
Object connectivity and full abstraction

for class-based, multithreaded OO
MobiJ workshop@FMCO, 3rd November, 2003

Erika Ábrahám Marcello Bonsangue Frank S. de Boer Martin Steffen

Full abstraction/OO – p.1



Overview

• full-abstraction
• class-based calculus
• issues for full abstraction
• completeness and legal traces
• conclusion

Full abstraction/OO – p.2



Full abstraction: starting point

• basically: comparison between 2 semantics, resp. 2
implied notions of equality

• given a reference semantics, the 2nd one is
– neither too abstract = sound
– nor too concrete = complete

• Milner [10], Plotkin [13] for λ-calculus/LCF
• various variations of the theme

Full abstraction/OO – p.3



Full abstraction: standard setup

• reference semantics:
– must be natural
– easy to define
– non-compositional

⇒
contextual, observational

• context C[_]= “program with a hole”
• filling the hole with a part of a program (component C):

complete program C[C]

• what is a context/component?: depends on the
language/syntax (sequential/parallel/functional . . .

contexts)
Full abstraction/OO – p.4



F-A: standard setup (cont’d)

• given a closed program P : O(P ) = observations

⇒ observational equivalence:

C1≡obsC2 iff ∀C. O(C[C1]) = O(C[C2])

• given a denotational semantics [[_]]D, resp. the implied
equality ≡D

⇒ ≡D is fully abstract wrt. ≡obs :

≡obs = ≡D

Full abstraction/OO – p.5



Object calculus: informal

• formal model(s) of oo languages
• in the tradition of the λ-calculi, process calculi . . .

• more specifically:
– object-calculi of Abadi/Cardelli [1]
– π-calculus: processes, parallelism, name-passing

[11][14]
– ν-calculus: λ-calc. with name creation (references)

respectively its concurrent version [12][8]

Full abstraction/OO – p.6



Concurrent ν-calculus with classes

• program = “set” of named threads, objects, and
classes: n〈t〉, n[c] and n[(l1 = m1, . . . , lk = mk)]

• dynamic scoping of names
– νn:T . (C1 ‖ C2)

– communication of names changes the scope
(“scope extrusion”)

• class = “like” an object that accepts only a
new-method; class names are not first-class citizens

• methods = functions with specific “self”-parameter a

• active entities: threads
– sequencing + local, static scoping: let x = e in t

– thread creation

a

Full abstraction/OO – p.7



Concurrent ν-calculus with classes

C ::= 0 | C ‖ C | ν(n:T ).C | n[(n)] | n[O] | n〈t〉 program
O ::= l = m, . . . , l = m object
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l ⇐ m | currentthread

| new n | new〈t〉

v ::= x | n values

Full abstraction/OO – p.7



Semantics (1)

• given in various “stages”
– internal (configuration-local) steps
– external, global steps, interacting with the

environment
– computation steps modulo α-conversion

• typed operational semantics

Full abstraction/OO – p.8



F-A in an object-based conc. setting

• [9]: for the concurrent ν-calculus
• notion of observation: may-testing equivalence.

Formalized here: whether a specific context method
(“o.success()”) is called

• component = set of parallelly “running” objects +
threads

• observable: message exchange at the boundary

⇒ fully abstract observable behavior = communication
traces of the labels of the OS

actually: they use may-preorder.

Full abstraction/OO – p.9



What changes?

• classes are units of exchange: C[n[(O)]]!
• i.e., internal and external classes
• component objects can instantiate external classes

can one use these objects for “observations”?

• instances of external classes,
– instantiation itself is unobservable
– comm. between component and object observable
– but:

- their existence is (principally) unknown to the rest
of environment ( 6= OC),

- unless the component gives away their identity!

Full abstraction/OO – p.10



Completeness: line of argument

• goal: if C1 ≡obs C2, then C1 ≡D C2

• so, given a legal trace s ∈ [[C1]]D, do

– construct a complementary context Cs̄

– composition: program + context do the observation

Cs̄[C1] −→
∗ success

– observational equivalence: C2 can do that, too:

Cs̄[C2] −→
∗ success

– decomposition: s ∈ [[C2]]D

That s is a trace of C2 by decomposition is not a direct consequence. I

ignore that here.
Full abstraction/OO – p.11



Legal traces

• core of completeness: definability ⇒

• for each legal trace s: construct a component Cs

realizing it
• first: characterize the legal traces exactly
• derivability of legal-trace-judgement:

∆;E∆ ` r B s : trace Θ;EΘ

Full abstraction/OO – p.12



Legal traces: incoming call

• General setup: scan the trace, where
– r: history
– as future with next label a

lots of conditions ∆́; É∆ ` r a B s : trace Θ́; ÉΘ

∆;E∆ ` r B a s : trace Θ;EΘ

Full abstraction/OO – p.13



“Lots of conditions”

• For completeness: component must realize all possible
traces but not more!

• various aspects
– “global”: call-return discipline =

balanced/“parenthetic” (per thread)
– “local”

- no name clashes: scoping/renaming
- well-typedness
- impossible name communication (“connectivity”)

Full abstraction/OO – p.14



Impossible incoming names?

• Assume: component instantiates two external classes
(into o1 and o3)

o1

o2

• can o1 and o3 be sent in the same argument list? (for
example)

Full abstraction/OO – p.15



Impossible incoming names?

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3

• trace labelled

νo1.createso1!. νo3.createso3!. n′〈[o′]call o2.l(o1,o3)〉?

impossible!

Full abstraction/OO – p.15



Acquaintance

• o1 and o3: cannot occur in the same label and

because
they do not possibly “know” of each other

• if “connected”, they could occur in the same label
• connectivity or “acquaintance” is dynamic
• the only one to make o2 and o3 acquainted: the

component

Full abstraction/OO – p.16



Dynamic acquaintance

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3

Full abstraction/OO – p.17



Dynamic acquaintance

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3

o3!

∆ ` n〈o1.l(o3); t〉 ‖ o2[. . . ] : Θ, o2:T2
n〈[o2]call o1.l(o3)〉!
−−−−−−−−−−→

∆ ` n〈block ; t〉 ‖ o2[. . . ] : Θ, o2:T2

• no scope extrusion from perspective of the component

Full abstraction/OO – p.17



Dynamic acquaintance

� � � � � �

� � � � � �

� � � � � �

� � � � � �

o1

o2

o3

• scope enlarged
• o1 knows o3

⇒ o3 could know now o1, too
• and all objects that o3 knows, could know o1 in turn, too

. . . Full abstraction/OO – p.17



Acquaintance: assumptions and
commitments

• acquaintance = equivalence relation on object id’s

⇒ keep track of (the worst-case) of connectivity

⇒ set of “equations”; clique: implied equational theory
• e.g., sending o1 to o2, adds o1 ↪→ o2 to the equations

Full abstraction/OO – p.18



Incoming call: acquaintance

• let a = n〈[o1]call o2.l(~v)〉?

ÉΘ = EΘ+(o2 ↪→ ~v)

E∆ ` o1 �; ↪→ ~v E∆ ` o1 �; ↪→ o2 ∆; É∆ ` r a B s : trace Θ; ÉΘ

∆;E∆ ` r B a s : trace Θ;EΘ

Full abstraction/OO – p.19



Incoming bound value

• bound input: E∆ extended to É∆

• crucial question

What is the connectivity of the new objects?

• we have to guess!

⇒ extend E∆ to É∆:

Full abstraction/OO – p.20



Incoming bound value: arbitrary
guess?

• can the extension from E∆ to E ′
∆ be arbitrary?

• No:

“No news about old objects”

• i.e.,

“theory of E ′
∆: a conservative extension of E∆”

• written: E∆ ` E
′
∆ ↓∆×(∆+Θ)

Full abstraction/OO – p.21



Incoming call: bound input

• let a = ν(∆′). n〈[o1]call o2.l(~v)〉?

ÉΘ = EΘ + (o2 ↪→ ~v) É∆ ` o1 �; ↪→ ~v É∆ ` o1 �; ↪→ o2

(∆́, É∆) = (∆, E∆)+∆′ E∆ ` É∆ ↓∆×(∆+Θ) ∆́; É∆ ` r a B s : trace Θ́; ÉΘ

∆;E∆ ` r B a s : trace Θ;EΘ

• extend the assumption contexts
• check for conservativity of the guess

One has also to extend the commitments; I omit this here.

Full abstraction/OO – p.22



Legal traces: balance

• incoming call
• check for input enabledness per thread
• consult the history
• for instance: incoming return a possible in a next step

pop n r = ν(Θ′). n〈[o1]call o2.l(~v)〉!

∆ ` r B ν(∆′). n〈return(v)〉? : Θ

• before a return: there must have been an outgoing call
• pop picks out the last “matching” call

Full abstraction/OO – p.23



Incoming comm.: the full story

a = ν(∆′,Θ′). n〈[o1]call o2.l(~v)〉? ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)

(∆́, É∆) = (∆, E∆) + ∆′ ∆;E∆ ` É∆ ↓∆×(∆+Θ): Θ Θ́ = Θ + Θ′

; Θ ` o2 : c2 ; Θ ` c2 : [(. . . , l:~T → T, . . . )] [∆́] ` [o1 : [. . . ]] ∆́,Θ ` n: thread ; ∆́, Θ́ ` ~v : ~T

dom(∆′,Θ′) ⊆ fn(n〈[o1]call o2.l(~v)〉)

∆́; É∆ ` [o1] �↪→ ~v : Θ́ ∆́; É∆ ` [o1] �↪→ o2 : Θ́ ∆́; É∆ ` n � [o1] : Θ́

∆ ` r B a : Θ ∆́; É∆ \n ` r a B s : trace Θ́; ÉΘ

∆;E∆ ` r B a s : trace Θ;EΘ

Full abstraction/OO – p.24



Definability

• given a legal trace s ⇒ define Cs by
induction on the derivation for

∆;E∆ ` r B s : trace Θ;EΘ

⇒ construct the program backwards!

actions on the commitment context EΘ:
EΘ: each object knows its clique, kept up-to date

• giving away new id’s: create them
propagate/broadcast information through the clique

• incoming calls: wrap up the method body, put it into the
class

Full abstraction/OO – p.25



Definability

• for example outgoing call a = ν(Θ′). n〈[o1]call o2.l(~v)〉!

• we know: afterwards

Ćs = n〈let x:T = [o1] blocks for o2 in t′〉 ‖ C ′
s

• construct component C̀s before the call:

C̀s = C ′
s
‖ n〈create(Θ′); propagate(Θ′);wait(o2, ~v); o2.delegate l

(o1, ~v); t〉

where t = let x:T = [o1] blocks for o2 in t′.

Full abstraction/OO – p.26



What I didn’t mention

• static typing
• treatment of “cross-border” instantiation:

– instantiation itself is not visible
– “lazy instantiation”
– guessing connectivity also for instances the “other

side” instantiated in the component (and vice versa)
• caller identity must ultimately be ignored
• coding issues
• objects not acquainted cannot determine relative order

of events of each other

Full abstraction/OO – p.27



Conclusions

• are classes good composition units?
• what about cloning?

– cloning means: obtaining an identical copy (up-to
the object identity) of an object “on the run”

– tree semantics
– bisimulation equivalence instead of traces

• lock-synchronization
• subtype polymorphism & subclassing
• technology transfer to the proof systems,

compositionality

Full abstraction/OO – p.28



References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer

Science. Springer, 1996.

[2] E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object con-
nectivity for a concurrent class calculus (extended abstract). Sept. 2003.

Submitted for publication. An preliminary and longer version appeared un-

der the title “A Structural Operational Semantics for a Concurrent Class
Calculus” as CAU, Institute of Computer Science technical report 0307,

August 2003.

[3] E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A struc-

tural operational semantics for a concurrent class calculus. Technical Re-

port 0307, Institut für Informatik und Praktische Mathematik, Christian-
Albrechts-Universität zu Kiel, Aug. 2003.

[4] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. A com-
positional operational semantics for JavaMT . In N. Derschowitz, editor,

International Symposium on Verification (Theory and Practice), volume
2772 of Lecture Notes in Computer Science. Springer-Verlag, 2003. To

appear. A preliminary version appeared as Technical Report TR-ST-02-2,

May 2002.

[5] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and M. Steffen. A Hoare logic

for monitors in Java. Techical report TR-ST-03-1, Lehrstuhl für Software-
Technologie, Institut für Informatik und Praktische Mathematik, Christian-

Albrechts-Universität zu Kiel, Apr. 2003.

[6] E. Ábrahám-Mumm and F. S. de Boer. Proof-outlines for threads in Java.

In C. Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877

of Lecture Notes in Computer Science. Springer-Verlag, Aug. 2000.

[7] E. Ábrahám-Mumm, F. S. de Boer, W.-P. de Roever, and M. Steffen. Ver-

ification for Java’s reentrant multithreading concept. In M. Nielsen and
U. H. Engberg, editors, Proceedings of FoSSaCS 2002, volume 2303 of

Lecture Notes in Computer Science, pages 4–20. Springer-Verlag, Apr.

28-1



2002. A longer version, including the proofs for soundness and complete-

ness, appeared as Technical Report TR-ST-02-1, March 2002.

[8] A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduc-

tion and typing. In U. Nestmann and B. C. Pierce, editors, Proceedings
of HLCL ’98, volume 16.3 of Electronic Notes in Theoretical Computer

Science. Elsevier Science Publishers, 1998.

[9] A. Jeffrey and J. Rathke. A fully abstract may testing semantics for con-

current objects. In Proceedings of LICS ’02. IEEE, Computer Society
Press, July 2002.

[10] R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer
Science, 4:1–22, 1977.

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
I/II. Information and Computation, 100:1–77, Sept. 1992.

[12] A. M. Pitts and D. B. Stark. Observable properties of higher-order func-
tions that dynamically create local names, or: What’s new. In A. M.

Borzyszkowski and S. Sokołowski, editors, Proceedings of MFCS ’93,

volume 711 of Lecture Notes in Computer Science, pages 122–141.
Springer-Verlag, Sept. 1993.

[13] G. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[14] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

28-1


	Overview
	Full abstraction: starting point
	Full abstraction: standard setup
	F-A: standard setup (cont'd)
	Object calculus: informal
	Concurrent $
u $-calculus with classes
	Semantics (1)
	F-A in an object-based conc. setting
	What changes?
	Completeness: line of argument
	Legal traces
	Legal traces: incoming call
	{``Lots of conditions''}
	Impossible incoming names?
	Acquaintance
	Dynamic acquaintance
	Acquaintance: assumptions and commitments
	Incoming call: acquaintance
	Incoming bound value
	Incoming bound value: arbitrary guess?
	Incoming call: bound input
	Legal traces: balance
	Incoming comm.: the full story
	Definability
	Definability
	What I didn't mention
	Conclusions

