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Overview

• introduction, full-abstraction
• object-based and class-based calculus
• issues for full abstraction
• conclusion
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Object & class based languages

• class-based oo
– mainstream of oo (C++, Smalltalk, Java, . . . )
– class as unit of code/reuse (inheritance) and (often)

as unit of abstraction (type)
• object-based

– no classes, no (class)-inheritance
– dynamic method update
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Full abstraction: starting point

• basically: comparison between 2 semantics, resp. 2
implied notions of equality

• given a reference semantics, the 2nd one is
– neither too abstract = sound
– nor too concrete = complete

• Milner [Mil77], Plotkin [Plo77] for λ-calculus/LCF
• various variations of the theme
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Full abstraction: standard setup

• reference semantics:
• must be natural
• easy to define
• non-compositional

⇒
contextual, observational

• context C[_]= “program with a hole”
• filling the hole with a part of a program (component C):

complete program C[C]

• what is a context/component?: depends on the
language/syntax (sequential/parallel/functional . . .
contexts)
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F-A: standard setup (cont’d)

• given a closed program P : O(P ) = observations

⇒ observational equivalence:

c1≡obsc2 iff ∀C. O(C[c1]) = O(C[c2])

• given a denotational semantics [[_]]D, resp. the implied
equality ≡D

⇒ ≡D is fully abstract wrt. ≡obs :

≡obs = ≡D Full abstraction/OO – p.6



Object calculus: informal

• formal model(s) of oo languages
• in the tradition of the λ-calculi, process calculi . . .

• more specifically:
– object-calculi of Abadi/Cardelli [AC96]
– π-calculus: processes, parallelism, name-passing

[MPW92][SW01]
– ν-calculus: λ-calc. with name creation (references)

respectively its concurrent version [PS93][GH98]
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Concurrent ν-calculus: Syntax

• program = “set” of named threads and objects running
in parallel: n〈t〉 and n[l1 = m1, . . . , lk = mk]

• dynamic scoping of names
– νn:T . (C1 ‖ C2)

– ν acts as binder: α-equivalence
– communication of names changes the scope

(“scope extrusion”)
• methods = functions with specific “self”-parameter a

• active entities: threads
– sequencing + local, static scoping: let x = e in t

– thread creation

aIn the presence of subtyping, the parameter would be late-bound.Full abstraction/OO – p.8



Concurrent ν-calculus: Syntax

P ::= 0 | P ‖ P | ν(n:T ).P | n[O] | n〈t〉 components
O ::= l = m, . . . , l = m object
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expressions
| v.l(v, . . . , v) | n.l ⇐ m

| new [O] | new〈t〉 | currentthread

v ::= x | n values
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Adding classes

• class: just like objects:
– named collection of methods n[(l1 = m1, . . . )]

– instantiated by name, not structure: new n !
– class names are not first-order citizens, i.e., not

subject to
- ν-binding (= hiding)
- storing, sending, receiving etc.

• method update not used in class-based setting
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Adding classes

P ::= 0 | n[(O)] | n〈(t)〉 | P ‖ P | R program (stat.)
R ::= 0 | R ‖ R | ν(n:T ).R | n[O] | n〈t〉 program (dyn.)
O ::= l = m, . . . , l = m object
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | v.l(v, . . . , v) expression
| new n | new n〈t〉

v ::= x | n values
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Semantics (1)

• given in various “stages”
• internal (configuration-local) steps
• external, global steps, interacting with the

environment
• computation steps modulo α-conversion

• typed operational semantics
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Internal steps

o1

o′1

o2

• black: objects of the component
• green: objects of the environment
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Internal steps

o1

o′1

o2

o3

• o1 creates an internal object o3 (assume: thread n
visits o1)

c[(O)] ‖ n〈let x:T = new c in t〉 

c[(O)] ‖ νo3:T. (n〈let x:T = o3 in t〉 ‖ o3[O]. )
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Semantics: Internal steps

• 4 exemplary axioms

• confluent ( ) and non-confluent ( τ
−→) internal steps

• for CALLi: O.l(o)(~v) in t: parameter passing, and
especially replacing the ς-bound self-parameter by o.

n〈let x:T = v in t〉 n〈t[v/x]〉 RED

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 n〈let x1:T1 = e1 in(let x2:T2 = e in t)〉 LET

c[(O)] ‖ n〈let x:T = new c in t〉 c[(O)] ‖ νo:T. (n〈let x:T = o in t〉 ‖ o[O]. ) NEWOi

o[O] ‖ n〈let x:T = o.l(~v) in t〉
τ
−→ o[O] ‖ n〈let x:T = O.l(o)(~v) in t〉 CALLi
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Semantics: External steps

• “typed” operational semantics
• i.e., labeled steps between typing judgments:

∆ ` P : Θ

– ∆ = “assumptions”
- names assumed present in the rest

– Θ = “commitments”
- names guaranteed to the rest

• steps labeled by
– thread id
– communicated values
– kind of communication (!/?, call/return)
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External steps (2)

• e.g.: outgoing calls and incoming returns

o in ∆ CALL

∆ ` C ‖ n〈let x:T = o.l(~v) in t〉 : Θ
n〈 call o.l(~v)〉!
−−−−−−−−→∆ ` C ‖ n〈let x:T = block in t〉 : Θ

; ∆,Θ ` v : T RETURNIN
∆ ` C ‖ n〈let x:T = block in t〉 : Θ

n〈 return(v)〉?
−−−−−−−−→∆ ` C ‖ n〈t[v/x]〉 : Θ
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External steps: Scoping

• names
– for object and thread id’s
– can be generated freshly: “new ”
– valid within dynamic scopes
– up-to renaming

• dynamic, i.e.,
– names can be sent around: scope is extended
– also: across component interface
– bound exchange of names: “ν”
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External steps: Scoping

internal o3 is sent outside, as argument to method call at o2

o1

o′1

o2

o3
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External steps: Scoping

o1

o′1

o2

o3

o2 ∈ ∆
CALLOUT

∆ ` n〈o2.l(o3); t〉 : Θ,o3:T3

n〈o1 call o2.l(o3)〉!
−−−−−−−−−−→ ∆ ` n〈block ; t〉 : Θ, o3:T3 OUT2

∆ ` νo3.(n〈o2.l(o3); t〉 ‖ o3[. . . ]) : Θ
νo3. n〈o1 call o2.l(o3)〉!
−−−−−−−−−−−−−→ ∆ ` n〈block ; t〉 ‖ o3[. . . ] : Θ,o3:T3
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External steps: Object creation

• instantiation of a class in the context
• external request for instantiation of component class
• scope of the new id: immediate scope extrusion

⇒ extension of ∆, resp. Θ

c ∈ ∆ NEWO
∆ ` n〈let x:T = new c in t〉 : Θ

ν o3:T.creates o3!
−−−−−−−−−−→ ∆,o3:T ` n〈let x:T = o3 in t〉 : Θ

C(c) = [(O)] c ∈ Θ NEWI
∆ ` C : Θ

ν o3:T.creates o3?
−−−−−−−−−−→ ∆ ` C ‖ o3[O] : Θ,o3:T
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F-A in an object-based conc. setting

• [JR02]: for the concurrent ν-calculus
• notion of observation: may-testing equivalence.

Formalized here: whether a specific context method
(“o.success()”) is called

• component = set of parallelly running objects + threads
• observable: message exchange at the boundary

⇒ fully abstract observable behavior = communication
traces of the labels of the OS

actually: they use may-preorder.
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What changes?

• classes are the units of exchange: C[n[(O)]]!
• i.e., internal and external classes
• component objects can instantiate external classes

can one use these objects for “observations”?

• instances of external classes,
– instantiation itself is unobservable
– comm. between component and object observable
– but:

- their existence is (principally) unknown to the rest
of environment ( 6= OC),

- unless the component gives away their identity!
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Consequences/Completeness: Idea

• starting point: component’s semantics = set of traces
• Expressibility
• 2 problems for completeness (apart from many

technicalities)
1. expressibility⇒: what are legal traces?
2. what can be observed/distinguished?
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Legal traces

• For completeness: component must realize all
potential traces but not more!

• various aspects
– “global”: call-return discipline =

balanced/“parenthetic” (per thread)
– “local”

- no name clashes: scoping/renaming
- well-typedness
- impossible name communication (input)
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Impossible incoming names?

• Assume: component instantiates two external classes
(into o1 and o3)

o1

o2

• can o1 call the component with o3 as argument?
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Impossible incoming names?

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3

• trace labelled

νo1.o2createso1!. νo3.o2createso3!. n〈o1 call o2.l(o3)〉?

impossible!
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What can be distinguished?

• situation as before:
o1 and o3 created externally by component

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3
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What can be distinguished?

• instantiation itself is not observable
• communication with the 2 objects is observable
• but!: existence of o1 unknown to o3, and vice versa

⇒ observable are communication traces from/to o1

and from/to o3

but not their mutual order!

⇒ separated trace sets
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• o1 and o3

– cannot occur in the same label and
– cannot determine the order of events mutually,

because
they don’t “know” of each other

• if “connected”, they
– could occur in the same label and
– could (in principle) cooperate to observe the order

• connectivity or “acquaintance” is dynamic
• the only one to make o2 and o3 acquainted: the

component
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o1

o2

o3
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� � � � � �
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� � � � � �
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o1

o2

o3

o3!

∆ ` n〈o1.l(o3); t〉 ‖ o2[. . . ] : Θ, o2:T2
n〈o2 call o1.l(o3)〉!
−−−−−−−−−−→

∆ ` n〈block ; t〉 ‖ o2[. . . ] : Θ, o2:T2

• no scope extrusion from perspective of the component
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� � � � � �

� � � � � �

� � � � � �
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o1

o2

o3

• scope enlarged
• o1 knows o3

⇒ o3 could know now o1, too
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What can be observed, then?

• observers: not just one static outside context but
• dynamic cliques of acquainted objects

– existing cliques only grow larger: merging
– new ones can be created by the component

• for full-abstraction:
– traces per clique, partial-order semantics
– worst-case: “conspiracy” of environment

• acquaintance = equivalence relation on object id’s

⇒ component keeps track of (the worst-case) of cliques
⇒ set of equations; clique: implied equational theory

• e.g., sending o1 to o2, adds o1 ↪→ o2 to the equations
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Approximating the mutual knowledge

• component keeps book about “whom it told what”
• transitions

E; ∆′ ` C : Θ
a

−−−−→ E
′; ∆′ ` C ′ : Θ′

• E ⊆ ∆× (∆ + Θ) = pairs of objects
• written o1 ↪→ o2 :
• worst case: equational theory implied by E (on ∆):

E ` o1 � o2

(for o2 ∈ Θ: E ` o1 �; ↪→ o2)
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Outgoing communication

• outgoing call to o2,⇒ callee now may know the
arguments

⇒ extend E

o2 ∈ ∆ E ′ = E + (o2 ↪→ ~v)

E; ∆ ` C ‖ n〈let x:T = o1 o2.l(~v) in t〉 : Θ
n〈o1 call o2.l(~v)〉!
−−−−−−−−−−→ E

′; ∆ ` C ‖ n〈let x:T = block?o1 in t〉 : Θ

• same when an argument is sent ν-bound (where Θ is
extended, as well)
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Incoming communication

• E unchanged (in first approx.)
• checking for legality:

is, according to E, the incoming label possible?

; ∆, n: thread ,Θ ` o2.l(~v) : T o1 ∈ ∆ o2 ∈ Θ

E ` o2 ←↩;� o1 E ` v←↩;� o1 ∨ E ` v� o1

CALLIN1

E; ∆, n: thread ` C : Θ
n〈o1 call o2.l(~v)〉?
−−−−−−−−−−→ E; ∆ ` C ‖ n〈let x:T = . . .〉 : n: thread ,Θ
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Incoming bound values

• incoming ν-bound value

⇒ value new to the component (i.e., not (yet) in ∆)

E; ∆ ` C : Θ
νo3:T3νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−−→
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Incoming bound values

• incoming ν-bound value

⇒ value new to the component (i.e., not (yet) in ∆)
• ∆′ = ∆,o3:T3

E; ∆′ ` C : Θ
νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−→

E; ∆ ` C : Θ
νo3:T3νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−→
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Incoming bound values

• incoming ν-bound value

⇒ value new to the component (i.e., not (yet) in ∆)
• ∆′′ = ∆′,o1:T1, E

′′ = E,o1 ↪→ o2,o1 ↪→ o3

E
′′; ∆′′ ` C : Θ

n〈o1 call o2.l(o3)〉?
−−−−−−−−−−→

E; ∆′ ` C : Θ
νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−→

E; ∆ ` C : Θ
νo3:T3νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−→
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Incoming bound values

• incoming ν-bound value

⇒ value new to the component (i.e., not (yet) in ∆)

o2 ∈ Θ o1 ∈ ∆′′

E
′′ ` o1 � o3 E

′′ ` o2 ←↩;� o1

E ′′; ∆′′ ` C : Θ
n〈o1 call o2.l(o3)〉?
−−−−−−−−−−→

E; ∆′ ` C : Θ
νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−→

E; ∆ ` C : Θ
νo3:T3νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−→
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Incoming bound values

• incoming ν-bound value

⇒ value new to the component (i.e., not (yet) in ∆)

o2 ∈ Θ o1 ∈ ∆′′

E ′′ ` o1 � o3 E ′′ ` o2 ←↩;� o1

E ′′; ∆′′ ` C : Θ
n〈o1 call o2.l(o3)〉?
−−−−−−−−−−→ E ′′; ∆′′ ` C ′ : Θ′

E; ∆′ ` C : Θ
νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−→ E ′′; ∆′′ ` C ′ : Θ′

E; ∆ ` C : Θ
νo3:T3νo1:T1.n〈o1 call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−→ E ′′; ∆′′ ` C ′ : Θ′
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Summary

• in the setting of [JR02] = may-testing equivalence
– exactly one kind of observation (e.g., “success”)
– terminal i.e., not repeated observation

⇒ trace semantics gets weakened into a partial order
semantics, relative to
• dynamic cliques of connectivity of objects

• note: we don’t allow to observe (e.g.) divergence!
• note: if we allowed

– different, repeated observations (for instance
success-method + divergence), or

– if we had a global shared variables (e.g., stdout)
we are back in linear trace semantics
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Status

• operational semantics clear, a generalization of the
concurrent ν-calc.

• type system formalized
• exact formulation of the partial-order trace semantics

(and proofs . . . )
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Conclusions

• are classes good composition units?
• what about cloning?

– cloning means: obtaining an identical copy (up-to
the object identity) of an object “on the run”

– tree semantics
– bisimulation equivalence instead of traces

• lock-sychronization
• subtype polymorphism & subclassing
• technology transfer to the proof systems,

compositionality
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