈ wait(T̀ ↓ prog , α) ∪
notified(T̀ ↓ prog , α) we conclude by induction that α0 is contained neither in
wait nor in notified of α in σ̀.

The execution places the thread into α’s wait set and, since at most one
thread can own a lock at a time, it gives the lock of α free, i.e., we have ¬owns(T́ ↓
prog , α). The corresponding callee observation extends σ̀(α)(wait) with (α0, n),
and sets the lock-value of α to free. Thus the case follows by induction.

Case: Return
Assume α ∈ dom(σ́) = dom(σ̀). If α is not the callee object, or if the invoked
method is non-synchronized, then the property holds directly by induction. Note
that returning from the wait-method is covered by the Returnwait case below.
So let ξ ∈ T̀ be the thread of α0 returning from a synchronized method of α; we
denote the thread after execution by ξ′ ∈ T́ .

Since ξ is neither in the wait nor in the notified set of α, we get by definition
owns(ξ ↓ prog , α) prior to execution. If the given method is the only synchronized
method of α executed by ξ, then in the successor configuration ¬owns(ξ′ ↓
prog , α), and from the invariant property that at most one thread can own
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a lock at a time we imply ¬owns(T́ ↓ prog , α). Otherwise, if ξ has reentrant
synchronized method invocations in α, then the thread doesn’t give the lock free
upon return, i.e., in the successor state we still have owns(ξ′ ↓ prog , α).

Using owns(ξ ↓ prog , α), we get by induction σ̀(α)(lock) = (α0, n), where n
is the number of invocations of synchronized methods of α by ξ. The auxiliary
variable lock of α is set by the callee augmentation to free, if n = 1, and to
(α0, n − 1), otherwise. Since the auxiliary variables wait and notified are not
touched, the property follows by induction.

Case: Returnwait

Assume that the thread ξ ∈ T̀ of an object α0 is returning from the wait-method
of α ∈ dom(σ́) = dom(σ̀); we denote the thread after execution by ξ′ ∈ T́ .

The semantics assures ¬owns(T̀ ↓ prog , α) and by definition ξ ∈ notified(T̀ ↓
prog , α). We get by induction σ̀(α)(lock) = free and (α0, n) ∈ σ̀(α)(notified),
where n is the number of invocations of synchronized methods of α by ξ. After
returning, the thread gets removed from the notified -set of α and gathers the
lock of α, i.e., ξ′ /∈ notified(T́ ↓ prog , α) and owns(ξ′ ↓ prog , α).

The augmentation of the wait-method removes (α0, n) from σ̀(α)(notified);
from the uniqueness of the representation follows α0 6= β for all (β,m) ∈
σ́(α)(notified). Furthermore, the observation sets the lock of α to (α0, n), by
which we get the required property.

Case: Throw4

This case is analogous to the case Return. Remember that the observations
of throw statements outside try-catch-finally blocks in synchronized methods
decrement the lock value.

Proof of Lemma 8: Straightforward by the definition of augmentation.

B.2 Proof of the soundness theorem

Proof of the soundness Theorem 1: We prove the theorem by induction
on the length of the computation, simultaneously for all parts of Definition 19.

For the initial case assume dom(σ0) = {α}, σ0(α) = σinit
inst [this 7→α], τ0 =

τ init [thread 7→α], and let {p2}?call 〈~y2 := ~e2〉?call {p3} stm be the main statement.
Then the initial configuration 〈T ′

0, σ
′
0〉 of the proof outline satisfies the following:

σ′
0 = σ0[α.~y2 7→[[~e2]]

σ0(α),τ0
E ], and for the stack we have T ′

0 = {(α, τ ′0, stm)} with

τ ′0 = τ0[~y2 7→[[~e2]]
σ0(α),τ0
E ].

Let ω be a logical environment referring only to values existing in σ0. As in
σ0 there exists exactly one object α being in its initial instance state, we have

ω[z 7→α], σ0 |=G InitState(z) ∧ ∀z′. z′=null ∨ z=z′ ,

where z is of the type of the main class, and z′ is a logical variable of type Object.
Using the initial correctness condition we get

ω[z 7→α], σ0 |=G (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit
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with I the class invariant of α, ~v the local variables of the run-method of the
main class, and

finit = [this, (null, 0, null)/thread, caller][Init(~v)/~v] , and

fobs = [ ~E2(z)/z.~y2] .

Applying Lemma 4, we get for the global invariant ω′, σ′
0 |=G GI for ω′ =

ω[z 7→α][~v 7→ τ ′0(~v)]. Since GI may not contain free logical variables, its value
does not depend on the logical environment, and therefore ω, σ′

0 |=G GI .
Similarly for the local property p3, we get with Lemma 4 that ω′, σ′

0 |=L
P3(z). With Lemma 1 we get ω′, σ′

0(α), τ
′
0 |=L pre(stm). Since pre(stm) does not

contain free logical variables, we get finally ω, σ′
0(α), τ

′
0 |=L pre(stm). Part 3 is

analogous.

For the inductive step, assume 〈T0, σ0〉−→∗〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that 〈T̀ , σ̀〉
satisfies the conditions of Definition 19. Let ω be a logical environment referring
only to values existing in σ́. We distinguish on the kind of the computation step
〈T̀ , σ̀〉 −→ 〈T́ , σ́〉.

If the computation step is executed by a single local configuration, we use the
local correctness conditions for inductivity of the executing local configuration’s
properties, and the interference freedom test for all other local configurations
and the class invariants in 〈T́ , σ́〉. For communication, invariance for the exe-
cuting partners and the global invariant is shown using the cooperation test for
communication. Communication itself does not affect the global state; invariance
of the remaining properties under the corresponding observations is shown again
with the help of the interference freedom test. The case for throwing exceptions
outside try-blocks is similar. Finally for object creation, invariance for the global
invariant, the creator local configuration, the created object’s class invariant is
assured by the conditions of the cooperation test for object creation; all other
properties are shown to be invariant using the interference freedom test.

Case: Assinst , Assloc
Note that signaling is represented in proof outlines by auxiliary assignments,
thus this case covers also the rules Signal, SignalAll, and Signalskip . Note
furthermore that this case does not cover observations of communication, object
creation, or exception throwing and handling.

Let the last computation step be the execution of an assignment in the local
configuration (α, τ̀1, ~y := ~e; stm1) ∈ T̀ resulting in (α, τ́1, stm1) ∈ T́ . According

to the semantics, τ́1 = τ̀1[~y 7→[[~e]]
σ̀(α),τ̀1
E ] and σ́ = σ̀[α.~y 7→[[~e]]

σ̀(α),τ̀1
E ].

Since assignments, that does not observe object creation, communication, or
exception throwing, don’t change the values of variables occurring in GI , part (2)
is satisfied.

For part (1), assume (β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, stm1) is the
executing local configuration, then by induction ω, σ̀(α), τ̀1 |=L pre(~y := ~e). The
local correctness condition implies that ω, σ̀(α), τ̀1 |=L pre(stm1)[~e/~y]. Using the
properties of the local substitution formulated in Lemma 3 we get ω, σ́(α), τ́1 |=L
pre(stm1).
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If otherwise (β, τ2, stm2) is not the executing local configuration, then it
is contained in T̀ . If α 6= β, i.e., the execution didn’t take place in β, then
σ̀(β) = σ́(β), and thus ω, σ́(β), τ2 |=L pre(stm2) by induction. Otherwise let τ
be τ̀1[~v

′ 7→ τ2(~v)], where ~v = dom(τ2) and ~v′ fresh. Then Lemma 6, the induction
assumptions, and the definition of interleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm2) ∧ interleavable(pre(stm2), ~y := ~e) ,

and with the interference freedom test we get ω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. Us-
ing the substitution Lemma 3 and the fact that, due to the renaming mechanism,
no variables in ~v′ may occur in ~y, yields ω, σ́(α), τ2 |=L pre(stm2).

Part (3) is similar, using the fact that the class invariant may contain instance
variables only, and thus its evaluation doesn’t depend on the local state.

Case: Call
Let (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T̀ be the caller configuration
prior to method invocation, and let (α, τ́1, stm

′
1) ∈ T́ and (β, τ́2, stm2) ∈ T́

be the local configurations of the caller and the callee after execution. Let
furthermore 〈~y2 := ~e2〉?call stm2 be the invoked method’s body and ~u its for-
mal parameters. Directly after communication the callee has the local state

τ̌2 = τ init [~u 7→[[~e]]
σ̀(α),τ̀1
E ]; after the caller observation, the global state is σ̌ =

σ̀[α.~y1 7→[[~e1]]
σ̀(α),τ̀1
E ] and the caller’s local state is updated to τ́1 = τ̀1[~y1 7→[[~e1]]

σ̀(α),τ̀1
E ].

Finally, the callee observation updates its local state to τ́2 = τ̌2[~y2 7→[[~e2]]
σ̌(β),τ̌2
E ]

and the global state to σ́ = σ̌[β.~y2 7→[[~e2]]
σ̌(β),τ̌2
E ]. Let ~v1 denote dom(τ̀1) and

assume ὼ = ω[z 7→α][z′ 7→β][~v1 7→ τ̀1(~v1)].

The semantics assures α 6= null and β = [[e0]]
σ̀(α),τ̀1
E 6= null , and we get with

Lemma 1 and the definition of ὼ that ὼ, σ̀ |=G z 6= null ∧ z′ 6= null ∧ E0(z) = z′.
If the method is synchronized and ξ is the stack of the executing thread in T̀ ,

then according to the transition rule ¬owns(T̀\{ξ} ↓ prog , β). Using Lemma 7
and Lemma 6 we get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) = τ̀1(thread) and
thus ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread.

In the following let p1 = pre(uret := e0.m(~e)), p2 = pre(~y1 := ~e1), p3 =
post(~y1 := ~e1), q1 = Iq, q2 = pre(~y2 := ~e2), and q3 = post(~y2 := ~e2), where
Iq is the class invariant of the callee. Then we have by induction ὼ, σ̀ |=G GI ,
for the class invariant ὼ, σ̀(β), τ̀1 |=L Iq, and for the precondition of the call
ὼ, σ̀(α), τ̀1 |=L p1. Using the lifting lemma, the cooperation test for communica-
tion implies

ὼ, σ̀ |=G (P2(z) ∧Q′
2(z

′))[ ~E(z), Init(~v)/~u′, ~v′] ∧
(GI ∧ P3(z) ∧Q′

3(z
′))[E′

2(z
′)/z′.~y′2][E1(z)/z.~y1][ ~E(z), Init(~v)/~u′, ~v′] ,

where ~v contains the local variables of the callee without the formal parameters
~u. Using the lifting lemma again but in the reverse direction and Lemma 4
results ω, σ́ |=G GI , and thus part (2). Note that in the annotation no free
logical variables occur, and thus the values of assertions in a proof outline do
not depend on the logical environment. Furthermore, using the same lemmas we
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get
ω, σ̀(α), τ̀1 |=L p2 ω, σ̀(β), τ̌2 |=L q2
ω, σ́(α), τ́1 |=L p3 ω, σ́(β), τ́2 |=L q3 .

Thus part (1) is satisfied for the local configurations involved in the last
computation step. All other configurations (γ, τ3, stm3) in T́ are also in T̀ . If
γ 6= α and γ 6= β, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ3 |=L pre(stm3) by
induction.

Assume next γ = α and α 6= β, and let τ be τ̀1[~v
′ 7→ τ3(~v)], where ~v =

dom(τ3). Then Lemma 6, the induction assumptions, and the definition of the
assertion interleavable imply with the interference freedom test ω, σ̀(α), τ |=L
pre ′(stm3)[~e1/~y1]. The substitution Lemma 3 and the fact that, due to the re-
naming mechanism, no local variables in ~v′ occur in ~y1, yield ω, σ̌(α), τ3 |=L
pre(stm3). Now, since β 6= α, the callee observation also does not change the
caller’s instance state, and we have σ̌(α) = σ́(α). Thus we get ω, σ́(α), τ3 |=L
pre(stm3).

The case γ = β and α 6= β is similar. Communication and caller observation
do not change the instance state of β, i.e., σ̀(β) = σ̌(β). The interference freedom
test results ω, σ̌(β), τ |=L pre ′(stm3)[~e2/~y2] with τ = τ̌2[~v

′ 7→ τ3(~v)]. Due to
the renaming mechanism, we conclude with the local substitution lemma that
ω, σ́(β), τ́ |=L pre ′(stm3) with τ́ (~v′) = τ3(~v), and thus ω, σ́(β), τ3 |=L pre(stm3).

For the last case γ = α = β note that, according to the restrictions on
the augmentation, the caller may not change the instance state. Thus the same
arguments as for γ = β and α 6= β apply. I.e., part (1) is satisfied.

Part (3) is analogous: The interference freedom test implies ω, σ́(α), τ́1 |=L
Ip, where Ip is the class invariant of the caller. Since Ip may contain instance
variables only, its evaluation doesn’t depend on the local state. Similarly for the
callee, ω, σ́(β), τ́2 |=L Iq. The state of other objects is not changed in the last
computation step, and we get the required property.

Case: Callstart , Callskipstart

These cases are analogous to the above one, where we additionally need ὼ, σ̀ |=G
¬z′.started and ὼ, σ̀ |=G z′.started, respectively, to be able to apply the coopera-
tion test. The above properties result from the transition antecedents ¬started(T̀ , β)
and started(T̀ , β), respectively, using Lemma 8 and ὼ(z′) = β.

Case: Callmonitor

As above, where ὼ, σ̀ |=G thread(z′.lock) = thread is implied by the transition
antecedent owns(ξ ↓ prog , β) for the executing thread ξ, and Lemma 6.

Case: Return
This case is analogous to the Call case, where we define q1 as the precondition
of the corresponding return statement instead of the callee class invariant. The
requirement ὼ, σ̀ |=G E0(z) = z′ ∧~u′ = ~E(z) of the cooperation test results from
the fact that the values of formal parameters may not change during method
execution, and that the method invocation statements may not contain instance
variables, so that the values of the formal parameters and the expressions in the
method invocation statement are untouched during the execution of the invoked
method.
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For the application of the interference freedom test, to show the validity of
the interleavable predicate, we use the fact that the assertion pre(stm3) neither
describes the caller nor the callee, since the corresponding local configuration is
not involved in the execution.

Case: Returnrun

Similar to the return case.

Case: Returnwait

In this case the antecedent ¬owns(T̀ ↓ prog , β) of the transition rule together
with Lemma 7 imply ὼ, σ̀ |=G z′.lock = free. Furthermore, the executing thread
is in the notified set prior to execution, and the same lemma yields that the
executing thread is registered in σ̀(β)(notified), i.e., ὼ, σ̀ |=G thread′ ∈ z′.notified.

Case: Throw4

This case is similar to the Return case, where q1 is the precondition of the
given throw statement.

Case: Try
Let the last computation step be the entering of a try-catch-finally block with ob-
servation ~y := ~e, executed in the local configuration (α, τ̀1, `stm1) ∈ T̀ , resulting
in (α, τ́1, ´stm1) ∈ T́ . According to the semantics, directly after entering the block

but before the corresponding observation we have τ̌1 = τ̀1[exc 7→[[exc]]
σ̀(α),τ̀1
E ◦null ]

and σ̌ = σ̀. After executing the observation we get τ́1 = τ̌1[~y 7→[[~e]]
σ̀(α),τ̌1
E ] and

σ́ = σ̀[α.~y 7→[[~e]]
σ̀(α),τ̌1
E ].

Since observations of try keywords must not change the values of variables
occurring in GI , part (2) is satisfied.

For part (1), assume (β, τ2, stm2) ∈ T́ . If (β, τ2, stm2) = (α, τ́1, ´stm1) is the
executing local configuration, then by induction ω, σ̀(α), τ̀1 |=L pre( `stm1). The
local correctness condition implies ω, σ̀(α), τ̀1 |=L pre( ´stm1)[~e/~y][exc ◦ null/exc].
Using the properties of the local substitution formulated in Lemma 3 we get
ω, σ́(α), τ́1 |=L pre( ´stm1).

If otherwise (β, τ2, stm2) is not the executing local configuration, then it
is contained in T̀ . If α 6= β, i.e., the execution didn’t take place in β, then
σ̀(β) = σ́(β), and thus ω, σ́(β), τ2 |=L pre(stm2) by induction. Otherwise, anal-
ogously to the argumentation above, the local correctness Condition 10 implies
ω, σ̀(α), τ̀1 |=L pre(~y := ~e)[exc ◦ null/exc]. Using the properties of the local sub-
stitution formulated in Lemma 3 we get ω, σ̀(α), τ̌1 |=L pre(~y := ~e).

Let τ be τ̌1[~v
′ 7→ τ2(~v)], where ~v = dom(τ2) and ~v′ fresh. Then Lemma 6, the

induction assumptions, and the definition of interleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm2) ∧ interleavable(pre(stm2), ~y := ~e) ,

and with the interference freedom test we get ω, σ̀(α), τ |=L pre ′(stm2)[~e/~y]. Us-
ing the substitution Lemma 3 and the fact that, due to the renaming mechanism,
no variables in ~v′ may occur in ~y, yields ω, σ́(α), τ2 |=L pre(stm2).

Part (3) is similar, using the fact that the class invariant may contain instance
variables only, and thus its evaluation doesn’t depend on the local state.
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Case: Finally, Yrt
These cases are analogous to the above one, where for Finally we have τ̌1 = τ̀1,

and for Yrt τ̌1 = τ̀1[exc, top 7→[[head(exc)]]
σ̀(α),τ̀1
E , [[tail(exc)]]

σ̀(α),τ̀1
E ]; the substitu-

tion [exc ◦ null/exc] is replaced accordingly.

Case: Throw1

Let (α, τ̀ , `stm) ∈ T̀ with `stm = throw e; 〈~y := ~e〉throw stm0; catch (c1 u1) stm1

. . . ; catch (cn un) stmn finally stmn+1 yrt; stmn+2 be the executing local con-
figuration prior to the computation step, resulting in (α, τ́ , ´stm) ∈ T́ with
´stm = stmi; finally stmn+1 yrt; stmn+2 after execution. According to the seman-

tics, [[e]]
σ̀(α),τ̀
E ∈ Valci for some 1 ≤ i ≤ n, implying [[e 6=null∧hastype(e, ci)]]σ̀(α),τ̀E .

Furthermore, from ∀1 ≤ j < i. [[e]]
σ(α),τ̀
E /∈ Valcj we conclude [[∀1 ≤ j <

i.¬ hastype(e, cj)]]
σ̀(α),τ̀
E .

Directly after exception throwing we have τ̌ = τ̀ [ui 7→[[e]]
σ̀(α),τ̀
E ] and σ̌ = σ̀.

The observation modifies the states resulting in τ́ = τ̌ [~y 7→[[~e]]
σ̀(α),τ̌
E ] and σ́ =

σ̀[α.~y 7→[[~e]]
σ̀(α),τ̌
E ].

Since observations of exception throwing inside try-catch-finally blocks must
not change the values of variables occurring in GI , part (2) is satisfied.

For part (1), assume (β, τ ′, stm ′) ∈ T́ . If (β, τ ′, stm ′) = (α, τ́ , ´stm) is the
executing local configuration, then by induction ω, σ̀(α), τ̀ |=L pre( `stm). The
local correctness Condition 17 implies ω, σ̀(α), τ̀ |=L pre( ´stm)[~e/~y][e/ui]. Us-
ing the properties of the local substitution formulated in Lemma 3 we get
ω, σ́(α), τ́ |=L pre( ´stm).

If otherwise (β, τ ′, stm ′) is not the executing local configuration, then it
is contained in T̀ . If α 6= β, i.e., the execution didn’t take place in β, then
σ̀(β) = σ́(β), and thus ω, σ́(β), τ ′ |=L pre(stm ′) by induction. Otherwise, the
induction assumptions, the local correctness Condition 16, and the local substi-
tution Lemma 3 imply ω, σ̀(α), τ̌1 |=L pre(~y := ~e).

Let τ be τ̌ [~v′ 7→ τ ′(~v)], where ~v = dom(τ ′) and ~v′ fresh. Then Lemma 6, the
induction assumptions, and the definition of interleavable imply

ω, σ̀(α), τ |=L pre(~y := ~e) ∧ pre ′(stm ′) ∧ interleavable(pre(stm ′), ~y := ~e) ,

and with the interference freedom test we get ω, σ̀(α), τ |=L pre ′(stm ′)[~e/~y]. Us-
ing the substitution Lemma 3 and the fact that, due to the renaming mechanism,
no variables in ~v′ may occur in ~y, yields ω, σ́(α), τ ′ |=L pre(stm ′).

Part (3) is similar, using the fact that the class invariant may contain instance
variables only, and thus its evaluation doesn’t depend on the local state.

Case: Throw2, Throw3, Throw5

These cases are similar to the above one. None of these statements may change
the values of variables occurring in the global invariant, and thus part (2) is
satisfied.

The induction assumptions and the semantics assures that the antecedents of
the corresponding local conditions hold in the configuration prior to execution.
Satisfaction of the local conditions and the local substitution lemma imply that
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the precondition of the statement of the executing local configuration hold after
the computation step.

For the other local configurations, local correctness assures additionally, that
the precondition of the attached observation hold directly before its execution.
Again, we use induction assumption, satisfaction of the interference freedom
conditions, and the local substitution lemma to show that the given assertion
attached to the control point of the non-executing local configuration hold after
observation.

Case: New
Let (α, τ̀1, u := new; 〈~y := ~e〉new stm1) ∈ T̀ be the local configuration of the
executing thread prior to object creation, and (α, τ́1, stm1) ∈ T́ after it. Ob-
ject creation updates the global state to σ̌ = σ̀[β 7→σinit

inst [this 7→β]], where β /∈
dom(σ̀); the executing thread’s local state gets updated to τ̌1 = τ̀1[u 7→β]. Af-

ter observation we have τ́1 = τ̌1[~y 7→[[~e]]
σ̌(α),τ̌1
E ] and for the global state σ́ =

σ̌[α.~y 7→[[~e]]
σ̌(α),τ̌1
E ].

In the following let p1 = pre(u := new), p2 = pre(~y := ~e), and p3 =
post(~y := ~e). By induction ω, σ̀ |=G GI and ω, σ̀(α), τ̀1 |=L p1. Using the lifting
lemma we get ὼ, σ̀ |=G GI ∧ P1(z) for ὼ = ω[z 7→α][~v1 7→ τ̀1(~v1)] and ~v1 the
variables from the domain of τ̀1. Lemma 2 yields ὼ[z′ 7→ dom(σ̀)][u 7→β], σ̌ |=G
(GI ∧ (∃u. P1(z))) ↓ z′. Note that GI may not contain free logical variables,
and thus its evaluation does not depend on the logical environment. The newly
created object with a fresh identity is in its initial instance state, implying
ὼ[z′ 7→ dom(σ̀)][u 7→β], σ̌ |=G Fresh(z′, u). Thus the cooperation test for object
creation implies

ὼ[u 7→β], σ̌ |=G P2(z) ∧ Inew(u) ∧ (GI ∧ P3(z))[ ~E(z)/z.~y] ,

where Inew is the class invariant of the new object. Using the lifting lemma again
but in the reverse direction and Lemma 4 results ω, σ́ |=G GI , and thus part (2).
Note that in the annotation no free logical variables occur, and thus the values
of assertions do not depend on the logical environment.

Furthermore, using the substitution lemmas we get

ω, σ̌(α), τ̌1 |=L p2 , ω, σ́(α), τ́1 |=L p3 , and ω, σ́(β), τ |=L Inew

for all τ . For the class invariant of the executing thread, the interference freedom
test implies ω, σ́(α), τ́1 |=L I, where I is the class invariant of α. Since I may
contain instance variables only, its evaluation doesn’t depend on the local state,
and the required property holds. The state of other objects not involved in the
last step is not changed in the last computation step, and part (3) is satisfied.

Furthermore, part (1) is satisfied for the local configuration involved in the
last computation step. All other configurations (γ, τ2, stm2) in T́ are also in T̀
and γ 6= β. If γ 6= α, then σ̀(γ) = σ́(γ), and thus ω, σ́(γ), τ2 |=L pre(stm2) by
induction.

Assume now γ = α, and let τ be τ̌1[~v
′ 7→ τ2(~v)], where ~v = dom(τ2). Then,

since σ̀(α) = σ̌(α), Lemma 6, the induction assumptions, and the definition
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of interleavable imply using the interference freedom test that ω, σ̀(α), τ |=L
pre ′(stm2)[~e/~y]. The substitution Lemma 3 and the fact that, due to the re-
naming mechanism, no local variables in ~v′ occur in ~y, yields ω, σ́(α), τ2 |=L
pre(stm2). I.e., part (1) is satisfied.

Proof of the soundness Corollary 1: The proof is straightforward using the
soundness Lemma 1.

C Completeness proof

The following lemma states that the variable loc indeed stores the current control
point of a thread:

Lemma 12. Let 〈T, σ〉 be a reachable configuration of prog ′ and (α, τ, stm) ∈ T .
Then τ(loc) ≡ stm.

Proof of Lemma 12: Straightforward by the definition of augmentation.

Proof of the local merging Lemma 9: Assume two computations 〈T0, σ0〉−→∗

〈T́1, σ́1〉 and 〈T0, σ0〉−→∗〈T́2, σ́2〉 of prog ′, and let (α, τ, stm) ∈ T́1 with α ∈
dom(σ́1) ∩ dom(σ́2) and σ́1(α)(hinst ) = σ́2(α)(hinst ). We prove (α, τ, stm) ∈ T́2

by induction over the sum of the length of the computations.
In the initial case both T́1 and T́2 contain the same single initial local con-

figuration, and thus the property holds.
For the inductive case, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be

the last steps of the computations. The augmentation definition implies that
each computation step appends at most one element to the instance history
of α. If σ̀1(α)(hinst ) = σ́1(α)(hinst ), then, by the definition of the augmenta-
tion, 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 did not execute in α, i.e., (α, τ, stm) ∈ T̀1, and the
property follows by induction. The case for σ̀2(α)(hinst ) = σ́2(α)(hinst ) is anal-
ogous. Thus assume in the following σ́1(α)(hinst ) = σ̀1(α)(hinst ) ◦ (σ1

inst , τ1) and
σ́2(α)(hinst ) = σ̀2(α)(hinst ) ◦ (σ2

inst , τ2). From σ́1(α)(hinst ) = σ́2(α)(hinst ) we
conclude that σ̀1(α)(hinst ) = σ̀2(α)(hinst ) and (σ1

inst , τ1) = (σ2
inst , τ2).

Since σ́1(α)(hinst ) 6= σ̀1(α)(hinst ), the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉
executed some statements in α. If there is only one local configuration in α
that was involved in the step, then the augmentation definition and the local
substitution lemma imply that its resulting local configuration in T́1 is given
by (α, τ1, stm1) with stm1 ≡ τ1(loc). From (σ1

inst , τ1) = (σ2
inst , τ2) we conclude

that the same local configuration executed in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉. Thus, either
(α, τ, stm) ∈ T́1 is the executing configuration (α, τ1, stm1) and then it is also in
T́2, or not, and then it is in T̀1, by induction in T̀2, and since it wasn’t involved
in the execution 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, also in T́2.

If otherwise there are two local configurations in α involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉, then (σ1

inst , τ1) specifies the callee’s instance local state. However, due to
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the built-in auxiliary variables, the identity of the caller local configuration is also
stored in τ1, in the formal parameter caller of the callee. The caller configuration
is in T̀1, and by induction in T̀2. Furthermore, since there are no two local
configurations with the same identity in a reachable configuration, both steps
execute in the same instance local configuration.

Thus, either (α, τ, stm) ∈ T́1 is one of the executing configurations and then
it is also in T́2, or not, and then it is in T̀1, by induction in T̀2, and since it wasn’t
involved in the execution, also in T́2.

Proof of the global merging Lemma 10: Assume two reachable configura-
tions 〈T́1, σ́1〉 and 〈T́2, σ́2〉 and let α ∈ dom(σ́1)∩dom(σ́2) satisfying σ́1(α)(hcomm) =
σ́2(α)(hcomm). We show that there exists a reachable 〈T́ , σ́〉 with dom(σ́) =
dom(σ́2), σ́(α) = σ́1(α), and σ́(β) = σ́2(β) for all β ∈ dom(σ́2)\{α}. We proceed
by induction on the sum of the lengths of the computations.

In the base case we are given 〈T́1, σ́1〉 = 〈T́2, σ́2〉 and the property trivially
holds.

For the inductive step, let 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 be
the last steps of the computations.

If α /∈ dom(σ̀1) or α /∈ dom(σ̀2), then α was created in one of the last steps,
and thus σ́1(α)(hcomm) = σ́2(α)(hcomm) = ǫ. That means, no methods of α were
involved yet, i.e., α is in its initial instance state σ́1(α) = σ́2(α) = σinit

inst [this 7→α];

in this case 〈T́2, σ́2〉 already satisfies the requirements. Assume in the following
α ∈ dom(σ̀1) ∩ dom(σ̀2). We distinguish whether the last computation steps
update the communication history of α or not.

Case: σ̀1(α)(hcomm) = σ́1(α)(hcomm)
In this case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 doesn’t execute any non-self communication
or object creation in α. By induction there is a computation 〈T0, σ0〉−→∗〈T̀ , σ̀〉
leading to a configuration such that σ̀(α) = σ̀1(α) and σ̀(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}.

In case 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 does not execute in α at all, i.e., σ̀1(α) = σ́1(α),
then 〈T̀ , σ̀〉 already satisfies the requirements.

Otherwise, the local configurations in T̀1 which execute in α and which are
involved in the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 are by the local merging
Lemma 9 also in T̀ . Furthermore, from σ̀1(α)(hcomm) = σ́1(α)(hcomm) we con-
clude that they don’t execute any non-self communication or object creation,
and thus their enabledness and effect depends only on the instance state of α.
That means, the same computation as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed in
〈T̀ , σ̀〉, leading to a reachable global configuration satisfying the requirements.

Case: σ̀2(α)(hcomm) = σ́2(α)(hcomm)
In this case 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute any non-self communication
or object creation involving α. By induction, there is a reachable 〈T̀ , σ̀〉 with
σ̀(α) = σ́1(α) and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.
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If 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 performs a step within α, then, according to the case
assumption, it executes exclusively within α. This means, σ̀2(β) = σ́2(β) for all
β ∈ dom(σ́2)\{α}, and 〈T̀ , σ̀〉 already satisfies the required properties.

If otherwise 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 does not execute in α, then all local con-
figurations in T̀2, executing in an object different from α, are also in T̀ ; this
follows from σ̀2(β) = σ̀(β) for all β ∈ dom(σ̀2)\{α}, and with the help of the
local merging Lemma 9 applied to 〈T̀ , σ̀〉 and 〈T̀2, σ̀2〉. The enabledness of local
configurations, whose execution does not involve α, are independent of the in-
stance state of α; furthermore, the effect of their execution neither influences the
instance state of α nor depends on it. Thus in 〈T̀ , σ̀〉 we can execute the same
computation steps as in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉, leading to a reachable configura-
tion with the required properties.

Case: σ̀1(α)(hcomm) 6= σ́1(α)(hcomm) and σ̀2(α)(hcomm) 6= σ́2(α)(hcomm)
In this case finally both 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 exe-
cute some object creation or non-self communication in α, including exception
throwing between different objects. We show that in this case σ́1(α)(hcomm) =
σ́2(α)(hcomm) implies also σ̀1(α)(hcomm) = σ̀2(α)(hcomm), and thus by induc-
tion there is a computation leading to a configuration 〈T̀ , σ̀〉 such that dom(σ̀) =
dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all other objects β ∈ dom(σ̀2)\{α}.

Furthermore, combining those local configurations involved in 〈T̀1, σ̀1〉 −→
〈T́1, σ́1〉 which execute within α with those in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 which execute
outside α, we can define a computation 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 such that σ́(α) = σ́1(α)
and σ́(β) = σ́2(β) for all other objects β ∈ dom(σ́2)\{α}.

The case assumptions imply, that the last elements of the communication
histories σ́1(α)(hcomm) and σ́2(α)(hcomm) were appended in the last computation
steps; σ́1(α)(hcomm) = σ́2(α)(hcomm) imply that the last elements are equal.

According to the augmentation, each computation step extends the commu-
nication history of α with at most one element. Thus we get σ̀1(α)(hcomm) =
σ̀2(α)(hcomm), and by induction there is a reachable 〈T̀ , σ̀〉 with dom(σ̀) =
dom(σ̀2), σ̀(α) = σ̀1(α), and σ̀(β) = σ̀2(β) for all β ∈ dom(σ̀2)\{α}.

Note that the last elements of the communication histories σ́1(α)(hcomm)
and σ́2(α)(hcomm) record the kind of execution, and so we know that both steps
execute the same kind of communication in α. Furthermore, the last elements
record also the identity of the local configuration executing in α, the communi-
cation partner of α, and the communicated values, which are consequently also
equal.

We distinguish on the kind of the computation step 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉:
Subcase: New
In this case σ́1(α)(hcomm) = σ̀1(α)(hcomm) ◦ (α, null , (newcγ, threadα)), where
threadα is the identity of the creator thread as specified by its local variable
thread, and γ is the newly created object.

From the preliminary observations we conclude that 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉
creates the same new object γ being in the same initial state; furthermore, it
leaves the states of all objects from dom(σ̀2)\{α} untouched.
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As σ̀(α) = σ̀1(α), the local merging Lemma 9 implies that the local config-
uration of the creator in T̀1 is also contained in T̀ . Thus, since γ /∈ dom(σ̀2) =
dom(σ̀), the same computation step as in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉 can be executed
also in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with ValObject(σ́) =
ValObject(σ̀) ∪̇ {γ} = ValObject(σ̀2) ∪̇ {γ} = ValObject(σ́2), σ́(α) = σ́1(α), and
σ́(β) = σ̀(β) = σ̀2(β) = σ́2(β) for all β ∈ dom(σ̀2)\{α}. Finally, for the newly
created object we have σ́(γ) = σ́2(γ) = σinit

inst [this 7→ γ], and thus σ́(β) = σ́2(β)
for all β ∈ dom(σ́2)\{α}.
Subcase: Call
Assume first that α is the caller object and β 6= α the callee. According to
the preliminary observations, also 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 executes the invocation
of the same method of β, where α is the caller and β the callee. Furthermore,
by the local merging lemma, the caller local configuration from T̀1 is also in
T̀ , and its execution is also enabled in 〈T̀ , σ̀〉. The last property holds also for
synchronized and monitor methods, since the invocation of the same method of
β by the same thread is enabled in 〈T̀2, σ̀2〉, and σ̀2(β) = σ̀(β).

Thus the caller local configuration from T̀1 can execute the method invoca-
tion in 〈T̀ , σ̀〉, leading to a reachable configuration 〈T́ , σ́〉 with σ́(α) = σ́1(α).
Furthermore, 〈T̀ , σ̀〉 −→ 〈T́ , σ́〉 and 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 execute the same callee
observation in the same instance state σ̀2(β) = σ̀(β) and the same initial local
state after the communication of the same actual parameter values, and thus
σ́(β) = σ́2(β). The states of other objects are not touched, and thus 〈T́ , σ́〉
satisfies the required properties.

Similarly, if the callee object is α, then the same caller local configuration as
in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉 can execute in 〈T̀ , σ̀〉 leading to a reachable configuration
satisfying the requirements.

Subcase: Return, Throw4

These cases are analogous to the above case forCall. The computation 〈T̀ , σ̀〉 −→
〈T́ , σ́〉 is constructed from the execution of the local configuration in α which ex-
ecutes in 〈T̀1, σ̀1〉 −→ 〈T́1, σ́1〉, together with the execution of the communication
partner of α which executes in 〈T̀2, σ̀2〉 −→ 〈T́2, σ́2〉.

Lemma 13 (Initial correctness). The proof outline prog ′ satisfies the initial
conditions of Definition 12.

Proof of Lemma 13: Let {p2}?call 〈~y2 := ~e2〉?call {p3} stm; return be the main
statement with local variables ~v, and let I be the class invariant of the main
class. We have to show for arbitrary σ ∈ Σ and ω ∈ Ω referring only to values
existing in σ, that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z = z′) →
P2(z) ◦ finit ∧ (GI ∧ P3(z) ∧ I(z)) ◦ fobs ◦ finit ,

where z is of the type of the main class, z′ of type Object, and where finit =
[z, (null, 0, null)/thread, caller][Init(~v)/~v] and fobs = [ ~E2(z)/z.~y2]. We observe that

ω, σ |=G InitState(z) ∧ (∀z′. z′ = null ∨ z′ = z)
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implies that σ is the initial global state prior to the execution of the callee
observation at the beginning of the main statement, i.e., defining exactly one
existing object ω(z) = α being in its initial instance state σ(α) = σinit

inst [this 7→α].
We start transforming the right-hand side using the substitution Lemmas 4 and
1:

[[P2(z)[z, (null, 0, null)/thread, caller][Init(~v)/~v]]]
ω,σ
G

= [[P2(z)[z, (null, 0, null)/thread, caller]]]
ω[~v 7→ Init(~v)],σ
G

= [[P2(z)]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[p2]]
ω,σ(α),τ
L

with τ defined by τ init [thread 7→α][caller 7→(null , 0, null)]. The above value is
true, since the run-method of the main class is initially invoked in the given
context.

For the global invariant we get similarly

[[GI [ ~E2(z)/z.~y2][z, (null, 0, null)/thread, caller][Init(~v)/~v]]]
ω,σ
G

= [[GI [ ~E2(z)/z.~y2]]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[GI ]]ω
′,σ′

G

= [[GI ]]ω,σ′

G

for some logical environment ω′ and σ′ given by σ[α.~y2 7→[[~e2]]
σ(α),τ
E ]. In the last

step we used the restriction that the global invariant may not contain free logical
variables. The step before made use of the following equation for ~E2(z), which we
get using Lemma 1 and with the fact that ~e2 does not contain logical variables:

[[ ~E2(z)]]
ω[~v 7→ Init(~v)][thread 7→α],σ
G = [[~e2[z/this]]]

ω[~v 7→ Init(~v)][thread 7→α],σ
G

= [[~e2]]
ω[~v 7→ Init(~v)][thread 7→α],σ(α),τ
G

= [[~e2]]
ω′,σ(α),τ
G .

Since 〈T ′, σ′〉 with T ′ = {(α, τ ′, stm)} and τ ′ = τ [~y2 7→[[~e2]]
σ(α),τ
E ] is an initial

global configuration of prog ′ after the observation at the beginning of the main
statement, it is reachable, and the initial condition for the global invariant is
satisfied. The cases for p3 and I are similar to that of GI , where we additionally

use the lifting substitution Lemma 1 to show that [[P3(z)]]
ω′,σ′

G = [[p3]]
ω′,σ′(α),τ ′

L .

Lemma 14 (Local correctness: Assignment). The proof outline prog ′ sat-
isfies the conditions of local correctness from Definition 13.
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Proof of Lemma 14: Let c be a class of prog ′ with class invariant I, ω ∈ Ω,
σinst ∈ Σinst , and τ ∈ Σloc with σinst (this) = α. Assume a multiple assignment
{p1} ~y := ~e{p2} in c which is not the observation of communication or object
creation. We have to show that

ω, σinst , τ |=L p1 → p2[~e/~y] .

From ω, σinst , τ |=L p1 it follows by the definition of the annotation that there

is a reachable 〈T̀ , σ̀〉 with σ̀(α) = σinst and (α, τ, ~y := ~e; stm) ∈ T̀ . Executing

the local configuration in 〈T̀ , σ̀〉 leads to a reachable global configuration 〈T́ , σ́〉
with σ́(α) = σinst [~y 7→[[~e]]

σinst ,τ
E ] and (α, τ [~y 7→[[~e]]

σinst ,τ
E ], stm) ∈ T́ . Thus by the

definition of the annotation for prog ′ we have

ω, σinst [~y 7→[[~e]]
σinst ,τ
E ], τ [~y 7→[[~e]]

σinst ,τ
E ] |=L p2 ,

and further with the substitution Lemma 3 ω, σinst , τ |=L p2[~e/~y], as required.

Lemma 15 (Local correctness: Exception handling). The proof outline
prog ′ satisfies the conditions of local correctness from Definition 14.

Proof of Lemma 15: Let stm be a statement of the form try 〈~ytry := ~etry〉try stm0;
catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally 〈~yfin := ~efin〉fin stmn+1 yrt 〈~yyrt :=
~eyrt〉yrt in a class c. We show that for all ὼ, σ̀inst , and τ̀ ,

ὼ, σ̀inst , τ̀ |=L pre(stm) → pre(~ytry := ~etry)[exc ◦ null/exc] ∧
pre(stm0)[~etry/~ytry][exc ◦ null/exc] .

From ὼ, σ̀inst , τ̀ |=L pre(stm) it follows by the definition of the annotation that

there is a reachable 〈T̀ , σ̀〉 with σ̀(α) = σ̀inst and (α, τ̀ , stm; stm ′) ∈ T̀ . Execut-

ing the exception throwing in the above local configuration in 〈T̀ , σ̀〉 updates

the local state to τ̌ = τ̀ [exc 7→[[exc]]
σ̀inst ,τ̀
E ◦ null ]. The corresponding observa-

tion completes the computation step and leads to a reachable global configura-

tion 〈T́ , σ́〉 with σ́ = σ̀[α.σ̀inst [~ytry 7→[[~etry]]
σ̀inst ,τ̌
E ] 7→], τ́ = τ̀ [~ytry 7→[[~etry]]

σ̀inst ,τ̌
E ], and

(α, τ́ , stm0; catch (c1 u1) stm1 . . . ; catch (cn un) stmn finally 〈~yfin := ~efin〉fin stmn+1

yrt) ∈ T́ .
Thus by the definition of the annotation for prog ′ we have

ὼ, σ́inst , τ́ |=L pre(stm0) ,

and further with the substitution Lemma 3

ὼ, σ̀inst , τ̀ |=L pre(stm0)[~efin/~yfin][exc ◦ null/exc] .

Note that the annotation may not contain free logical variables.
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The case for the precondition of the observation is similar: By definition
we have ὼ, σ̀inst , τ̌ |=L pre(~ytry := ~etry), and thus ὼ, σ̀inst , τ̀ |=L pre(~ytry :=
~etry)[exc ◦ null/exc] , as required.

The other cases are similar. The antecedents of the conditions assure reacha-
bility and enabledness; we use the local substitution lemma to show the required
properties.

Lemma 16 (Interference freedom). The proof outline prog ′ satisfies the con-
ditions for interference freedom from Definition 15.

Proof of Lemma 16: Assume an arbitrary assignment ~y := ~e with precondi-
tion p in class c with class invariant I, and an arbitrary assertion q at a control
point in the same class. We show the verification condition from Equation (32)
on page 52

ω, σinst , τ |=L p ∧ q′ ∧ interleavable(q, ~y := ~e) → q′[~e/~y] ,

for some logical environment ω together with some instance and local states σinst

and τ , where q′ denotes q with all local variables u replaced by some fresh local
variables u′.

Let α = σinst (this), and assume first that ~y := ~e is not the observation of
communication, object creation, or exception throwing or handling. The first
clause ω, σinst , τ |=L p implies that there exists a computation reaching 〈T̀p, σ̀p〉
with σ̀p(α) = σinst , and a configuration (α, τ, ~y := ~e; stm′

p) ∈ T̀p.
From ω, σinst , τ |=L q′ we get by renaming back the local variables that

ω, σinst , τ
′ |=L q for τ ′(u) = τ(u′) for all local variables u in q. Let q be the

precondition of the statement stmq. Note that q is an assertion at a control
point. Applying the annotation definition we conclude that there is a reachable
〈T̀q, σ̀q〉 with σ̀q(α) = σinst = σ̀p(α) and (α, τ ′, stmq; stm

′
q) ∈ T̀q. The local

merging Lemma 9 implies that (α, τ ′, stmq; stm
′
q) ∈ T̀p.

Let 〈T́p, σ́p〉 result from 〈T̀p, σ̀p〉 by executing the enabled local configuration
(α, τ, ~y := ~e; stm′

p). We have σ́p(α) = σinst [~y 7→[[~e]]
σinst ,τ
E ]. From the assumption

ω, σinst , τ |=L interleavable(q, ~y := ~e) we get that (α, τ ′, stmq; stm
′
q) is not the

executing configuration, and thus (α, τ ′, stmq; stm
′
q) ∈ T́p.

According to the annotation definition ω, σinst [~y 7→[[~e]]
σinst ,τ
E ], τ ′ |=L q, and

after renaming the local variables of q also ω, σinst [~y 7→[[~e]]
σinst ,τ
E ], τ |=L q′. Due

to renaming, no local variables of q′ occur in ~y, implying

ω, σinst [~y 7→[[~e]]
σinst ,τ
E ], τ [~y 7→[[~e]]

σinst ,τ
E ] |=L q′ .

Finally, by the substitution Lemma 3 we get ω, σinst , τ |=L q′[~e/~y].
If the assignment observes object creation, communication, or exception

throwing or handling, the proof is similar. For object creation, ω, σinst , τ |=L p

implies that there exists a computation reaching 〈T̀p, σ̀p〉 with σ̀p(α) = σinst ,

and an enabled configuration (α, τp, stmp; stm
′
p) ∈ T̀p, where stmp is of the form
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u := new; 〈~y := ~e〉new . The local state τp is τ [u 7→ v] for some value v, such that
the local configuration is enabled to create τ(u). Directly after creation, the cre-
ator local configuration has the local state τ and executes its observation result-
ing in the local state τ [~y 7→[[~e]]

σinst ,τ
E ] and instance state σinst [~y 7→[[~e]]

σinst ,τ
E ]. Note

that σinst is not influenced by the object creation itself. Again, the interleavable
predicate assures that (α, τ ′, stmq; stm

′
q) is not the executing configuration, and

we get ω, σinst , τ |=L q′[~e/~y] as above.
The other cases for observations of communication, object creation, or excep-

tion throwing and handling are analogous. In the case of caller observation in a
self-communication, the restrictions on the augmentation imply that ~y := ~e does
not change the values of instance variables, and the requirement follows directly
from the assumptions. If p is the precondition of a callee observation at the be-
ginning of a method body, then the annotation assure that the invocation of the
method is enabled in 〈T̀p, σ̀p〉 such that τ is the local state of the callee directly
after communication but before observation. Note that for self-communication,
the caller part does not change the instance state. Thus the only update of the
instance state of α is given by the effect of ~y := ~e. Again, the interleavable pred-
icate assures that (α, τ ′, stmq; stm

′
q) is neither the caller nor the callee, and thus

(α, τ ′, stmq; stm
′
q) ∈ T́p. We get ω, σinst , τ |=L q′[~e/~y] as above.

Validity of the verification condition 31 for the class invariant is similar, where
we additionally use the fact that the class invariant refers to instance variables
only.

Lemma 17 (Cooperation test: Communication). The proof outline prog ′

satisfies the verification conditions of the cooperation test for communication of
Definition 16.

Proof of Lemma 17: We distinguish on the kind of communication starting
with the verification condition for synchronized method invocation.

Case: Call
Let {p1} uret := e0.m(~e); {p2}!call 〈~y1 := ~e1〉!call {p3}wait be a statement in a class
c of prog ′ with e0 of type c′, where method m /∈ {start,wait, notify, notifyAll} of
c′ is synchronized with body {q2}?call 〈~y2 := ~e2〉?call {q3} stm, formal parameters
~u, local variables without the formal parameters given by ~v, and let q1 = Ic′ be
the callee class invariant. Assume

ὼ, σ̀ |=G GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null

for distinct and fresh z ∈ LVarc and z′ ∈ LVarc
′
, and where comm is E0(z) =

z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Note that for completeness we
don’t need the information stored in the caller class invariant. By definition of
the global invariant, the assumption ὼ, σ̀ |=G GI implies that there exists a
reachable 〈T, σ〉 with

dom(σ̀) = dom(σ) and σ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .
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Assuming ὼ(z) = α as caller identity, ὼ, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1 by
the substitution Lemma 1, for some local state τ̀1 with τ̀1(u) = ὼ(u) for all local
variables u occurring in p1. By the annotation definition there exists a reachable
configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T1 .

Recall that σ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially
for the caller σ(α)(hcomm) = σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global
merging Lemma 10 applied to 〈T1, σ1〉 and 〈T, σ〉 we get that there is a reachable
〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) and σ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

Furthermore, (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T1, σ1(α) = σ′(α),
and the local merging Lemma 9 implies that

(α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. In case of a self-call, i.e., for α = β, we di-
rectly get that 〈T ′′, σ′′〉 = 〈T ′, σ′〉 is a reachable configuration such that σ′′(α) =
σ̀(α), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T ′′.

Otherwise, the assumption ὼ, σ̀ |=G Ic′(z
′) implies ὼ, σ̀(β), τ2 |=L Ic′ for some

local state τ2. Note that the class invariant contains instance variables, only. By
definition of the class invariant, there is a reachable global configuration 〈T2, σ2〉
such that

σ2(β) = σ̀(β) .

We need to fall back upon the two merging lemmas once more to obtain a com-
mon reachable configuration: Analogously to the caller part, the global merging
Lemma 10 applied to 〈T2, σ2〉 and 〈T ′, σ′〉 yields that there is a reachable con-
figuration 〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′) and

σ′′(β) = σ2(β) and σ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .

Now, (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T ′, σ′′(α) = σ′(α), and
the local merging Lemma 9 implies that the local configuration (α, τ̀1, uret :=
e0.m(~e); 〈~y1 := ~e1〉!call stm1) is in T ′′.

Thus 〈T ′′, σ′′〉 is a reachable configuration with σ′′(α) = σ̀(α), σ′′(β) =
σ̀(β), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, uret :=
e0.m(~e); 〈~y1 := ~e1〉!call stm1) ∈ T ′′.

With the antecedent ὼ, σ̀ |=G z′.lock = free ∨ thread(z′.lock) = thread of
the cooperation test we get σ̀(β)(lock) = free ∨ thread(σ̀(β)(lock)) = τ̀1(thread).
With σ̀(β) = σ′′(β) and Lemma 7 we get ¬owns(T ′′\{ξ}, β), where ξ is the
stack with (α, τ̀1, uret := e0.m(~e); 〈~y1 := ~e1〉!call stm1) on top. Furthermore,
ὼ, σ̀ |=G comm implies ὼ, σ̀ |=G E0(z) = z′, and by the lifting substitution

lemma [[e0]]
σ̀(α),τ̀ ´σinst 1

E = [[e0]]
σ′′(α),τ̀1
E = ω(z′) = β. This means, the invocation of
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method m of β is enabled in the local configuration (α, τ̀1, uret := e0.m(~e); 〈~y1 :=
~e1〉!call stm1) in 〈T ′′, σ′′〉.

The definition of the augmentation, and σ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̀1 |=L p2 ,

which by the substitution Lemma 1 and with the definition of τ̀1 yields ὼ, σ̀ |=G
P2(z). Due to the renaming mechanism we get

ὼ, σ̀ |=G P2(z) ◦ fcomm

for fcomm = [ ~E(z), Init(~v)/~u′, ~v′]. For the precondition of the method body, the
annotation definition implies

ὼ, σ̀(β), τ̌2 |=L q2

with τ̌2 = τ init [~u 7→[[~e]]
σ̀(α),τ̀1
E ]. For the actual parameters we obtain by the sub-

stitution Lemma 1 [[ ~E(z)]]ὼ,σ̀
G = [[~e]]

ὼ,σ̀(α),τ̀1
L = [[~e]]

σ̀(α),τ̀1
E , and further with the

same lemma
ὼ, σ̀ |=G Q′

2(z
′)[ ~E(z), Init(~v)/~u′, ~v′]

as required by the cooperation test.
Directly after communication we have a global configuration with still the

same global state σ′′. The caller observation evolves its own local state to τ́1 =

τ̀1[~y1 7→[[~e1]]
σ′′(α),τ̀1
E ], and the global state to σ̌ = σ′′[α.~y1 7→[[~e1]]

σ′′(α),τ̀1
E ]. Finally,

the callee observation changes the global state to σ́ = σ̌[β.~y2 7→[[~e2]]
σ̌(β),τ̌2
E ], where

its own local state is updated to τ́2 = τ̌2[~y2 7→[[~e2]]
σ̌(β),τ̌2
E ]. According to the

annotation definition we get

ὼ, σ́(α), τ́1 |=L p3, ὼ, σ́(β), τ́2 |=L q3, and ὼ, σ́ |=G GI .

Let ώ = ὼ[~v′ 7→ Init(~v)][~u′ 7→[[~e]]
σ̀(α),τ̀1
E ][~y1 7→[[~e1]]

σ̀(α),τ̀1
E ][~y′2 7→[[~e ′2]]

σ̌(β),τ̌2
E ]. The lift-

ing lemma implies ώ, σ́ |=G GI ∧ P3(z) ∧ Q′
3(z

′); with the global substitution
lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z) ∧Q′
3(z

′))[ ~E′
2(z

′)/z′.~y′2][ ~E1(z)/z.~y1][ ~E(z), Init(~v)/~u′, ~v′] ,

and thus the cooperation test is satisfied for the invocation of synchronous meth-
ods.

The case for non-synchronized methods is analogous, where the antecedent
z′.lock = free ∨ thread(z′.lock) = thread is dropped.

Case: Callmonitor

This case is similar to the above one of Call, where for the invocation of a
method m ∈ {wait, notify, notifyAll}, the assertion comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread, implying owns(ξ, β) for the caller thread ξ and the
callee object β.
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Case: Callstart
Enabledness of starting the thread of an object β requires ¬started(T ′′, β). Due
to the definition of comm, we have additionally ὼ, σ′′ |=G ¬z′.started, which
implies ¬σ′′(β)(started). We get enabledness by Lemma 8.

Case: Callskipstart

The enabledness argument is similar for Callskipstart , where we use ὼ, σ′′ |=G
z′.started to imply the enabledness predicate started(T ′′, β).

Case: Return
For return, the construction of 〈T ′′, σ′′〉 is similar, where we get instead of the
enabledness of the caller that the callee configuration (β, τ̀2, return eret ; 〈~y3 :=
~e3〉!ret ) is in 〈T ′′, σ′′〉, and thus enabled to execute.

Case: Returnwait

In this case we additionally have to show ¬owns(T ′′, β), which we get from the
comm assertion implying ὼ, σ̀ |=G z′.lock = free and using Lemma 7.

Case: Returnrun

Since the run-method cannot be invoked directly, we conclude that the exe-
cuting local configuration is the only one in its stack, i.e., the transition rule
Returnrun of the semantics can be applied in 〈T ′′, σ′′〉 to terminate the callee
(β, τ̀2, return; 〈~y3 := ~e3〉!ret ).

Lemma 18 (Cooperation test: Instantiation). The proof outline prog ′ sat-
isfies the verification conditions of the cooperation test for object creation of
Definition 17.

Proof of Lemma 18: Let {p1} u := newc; {p2}new 〈~y := ~e〉new {p3} be a state-
ment in class c′ of prog ′, and assume

ω̌, σ̌ |=G z 6= null ∧ z 6= u ∧ ∃z′. Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

with z ∈ LVarc
′
and z′ ∈ LVar list Object fresh. Note that we don’t need the class

invariant of the creator for completeness. We show that

ω̌, σ̌ |=G P2(z) ∧ Ic(u) ∧ (GI ∧ P3(z))[ ~E(z)/z.~y] .

Let ω̌(z) = α and ω̌(u) = β. According to the semantics of assertions we have
that

ω, σ̌ |=G Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′

for some logical environment ω that assigns to z′ a sequence of objects from
ValObject

null (σ̌) =
⋃

cVal
c
null (σ̌), and agrees on the values of all other variables with

ω̌. The assertion Fresh(z′, u) is defined by

InitState(u) ∧ u 6∈ z′ ∧ ∀v. v ∈ z′ ∨ v = u ,
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where InitState(u) expands to u 6= null ∧∧
x∈IVarc

u.x = Init(x). Thus, ω, σ̌ |=G
Fresh(z′, u) implies that β ∈ Valc(σ̌) with σ̌(β) = σinit

inst [this 7→β], and addi-

tionally ValObject
null (σ̌) = ω(z′) ∪̇ {β}. Let σ̀ be the global state with domain

ValObject(σ̀) = ValObject(σ̌)\{β} and such that σ̀(γ) = σ̌(γ) for all objects γ ∈
ValObject(σ̀). Then σ̌ = σ̀[β 7→σinit

inst [this 7→β]], and from

ω, σ̌ |=G (GI ∧ ∃u. P1(z)) ↓ z′

we get with Lemma 2
ω, σ̀ |=G GI ∧ ∃u. P1(z) .

By definition of the annotation, ω, σ̀ |=G GI implies that there is a reachable
configuration 〈T̀1, σ̀1〉 such that

dom(σ̀1) = dom(σ̀) and σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀) .

The precondition of the object creation statement

ω, σ̀ |=G ∃u. P1(z)

implies
ω[u 7→ v], σ̀ |=G P1(z)

for some v ∈ ValObject
null (σ̀). Applying the lifting Lemma 1 we get that

ω, σ̀(α), τ̀ |=L p1

for a local state τ̀ with τ̀ (u) = v and τ̀ (v) = ω(v) for all other local variables v.
By definition of the annotation, there is a reachable global configuration 〈T̀2, σ̀2〉
such that

σ̀2(α) = σ̀(α) and (α, τ̀ , u := newc; 〈~y := ~e〉new stm) ∈ T̀2 .

Recall that σ̀1(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀); especially we
have σ̀1(α)(hcomm) = σ̀(α)(hcomm) = σ̀2(α)(hcomm). Using the global merging
Lemma 10 applied to the reachable global configurations 〈T̀2, σ̀2〉 and 〈T̀1, σ̀1〉
we get that there is a reachable configuration 〈T̀3, σ̀3〉 with

dom(σ̀3)=dom(σ̀1), σ̀3(α)=σ̀2(α), and σ̀3(γ)=σ̀1(γ) for all γ∈dom(σ̀1)\{α}.

Furthermore, (α, τ̀ , u := newc; 〈~y := ~e〉new stm) ∈ T̀2, σ̀2(α) = σ̀3(α), and the
local merging Lemma 9 implies that (α, τ̀ , u := newc; 〈~y := ~e〉new stm) ∈ T̀3.

So we know that 〈T̀3, σ̀3〉 is a reachable configuration containing the lo-
cal configuration (α, τ̀ , u := newc; 〈~y := ~e〉new stm) ∈ T̀3. With ValObject(σ̀) =
ValObject(σ̌)\{β}, dom(σ̀1) = dom(σ̀), and dom(σ̀3)=dom(σ̀1) we get that β /∈
dom(σ̀3), i.e., the local configuration is enabled to create the fresh object β =
ω(u). With σ̀3(α) = σ̀2(α) = σ̌(α) we get

ω, σ̌(α), τ̌ |=L p2 ,



98

where τ̌ = τ̀ [u 7→β]; with the lifting Lemma 1 together with the definition of τ̀
this means ω, σ̌ |=G P2(z), as required in the cooperation test.

Executing the instantiation in the local configuration (α, τ̀ , u := newc; 〈~y :=
~e〉new stm) in 〈T̀3, σ̀3〉, creating a new object β /∈ dom(σ̀3), results in 〈Ť3, σ̌3〉
with σ̌3 = σ̀3[β 7→σinit

inst [this 7→β]]; executing the creator observation leads to

a reachable 〈T́3, σ́3〉 with σ́3 = σ̌3[α.~y 7→[[~e]]
σ̌3(α),τ̌
E ] and (α, τ́ , stm) in T́3 with

τ́ = τ̌ [~y 7→[[~e]]
σ̌3(α),τ̌
E ].

As 〈T́3, σ́3〉 is reachable with σ́3(β) = σinit
inst [this 7→β] = σ̌(β) we know

ω̌, σ̌(β), τ́ |=L Ic .

As Ic may not contain local variables, applying the lifting Lemma 1 again with
ω(u) = β yields the required condition ω̌, σ̌ |=G Ic(u) for the class invariant. It
remains to show that

ω̌, σ̌ |=G (GI ∧ P3(z))[ ~E(z)/z.~y] .

Applying the substitution Lemma 4 and the fact that GI does not contain free
logical variables yields

[[GI [ ~E(z)/z.~y]]]ω̌,σ̌
G = [[GI ]]ω̌,σ́

G

with σ́ = σ̌[α.~y 7→[[ ~E(z)]]ω̌,σ̌
G ]. Thus we have to show the existence of a reachable

configuration with a global state defining the same object domain and com-
munication history values as σ́. The configuration 〈T́3, σ́3〉 satisfies the above
requirements, since, first, it is reachable with

ValObject(σ́3) = ValObject(σ̀3) ∪̇ {β} = ValObject(σ̀1) ∪̇ {β}
= ValObject(σ̀) ∪̇ {β} = ValObject(σ̌) = ValObject(σ́) .

Furthermore, σ́3(α) = σ̌3(α)[~y 7→[[~e]]
σ̌3(α),τ̌
E ], and with σ̌3(α) = σ̀3(α) = σ̀2(α) =

σ̌(α) and

[[ ~E(z)]]ω̌,σ̌
G = [[~e[z/this]]]ω̌,σ̌

G = [[~e]]
σ̌(α),τ̌
E = [[~e]]

σ̌3(α),τ̌
E ,

we get σ́3(α) = σ́(α). For the new object, σ́3(β) = σ̌3(β) = σinit
inst [this 7→β] =

σ̌(β) = σ́(β). Finally, for all other objects γ different from both α and β from
the domain of σ́ we have σ́3(γ)(hcomm) = σ̀3(γ)(hcomm) = σ̀1(γ)(hcomm) =
σ́(γ)(hcomm).

Similarly for the postcondition p3 of the observation,

[[P3(z)[ ~E(z)/z.~y]]]ω̌,σ̌
G = [[P3(z)]]

ώ,σ́
G

= [[p3[z/this]]]
ώ,σ́
G = [[p3]]

ώ,σ́(α),τ́
L = [[p3]]

ώ,σ́3(α),τ́
L .

Thus we have to show the existence of a reachable configuration with a global
state defining the same instance state for α as σ́3 and containing the local config-
uration (α, τ́ , stm). The configuration 〈T́3, σ́3〉 satisfies the above requirements.
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Lemma 19 (Cooperation test: Exception handling). The proof outline
prog ′ satisfies the verification conditions of the cooperation test for exception
handling of Definition 18.

Proof of Lemma 19: The proof is analogous to the proof for the cooperation
test for communication. Let uret := e0.m(~e) 〈stm〉!call {p1}wait {p2}?ret 〈~y4 :=
~e4〉?ret {p3} be a statement in a class c with m 6= start and e0 of type c′, and let
{q1} throw e {q2}throw 〈~y3 := ~e3〉throw be a statement in m(~u) of c′ which is not
in the try-block of any try-catch-finally statement. We have to show that

ὼ, σ̀ |=G GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm

→ (P2(z) ∧Q′
2(z

′)) ◦ fthrow ∧ (GI ∧ P3(z)) ◦ fobs2 ◦ fobs1 ◦ fthrow

holds for arbitrary ὼ and σ̀, with distinct fresh logical variables z ∈ LVarc and
z′ ∈ LVarc

′
, and with comm given by E0(z) = z′∧~u′ = ~E(z)∧E′(z′) 6= null∧z 6=

null ∧ z′ 6= null. Furthermore, fthrow is [E′(z′)/top], fobs1 is [ ~E′
3(z

′)/z′.~y′3], and
fobs2 is [ ~E4(z)/z.~y4].

So assume that the antecedent holds. From ὼ, σ̀ |=G GI we get that there
exists a reachable 〈T, σ〉 with

dom(σ̀) = dom(σ) and σ̀(γ)(hcomm) = σ(γ)(hcomm) for all γ ∈ dom(σ) .

Assuming ὼ(z) = α as caller identity, ὼ, σ̀ |=G P1(z) implies ὼ, σ̀(α), τ̀1 |=L p1 by
the substitution Lemma 1, for some local state τ̀1 with τ̀1(u) = ὼ(u) for all local
variables u occurring in p1. By the annotation definition there exists a reachable
configuration 〈T1, σ1〉 such that

σ1(α) = σ̀(α) and (α, τ̀1, receiveuret ; 〈~y4 := ~e4〉?ret stm1) ∈ T1 .

Recall that σ(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ), and especially
for the caller σ(α)(hcomm) = σ̀(α)(hcomm) = σ1(α)(hcomm). Using the global
merging Lemma 10 applied to 〈T1, σ1〉 and 〈T, σ〉 we get that there is a reachable
〈T ′, σ′〉 with dom(σ′) = dom(σ) and

σ′(α) = σ1(α) and σ′(γ) = σ(γ) for all γ ∈ dom(σ)\{α} .

Furthermore, (α, τ̀1, receiveuret ; 〈~y4 := ~e4〉?ret stm1) ∈ T1, σ1(α) = σ′(α), and
the local merging Lemma 9 implies that

(α, τ̀1, receiveuret ; 〈~y4 := ~e4〉?ret stm1) ∈ T ′ .

Let β = ὼ(z′) be the callee object. The assumption ὼ, σ̀ |=G Q′
1(z

′) implies
ὼ, σ̀(β), τ̀2 |=L q1 with τ̀2(v) = ὼ(v′) for all local variables v in q1. By definition
of q1 there is a reachable global configuration 〈T2, σ2〉 such that

σ2(β) = σ̀(β) and (β, τ̀2, throw e; 〈~y3 := ~e3〉throw stm2) ∈ T2 .

In case of a self-call, i.e., for α = β, we directly get that 〈T ′′, σ′′〉 = 〈T ′, σ′〉
is a reachable configuration such that σ′′(α) = σ̀(α) = σ̀(β), σ′′(γ)(hcomm) =
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σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), and (α, τ̀1, receiveuret ; 〈~y4 := ~e4〉?ret stm1) ∈
T ′′. With the local merging lemma we get additionally (β, τ̀2, throw e; 〈~y3 :=
~e3〉throw stm2) ∈ T ′′.

Otherwise, for a non-self-call, we need to fall back upon the two merging
lemmas once more to obtain a common reachable configuration: Analogously to
the caller part, the global merging Lemma 10 applied to 〈T2, σ2〉 and 〈T ′, σ′〉
yields that there is a reachable configuration 〈T ′′, σ′′〉 with dom(σ′′) = dom(σ′)
and

σ′′(β) = σ2(β) and σ′′(γ) = σ′(γ) for all γ ∈ dom(σ′)\{β} .
Now, (α, τ̀1, receiveuret ; 〈~y4 := ~e4〉?ret stm1) ∈ T ′, σ′′(α) = σ′(α), and the local
merging Lemma 9 implies that the local configuration (α, τ̀1, receiveuret ; 〈~y4 :=
~e4〉?ret stm1) is in T ′′. Similarly, (β, τ̀2, throw e; 〈~y3 := ~e3〉throw stm2) ∈ T2, σ

′′(β) =
σ2(β), and the local merging Lemma 9 implies (β, τ̀2, throw e; 〈~y3 := ~e3〉throw stm2) ∈
T ′′.

Thus 〈T ′′, σ′′〉 is a reachable configuration with σ′′(α) = σ̀(α), σ′′(β) =
σ̀(β), σ′′(γ)(hcomm) = σ̀(γ)(hcomm) for all γ ∈ dom(σ̀), (α, τ̀1, receiveuret ; 〈~y4 :=
~e4〉?ret stm1) ∈ T ′′ and (β, τ̀2, throw e; 〈~y3 := ~e3〉throw stm2) ∈ T ′′.

With the antecedent ὼ, σ̀ |=G comm of the cooperation test we get ὼ, σ̀ |=G
E0(z) = z′ ∧ ~u′ = ~E(z) ∧ E′(z′) 6= null ∧ z 6= null ∧ z′ 6= null, and by the lifting

substitution lemma [[e0]]
σ̀(α),τ̀1
E = [[e0]]

σ′′(α),τ̀1
E = ὼ(z′) = β. Furthermore, using

the same lemma gives [[~u]]
ὼ,σ′′(β),τ̀2
E = [[~e]]

ὼ,σ′′(α),τ̀1
E and [[e]]

σ′′(β),τ̀2
E 6= null . I.e.,

the values of the formal and actual parameters agree, and thus the augmentation
definition and Lemma 6 assures that the local configurations are in caller-callee
relationship. Additionally, the value of the exception to be thrown is not the
empty reference, and thus the exception throwing is enabled.

The definition of the augmentation, and σ′′(α) = σ̀(α) gives

ὼ, σ̀(α), τ̌1 |=L p2 ,

with τ̌1 = τ̀1[top 7→[[e]]
σ′′(β),τ̀2
E ], which by the substitution Lemma 1 and with the

definition of τ̀1 implies that ὼ[top 7→[[e]]
σ′′(β),τ̀2
E ], σ̀ |=G P2(z), i.e.,

ὼ, σ̀ |=G P2(z) ◦ fcomm .

Since the local state of the callee is not modified during exception throwing, the
annotation definition implies ὼ, σ̀(β), τ̀2 |=L q2, i.e., ὼ, σ̀ |=G Q′

2(z
′). Due to the

renaming mechanism we get

ὼ, σ̀ |=G Q′
2(z

′) ◦ fcomm .

Directly after communication we have a global configuration with still the
same global state σ′′. The callee observation evolves the global state to σ̌ =

σ′′[β.~y3 7→[[~e3]]
σ′′(β),τ̀2
E ]. Finally, the caller observation changes the global state

to σ́ = σ̌[α.~y4 7→[[~e4]]
σ̌(α),τ̌1
E ], where its own local state is updated to τ́1 =

τ̌1[~y4 7→[[~e4]]
σ̌(α),τ̌1
E ]. According to the annotation definition we get

ὼ, σ́(α), τ́1 |=L p3 and ὼ, σ́ |=G GI .
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Let ώ = ὼ[top 7→[[e]]
σ̀(α),τ̀2
E ][~y′3 7→[[~e3]]

σ̀(β),τ̀2
E ][~y4 7→[[~e4]]

σ̌(α),τ̌1
E ]. The lifting lemma

implies ώ, σ́ |=G GI ∧ P3(z); with the global substitution lemma finally

ὼ, σ̀ |=G (GI ∧ P3(z))[ ~E4(z)/z.~y4][ ~E
′
3/z

′.~y′3][E
′(z′)/top] ,

and thus the cooperation test for exception handling is satisfied for this case.
The case for rethrowing is analogous.

Proof of Theorem 2: Straightforward using the Lemmas 13, 14, 15, 16, 17,
and 19, and 18.

D Deadlock freedom examples

D.1 Reentrant monitors

GI
def
=

(∀(z : Synch).z 6= null →
(z.lock = (null , 0)∨
(∃(t : Main).owns(t, z.lock) ∧ t.started ∧ t.created = z)∨
(owns(z, z.lock) ∧ z.started)))∧

(∀(t : Main).(t 6= null ∧ ¬t.in Synch) → (t.created = null ∨ not owns(t, t.created.lock)))∧
(∀(t : Main).t 6= null → (∀(z : Synch).(z 6= null ∧ owns(t, z.lock)) → t.created = z))

IMain
def
= started

class Main{

〈 boolean in_Synch ; 〉
〈 Synch created ; 〉

nsync Void run(){
Synch obj;

{thread = this ∧ ¬in Synch ∧ created = null ∧ conf = 0}
obj = newSynch; {thread = this ∧ conf = 0}new 〈created = obj〉new
{obj 6= null ∧ obj 6= this ∧ thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}
obj.start();

{obj 6= null ∧ obj 6= this ∧ thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}
obj.m1();

{thread = this ∧ conf = 0}!call 〈in Synch = (if obj = this then in Synch else true fi)〉!call
{thread = this ∧ created = obj ∧ conf = 0}wait
{thread = this ∧ conf = 0}?ret 〈in Synch = (if obj = this then in Synch else false fi)〉?ret
{thread = this ∧ ¬in Synch ∧ created = obj ∧ conf = 0}

}
}

class Synch{

nsync Void wait(){ {false}?call {false} returngetlock {false}!ret }

sync Void m1(){

{owns(thread, lock) ∧ depth(lock) = 1}
m2();

{owns(thread, lock) ∧ depth(lock) = 1}
}

sync Void m2(){

{owns(thread, lock) ∧ depth(lock) = 2}
}

nsync Void run(){
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{thread = this ∧ started ∧ not owns(thread, lock)}
m1();

{not owns(thread, lock)}
}

}

D.2 A simple wait-notify example

GI
def
=

(∀(z1, z2 : Main).(z1 6= null ∧ z2 6= null) → z1 = z2)∧
(∀(z1, z2 : Monitor).(z1 6= null ∧ z2 6= null) → z1 = z2)∧
(∀(z : Main).z 6= null →

(z.started ∧ z.x ≥ 0 ∧ z.x ≤ 3∧
(z.x = 0 → z.created = null ∧ (∀(z2 : Monitor).z2 = null))∧
(z.x = 1 → (z.created 6= null ∧ z.created 6= z ∧ z.created.lock = (null , 0) ∧ z.created.x = 0∧

length(z.created.wait) = 0 ∧ length(z.created.notified) = 0∧
z.created.counter = 0 ∧ ¬z.created.started))∧

(z.x = 3 → z.created 6= null ∧ not owns(z, z.created.lock) ∧ z.created.x = 8)∧
(z.x = 2 → z.created 6= null)))∧

(∀(z1 : Main).z1 6= null → (∀(z2 : Monitor).(z2 6= null ∧ owns(z1, z2.lock)) → z2 = z1.created))∧

(∀(z1, z2 : Monitor).(z1 6= null ∧ z2 6= null ∧ owns(z1, z2.lock)) → (z1.started ∧ z2 = z1))

IMonitor
def
=

(∀(e ∈ wait ∪ notified).e = (creator, 1))∧
(x = 0 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ ¬started))∧
(x = 1 → (lock = (creator, 1) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ ¬started))∧
((x = 2 ∨ x = 7) → (lock = (creator, 1) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ started))∧
(x = 3 → (lock = (null , 0) ∧ length(wait) = 1 ∧ length(notified) = 0 ∧ started))∧
(x = 4 → (lock = (this, 1) ∧ ((length(wait) = 1 ∧ length(notified) = 0)∨

(length(wait) = 0 ∧ length(notified) = 1)) ∧ started))∧
(x = 5 → (lock = (this, 1) ∧ length(wait) = 0 ∧ length(notified) = 1 ∧ started))∧
(x = 6 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 1 ∧ started))∧
(x = 8 → (lock = (null , 0) ∧ length(wait) = 0 ∧ length(notified) = 0 ∧ started))

class Main{

〈 int x; 〉
〈 Monitor created ; 〉

nsync Void run(){
Monitor obj;

{x = 0 ∧ thread = this ∧ conf = 0 ∧ started}
obj = newMonitor; {thread = this ∧ conf = 0}new 〈created = obj ;x = 1〉new
{x = 1 ∧ thread = this ∧ conf = 0 ∧ started ∧ created = obj ∧ obj 6= null}
obj.m1()

{x = 1 ∧ thread = this ∧ conf = 0 ∧ created = obj}!call
〈x = (if obj = this then x else 2 fi)〉!call

{x = 2 ∧ thread = this ∧ conf = 0 ∧ created = obj}wait
{x = 2 ∧ thread = this ∧ conf = 0 ∧ created = obj}?ret

〈x = (if obj = this then x else 3 fi)〉?ret
{x = 3 ∧ thread = this ∧ conf = 0 ∧ created = obj}

}
}

class Monitor {

〈 Main creator ; 〉
〈 int x; 〉

nsync Void wait(){

{x = 2 ∧ thread = creator}?call 〈x = 3〉?call
{3 ≤ x ∧ x ≤ 6 ∧ thread = creator}
returngetlock
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{x = 6 ∧ thread = creator}!ret 〈x = 7〉!ret
}

nsync Void notify (){

{x = 4 ∧ thread = this ∧ length(wait) = 1}
〈〉
{x = 4 ∧ thread = this ∧ length(wait) = 0}
return

{x = 4 ∧ thread = this ∧ length(wait) = 0}!ret 〈x = 5〉!ret
}

nsync Void notifyAll(){

{false} 〈〉 {false}
}

sync Void m1(){

{x = 0}?call 〈creator = thread;x = 1〉?call
{x = 1 ∧ thread = creator ∧ conf = 0}
start();

{x = 2 ∧ thread = creator}
wait();

{x = 7 ∧ thread = creator}
return

{x = 7 ∧ thread = creator}!ret 〈x = 8〉!ret
}

nsync Void run(){

{x = 1 ∧ thread = this ∧ caller = (this, 0, creator)}?call 〈x = 2〉?call
{(x = 2 ∨ x = 3) ∧ thread = this ∧ started}
m2()

{(x = 6 ∨ x = 7 ∨ x = 8) ∧ thread = this}
}

sync Void m2(){

{x = 3 ∧ thread = this}?call 〈x = 4〉?call
{x = 4 ∧ thread = this ∧ length(wait) = 1 ∧ started}
notify ();

{x = 5 ∧ thread = this}
return

{x = 5 ∧ thread = this}!ret 〈x = 6〉!ret
}

}

D.3 A producer-consumer example

GI
def
=

(∀(p : Producer).(p 6= null ∧ ¬p.outside ∧ p.consumer 6= null) →
(p.consumer.lock = (null , 0) ∧ length(p.consumer .wait) = 0∧
p.consumer.producer = null ∧ ¬p.consumer.started ∧ p.consumer.counter = 0))∧

(∀(p : Producer).(p 6= null ∧ p.consumer 6= null ∧ p.consumer.producer 6= null) → p.outside)∧
(∀(c : Consumer).(c 6= null ∧ c.started) → (c.producer 6= null ∧ c.producer.started))∧
(∀(c1, c2 : Consumer).(c1 6= null ∧ c2 6= null) → c1 = c2))∧
(∃(p : Producer).p 6= null ∧ (∀(p2 : Producer).p2 6= null → p2 = p)∧

(p.consumer = null → (∀(c : Consumer).c = null)))∧
(∀(c : Consumer).(c 6= null ∧ c.producer 6= null) → c.producer.started)

IConsumer
def
=

(lock = (null , 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer, lock)) ∧ length(wait ) ≤ 1

class Producer {

〈 Consumer consumer ; 〉
〈 boolean outside ; 〉

nsync Void wait(){ {false}?call {false} returngetlock {false}!ret }
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nsync Void run(){
Consumer c;

{¬outside ∧ thread = this ∧ consumer = null ∧ started}
c = newConsumer; {thread = this}new 〈consumer = c〉new
{c = consumer ∧ ¬outside ∧ consumer 6= null ∧ consumer 6= this∧

thread = this ∧ started}
c.produce () {thread = this}!call 〈outside = (if c = this then outside else true)〉!call
{false}

}
}

class Consumer {
int buffer;

〈 Producer producer ; 〉

nsync Void wait(){

{owns(thread, lock) ∧ started ∧ length(wait) = 0}?call
{started ∧ not owns(thread, lock) ∧ (thread = this ∨ thread = producer)∧

(thread ∈ wait ∨ thread ∈ notified)}
returngetlock

{started ∧ lock = (null , 0) ∧ thread 6= null ∧ (thread = this ∨ thread = producer)∧
thread ∈ notified}!ret

}

nsync Void notify (){

{owns(thread, lock) ∧ started}
〈〉
{owns(thread, lock) ∧ length(wait) = 0}

}

nsync Void notifyAll(){ {false} 〈〉 }

sync Void produce (){
int i;

{thread 6= null ∧ producer = null ∧ thread = proj(caller , 1)∧
length(wait) = 0 ∧ ¬started}?call

〈producer = proj(caller , 1)〉?call
{owns(thread, lock) ∧ thread = producer ∧ ¬started ∧ conf = 0 ∧ producer 6= this}
i=0;

{owns(thread, lock) ∧ thread = producer ∧ ¬started ∧ conf = 0 ∧ producer 6= this}
start();

{owns(thread, lock) ∧ started ∧ thread = producer}
while (true){

{owns(thread, lock) ∧ started ∧ thread = producer}
//produce i here
buffer = i;

{owns(thread, lock) ∧ started ∧ thread = producer}
notify ();

{started ∧ thread = producer}wait
{owns(thread, lock) ∧ started ∧ thread = producer ∧ length(wait) = 0}
wait()

{started ∧ thread = producer}wait
{owns(thread, lock) ∧ started ∧ thread = producer}

}

{false}
return

{false}!ret
}

nsync Void run(){

{¬started ∧ caller = (this, 0, producer)}?call
{not owns(thread, lock) ∧ thread = this ∧ thread 6= null ∧ started}
consume ()

{false}
}

sync Void consume (){
int i;
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{thread = this ∧ free for(thread, lock) ∧ started}?call
{owns(thread, lock) ∧ started ∧ thread = this}
while (true){

{owns(thread, lock) ∧ started ∧ thread = this}
i = buffer;
//consume i here

{owns(thread, lock) ∧ started ∧ thread = this}
notify ();

{started ∧ thread = this}wait
{owns(thread, lock) ∧ started ∧ thread = this ∧ length(wait) = 0}
wait()

{thread = this}wait
{owns(thread, lock) ∧ started ∧ thread = this}

}

{false}
return

{false}!ret
}

}


