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Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-

variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.

In this paper we propose a class-based compositional operational seman-
tics for multithreaded Java which provides a semantic characterization
and a formal basis for further semantic investigations involving inheri-
tance, subtyping, and full abstraction, and a compositional proof system.

From its inception, Java [10] attracted interest from the formal methods
community: The widespread use of Java across platforms made the need for
formal studies and verification support more urgent, the grown awareness and
advances of formal methods for real-life applications and languages made it more
acceptable, and last but not least the array of non-trivial language features
made it challenging and interesting. Thus, Java offered a rich field for formal
studies, ranging from formal semantics [14, 5] over bytecode verification and
static analysis [13] to model checking [11].

In this paper we propose a class-based compositional operational semantics
for multithreaded Java which provides a semantic characterization of the behav-
ioral interface of a class and a formal basis for further semantic investigations
involving inheritance, subtyping, and full abstraction.

Java offers concurrency in the form of threads integrated in its class-based
object-oriented framework: The concurrent entities in the run-time system of
Java consist of the different call-chains, the threads, which execute in parallel
and which share the state space grouped into objects. Thus, concurrency arises
in Java at two levels: sets of objects in parallel cooperate via method calls, and
objects processing different operations at the same time on a shared state space,
namely the states of objects.

? Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2). c© All rights
remain with the authors



2 The Programming Language JavaMT

At the syntactic level, a Java program consists of classes, and object-oriented
features like inheritance are defined and understood basically in terms of classes.
In this paper we provide a compositional semantic basis of this class-based view.
It provides a generic description of the behavioral interface of a class which
consists of the externally observable behavior of all of its instances. In other
words, we show that the behavioral interface of a class in Java allows to abstract
from the internal shared-variable concurrency, i.e., it allows to disentangle the
two levels of concurrency.

To support a clean interface between internal and external behavior, JavaMT

does not allow qualified references to instance variables. As a consequence,
shared-variable concurrency is caused by simultaneous execution within a single
object, but not across object boundaries. The same access discipline was fol-
lowed in [4] to obtain a modular proof system, cleanly separating verification
conditions on the level of instances from those on a global level, dealing with
object structures and communication.

Even if the proof system was split into a local and a global level in op. cit.,
the semantics was presented on a global level, only. In this paper, we recast the
semantics of [4] to become compositional. This means, the operational semantics
is described in two stages: first we define computations of a single instance, and
afterwards specify rules for composing the behavior of sets of instances, where
communication between different instances is synchronized by transition labels
which uniquely identify the communication partners. The semantics serves as a
stepping stone to a compositional proof-system.

1 The Programming Language JavaMT

In this section we describe the language JavaMT (“Multi-Threaded Java”); the
syntax corresponds to the one in [4]. We start with highlighting the features of
JavaMT and its relationship to full Java, before formally describing its abstract
syntax.

1.1 Introduction

JavaMT is a multithreaded sublanguage of Java. Programs, as in Java, are given
by a collection of classes containing instance variable and method declarations.
Instances of the classes, i.e., objects, are dynamically created, and communicate
via method invocation, i.e., synchronous message passing. As we focus on the
concurrency aspects of Java, all classes in JavaMT are thread classes in the sense
of Java: Each class contains a start-method that can be invoked only once for
each object, resulting in a new thread of execution. The new thread starts to
execute the start-method of the given object while the initiating thread continues
its own execution.

As a mechanism of concurrency control, methods can be declared as synchro-

nized. The execution of synchronized methods within a single object by different
threads is mutually exclusive, whereas non-synchronized methods do not require
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such coordination. Note that recursive invocations of synchronized methods on
the same object are allowed, as they are executed in a single call chain by the
same thread. This corresponds to the notion of re-entrant monitors.

All programs are assumed to be well-typed, i.e., each method invoked on
an object must be supported by the object, the types of the formal and actual
parameters of the invocation must match, etc. As the static relationships between
classes are orthogonal to multithreading aspects, we ignore in JavaMT the issues
of inheritance, and consequently subtyping, overriding, and late-binding. For
simplicity, we neither allow method overloading, i.e., we require that each method
name is assigned a unique list of formal parameter types and a return type. In
short, being concerned with the verification of the run-time behavior, we assume
a simple monomorphic type discipline for JavaMT.

1.2 Abstract Syntax

As Java, the language JavaMT is strongly typed and supports class types and
primitive, i.e., non-reference types. As built-in primitive types we restrict to
Int and Bool. Besides the built-in types for integers and booleans, the set of
user-definable types is given by a set of class names C, with typical element c.
Furthermore, the language allows pairs of type t1×t2 and sequences of type list t.
Side-effect expressions without a value, i.e., methods without a return value, will
get the type Void. For each type, the corresponding value domain is equipped
with a standard set of operators with typical element f.

Since JavaMT is strongly typed, all program constructs of the abstract syntax
—variables, expressions, statements, methods, classes— are silently assumed to
be well-typed. In other words, we work with a type-annotated abstract syntax
where we omit the explicit mentioning of types when no confusion can arise.

For variables, we notationally distinguish between instance variables and
stack-allocated local variables. Instance variables hold the state of an object and
exist throughout the object’s lifetime. We do not allow qualified references to
instance variables in JavaMT, i.e., objects do not have direct access to instance
variables of other objects.

The set of variables Var = IVar ∪̇ TVar with typical element y is given as the
disjoint union of instance and local variables. The identity of an object is stored
in its class-typed constant this /∈ Var . The set Var t contains all variables of type
t, and correspondingly for IVar t and TVar t. As we assume a monomorphic type

discipline, Var t ∩ Var t′ = ∅ for distinct types t and t′. We use x, x′, x1, . . . as
typical elements from IVar , and u, u′, u1, . . . as typical elements from TVar .

Besides using instance and local variables, side-effect free expressions e ∈ Exp

are built from this, nil, and from subexpressions using the given operators. We
use Expt to denote the set of well-typed expressions of type t. The expression this

is used for self-reference within an object, and nil is a constant representing an
empty reference. The expression newc stands for the reference to a new instance
of class c. An invocation of a method with name m on object e0 with actual
parameters e1, . . . , en is written as e0.m(e1, . . . , en), where M is an infinite set
of method names containing main, start, and run.
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Besides the mentioned simplifications on the type system, we impose for
technical reasons the following restrictions: We require that method invocation
and object creation statements contain only local variables, i.e., that none of the
expressions e0, . . . , en contains instance variables, and that formal parameters
do not occur on the left-hand side of assignments. This restriction implies that
during the execution of a method the values of the actual and formal parameters
are not changed. Finally, the result of an object creation or method invocation
statement may not be assigned to instance variables. This restriction allows a
clean separation of local, object-internal behavior and a global one. For instance,
it makes possible a proof system with separated verification conditions for in-
terference freedom and cooperation. It should be clear that one can transform a
program to adhere to this restrictions at the expense of additional local variables
and thus new interleaving points.

Statements stm ∈ Stm are built from side-effect expressions and assignments
of the form x := e, u := e, and u := sexp by using standard control constructs
like sequential composition, conditional statements, and iteration, to form com-
posite statements. Especially, we will use ε to denote the empty statement.

A method definition modif m(u1, . . . , un){ stm; rexp } ∈ Meth consists of a
method name m, a list of formal parameters u1, . . . , un, and a method body
bodym,c of the form stm; rexp. The set Methc contains the methods of class c.
To simplify the proof system we require that method bodies are terminated by a
single return statement, either giving back a value using return e, or not, written
as return. Additionally, methods are decorated by a modifier modif distinguishing
between non-synchronized and synchronized methods.3 We use sync(c, m) to
state that method m in class c is synchronized. In the sequel we also refer to
statements in the body of a synchronized method as being synchronized. A class

c{meth1 . . .methnmethstartmeth run} is defined by its name c and its methods,
whose names are assumed to be distinct. As mentioned earlier, all classes in
JavaMT are thread classes; all classes contain a start-method methstart and a run-
method meth run without return values. A program 〈class1 . . . classnclassmain〉,
finally, is a collection of class definitions having different class names, where
classmain is the entry point of the program execution. This class specifically
contains a main-method methmain without return value. We call its body, written
as bodymain, the main statement of the program.

The set of instance variables IVar c of a class c contains all instance variables
occurring in that class. Correspondingly for methods, the set of local variables
TVarm,c of a method m in class c is given by the set of all local variables
occurring in that method.

The syntax is summarized in Table 1.

3
Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.
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exp ::= x | u | this | nil | f(exp , . . ., exp)
expret ::= ε | exp

uret ::= ε | u

stm ::= x := exp | u := exp | u := newc

| exp.m(exp, . . ., exp); receive uret | exp.start()
| ε | stm ; stm | if exp then stm else stm fi | while exp do stm od . . .

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm ; return expret}
meth run ::= modif run(){ stm ; return }

methstart ::= nsync start(){ this.run(); return }
methmain ::= nsync main(){ stm ; return }

class ::= c{meth . . .meth meth run methstart}
classmain ::= c{meth . . .meth meth run methstart methmain}

prog ::= 〈class . . .class classmain〉

Table 1. JavaMT abstract syntax

2 Semantics

Next, we define compositionally the operational semantics of JavaMT, especially,
the mechanisms of multithreading, dynamic object creation, method invocation,
and coordination via synchronization. After introducing the semantic domains,
we describe states and configurations in the following section. The operational
semantics is presented in Section 2.2 by labeled transitions between program
configurations. The semantics is given in two levels. Transitions on the local
level describe the behavior of a single instance, where we distinguish self-calls
from non-self-calls. The combined behavior of collections of instances is formu-
lated on the global level, where different objects communicate by label synchro-
nization. The semantics described here is equivalent to the one presented non-

compositionally in [4], where the behavior was given by a number of interacting
threads or execution stacks, working on a global state.

2.1 States and Configurations

To give meaning to variables, we first fix the domains Val t of the various types t.
Thus Val Int and ValBool denote the set of integers and booleans, Val list t are finite
sequences over values from Val t, and Val t1×t2 stands for the product Val t1 ×
Val t2 . For class names c ∈ C, the set Valc with typical elements α, β, . . . denotes
an infinite set of object identifiers, where the domains for different class names
are assumed to be disjoint. We will write ValObject for

⋃
c∈C Valc. For each class

name c, nilc /∈ Valc represents the value of nil in the corresponding type. In
general we will just write nil , when c is clear from the context. We define Valcnil

as Valc ∪̇ {nilc}, and correspondingly for compound types. The set of all possible
non-nil values

⋃
t Val t is written as Val , and Valnil denotes

⋃
t Val tnil .
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The configuration of a program is characterized by the configurations of all
existing instances, where in each instance, a number threads may be executing,
each with its own local state and all sharing the instance state.

A local state η ∈ Σloc of a thread holds the values of its local variables and
is modeled as a partial function of type TVar ⇀ Valnil . We denote by ηinit

local states which assign to each class-typed local variable of type c′ from their

domain the value of nilc
′

, to each boolean variable the value false, and to each
integer variable the value 0. Pairs are initialized correspondingly; sequences are
initially empty. A local configuration (η, stm) of a thread specifies, in addition
to its local state, its point of execution represented by the statement stm.

The state of an object is characterized by its instance state σinst ∈ Σinst

of type IVar ∪̇ {this} ⇀ Valnil which assigns values to its instance variables;
we require that this ∈ dom(σinst ) and that σinst (this) ∈ ValObject. 4 The initial
instance state σinit

inst assigns to each variable from its domain of type c′, Bool, and

Int the initial values nilc
′

, false , and 0, respectively. Pairs are initialized corre-
spondingly; sequences are initially empty. An instance configuration (σinst , γloc)
consists of an instance state paired with a finite set γloc of local configurations
of the threads currently executing within the instance.

Finally, a global configuration γ specifies a finite set of instance configurations.
Given a global configuration γ, we can use the values for the self-references this in
the instance states to define what it means for an object to exist in γ. So let the
set of existing objects of type c defined as domc(γ) = {α ∈ Valc | ∃(σinst , γloc) ∈
γ . σinst (this) = α}; the set domc

nil (γ) is given by domc(γ)∪{nilc}. For the set of

objects
⋃

c domc(γ) we write domObject(γ), and correspondingly for dom
Object
nil (γ).

For the built-in types Int and Bool we define domt and domt
nil , independently

of γ, as the set of pre-existing values Val Int and ValBool, respectively. For com-
pound types, dom t and domt

nil are defined correspondingly. We refer to the set⋃
t domt(γ) by dom(γ); domnil (γ) denotes

⋃
t domt

nil (γ).

Expressions e ∈ Exp are evaluated with respect to an instance local state
(σinst , η) ∈ Σinst × Σloc, where the instance state defines the identity and val-
ues of the instance variables of the object σinst (this) in which the expression
is evaluated, and η gives values to the local variables. The semantic function
[[ ]]E : (Σinst × Σloc) → (Exp ⇀ Val ) is defined by induction on the structure of
expressions: Instance variables x and local variables u are evaluated to σinst (x)
and η(u), respectively. The value of this refers to the object in which the expres-
sion is evaluated, the value of nil is given by the empty reference nil . Finally,
the evaluation of compound expressions is defined by homomorphic lifting.

For a local state η, a local variable u ∈ dom(η) of type t, and a value
v ∈ Val tnil , we denote by η[u 7→ v] the local state which assigns v to u and agrees
with η on the values of all other variables . The semantic update σinst [x 7→ v]
of instance states is defined analogously. We use these operators analogously for
setting the values of a sequence of variables. We use η[~y 7→~v] also for arbitrary

4 In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.
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variable sequences, where instance variables are untouched, i.e., η[~y 7→~v] is de-
fined by η[~u 7→~vu], where ~u is the sequence of the local variables in ~y and ~vu

the corresponding value sequence. Similarly, for instance states, σinst [~y 7→~v] is
defined by σinst [~x 7→~vx] where ~x is the sequence of the instance variables in ~y
and ~vx the corresponding value sequence.

2.2 Operational Semantics

Computation steps of a program are represented by labeled transitions between
global configurations. The operational semantics is given in two stages: first we
describe the behavior of a single instance and afterwards the combined behavior
of sets of instances, both as labeled transition system between instance configu-
rations, respectively between global configurations.

To be able to synchronize communicating partners in the parallel composition
semantics, we have to identify local configurations being in caller-callee relation-
ship. To do so, we extend the local state domains with the variables callerobj

and id of types Object and Object× Int, resp., which may not occur in programs.
The value of callerobj stores the identity of the caller object in the local state of
the callee. We identify a local configuration by the thread to which it belongs
together with its position in the thread’s call chain. Thus the first component
of id identifies the executing thread via the object in which it has begun its ex-
ecution and the second component stores the position of the local configuration
in the call chain of the thread. Note that this identification is unique, since at
most one thread can begin its execution in a single object.

Using these identities, we define the predicates callee(α, n) = (α, n + 1) and
caller (α, n + 1) = (α, n), for all n ≥ 0. For the first local configuration in a call
chain we define caller (α, 0) = (nil , 0). With the above identification mechanism
we can express that two local configurations belong to the same thread using the
predicate samethread((α1, n1), (α2, n2)) iff α1 = α2. That a local configuration
occurs earlier than another in the call chain of a single thread, is captured by
(α1, n1) < (α2, n2) iff α1 = α2 and n1 < n2.

As synchronization labels, we distinguish β!m(α, id , ~v) and β?m(α, id , ~v) for
sending and receiving method calls, respectively, where method m of the callee
object β is invoked with actual parameters ~v, and where the local configuration
of the caller executing in the object α is identified by id . In analogy, we use
α!(β, id , v) and α?(β, id , v) for sending, resp. receiving the value v exchanged
when returning to α from a method of β executed in the local configuration
identified by id . For methods without a return value the value v is omitted.
For a terminating thread, the caller object to which the control returns is given
by the value nil . Though the fact that a thread terminates is captured by the
label nil !(β, id ).5 Creating a new instance α is indicated by the label new(α).

5 A thread of a well-typed program cannot return a value when terminating, since
the start-method is of type Void. Therefore, v is left out of the label. Note also,
that a terminating thread will send as id the value (β, 0), since terminating means,
popping-off from topmost frame with depth 0 from the call-stack.
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Finally, we use τ to label internal steps. We write Lab for the set of labels
with l as typical element. Furthermore, we will use lcom as typical element for
labels representing communication, i.e., different from τ and all object creation
labels new(α), and write sender (lcom) and receiver(lcom) to denote the sender,
respectively the receiver, of the message, as fixed in lcom .

Now, Tables 2 and 3 define the transition relation −→l between instance
configurations and Table 4 between global configurations. For notational conve-
nience, we will later simply write −→ when leaving l unspecified.

We start with the rules for transitions of a single instance. Assignments to
instance and local variables update the instance state, respectively the local state
(cf. rules Assinst and Assloc). Executing u := newc, as shown in rule New,6 has
no local effect except that it stores the new object’s identity in the local variable
u. The creation of the new object itself and the initialization of its instance
variables is dealt with at the global level. The predicate fresh expresses that
a given configuration does not refer to an object identity, i.e., that the object
identity is fresh in the given context.

Objects communicate by method calls, i.e., method invocation and the corre-
sponding returning of the result. For both types of communication, an instance
can play the role of the sender or of the receiver, and the transitions carry appro-
priate labels to define the composed behavior. For method invocation, the caller
determines the callee object and evaluates the method arguments locally. When
receiving a method invocation, the callee object creates a new local configura-
tion to evaluate the body. The identity of the caller object and the caller local
configuration is communicated together with the actual parameter values via the
synchronizing label to the callee object as show in the Call-rules of Table 2.7

The handing-back of the return value, using the caller/callee identification, is
described in the two Return-rules of the same table.

Different threads execute synchronized methods mutually exclusive on a given
object. So in case of a synchronized method, the invocation is successful only if
the lock is currently free, or the invocation is executed by a thread that already
possesses the lock. Whether a local configuration of a thread identified by id

is allowed to execute a method call on an instance with local configuration set
γloc, is formalized by the predicate isfree, defined as isfree(γloc , id) = true iff all
local configurations in γloc with a synchronized statement have an identity less
or equal id .

The start-method is special in two respects. First, it can effectively be invoked
only once on each object; further invocations of the start-method are without
effect.8 Secondly, its invocation gives rise to a new call chain, i.e., a new thread
of execution. Hence, the identity of the local state is initialized to (β, 0). The
local variable callerobj is set to nil , since after termination of the start-method
the whole thread terminates; thus the control will not be given back to the caller.

6 The statement newc is handled similarly but without changing the local state.
7 A rule similar to Callout not shown in the table takes care about the invocation

e0.m(~e) of methods without storing the return value.
8 In Java, an exception is thrown if the thread is already terminated.
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Assinst

(σinst , γloc ∪̇ {(η, x := e; stm)}) −→τ (σinst [x 7→[[e]]
σ
inst

,η

E
], γloc ∪̇ {(η, stm)})

Assloc

(σinst , γloc ∪̇ {(η, u := e; stm)}) −→τ (σinst , γloc ∪̇ {(η[u 7→[[e]]
σ
inst

,η

E
], stm)})

fresh((σinst , γloc ∪̇ {(η, u := new; stm)}), α)
Newout

(σinst , γloc ∪̇ {(η, u := new; stm)}) −→!new(α) (σinst , γloc ∪̇ {(η[u 7→α], stm)})

[[e0]]
σ
inst

,η

E
= β 6= nil σinst (this) = α 6= β id = η(id) ~v = [[~e]]

σ
inst

,η

E

if m = start then stm′ = stm else stm′ = return?u; stm fi
Callout

(σinst , γloc ∪̇ {(η, u := e0.m(~e); stm)}) −→β!m(α,id,~v) (σinst , γloc ∪̇ {(η, stm′)})

σinst (this) = β ∈ Valc β 6= α ∈ ValObject modif m(~u){ body } ∈ Methc

sync(c, m) → isfree(γloc, id)

(m 6=start) → γ′

loc = {(ηinit [~u 7→~v][id 7→ callee(id)][callerobj 7→α], body)}

(m=start ∧ started(γloc, β)) → γ′

loc = ∅

(m=start ∧ ¬started(γloc, β)) → γ′

loc = {(ηinit [id 7→(β, 0)][callerobj 7→ nil ], body)}
Callin

(σinst , γloc) −→β?m(α,id,~v) (σinst , γloc ∪̇ γ′

loc)

σinst (this) = β 6= α = η(callerobj) id = η(id) 6= (β, 0) v = η(u)
Returnout

(σinst , γloc ∪̇ {(η, return u)}) −→α!(β,id,v) (σinst , γloc)

σinst (this) = α 6= β ∈ ValObject id = η(id)
Returnin

(σinst , γloc ∪̇ {(η, return?u; stm)}) −→α?(β,callee(id),v)

(σinst , γloc ∪̇ {(η[u 7→ v], stm)})

σinst (this) = β η(callerobj) = nil

Terminate

(σinst , γloc ∪̇ {(η, return)}) −→nil !(β,id) (σinst , γloc ∪̇ {(η, ε)})

Table 2. Operational semantics of an instance
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Returning from a start-method or from the initial invocation of the main-method
is handled by the rule Terminate, where the local configuration remains in the
local configuration set with an empty statement, representing the terminated
thread.

Left-out from Table 2 is the semantics of self-calls and self-returns; they are
handled separately in Table 3 as they are local to one instance. Consequently,
the steps are all labeled with τ . The rule Callself is the counter-piece for the
pair Callout and Callin when caller and callee object match, and similar for
returning. Note that the start-method can be invoked by a self-call (Startself

and Start
skip
self ). Nevertheless we do not need a corresponding rule for returning

from a start-method, since it does not return to the caller.

[[e0]]
σinst ,η

E
= α = σinst (this) ∈ Valc id = η(id)

modif m(~u){ body } ∈ Methc m 6= start sync(c, m) → isfree(γloc, id)

η′ = ηinit [~u 7→[[~e]]
σinst ,η

E
][id 7→ callee(id)][callerobj 7→α]

Callself

(σinst , γloc ∪̇ {(η, u := e0.m(~e); stm)}) −→τ

(σinst , γloc ∪̇ {(η, return?u; stm), (η′, body)})

σinst (this) = η(callerobj) η(id) = callee(η′(id))

η′′ = η′[u 7→[[e]]
σ
inst

,η

E
]

Returnself

(σinst , γloc ∪̇ {(η, return e), (η′, return?u; stm)}) −→τ (σinst , γloc ∪̇ {(η′′, stm)})

[[e0]]
σ
inst

,η

E
= β = σinst (this) ∈ Valc ¬started(γloc ∪̇ {(η, e0.start(); stm)}, β)

η′ = ηinit [id 7→(β, 0)][callerobj 7→ nil ]
Startself

(σinst , γloc ∪̇ {(η, e0.start(); stm)}) −→τ (σinst , γloc ∪̇ {(η, stm), (η′, bodystart,c)})

[[e0]]
σinst ,η

E
= β = σinst (this) started(γloc ∪̇ {(η, e0.start(); stm)}, β)

Start
skip

self

(σinst , γloc ∪̇ {(η, e0.start(); stm)}) −→τ (σinst , γloc ∪̇ {(η, stm)})

Table 3. Operational semantics of an instance (2)

We elide the rules for the remaining sequential constructs —sequential com-
position, conditional statement, and iteration— since they are standard.

As for the composed behavior of more than one object, the rules are displayed
in Table 4. Two instances can perform their steps interleaved, when not forced
to synchronize. A component can proceed by an internal step independently of
other instances (cf. rule Interleaveτ ). For communication, the sender object
proceeds on its own by communicating to the environment, if the receiver of the
message is not contained in the system; dually for when receiving a communi-
cation from the environment, the sender must not be resident in the system (cf.
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rule Interleavecomm). If both communication partners are existing within the
system, they synchronize on the common label (rule Synccall and Syncreturn).
We have three rules for instantiation: Rule Newout creates a new object with-
out including it into the configuration. A new instance configuration in its initial
state is added in rule Newin . Finally, synchronization for creator and created
configurations is formulated in rule Syncnew .

Since global configurations are defined as sets, parallel composition means set
union, and thus ‖ is symmetric and associative. To maintain uniqueness of object
identities in global configurations, we throughout assume in writing γ1 ‖ γ2 that
domObject(γ1) and domObject(γ2) are disjoint.

(σinst , γloc) −→l (σ′

inst , γ′

loc)
Base

{(σinst , γloc)} −→l {(σ′

inst , γ′

loc)}

γ1 −→τ γ′

1
Interleaveτ

γ1 ‖ γ2 −→τ γ′

1 ‖ γ2

γ1 −→lcom γ′

1 receiver(lcom) /∈ dom(γ2) sender(lcom) /∈ dom(γ2)
Interleavecomm

γ1 ‖ γ2 −→
lcom γ

′

1 ‖ γ2

γ1 −→β!m(α,id,~v) γ′

1 γ2 −→β?m(α,id,~v) γ′

2
Synccall

γ1 ‖ γ2 −→τ γ′

1 ‖ γ′

2

γ1 −→α!(β,id,v) γ′

1 γ2 −→α?(β,id,v) γ′

2
Syncreturn

γ1 ‖ γ2 −→
τ

γ
′

1 ‖ γ
′

2

fresh(γ, α)
Newin

γ −→?new(α) γ ‖ {(σinit
inst [this 7→α], ∅)}

γ1 −→!new(α) γ′

1 fresh(γ2, α)
Newout

γ1 ‖ γ2 −→
!new(α)

γ
′

1 ‖ γ2

γ1 −→!new(α) γ′

1 γ2 −→?new(α) γ′

2
Syncnew

γ1 ‖ γ2 −→τ γ′

1 ‖ γ′

2

Table 4. Parallel composition

We express by γ −→∗
π γ′ that there is a computation leading from γ to γ′,

where π is the sequence of the transition labels of the given computation without
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the internal τ labels. We use ε for the empty label sequence. Let furthermore
Π(γ) be the set of all label sequences π for which γ −→∗

π γ′.

The non-compositional semantics in [4] is defined by transitions between
global configurations 〈T, σ〉, where σ is a global state of type Valc ⇀ Σinst as-
signing an instance state to each existing object, and where T is a set containing
the stacks of all executing threads. To relate the non-compositional semantics to
the compositional one, let for a global configuration γ, σ(γ) denote the global
state with domain dom(σ) = dom(γ) assigning to each existing object the same
instance state as defined by γ, and let T (γ) be the set containing all local con-
figurations in γ, extended with the information, in which instance the execution
takes place, where the local configurations of each single thread are grouped into
a stack structure. Let =⇒ denote transitions of the non-compositional seman-
tics, and =⇒∗ its transitive closure. The equivalence of the compositional and
the non-compositional semantics is stated in the following lemma:

Lemma 1 (Equivalence).

γ −→∗
ε γ′ iff 〈T (γ), σ(γ)〉 =⇒∗ 〈T (γ′), σ(γ′)〉.

An interesting property of the parallel composition semantics is, that is abstracts
from the internal computation steps of an object. That means that we can re-
place in a global computation of a program the local computation of an object
by another local computation, which generates the same label trace, i.e., which
has the same external behavior. In this way, we abstract on the one hand from
the internal non-determinism, caused by scheduling for interleaving between dif-
ferent threads within the same object. On the other hand, we abstract from
the internal implementation of objects: A sufficient condition for the equivalence
of the external behaviour of two objects is, that their methods have the same
input-output behaviour. The presented compositional semantics can be seen as
a first step towards a fully abstract compositional semantics for a class-based
concurrent language.

Lemma 2 (Compositionality). Assume Π(γ1) = Π(γ2). Then

γ1 ‖ γ −→∗
π γ′

1 ‖ γ′ iff γ2 ‖ γ −→∗
π γ′

2 ‖ γ′.

It is worthwhile to point out what makes full abstractness fail for the seman-
tics as given implicitly here as sets of labeled traces (even if we haven’t both-
ered to spell out the reference semantics and the notion of observability against
which to gauge the trace semantics). First, the semantics contains enough in-
formation to be compositional, but is unnecessarily detailed, for instance with
respect to the object identifiers. Secondly, not all traces are actually realizable
by a configuration, the most obvious reason being that calls and returns must
be “parenthetic”.
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3 Conclusion

The paper presented a compositional operational semantics of JavaMT, where
the semantics of a system is described compositionally from the behavior of its
instances. The semantics coincides with the one presented non-compositionally in
[4]. The formalization presented here, i.e., the thread-identification mechanism,
the design of the operational rules, the information added to the labels etc.,
was inspired by the modular proof-system of [4]. We consider this work as an
important step towards a compositional proof-system for JavaMT.

A formal semantics covering all of the Java-language, i.e., including multi-
threaded execution, and its virtual machine is given in [14] in terms of abstract
state machines. Similarly, [15] presents a semantics based on ASMs. A structural
operational semantics of multithreaded Java, based on events, can be found in
[7, 6]. The work is closer to Java’s memory model than our interleaving seman-
tics in distinguishing between the main memory and the local memories of the
threads.

Apart from studies focusing on (sublanguages of) Java, there exists a vast
body of calculi combining objects and concurrency, often in the tradition of the
object calculi of [1] or of process calculi. We only mention here the concurrent
object calculus [8][9], as it offers a combination of multithreading concurrency,
objects, thread creation and aliasing similar to what is featured in Java. For the
concurrent object calculus, [12] present a fully-abstract trace semantics for may-
testing. One crucial difference to our setting, which influences also the notion
of external behavior, is that those languages are object -based, and not based on
classes.

As further work, we plan to extend JavaMT by further constructs, especially
adding further synchronization primitives for monitor synchronization such as
wait and notify, but also extending the language in the direction of “object-
orientedness”, adding inheritance, subtyping, and other concepts featured in
Java. In connection with JavaMT’s Hoare style proof theory, for instance ex-
plored in [2], this work on compositional semantics is of interest as well, because
at the heart of the completeness proof for the modular proof system lies an
augmentation with auxiliary variables capturing the compositional semantics.
Besides that, on the more practical side, the Hoare-style proof theory of JavaMT

is being implemented in a verification tool [3] which generates verification con-
ditions for the PVS theorem prover. Ultimately, we consider the compositional
semantics as an important step towards a compositional proof theory.
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