Object connectivity and full abstraction
for class-based, multithreaded OO

MobiJ workshop@FMCO, 3rd November, 2003

Erika Abraham Marcello Bonsangue Frank S. de Boer Martin Steffen

Full abstraction/OO — p.1

full-abstraction

class-based calculus

Issues for full abstraction
completeness and legal traces
conclusion

Overview

Full abstraction/OO — p.2

Full abstraction: starting point

basically: comparison between 2 semantics, resp. 2

Implied notions of equality

given a reference semantics, the 2nd one is

— neither too abstract = sound
— nor too concrete = complete

Milner [10], Plotkin [13] for A-calculus/LCF
various variations of the theme

Full abstraction/OO — p.3

Full abstraction: standard setup

reference semantics:
— must be natural

— easy to define

— non-compositional

‘ contextual, observational I

context C|_|= “program with a hole”

filling the hole with a part of a program (component C):
complete program C|[C]

what is a context/component?: depends on the
language/syntax (sequential/parallel/functional . ..
contexts)

Full abstraction/OO — p.4

F-A: standard setup (cont’d)

given a closed program P: O(P) = observations
observational equivalence:

OlEObSCQ |ff \V/C O(C[Cl]) — O(C[OQ])

given a denotational semantics |_|p, resp. the implied
equality =p

=p IS fully abstract wrt. =,,:

Full abstraction/OO - p.5

Object calculus: informal

e formal model(s) of oo languages
* in the tradition of the A-calculi, process calculi . ..
* more specifically:

— object-calculi of Abadi/Cardelli [1]

— m-calculus: processes, parallelism, name-passing
[11][14]

— v-calculus: A-calc. with name creation (references)
respectively its concurrent version [12][8]

Full abstraction/OO — p.6

Concurrent r-calculus with classes

program = “set” of named threads, objects, and

classes: n(t), n|c] and n[(ly = mq, ... , [= my)

dynamic scoping of names

— vn:T. (Cy || Cy)

— communication of names changes the scope
(“scope extrusion”)

class = “like” an object that accepts only a
new-method; class names are not first-class citizens

methods = functions with specific “self’-parameter &
active entities: threads

— sequencing + local, static scoping: letx = eint

— thread creation

Full abstraction/OO — p.7

>+ 3 OQ

Concurrent r-calculus with classes

0|C || C|v(nT).C|n|[n)|nlO]|n(t) program

l=m,...,l=m object
s(n:T) N T, ... x:T).t method
v | stop | letx:T = eint thread
t|ifv=ovtheneelsee expr.
vil(v,...,v) | nl < m]| currentthread

newn | new(t)
T|n values

Full abstraction/OO — p.7

Semantics (1)

* given in various “stages”
— Internal (configuration-local) steps

— external, global steps, interacting with the
environment

— computation steps modulo a-conversion
e typed operational semantics

Full abstraction/OO — p.8

F-A In an object-based conc. setting

e [9]: for the concurrent v-calculus

* notion of observation: may-testing equivalence.)
Formalized here: whether a specific context method
(“o.success()”) is called

 component = set of parallelly “running” objects +
threads

* observable: message exchange at the boundary

= fully abstract observable behavior = communication
traces of the labels of the OS

actually: they use may-preorder.

Full abstraction/OO — p.9

What changes?

* classes are units of exchange: C[n[O)]!

* |.e., Internal and external classes
e component objects can instantiate external classes

‘can one use these objects for “observations”?'

e |nstances of external classes,
— Instantiation itself is unobservable
— comm. between component and object observable

— but:
- their existence is (principally) unknown to the rest
of environment (£ OC),
- unless the component gives away their identity!

Full abstraction/OO — p.10

Completeness: line of argument

e goal: if C =5 Co, then C =p (Y
* S0, given a legal trace s € [C4]p, do

— construct a complementary context C;
— composition: program + context do the observation

Cs|Ch] —" success
— observational equivalence: (5 can do that, too:
Cs|Cy] —™ success

— decomposition: s € [Cy]p

That s is a trace of (9 by decomposition is not a direct consequence. |

Full abstraction/OO — p.11
innnra that haro

Legal traces

e core of completeness: definability =

e for each legal trace s: construct a component C
realizing it

* first: characterize the legal traces exactly
e derivability of legal-trace-judgement:

| A:EAFr>s:trace ©; Eg I

Full abstraction/OO — p.12

Legal traces: incoming call

* General setup: scan the trace, where
— r: history
— as future with next label a

lots of conditions A: .+ ra>s :lraceO: Fg

A:FEAF ri>as :trace®©; Fg

Full abstraction/OO — p.13

“Lots of conditions”

* For completeness: component must realize all possible
traces but not more!

* various aspects

— “global”: call-return discipline =
balanced/“parenthetic” (per thread)

— “local”
- no name clashes: scoping/renaming

- well-typedness
- Impossible name communication (“connectivity”)

Full abstraction/OO — p.14

Impossible incoming names?

* Assume: component instantiates two external classes
(into 0, and o3)

* can o; and o3 be sent in the same argument list? (for
example)

Full abstraction/OO — p.15

Impossible incoming names?

* trace labelled
| | /o' call [?
vo1.createso!. vos.createsog!. n'{|0'|call 05.1(01,03))"

Impossible!

Full abstraction/OO — p.15

Acguaintance

01 and os: cannot occur in the same label and
because

they do not possibly “know” of each other'

If “connected”, they could occur in the same label

connectivity or “acquaintance” is dynamic

the only one to make o, and o3 acquainted: the
component

Full abstraction/OO — p.16

Dynamic acquaintance

Full abstraction/OO — p.17

Dynamic acquaintance

n(|o2]call ol.l(03)>!\

A nlo.l(03);t) || 02]...]: ©, 00T
A n(block;t) || 02]...] : ©,09:T5

* N0 scope extrusion from perspective of the component

Full abstraction/OO — p.17

Dynamic acquaintance

* scope enlarged

* 0, knows o4
= 05 could know now oy, toO
e and all objects that o3 knows, could know o; Iin turn, too

Full abstraction/OO — p.17

Acquaintance: assumptions and
commitments

e acquaintance = equivalence relation on object id’s
= keep track of (the worst-case) of connectivity
= set of “equations”; clique: implied equational theory
* e.g., sending o; to 09, adds 0; — 0, to the equations

Full abstraction/OO — p.18

Incoming call: acquaintance

* let a = n{|oi]call 05.1(V))?

E@ = E@—I—(Oz — \7)

—

EFrlFop =;— vV EAlFo1 =;— 05 A;E/Al—rabsztmce@;E’@

A;ExFr>as:trace ©; Eg

Full abstraction/OO — p.19

Incoming bound value

 bound input: Fx extended to Fx
e crucial question

What is the connectivity of the new objects? I

* we have to guess!

— extend Ex to Ex:

Full abstraction/OO — p.20

Incoming bound value: arbitrary
guess?

can the extension from Fx to £’ be arbitrary?

No:
“‘No news about old objects”'

l.e.,

“‘theory of I/: a conservative extension of EA”I

written: EAF E/A le(A—i—@)

Full abstraction/OO — p.21

Incoming call: bound input

* leta =v(A"). n{loi]|call 05.1(7))7?

—

FEo =FEg+ (03 —U) FEalo=;—1U FEaxlF o0 =;— 09

(A, E/A) = (A, Ea)+4A Ex b Ea lax(ate) A; Exbrars: trace @; Eg

A;ExFr>as:trace ©; Eg

e extend the assumption contexts |
* check for conservativity of the guess

One has also to extend the commitments:; | omit this here.

Full abstraction/OO — p.22

Legal traces: balance

Incoming call
check for input enabledness per thread
consult the history

for instance: incoming return a possible in a next step

popn r = v(0"). n{|o1]call 02.1(7))!
AFr>vA) n(return(v))? : ©

before a return: there must have been an outgoing call

pop Picks out the last “matching” call

Full abstraction/OO — p.23

Incoming comm.: the full story

a=v(A", 0. n{lo1]call 05.1(V))? Eo = Eo + (05 < T, < 09)
(A,EA) = (A EA) + A" AJEAF Ex laxipiop® ©=0+0
Oboy:ico ;OFco:[... .. T—=T,...] [AlF[oi:]...]] A,OFn:thread ;A,OFT:T
dom(A’,0") C fn(n(lo1]call 05.1(7)))
A/;EAI—[ol]:/—w?:(;) A;EAI—[ol]‘:,(—>02:@ A;EAI—n:,[ol]:é
AFr>a:0 A;EA\nFraDS:traceé;E@

A;EAFr>as:trace ©; Eg

Full abstraction/OO — p.24

Definabllity

e given a legal trace s = define C by

Induction on the derivation for
A; EAFr>s:trace ©; Eg

= construct the program backwards!

actions on the commitment context Eg:
Fo: each object knows its clique, kept up-to date
* giving away new id’s: create them
propagate/broadcast information through the clique

* incoming calls: wrap up the method body, put it into the
class

Full abstraction/OO — p.25

Definabllity

 for example outgoing call a = v(©’). n{|o1|call 05.1(7))!
* we know: afterwards

C, = n{let z:T = [o1] blocks for oy int') || C"

e construct component C, before the call:
, = C! || n(create(©"); propagate(©"); wait(og, V); 0g.delegate; (01, ¥);)
where t = let x:T = |o1| blocks for o int'.

Full abstraction/OO — p.26

What | didn't mention

static typing

treatment of “cross-border” instantiation:
— Instantiation itself is not visible
— “lazy instantiation”

— guessing connectivity also for instances the “other
side” instantiated in the component (and vice versa)

caller identity must ultimately be ignored
coding issues

objects not acquainted cannot determine relative order
of events of each other

Full abstraction/OO — p.27

Conclusions

are classes good composition units?

what about cloning?

— cloning means: obtaining an identical copy
the object identity) of an object “on the run”

— tree semantics
— bisimulation equivalence instead of traces

lock-synchronization
subtype polymorphism & subclassing

technology transfer to the proof systems,
compositionality

(up-to

Full abstraction/OO — p.28

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer, 1996.

E. Abraham, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object con-
nectivity for a concurrent class calculus (extended abstract). Sept. 2003.
Submitted for publication. An preliminary and longer version appeared un-
der the title “A Structural Operational Semantics for a Concurrent Class
Calculus” as CAU, Institute of Computer Science technical report 0307,
August 2003.

E. Abraham, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A struc-
tural operational semantics for a concurrent class calculus. Technical Re-
port 0307, Institut fur Informatik und Praktische Mathematik, Christian-
Albrechts-Universitat zu Kiel, Aug. 2003.

E. Abraham, F. S. de Boer, W.-P. de Roever, and M. Steffen. A com-
positional operational semantics for Javap;7. In N. Derschowitz, editor,
International Symposium on Verification (Theory and Practice), volume
2772 of Lecture Notes in Computer Science. Springer-Verlag, 2003. To
appear. A preliminary version appeared as Technical Report TR-ST-02-2,
May 2002.

E. Abraham, F. S. de Boer, W.-P. de Roever, and M. Steffen. A Hoare logic
for monitors in Java. Techical report TR-ST-03-1, Lehrstuhl flr Software-
Technologie, Institut fur Informatik und Praktische Mathematik, Christian-
Albrechts-Universitat zu Kiel, Apr. 2003.

E. Abraham-Mumm and F. S. de Boer. Proof-outlines for threads in Java.
In C. Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877
of Lecture Notes in Computer Science. Springer-Verlag, Aug. 2000.

E. Abrahdm-Mumm, F. S. de Boer, W.-P. de Roever, and M. Steffen. Ver-
ification for Java’s reentrant multithreading concept. In M. Nielsen and
U. H. Engberg, editors, Proceedings of FoSSaCS 2002, volume 2303 of
Lecture Notes in Computer Science, pages 4—-20. Springer-Verlag, Apr.

28-1

[8]

[9]

[10]

[11]

[12]

[13]

[14]

2002. A longer version, including the proofs for soundness and complete-
ness, appeared as Technical Report TR-ST-02-1, March 2002.

A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduc-
tion and typing. In U. Nestmann and B. C. Pierce, editors, Proceedings
of HLCL 98, volume 16.3 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 1998.

A. Jeffrey and J. Rathke. A fully abstract may testing semantics for con-
current objects. In Proceedings of LICS '02. IEEE, Computer Society
Press, July 2002.

R. Milner. Fully abstract models of typed A-calculi. Theoretical Computer
Science, 4:1-22, 1977.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part
I/ll. Information and Computation, 100:1-77, Sept. 1992.

A. M. Pitts and D. B. Stark. Observable properties of higher-order func-
tions that dynamically create local names, or: What's new. In A. M.
Borzyszkowski and S. Sokotowski, editors, Proceedings of MFCS '93,
volume 711 of Lecture Notes in Computer Science, pages 122-141.
Springer-Verlag, Sept. 1993.

G. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223-255, 1977.

D. Sangiorgi and D. Walker. The 7r-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

28-1

	Overview
	Full abstraction: starting point
	Full abstraction: standard setup
	F-A: standard setup (cont'd)
	Object calculus: informal
	Concurrent $
u $-calculus with classes
	Semantics (1)
	F-A in an object-based conc. setting
	What changes?
	Completeness: line of argument
	Legal traces
	Legal traces: incoming call
	{``Lots of conditions''}
	Impossible incoming names?
	Acquaintance
	Dynamic acquaintance
	Acquaintance: assumptions and commitments
	Incoming call: acquaintance
	Incoming bound value
	Incoming bound value: arbitrary guess?
	Incoming call: bound input
	Legal traces: balance
	Incoming comm.: the full story
	Definability
	Definability
	What I didn't mention
	Conclusions

