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Abstract. The research concerning Java’s semantics and proof theory
has mainly focussed on various aspects of sequential sub-languages. Java,
however, integrates features of a class-based object-oriented language
with the notion of multi-threading, where multiple threads can concur-
rently execute and exchange information via shared instance variables.
Furthermore, each object can act as a monitor to assure mutual exclusion
or to coordinate between threads.
In this paper we present a sound and relatively complete assertional proof
system for Java’s monitor concept, which generates verification condi-
tions for a concurrent sublanguage JavaMT of Java. This work extends
previous results by incorporating Java’s monitor methods.
Keywords: OO, Java, multithreading, monitors, deductive verification,
proof-outlines

1 Introduction

From its inception, Java [12] has attracted interest from the formal methods
community: The widespread use of Java across platforms made the need for
formal studies and verification support more urgent, the grown awareness and
advances of formal methods for real-life languages made it more acceptable, and
last but not least the array of non-trivial language features made it challenging.

Nevertheless, research concerning Java’s proof theory concentrated mainly
on various aspects of sequential sub-languages (see e.g. [14, 23, 20]). In [5], we
presented a sound and complete proof method for multithreaded Java, where
threads can concurrently execute and exchange information via shared instance
variables. In this paper we extend our results to deal with Java’s monitor syn-

chronization mechanism: each object can act as a monitor to assure mutual
exclusion or to coordinate between threads.

To support a clean interface between internal and external object behavior,
we exclude qualified references to instance variables. As a consequence, shared-
variable concurrency is caused by simultaneous execution within a single object,
only, but not across object boundaries. In order to capture program behavior
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in a modular way, the assertional logic and the proof system are formulated
in two levels, a local and a global one. The local assertion language describes
the internal object behavior. The global behavior, including the communication
topology of the objects, is expressed in the global language. As in the Object
Constraint Language (OCL) [24], properties of object-structures are described
in terms of a navigation or dereferencing operator.

The assertional proof system for safety properties is formulated in terms
of proof outlines [19], i.e., of programs augmented by auxiliary variables and
annotated with Hoare-style assertions [11, 13]. Invariance of the asserted program
properties is guaranteed by the verification conditions of the proof system. The
execution of a single method body in isolation is captured by standard local

correctness conditions, using the local assertion language. Interference between
concurrent method executions is covered by the interference freedom test [19,
16], formulated also in the local language. It has especially to accommodate for
reentrant code and the specific synchronization mechanism. Possibly affecting
more than one instance, communication and object creation are treated in the
cooperation test, using the global language. The theory presented here forms the
theoretical foundation for a verification tool (Verger) which takes asserted Java
programs as input and generates verification conditions for the PVS theorem
prover as output; the use of the tool on a number of examples is reported in [4].

Overview The paper is organized as follows. Section 2 defines syntax and se-
mantics of the programming language. After introducing the assertional logic
in Section 3, the main Section 4 presents the proof system. Section 5 discusses
related and future work.

2 The programming language JavaMT

Similar to Java, the language JavaMT is strongly typed; besides class types c, it
supports booleans and integers as primitive types, and products and lists as com-
posite types. Each corresponding value domain is equipped with a standard set
of operators with typical element f ; we use α, β, . . . as typical object identities.

2.1 Syntax

The JavaMT syntax is summarized in Table 1. We notationally distinguish be-
tween instance variables x ∈ IVar , and stack-allocated local or temporary vari-
ables u ∈ TVar of methods; we use y to denote variables from Var = IVar ∪̇
TVar . Programs are collections of classes containing method declarations, where
we use c and m for class names resp. method names, and bodym,c to refer to the
body of method m in class c. Instances of the classes, i.e., objects, are dynam-
ically created, and communicate via method invocation. To increase readability
of the proof outlines, we deviate from standard Java syntax, in that method
invocation is syntactically split into a sending and a receiving statement.
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exp ::= x | u | this | nil | f(exp, . . ., exp)
expret ::= ε | exp

uret ::= ε | u

stm ::= ε | x := exp | u := exp | u := newc | exp.m(exp, . . ., exp); receive uret

| exp.start() | stm; stm | if exp then stm else stm fi | while exp do stm od . . .

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm; return expret}
meth run ::= modif run(){ stm; return }

methstart ::= nsync start(){ this.run(); receive; return }
methwait ::= nsync wait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }
methnotifyAll ::= nsync notifyAll(){ !signal all; return }

methmain ::= nsync main(){ stm; return }
class ::= c{meth . . .meth meth run methstart methwait methnotify methnotifyAll}

classmain ::= c{meth . . .meth meth run methstart methwait methnotify methnotifyAll methmain}
prog ::= 〈class . . .class classmain〉

Table 1. JavaMT abstract syntax

Each class contains the predefined methods start, wait, notify, and notifyAll,
and furthermore a user-defined run-method. The entry point of the program
is given by the main-method of the program’s main class. Invocation of the
start-method, which can be done successfully only once, spawns a new thread of
execution while the initiating thread continues its own execution.

As a mechanism of concurrency control, methods can be declared as syn-

chronized. Each object has a lock which can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread that owns the
lock of that object. Without the lock, a thread has to wait until the lock becomes
free. The owner of an object’s lock can recursively invoke several synchronized
methods of that object, which corresponds to the notion of reentrant monitors.
The monitor methods wait, notify, and notifyAll facilitate efficient thread coor-
dination at the object boundary. Their definitions use the auxiliary statements
!signal, !signal all, ?signal, and returngetlock . A thread owning the lock of an object
can block itself and free the lock by invoking wait on the object. The blocked
thread can be reactivated by another thread via the object’s notify-method; the
reactivated thread must re-apply for the lock before it may continue its execu-
tion. The method notifyAll, finally, notifies all threads blocked on the object.

2.2 Operational semantics

A local state τ holds the values of the local variables of a method. A local

configuration (α, τ, stm) of a thread executing within an object α 6= nil specifies,
in addition to its local state τ , its point of execution represented by the statement
stm. A thread configuration ξ = (α0, τ0, stm0) . . . (αn, τn, stmn) is a stack of local
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m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E

∈ dom (σ) owns(ξ ◦ (α, τ, e.m(); stm), β)
Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm) ◦ (β, τ
m,c

init , body
m,c

)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ
′
, returngetlock)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 2. Operational semantics of the monitor methods

configurations, representing the call chain of the thread. We write ξ ◦ (α, τ, stm)
for pushing a new local configuration onto the stack.

An object is characterized by its instance state σinst which assigns values
to the self-reference this and to instance variables. The initial states τinit and
σinit
inst assign initial values to all variables. A global state or heap σ maps each

currently existing object, i.e., an object of its domain, to its instance state. A
global configuration 〈T, σ〉 consists of a set T of thread configurations of the
currently executing threads, together with a global state σ.

Expressions are evaluated with respect to an instance local state (σinst , τ); the
base cases are [[u]]

σinst ,τ

E = τ(u), [[x]]
σinst ,τ

E = σinst (x), and [[this]]
σinst ,τ

E = σinst (this).
The operational semantics is given as transitions between global configurations.
A program’s initial configuration 〈T0, σ0〉 satisfies T0 = {(α, τinit , bodymain,c)}

and σ0(α) = σinit
inst [this 7→α], where the domain of σ0 is {α} and α is an instance

of the main class c.
For the semantics of assignment, object and thread creation, and ordinary

method invocation we refer to [4]. The rules of Table 2 handle JavaMT’s monitor
methods wait, notify, and notifyAll, offering a typical monitor synchronization
mechanism. In all three cases the caller must own the lock of the callee object
(cf. rule Callmonitor ), as expressed by the predicate owns , defined below.

A thread can block itself on an object whose lock it owns by invoking the
object’s wait-method, thereby relinquishing the lock and placing itself into the
object’s wait set. Formally, the wait set wait(T, α) of an object is given as the set
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of all stacks in T with a top element of the form (α, τ, ?signal; stm). After having
“put itself on ice”, the thread awaits notification by another thread which invokes
the notify-method of the object. The !signal-statement in the notify-method thus
reactivates a single thread waiting for notification on the given object (cf. rule
Signal). Analogous to the wait set, the notified set notified(T, α) of α is the set
of all stacks in T with top element of the form (α, τ, returngetlock), i.e., threads
which have been notified and trying to get hold of the lock again. According
to rule Returnwait , the receiver can continue after notification in executing
returngetlock only if the lock is free. Note that the notifier does not hand over the
lock to the one being notified but continues to own it. This behavior is known
as signal-and-continue monitor discipline [6].

If no threads are waiting on the object, the !signal of the notifier is without
effect (cf. rule Signalskip). The notifyAll-method generalizes notify in that all
waiting threads are notified via the !signal all-broadcast (cf. rule SignalAll).
The effect of this statement is given by setting signal(T, α) as (T \ wait(T, α))∪
{ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate:
A thread ξ owns the lock of β iff ξ executes some synchronized method of β, but
not its wait-method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T
and a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β) ∪ notified(T, β).
An invariant of the semantics is that at most one thread can own the lock of an
object at a time.

3 The assertion language

JavaMT does not allow qualified references to instance variables, to support a
clean interface between between internal and external object behavior. To mirror
this modularity, the assertion logic consists of a local and a global sublanguage.
Local assertions are used to annotate methods in terms of their local variables
and of the instance variables of the class to which they belong. Global assertions
describe a whole system of objects and their communication structure and will be
used in the cooperation test. In the assertion language we add the type Object

as the supertype of all classes, and we introduce logical variables z ∈ LVar

different from all program variables. Logical variables are used for quantification
and as free variables to represent local variables in the global assertion language.
Expressions and assertions are interpreted relative to a logical environment ω,
assigning values to logical variables.

Assertions are built using the usual constructs from predicate logic (cf. Ta-
ble 3), where only the difference between the local and the global level deserves
mention which concerns the form of quantification. On the local language, un-
restricted quantification ∃z.p is solely allowed for integer and boolean domains,
but not for reference types, as for those types the range of quantification dy-
namically depends on the global state, something one cannot speak about on
the local level. Nevertheless, one can assert the existence of objects on the lo-
cal level, provided one is explicit about the domain of quantification, as in the
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expl ::= z | x | u | this | null | f(exp l, . . . , expl) e ∈ LExp
ass l ::= expl | ¬ass l | ass l ∧ ass l

| ∃z. ass l | ∃z ∈ expl. ass l | ∃z v expl. ass l p ∈ LAss

expg ::= z | null | f(expg, . . . , expg) | expg.x E ∈ GExp
assg ::= expg | ¬assg | assg ∧ assg | ∃z. assg P ∈ GAss

Table 3. Syntax of assertions

restricted quantifications ∃z∈e.p or ∃zve.p. The local assertion ∃z∈e.p states
that there is a value z in the sequence e, for which p holds; ∃zve.p states the
existence of a subsequence. Global assertions are evaluated in the context of a
global state. Thus, unrestricted quantification is allowed for all types and ranges
over the set of existing values. Qualified references E.x may be used in the global
language only. We write [[ ]]L and [[ ]]G for the semantic functions evaluating local
and global assertions, and ω, σinst , τ |=L p for [[p]]

ω,σinst ,τ

L = true, and |=L p if p
holds in all contexts; we use analogously |=G for global assertions.

To express a local property p in the global assertion language, we define the
lifting substitution p[z/this] by simultaneously replacing in p all occurrences of
this by z, and transforming all occurrences of instance variables x into qualified
references z.x, where z is assumed not to occur in p. For notational convenience
we view the local variables occurring in the global assertion p[z/this] as logical
variables. Formally, these local variables are replaced by fresh logical variables.
We will write P (z) for p[z/this], and similarly for expressions.

For technical convenience, in this paper we formulate verification conditions
as standard Hoare-triples {ϕ} stm {ψ}. The statements of these Hoare-triples
may also contain assignments involving qualified references as given by the global
assertion language. The formal semantics is given by means of a weakest pre-
condition calculus [8, 4].

4 The proof system

The following section defines how to augment and annotate programs resulting in
proof outlines, before Section 4.2 describes the proof method. The proof system
accommodates for dynamic object creation, shared-variable concurrency, alias-
ing, method invocation, synchronization, and, especially, the reentrant monitors.
Missing details can be found in [4].

4.1 Proof outlines

The definition of a relatively complete proof system requires that we can encode
the transition semantics of JavaMT in the assertion language. As the assertion
language can reason about the local and global states, only, we have to aug-

ment programs with fresh auxiliary variables to represent information about



The proof system 7

...〈e0.m(this ,conf ,thread ,e);〉 〈receive uret ; 〉 ... // meth. call

sync m(caller ,thread ,u) {

〈conf:=counter , counter := counter +1, lock:=inc(lock)〉 ...

〈return eret ; lock:=dec(lock)〉 }

nsync start(caller ,thread,caller_thread) {

〈conf:=counter , counter := counter +1, started :=true〉 ...

〈return;〉}

Fig. 1. Augmentation and annotation: Synchronized method call, start

the control points and stack structures within the local and global states: As-
signments y := e can be extended to multiple assignments y, ~yaux := e,~eaux by
inserting additional assignments to distinct auxiliary variables ~yaux . Additional
auxiliary assignments can be inserted at any control point. Observations ~y := ~e
of communication and object creation stm are enclosed in bracketed sections

〈stm; ~y := ~e〉. Method calls and the reception of the return value is observed by
〈e0.m(~e); ~y1 := ~e1〉 and 〈receiveuret ; ~y4 := ~e4〉. Similarly for the callee, methods
are extended to m(~u){〈~y2 := ~e2〉; stm; 〈returnuret ; ~y3 := ~e3〉}. To be uniform,
we will sometimes write 〈?m(~u); ~y := ~e〉 to indicate that the assignment ob-
serves the reception of a method call. We require that the caller observation in
a self-communication does not change the values of instance variables.

Bracketed sections do not influence the control flow of the original program
but enforce a particular scheduling policy: Communication, sender, and receiver
observations are executed in this order in a single computation step, i.e., they
cannot be interleaved with other threads. Points which can be interleaved we call
control points. At points between communication and its observation in brack-
eted sections, or at the beginning and at the end of a methods, no interleaving
can take place; we call them auxiliary points.

Next we introduce a few auxiliary variables, built into all augmentations and
used in the verification conditions. Their values are changed only as described
in the following. The updating of the specific auxiliary variables for ordinary
synchronized methods and for the start-method is illustrated in Figure 1. Non-
synchronized methods are treated analogously except that they do not change
the lock value; the start-method additionally handles thread creation.

Figure 2 shows the augmentation of the monitor methods. Note that we
do not use the auxiliary statements !signal, !signal all, and ?signal in the proof
outlines and implement the monitore methods with the auxiliary variables wait

and notified, instead, which represent the corresponding sets of the semantics.

An important point of the proof system is the identification of communicat-
ing objects and threads. We identify a thread by the object in which it has begun
its execution. The identification is unique as an object’s thread can be started
only once. This identity is handed over from caller to callee as auxiliary formal
parameter thread. For the start-method we use caller thread as additional formal
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nsync wait(caller ,thread) {

〈conf:=counter , counter := counter +1,

wait:=wait ∪ {lock}, lock:=free;〉
〈returngetlock ; lock:=get(notified ,thread ),

notified :=notified \ get(notified ,thread);〉 }

nsync notify(caller ,thread) {

〈conf:=counter , counter := counter +1;〉
wait ,notified :=notify(wait ,notified );

〈return ;〉 }

nsync notifyAll(caller ,thread ) {

〈conf:=counter , counter := counter +1;〉
notified :=notified ∪ wait , wait:=∅;
〈return ;〉 }

Fig. 2. Augmentation and annotation: Signaling

parameter to store the identity of the caller thread. A local configuration, which
represents the execution of a method, is identified by the object in which it exe-
cutes together with the value of its auxiliary local variable conf storing a unique
object-internal identifier. Its uniqueness is assured by the auxiliary instance vari-
able counter, incremented for each new local configuration in that object. The
callee receives the “return address” as auxiliary formal parameter caller, given
by the caller object together with the identity of the calling local configuration.
The main-method is initially executed with the parameters ((nil , 0), α0), where
α0 is the initial object.

To capture mutual exclusion and the monitor discipline, the instance vari-
able lock of type Object × Int + free, with initial value free, stores the identity
of the thread that owns the lock, if any, together with the number of reen-
trant synchronized calls in the call chain. The semantics of incrementing the
lock [[inc(lock)]]

σinst ,τ

E is (τ(thread), 0) for σinst (lock) = free, and (α, n + 1) for
σinst (lock) = (α, n). Decrementing dec(lock) is done inversely. The instance vari-
ables wait and notified of type 2Object×Int, with initial value ∅, are the analogues
of the wait - and notified -sets of the semantics and store the threads waiting at
the monitor, respectively, those having been notified. Besides the thread iden-
tity, the number of reentrant synchronized calls is stored. In other words, the
wait and notified sets remember the old lock-value prior to suspension which
is restored when the thread becomes active again. The old value is given by
get(notified , α) for a thread α, whose uniqueness is assured by the semantics.
The value notify(wait ,notified) is the pair of the given sets with one element,
chosen nondeterministically, moved from the wait into the notified set; if the wait
set is empty, it is the identity function. Note that in the augmented wait-method
both the waiting and the notified status of the executing thread are represented
by a single control point. The two statuses can be distinguished by the values
of the wait and notified variables. The boolean instance variable started, finally,
remembers whether the object’s start-method has already been invoked. All aux-
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iliary variables are initialized as usual, except the started-variable of the initial
object which gets the value true.

To specify invariant properties of the system, the augmented programs are
annotated by attaching local assertions to each control and auxiliary point. We
use the standard triple notation {p} stm {q} and write pre(stm) and post(stm)
to refer to the pre- and the post-condition of a statement. Besides that, for each
class c, a local assertion Ic called class invariant specifies invariant properties
of instances of c in terms of its instance variables. We require that the pre- and
postconditions of whole method bodies, describing the instance state of the callee
object directly before method call and after returning, respectively, are given by
the class invariant.3 Finally, the global invariant GI ∈ GAss specifies properties
of communication between objects. As such, it should be invariant under object-
internal computation. For that reason, we require that for all qualified references
E.x in GI with E of type c, all assignments to x in class c occur in bracketed
sections of communication or object creation. Note that the global invariant is
not affected by the object-internal monitor signaling mechanism. We require that
in the annotation no free logical variables occur. An augmented and annotated
program prog ′ is called a proof outline.

4.2 Verification conditions

The proof system formalizes a number of verification conditions which induc-
tively ensure that for each reachable configuration the assertions at all current
control points are satisfied, and that the global and the class invariants hold. The
conditions are grouped, as usual, into initial conditions, local correctness, inter-
ference freedom, and a cooperation test. Note that the proof method is modular

in that it allows for separate interference freedom and cooperation tests.
Arguing about two different local configurations makes it necessary to dis-

tinguish between their local variables, since these possibly have the same names;
in such cases we rename the local variables in one of the local states. We use
primed assertions p′ to denote a given assertion p with every local variable u
replaced by a fresh one u′, and do so, correspondingly, for expressions.

4.2.1 Local correctness A proof outline is locally correct, if the properties
of method instances as specified by the annotation are invariant under their own
execution. For example, an assignment’s precondition must imply its postcondi-
tion after execution. Besides that, invariance of the class invariant is required.

Definition 1 (Local correctness: Assignment). A proof outline is locally
correct, if for all assignments {p1}~y := ~e {p2} outside bracketed sections and all

c,

|=L {p1} ~y := ~e {p2} (1)

|=L p1 → Ic . (2)
3 Note that the callee configuration directly after invocation is described by the post-

condition of the callee observation 〈stm〉?call , which can be an arbitrary local asser-
tion.



10 The proof system

The conditions for loops and conditional statements are similar. Note that we
have no local verification conditions for observations of communication and ob-
ject creation. The postconditions of such statements express assumptions about
the communicated values. They will be verified in the cooperation test.

4.2.2 The interference freedom test Invariance of local assertions under
computation steps in which they are not involved is assured by the interference

freedom test. Since JavaMT does not support qualified references to instance
variables, we only have to deal with invariance under execution within the same

object. Affecting only local variables, communication and object creation do not
change the instance states of the executing objects. Thus we only have to cover
invariance of assertions annotating control points over assignments, including
those of bracketed sections. Assertions at auxiliary points do not have to be
shown invariant. So let p be an assertion at a control point and ~y := ~e an
assignment in the same class. In the following we will prime local variables of
the assertion to distinguish them from those of the assignment.

The assertion p has to be invariant under the assignment only if the assign-
ment is executed independently of the control point annotated by p:

interferes(p, ~y := ~e)
def
= thread 6= thread′ → ¬self start(p, ~y := ~e) ∧

thread = thread′ → waits for ret(p, ~y := ~e) .

The definition distinguishes two cases: If the assertion and the assignment be-
long to different threads, interference freedom must be shown in any case ex-
cept for the self-invocation of the start-method. If they belong to the same

thread, the only assertions endangered are those at control points waiting for
a return value earlier in the thread’s stack. Invariance of a local configuration
under its own execution, however, need not be considered and is excluded by
requiring conf 6= conf′. Interference with the matching return statement in a
self-communication neither needs to be considered, because communicating re-
ceive and return statements are executed simultaneously. This particular case
is excluded by additionally requiring caller 6= (this, conf′) for such assertion-
assignment pairs.

Definition 2 (Interference freedom). A proof outline is interference free, if

for all classes c, assignments {p}~y := ~e, and assertions q at control points in c,

|=L {p ∧ q′ ∧ interferes(q, ~y := ~e)} ~y := ~e {q′} . (3)

4.2.3 The cooperation test Whereas the interference freedom test assures
invariance of assertions under steps in which they are not involved, the cooper-

ation test deals with inductivity for communicating partners, assuring that the
global invariant and the preconditions of the involved bracketed sections imply
their postconditions after the joint step. Additionally, the assertions at the aux-
iliary points must hold immediately after communication. The global invariant
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may refer only to auxiliary instance variables which are changed in bracketed
sections. Consequently, it is automatically invariant under the execution of non-
communicating statements. For bracketed sections of communication and object
creation, however, the invariance must be shown as part of the cooperation test.

In the following we define the cooperation test for method call. Since different
objects may be involved, the cooperation test is formulated in the global assertion
language. Local properties are expressed in the global language using the lifting
substitution. To avoid name clashes between local variables of the partners, we
rename those of the callee by priming them.

Let z and z′ be logical variables representing the caller, respectively, the
callee object. We assume the global invariant and the preconditions of the com-
municating statements to hold prior to communication. For method invocation,
the precondition of the callee is its class invariant, as defined in the annota-
tion. That the assertions indeed represent communicating partners and that the
communication is enabled is captured in the assertion comm: In case of a synchro-
nized method invocation, the lock of the callee object has to be free or owned
by the caller, which is expressed by z′.lock = free ∨ thread(z′.lock) = thread,
where thread is the caller thread and thread(α, n) = α. For the invocation of the
monitor methods the executing thread must hold the lock.

Let the function Init : Var → Valnil assign to each variable its initial value.

Definition 3 (Cooperation test: Method invocation). A proof outline sat-

isfies the cooperation test for method invocation, if for all statements of the form

{p1}〈e0.m(~e); {p2}~y1 := ~e1〉{p3} in class c with e0 of type c′, where method m of

c′ has body {q1}〈?m(~u); {q2}~y2 := ~e2〉; {q3}stm and local variables ~v except the

formal parameters:

|=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm}

~u′, ~v′ := ~E(z), Init(~v)
{P2(z) ∧Q′

2(z
′)}

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm}

~u′, ~v′ := ~E(z), Init(~v); z.~y1 := ~E1(z); z′.~y′2 := ~E′
2(z

′)
{GI ∧ P3(z) ∧Q

′
3(z

′)},

where z ∈ LVarc and z′ ∈ LVarc′

are distinct and fresh; comm is given by

E0(z) = z′ ∧ z 6= nil ∧ z′ 6= nil ∧ synch, and with synch defined as

– true for m /∈ {start,wait, notify, notifyAll} non-synchronized,

– z′.lock = free ∨ thread(z′.lock) = thread for m /∈ {start,wait, notify, notifyAll}
synchronized,

– thread(z′.lock) = thread for m ∈ {wait, notify, notifyAll}, and

– ¬z′.started for m = start.

For m = start, the conditions must hold with additionally synch as z′.started,
where q2 = q3 = true and without ~u′, ~v′ := ~E(z), Init(~v) and z′.~y′2 := ~E′

2(z
′).
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1 ...{owns(thread, lock)}
2 〈this.wait(this ,conf ,thread)〉;
3 {¬owns(thread, lock) ∧ (this, conf ) = getcaller(x, thread)}
4 〈receive〉
5 {owns(thread, lock)}...

7 {true} nsync wait (caller,thread) {

8 {owns(thread, lock)}
9 〈conf:=counter , counter := counter + 1, lock:=free ,

10 wait:=wait ∪ {lock}, x:=x ◦ (thread ,caller)〉;
11 {¬owns(thread, lock) ∧ caller = getcaller(x, thread)}
12 〈returngetlock ;
13 {lock = free ∧ caller = getcaller(x, thread) ∧ thread ∈ notified}
14 lock:=get(notified ,thread),

15 notified :=notified \ get(notified ,thread)〉 } {true}

Fig. 3. Example

The first verification condition justifies the assertions at the auxiliary points
after parameter passing, whereas the second verification condition justifies the
postconditions of the bracketed sections and invariance of the global invariant.

For returning from a method and for object creation, there are similar con-
ditions. Here we remark only that returning from the wait-method assumes that
the thread has been notified and that the lock of the given object is free; in this
case, synch is defined by z′.lock = free ∧ thread′ ∈ z′.notified (with α ∈ notified

iff there is a (α, n) ∈ notified for some n).

The verification conditions presented above give rise to a sound and relative

complete proof system. This means if all the verification conditions are valid,
then at each reachable point all assertions hold, and conversely, if a program
satisfies the requirements asserted in its proof outline, then this is indeed prov-
able, i.e., then there exists a proof outline which can be shown to hold and
which implies the given one. For the exact (standard) formulation of soundness
and completeness and their proofs, we refer to the technical report [4].

4.2.4 Example We conclude this section with an example shown in Figure 3
which presents an annotation of the wait-method and its self-invocation. The
annotation expresses basic properties of the lock ownership. The history of all
invocations of the wait method is recorded in the auxiliary instance variable x
of type list(Object × (Object × Int)). The operation getcaller(x , thread) returns
caller where (thread , caller) is the last element in x with first component thread .
We use owns(thread, lock) as shorthand for thread = thread(lock).

The proof uses the interference freedom test and the cooperation test; we
start with the latter. The postconditions (3) and (9) of the method invocation
at (2) and its observation at (8) is justified in the cooperation test as the post-
condition of the parameter passing followed by the observation; note that (7)
follows directly from (1) by parameter passing. Remember that we rename the
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local variables of the callee. The cooperation test for returning from the wait-
method, i.e., the simultaneous execution of (4) and (10), additionally imports
the information described by the assertion synch, namely that the lock is free
and the executing thread is already notified.

To show interference freedom, we proceed by case analysis. For interference
between different threads, assume thread 6= thread′. For example, the assertion
at (1) is invariant under the execution of (8) by a different thread, because the
lock can be owned by at most one thread. Formally, the conjunction of (1) and
(7) gives us owns(thread′, lock)∧owns(thread, lock) contradicting our assumption
thread 6= thread′. The other cases follow similarly from the assumption.

More interesting is interference with respect to one thread, where we only
need to consider invariance of the primed assertion at (3) over the assignments at
(8) and (12). For (8), it suffices to observe that the assertions (3) and (7) lead to
a contradiction with the assumption thread = thread′. The most interesting case
is the invariance of the assertion (3) under the execution of (12). The information
about the auxiliary variable x and the assumption that we deal with a single
thread implies caller = (this, conf′). This information contradicts the interleavable

predicate of the interference freedom test, which excludes the situation of a
matching return-receive statements in a self-communication.

5 Conclusion

This paper presents the first sound and complete assertional proof method for
a multithreaded sublanguage of Java including its monitor discipline. It extends
earlier work [5] by integrating Java’s wait and notify constructs into the proof
system and by moving towards a more compositional formulation of the identifi-
cation mechanism for threads, corresponding to the compositional semantics in
[3]. Moreover, this particular extension shows how to incorporate further control
mechanism by means of auxiliary variables which describe the corresponding
flow of control. Based on the proof theory presented here, we have developed a
front-end tool Verger which automatically extends programs with the built-in
augmentation and generates the verification conditions for the theorem prover
PVS. In [4], we explore the tool on a few examples, and present an extension of
the proof theory to show absence of deadlock.

Related work As far as proof systems and verification support for object-oriented
programs is concerned, research has mostly concentrated on sequential lan-
guages. For instance, the Loop-project [14, 17] develops methods and tools for
the verification of sequential object-oriented languages, based on coalgebras and
using proof PVS and Isabelle/HOL. Poetzsch-Heffter and Müller [20] develop a
Hoare-style programming logic presented in sequent formulation for a sequen-
tial kernel of Java, featuring interfaces, subtyping, and inheritance. Translating
the operational and the axiomatic semantics into the HOL theorem prover al-
lows a computer assisted soundness proof. The work [21] uses a modification of
the object constraint language OCL as assertional language to annotate UML
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class diagrams and to generate proof conditions for Java-programs. In [23]
a large subset of JavaCard, including exception handling, is formalized in Is-
abelle/HOL, and its soundness and completeness is shown within the theorem
prover. [18] presents an exectuable formalization of a simplified JVM within the
theorem prover ACL2. The work in [2] presents a Hoare-style proof-system for
a sequential object-oriented calculus [1]. The language features heap-allocated
objects (but no classes), side-effects and aliasing, and its type system supports
subtyping. Furthermore, the language allows nested statically let-bound vari-
ables, which requires a more complex semantical treatment for variables based
on closures, and ultimately renders their proof-system incomplete. Its assertion
language is presented as an extension of the object calculus’ language of type
and analogously, the proof system extends the type derivation system. The close
connection of types and specifications in the presentation is exploited in [22] for
the generation of verification conditions. A survey about monitors in general,
including proof-rules for various monitor semantics, can be found in [7].

The extended static checking approach [9, 15] occupies a middle-ground be-
tween verification and static analysis. Based on an intermediate guarded com-
mand language, the ESC-tool statically tries to detect (amongst other static
properties) programming errors typical in a multithreaded setting such as syn-
chronization errors and race conditions. In this direction, [10] presents a thread-
modular checking approach based on assume-guarantee reasoning and imple-
mented in the Calvin-tool.

Future work We plan to extend JavaMT by further constructs, like exceptions,
inheritance, and subtyping. To deal with subtyping on the logical level requires
a notion of behavioral subtyping.
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