Towards full abstraction
for class-based, multithreaded OO

— Work in progress —
Munchen, February 2003

tfrrr Full abstraction/0O0 — p.1

tfrrr

Introduction, full-abstraction
object-based and class-based calculus
Issues for full abstraction

conclusion

Overview

Full abstraction/OO — p.2

Object & class based languages

* class-based oo
— mainstream of oo (C*™*, Smalltalk, Java, ...)

— class as unit of code/reuse (inheritance) and (often)
as unit of abstraction (type)
* object-based
— no classes, no (class)-inheritance
— dynamic method update

tfrrr Full abstraction/O0 — p.3

tfrrr

Full abstraction: starting point

basically: comparison between 2 semantics, resp. 2

Implied notions of equality

given a reference semantics, the 2nd one is

— neither too abstract = sound
— nor too concrete = complete

Milner [Mil77], Plotkin [Plo77] for A-calculus/LCF

various variations of the theme

Full abstraction/OO — p.4

tfrrr

Full abstraction: standard setup

reference semantics:
* must be natural

* easy to define

* non-compositional

‘ contextual, observational I

context C|_|= “program with a hole”

filling the hole with a part of a program (component C):
complete program C|[C]

what is a context/component?: depends on the
language/syntax (sequential/parallel/functional . ..
contexts)

Full abstraction/OO - p.5

F-A: standard setup (cont’d)

e given a closed program P: O(P) = observations
= observational equivalence:

C1=ppsCo Iff VC. O(Clc1]) = O(Cles))

* given a denotational semantics |_|p, resp. the implied
equality =p

= =p IS fully abstract wrt. =,,:

tfrrr —O0 bS D Full abstraction/OO — p.6

Object calculus: informal

e formal model(s) of oo languages

* in the tradition of the A-calculi, process calculi . ..
* more specifically:
— object-calculi of Abadi/Cardelli [AC96]
— m-calculus: processes, parallelism, name-passing
IMPWO92][SWO01]
— v-calculus: A-calc. with name creation (references)
respectively its concurrent version [PS93][GH98]

tfrrr Full abstraction/O0 — p.7

Concurrent v-calculus: Syntax

e program = “set” of named threads and objects running
in parallel: n(t) and nll; = mq,... I = my]
e dynamic scoping of names
— vn:T. (Cy || Cy)
— v acts as binder: a-equivalence
— communication of names changes the scope
(“scope extrusion”)
* methods = functions with specific “self’-parameter &

e active entities: threads
— sequencing + local, static scoping: letx = eint
— thread creation

thrrr %In the presence of subtyping, the parameter would be late-bouné asvciovoo - ps

Concurrent v-calculus: Syntax

P = O0|P| P|v(nT).P|n|O]|n(t) components

O = Il=m,...,l=m object

m o= cnT)\NxT,... zT).t method

t = v|stop|letzT =eint thread

e = t|ifv=wvtheneelsee expressions
| vld(v,...,v) | nl<=m
| new|O] | new(t) | currentthread

v o= x|n values

tfrrr Full abstraction/O0 — p.8

Adding classes

e class: just like objects:
— named collection of methods n|/; = my,...)
— Instantiated by name, not structure: new n !

— class names are not first-order citizens, 1.e., not
subject to
- v-binding (= hiding)
- storing, sending, receiving etc.

* method update not used in class-based setting

tfrrr Full abstraction/OO — p.9

Adding classes

P == 0|n(O)|n{t)|P| P|R program (stat.)
R = O|R||R|v(nT).R|n|O]|n(t) program (dyn.)
O = Il=m,...,l=m object
m o= sn:T) X x:T,... xT)t method

t == w|stop|letxT =eint thread

e == t|ifv=wvtheneelsee|v.l(v,...,v) expression

| newn | newn(t)
v o= x|n values

tfrrr Full abstraction/OO — p.9

Semantics (1)

* given in various “stages”
* internal (configuration-local) steps

e external, global steps, interacting with the
environment

e computation steps modulo a-conversion
e typed operational semantics

tfrrr Full abstraction/O0 — p.10

Internal steps

* black: objects of the component
* green: objects of the environment

tfrrr Full abstraction/O0O — p.11

Internal steps

* 0; creates an internal object o3 (assume: thread n
VISItS 01)

c|(O) || n{let x:T = new cint) ~
c(O) || vos:T. (n{let x:T = oz int) || 03|0O].)

tfrrr Full abstraction/O0O — p.11

Semantics: Internal steps

* 4 exemplary axioms

e confluent (~) and non-confluent (=) internal steps

e for CALL;: O.l(0)(v) int: parameter passing, and
especially replacing the ¢-bound self-parameter by o.

n{let x:'T' = vint) ~ n(t|v/x|) RED
n{let xo:Ty = (let x1:T1 = ey ine)int) ~ n{let x1:T1 = ey in(let x9:To = eint)) LET
c(O) || n{let x:T" = new cint) ~ c[O) || vo:T. (n{let x:T = oint) || o[O].) NEWO;,

o[O] || n{let x:T = 0.1(¥) int) — o[O] || n{let z:T = O.1(0)(V) int) CALL;

tfrrr Full abstraction/0O0 — p.12

Semantics: External steps

e “typed” operational semantics
* |.e., labeled steps between typing judgments:
AFP:0

— A =*assumptions”
- names assumed present in the rest

— O = “commitments”
- names guaranteed to the rest
e steps labeled by
— thread id
— communicated values
— kind of communication (!/?, call/return)

tfrrr Full abstraction/O0 — p.13

External steps (2)

* e.g.: outgoing calls and incoming returns

oA
n(call 0.1(v))!

>AF C | n(let 2:T = block int) : ©

C

At C || n{letxT = o.l(V)int) : O

ANOFv: T

n{ return(v))?

SAFC | n(t[v/x]) - ©

RETURNIN

At C || n{letx:T = block int) : ©

tfrrr Full abstraction/O0 — p.14

External steps: Scoping

* names
— for object and thread id’s

— can be generated freshly: “new”
— valid within dynamic scopes
— up-to renaming
e dynamic, i.e.,
— names can be sent around: scope is extended
— also: across component interface
— bound exchange of names: “v”

tfrrr Full abstraction/O0 — p.15

External steps: Scoping

Internal os IS sent outside, as argument to method call at o,

02

tfrrr Full abstraction/O0 — p.16

External steps: Scoping

00 € A

CALLOuUT

(01 call 02.1(03))!

A+ n{oy.l(03);t) : ©,05:T5 — A n(block;t) : ©,05:T3

vosz. n{o1 call 02.l1(03))!

OuT,

\ F vos.(n{os.l(03);t) || 03]...]) : ©

A n(block;t) || o3]...]: ©,03:T3

tfrrr Full abstraction/O0 — p.16

External steps: Object creation

* instantiation of a class in the context
e external request for instantiation of component class

e scope of the new id: immediate scope extrusion
= extension of A, resp. ©

ceA
AFn(letw:T = newcint) : © - oo Tcreales 931 A, 0g:T F n{let x:T = o3 int) : ©

NEWO

Cle)=[0] ceO
AFC @ Lot 05t AL || 04[0] : ©,05:T

NEWI

tfrrr Full abstraction/00 — p.17

F-A In an object-based conc. setting

* [JROZ]: for the concurrent v-calculus

* notion of observation: may-testing equivalence. u
Formalized here: whether a specific context method
(“o.success()”) is called

 component = set of parallelly running objects + threads
e observable: message exchange at the boundary

= fully abstract observable behavior = communication
traces of the labels of the OS

actually: they use may-preorder.

tfrrr Full abstraction/OO — p.18

What changes?

 classes are the units of exchange: C[n[O)]!

* |.e., Internal and external classes
e component objects can instantiate external classes

‘can one use these objects for “observations”?'

e |nstances of external classes,
— Instantiation itself is unobservable
— comm. between component and object observable

— but:
- their existence is (principally) unknown to the rest
of environment (£ OC),
- unless the component gives away their identity!

tfrrr Full abstraction/O0 — p.19

Consequences/Completeness: ldea

e starting point: component’s semantics = set of traces
* Expressibility
e 2 problems for completeness (apart from many
technicalities)
1. expressibility =: what are legal traces?
2. what can be observed/distinguished?

tfrrr Full abstraction/OO — p.20

Legal traces

* For completeness: component must realize all
potential traces but not more!

* various aspects

— “global™: call-return discipline =
balanced/“parenthetic” (per thread)

— “local”
- no name clashes: scoping/renaming
- well-typedness
- iImpossible name communication (input)

tfrrr Full abstraction/O0 — p.21

Impossible incoming names?

* Assume: component instantiates two external classes
(into 0, and o3)

* can o; call the component with o; as argument?

tfrrr Full abstraction/O0 — p.22

Impossible incoming names?

e trace labelled
v01.05createsoq!. vos.oscreatesos!. n{oy call 05.1(03))7

Impossible!

tfrrr Full abstraction/O0 — p.22

What can be distinguished?

e situation as before:
0, and os created externally by component

tfrrr Full abstraction/O0 — p.23

What can be distinguished?

e instantiation itself is not observable
e communication with the 2 objects is observable
e put!: existence of o; unknown to o3, and vice versa

= observable are communication traces from/to o,
and from/to o;

\ but not their mutual order! I

= Separated trace sets

tfrrr Full abstraction/O0 — p.23

* 0, and os
— cannot occur in the same label and
— cannot determine the order of events mutually,

because
they don’t “know” of each other

* if “connected”, they
— could occur in the same label and
— could (in principle) cooperate to observe the order

* connectivity or “acquaintance” Is dynamic

* the only one to make o, and o3 acquainted: the
component

tfrrr Full abstraction/O0 — p.24

tfrrr Full abstraction/O0 — p.25

n{o2 call 01.l1(03))!

A nlor.l(03);t) || 02]...]: ©, 00T
A n(block;t) || 02]...] : ©,09:T5

* no scope extrusion from perspective of the component

tfrrr Full abstraction/O0 — p.25

* scope enlarged

* 0, kKnows o4
= 05 could know now oy, toO

tfrrr Full abstraction/O0 — p.25

What can be observed, then?

* observers: not just one static outside context but

e dynamic cliques of acquainted objects
— existing cligues only grow larger: merging
— new ones can be created by the component

e for full-abstraction:
— traces per clique, partial-order semantics

— worst-case: “conspiracy” of environment
* acquaintance = equivalence relation on object id’s

= component keeps track of (the worst-case) of cligues
= set of equations; clique: implied equational theory

* e.g., sending o; to o9, adds o; — o0, to the equations

tfrrr Full abstraction/O0 — p.26

tfrrr

Approximating the mutual knowledge

component keeps book about “whom it told what”

transitions

EANFC:0 ———E;AFC:

ECAXx(A+0)
written oy < o0, :

= pairs of objects

(_)/

worst case: equational theory implied by E (on A):

(foro, € ©: E+ 01 =

E|_01/:/02

y 02)

Full abstraction/OO — p.27

Outgoing communication

e outgoing call to o,, = callee now may know the
arguments

= extend £

OQGA E,:E+(02‘—>\7)
E; A C || n{let 2:T = 01 02.1(V) int) : ©

n(o1 call 02.1(7))!

E'; A+ C || n(let x:T = block?oy int) : ©

* same when an argument is sent v-bound (where © is
extended, as well)

tfrrr Full abstraction/O0 — p.28

Incoming communication

e F unchanged (in first approx.)
* checking for legality:
IS, according to £, the incoming label possible?

A n: thread,© F o9 (V) : T 01 € A 0y € 0

ElFoy«—;= o0, Frv«— =0, VEFVv=o0;

CALL

01 call 02.1(V))?

E; A, n:thread - C : © n<

» E;AFC | n(letx:T = ...) : n: thread, ©

tfrrr Full abstraction/O0 — p.29

Incoming bound values

* incoming v-bound value
= value new to the component (i.e., not (yet) in A)

vog:Tavo1:T1.n{o1 call 02.1(03))7

E-AFC:06

tfrrr

Full abstraction/OO — p.30

Incoming bound values

* incoming v-bound value
= value new to the component (i.e., not (yet) in A)
o A/ = A, 033T3

vo1:T1.n{o1 call 03.l(03))7

E:AN'FC:06

vos:T3vo1:T1.n{o1 call 02.1(03))7

E-AFC:06

tfrrr

Full abstraction/OO — p.30

Incoming bound values

* incoming v-bound value
= value new to the component (i.e., not (yet) in A)

e A" = A/,OllTl, E' = E,Ol — 02,071 — Og

n{oy call 02.1(03))7

E'A"FC: 0

vo1:T1.n{o1 call 03.l(03))?

E:AN'FC:06

vos:T3vo1:T1.n{o1 call 02.1(03))7

E-AFC:06

tfrrr

Full abstraction/OO — p.30

Incoming bound values

* incoming v-bound value
= value new to the component (i.e., not (yet) in A)

OQE@ 01EA”
E//|_01/:/03 E//|_02 —, = 01

n{o1 call 02.1(03))?

E""A"+C:0

vo1:T1.n{o1 call 03.l(03))?

E:AN'FC:06

vos:T3vo1:T1.n{o1 call 02.1(03))7

E-AFC:06

tfrrr

Full abstraction/OO — p.30

Incoming bound values

* incoming v-bound value
= value new to the component (i.e., not (yet) in A)

026@ 01€A”
E"F oy = o4 E'"F o0y ;= 04

n{o1 call 02.1(03))?

E"A"FC:0 B A

vo1:T1.n{o1 call 03.l(03))?

E:AN'FC:06 s BN OO

vos:T3vo1:T1.n{o1 call 02.1(03))7

E-AFC:06

tfrrr

s BN OO

Full abstraction/OO — p.30

Summary

* in the setting of [JRO2] = may-testing equivalence
— exactly one kind of observation (e.g., “success”)
— terminal i.e., not repeated observation

= trace semantics gets weakened into a partial order
semantics, relative to

e dynamic cligues of connectivity of objects
* note: we don’t allow to observe (e.g.) divergence!

e note: If we allowed

— different, repeated observations (for instance
success-method + divergence), or

— If we had a global shared variables (e.g., stdout)
we are back In linear trace semantics

tfrrr Full abstraction/O0 — p.31

Status

e operational semantics clear, a generalization of the
concurrent v-calc.

* type system formalized

e exact formulation of the partial-order trace semantics
(and proofs ...)

tfrrr Full abstraction/O0 — p.32

tfrrr

Conclusions

are classes good composition units?

what about cloning?

— cloning means: obtaining an identical copy
the object identity) of an object “on the run”

— tree semantics
— bisimulation equivalence instead of traces

lock-sychronization
subtype polymorphism & subclassing

technology transfer to the proof systems,
compositionality

(up-to

Full abstraction/OO — p.33

References

[AC96]

[AMdBOO]

[AMdBdRS02a]

[AMdBdRS02b]

[GHO8]

[JRO2]

Martin Abadi and Luca Cardelli. A Theory of Objects. Mono-
graphs in Computer Science. Springer-Verlag, 1996.

Erika AbrahAm-Mumm and Frank S. de Boer. Proof-outlines
for threads in Java. In Catuscia Palamidessi, editor, Pro-
ceedings of CONCUR 2000, volume 1877 of Lecture Notes
in Computer Science. Springer-Verlag, August 2000.

Erika Abraham-Mumm, Frank S. de Boer, Willem-Paul
de Roever, and Martin Steffen. A compositional opera-
tional semantics for Java,; 7. Technical Report TR-ST-02-
2, Lehrstuhl fir Software-Technologie, Institut fur Informatik
und Praktische Mathematik, Christian-Albrechts-Universitat
zu Kiel, May 2002.

Erika Abraham-Mumm, Frank S. de Boer, Willem-Paul
de Roever, and Martin Steffen. Verification for Java’'s reen-
trant multithreading concept. In Mogens Nielsen and Uffe H.
Engberg, editors, Proceedings of FoSSaCS 2002, volume
2303 of Lecture Notes in Computer Science, pages 4-20.
Springer-Verlag, April 2002. A longer version, including the
proofs for soundness and completeness, appeared as Tech-
nical Report TR-ST-02-1, March 2002.

Andrew D. Gordon and Paul D. Hankin. A concurrent object
calculus: Reduction and typing. In Uwe Nestmann and Ben-
jamin C. Pierce, editors, Proceedings of HLCL '98, volume
16.3 of Electronic Notes in Theoretical Computer Science. El-
sevier Science Publishers, 1998.

Alan Jeffrey and Julian Rathke. A fully abstract may testing
semantics for concurrent objects. In Proceedings of LICS '02.
IEEE, Computer Society Press, July 2002.

33-1

[Mil77]

[MPW92]

[Plo77]

[PS93]

[SWO1]

Robin Milner. Fully abstract models of typed A-calculi. Theo-
retical Computer Science, 4:1-22, 1977.

Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, part I/ll. Information and Computation,
100:1-77, September 1992.

Gordon Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223-255, 1977.

A. M. Pitts and D. B. Stark. Observable properties of
higher-order functions that dynamically create local names,
or: What's new. In Andrzej M. Borzyszkowski and Ste-
fan Sokotowski, editors, Proceedings of MFCS 93, volume
711 of Lecture Notes in Computer Science, pages 122-141.
Springer-Verlag, September 1993.

Davide Sangiorgi and David Walker. The 7r-calculus: a The-
ory of Mobile Processes. Cambridge University Press, 2001.

33-1

	Overview
	Object & class based languages
	Full abstraction: starting point
	Full abstraction: standard setup
	F-A: standard setup (cont'd)
	Object calculus: informal
	Concurrent $
u $-calculus: Syntax
	Adding classes
	Semantics (1)
	Internal steps
	Semantics: Internal steps
	Semantics: External steps
	External steps (2)
	External steps: Scoping
	External steps: Scoping
	External steps: Object creation
	F-A in an object-based conc. setting
	What changes?
	Consequences/Completeness: Idea
	Legal traces
	Impossible incoming names?
	What can be distinguished?
	
	
	What can be observed, then?
	Approximating the mutual knowledge
	Outgoing communication
	Incoming communication
	Incoming bound values
	Summary
	Status
	Conclusions

