
A Tool-supported Proof System

for Multithreaded Java?

April 2, 2003

Erika Ábrahám-Mumm1, Frank S. de Boer2,
Willem-Paul de Roever1, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 CWI Amsterdam, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread-classes, allowing for
a multithreaded flow of control. The concurrency model includes shared-
variable concurrency via instance variables, coordination via reentrant
synchronization monitors, synchronous message passing, and dynamic
thread creation.
To reason about safety properties of multithreaded Java programs, we
introduce a tool-supported assertional proof method for JavaMT (“Multi-
Threaded Java”), a small sublanguage of Java, covering the mentioned
concurrency issues as well as the object-based core of Java. The verifica-
tion method is formulated in terms of proof-outlines, where the assertions
are layered into local ones specifying the behavior of a single instance,
and global ones taking care of the connections between objects. From the
annotated program, a number of verification conditions are generated
and handed over to the interactive theorem prover PVS. We illustrate
the use of the proof system on an example.

1 Introduction

The semantical foundations of Java [20] have been thoroughly studied ever since
the language gained widespread popularity (see e.g. [6, 39, 14]). Besides standard
object-oriented features, Java integrates multithreading and monitor synchro-
nization. The research concerning Java’s proof theory mainly concentrated on
various aspects of sequential sub-languages (see e.g. [23, 42, 36]). In this paper
we present a tool-supported assertional proof system for Java’s monitor concept,
and illustrate its use on examples. The proof system generates verification con-
ditions for JavaMT, a subset of Java, featuring dynamic object creation, method
invocation, object references with aliasing, and, specifically, concurrency and
Java’s monitor discipline.

The behavior of a JavaMT program results from the concurrent execution
of methods. To support a clean interface between internal and external object

? Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

2 The programming language JavaMT

behavior, JavaMT does not allow qualified references to instance variables. As a
consequence, shared-variable concurrency is caused by simultaneous execution
within a single object, only, but not across object boundaries. In order to capture
program behavior in a modular way, the assertional logic and the proof system
are formulated at two levels, a local and a global one. The local assertion lan-
guage describes the internal object behavior. The global behavior, including the
communication topology of the objects, is expressed in the global language. As
in the Object Constraint Language (OCL) [43], properties of object-structures
are described in terms of a navigation or dereferencing operator.

The assertional proof system for verifying safety properties of JavaMT is for-
mulated in terms of proof outlines [30], i.e., of programs augmented by auxiliary
variables and annotated with Hoare-style assertions [19, 21]. The satisfaction of
the program properties specified by the assertions is guaranteed by the verifica-
tion conditions of the proof system. The execution of a single method body in
isolation is captured by standard local correctness conditions, using the local as-
sertion language. Interference between concurrent method executions is covered
by the interference freedom test [30, 28], formulated also in the local language.
It has especially to accommodate for reentrant code and the specific synchro-
nization mechanism. Possibly affecting more than one instance, communication
and object creation is treated in the cooperation test, using the global language.
The communication can take place within a single object or between different
objects. As these cases cannot be distinguished syntactically, our cooperation
test combines elements from similar rules in [11] and in [28] for CSP.

Computer-support is given by the tool Verger (VERification condition GEn-
eratoR), taking a proof outline as input and generating the verification condi-
tions as output. We use the interactive theorem prover PVS [31] to verify the
conditions.

Overview The paper is organized as follows. Section 2 described syntax and
semantics of JavaMT. After introducing the assertional logic in Section 3, the
main Section 4 presents the proof system and sketches the use of the verification
tool. Section 5 discusses related and future work.

2 The programming language JavaMT

In this section we briefly describe the programming language JavaMT, a small
sublanguage of Java concentrating on the concurrency aspects of the language.
We start with the syntax in the following section, before in Section 2.2 we sketch
the operational semantics. For a more thorough treatment, we refer to [4]

2.1 Syntax

JavaMT is a strongly typed language; besides class types, it supports booleans
and integers as primitive types, and pairs and lists as composite type. We will

The programming language JavaMT 3

use α, β, . . . as typical elements for class-typed values. Each domain is equipped
with a standard set of operators.

Expressions are built from instance and local variables, the self-reference this,
the empty reference null, and using a standard set of operators for each domain.
We will use e as typical element for expressions. Conditional expressions can
be defined for all types. In this paper we use the notation if e1 then e2 else e3 fi;
Verger supports Java syntax.

As statements stm, we allow assignments, object creation, method invoca-
tion, and standard control constructs like sequential composition, conditional
statements, and iteration. We do not allow nested side-effect expressions. For
clarity, we will sometimes write assignments in the form y := e instead of the
Java-syntax y = e.

A method definition specifies the return type of the method, its name, a list
of formal parameters, and a method body, declaring the local variables of the
method, and the statement that is to be executed if the method is invoked.
All local variables must be declared at the beginning of the method; thus they
all have their scope over the whole method body. To simplify the proof system
we require that method bodies are terminated by a single return statement,
giving back the control and possibly a return value. A class is defined by its
name, its instance variables, and its methods. Its instances, i.e., objects, are
dynamically created, and communicate via method invocation. Programs, finally,
are collections of classes; a special main class defines the entry point of the
program execution by its main-method.3

JavaMT does not support inheritance, and consequently neither subtyping,
overriding, and late-binding. The only class which may be extended is Java’s
Thread class, allowing for a multithreaded flow of control. This class specifies
a start-method, which can be invoked at most once for each of its instances,
spawning a new thread of execution. The new thread starts to execute the user-
defined run-method of the instance, while the initiating thread continues its own
execution.

As a mechanism of concurrency control, methods can be declared as syn-
chronized by the modifier keyword synchronized; In the sequel we also refer to
statements in the body of a synchronized method as being synchronized. Each
object has a lock which can be owned by at most one thread. Synchronized
methods of an object can be invoked only by a thread that owns the lock of that
object. If the thread does not own the lock, it has to wait until the lock becomes
free. The owner of an object’s lock can recursively invoke several synchronized
methods of that object, which corresponds to the notion of reentrant monitors.
Besides synchronization, objects offer the methods wait, notify, and notifyAll as
means to facilitate efficient thread coordination at the object boundary. A thread
owning the lock of an object can block itself and free the lock by invoking wait

on the given object. The blocked thread can be reactivated by another thread

3 JavaMT does not allow static methods and variables. The only static method is the
main-method, whose body may only create an instance of the main class and start
its thread.

4 The programming language JavaMT

via the object’s notify-method; the reactivated thread must re-apply for the lock
before it may continue its execution. The method notifyAll, finally, generalizes
notify in that it informs all threads blocked on the object.

Besides the mentioned simplifications, we impose for technical reasons the
following restrictions: To support a clean interface between internal and exter-
nal object behavior, JavaMT does not allow qualified references e.x to instance
variables. As a consequence, shared-variable concurrency is caused by simulta-
neous execution within a single object, only, but not across object boundaries.
Furthermore, we require that none of the expressions e0, . . . , en in method invo-
cation statements e0.m(e1, . . . , en) contains instance variables, and that formal
parameters are not assigned to. This restriction implies that during method
execution the actual and formal parameter values are not changed. Finally, the
result of an object creation or method invocation statement may not be assigned
to instance variables. This restriction allows for a proof system with separated
verification conditions for interference freedom and cooperation. It should be
clear that it is possible to transform a program to adhere to this restrictions at
the expense of additional local variables and thus new interleaving points.

Example 1 (Account). The following program implements a simple account, of-
fering interfaces for deposit and withdraw. To assure that the balance x remains
non-negative, the withdraw method is synchronized; implicitly, the balance does
not get decreased between the evaluation of x ≥ i (written x >= i in con-
crete syntax) and the withdrawal. We will use this program to demonstrate
the proof system: We show that for each class instance the balance x is always
non-negative, under the assumption that the methods are called with positive
parameters, only.

public class Account {
private int x;

private void change_balance (int i){
x = x+i;

}

public void deposit(int i){
change_balance (i);

}

public synchronized void withdraw (int i){
if (x>=i) { change_balance (-i); }

}
}

2.2 Semantics

A local state τ holds the values of the local variables of a method. A local configu-
ration (α, τ, stm) of a thread executing within an object α specifies, in addition to
its local state τ , its point of execution represented by the statement stm. A thread
configuration ξ is a stack of local configurations (α0, τ0, stm0) . . . (αn, τn, stmn),

The programming language JavaMT 5

representing the call chain of the thread. We write ξ ◦ (α, τ, stm) for pushing a
new local configuration onto the stack.

An object is characterized by its instance state σinst which assigns values to
the self-reference this and to the instance variables. A global state σ stores for
each currently existing object, i.e., an object belonging to the domain dom(σ)
of σ, its instance state. We denote by domc(σ) set of all instances of class c
from the domain of σ. A global configuration 〈T, σ〉 consists of a set T of thread
configurations of the currently executing threads together with a global state σ
describing the currently existing objects.

Expressions are evaluated with respect to an instance local state (σinst , τ),
where the instance state gives meaning to the instance variables [[x]]

σinst ,τ
E =

σinst (x) and the self-reference [[this]]
σinst ,τ
E = σinst (this), whereas the local state

determines the values of the local variables [[u]]
σinst ,τ
E = τ(u). The operational

semantics is given as transition system between global configurations. In an
initial configuration, the only existing object is an instance of the main class
and the only thread executes the body of its run-method, with all variables are
set to their initial values.

For the semantics of assignments, object and thread creation, and ordinary,
i.e., non-monitor method invocation we refer to [4]. The rules of Table 1 handle
JavaMT’s monitor methods wait, notify, and notifyAll, offering a typical moni-
tor synchronization mechanism. The bodies bodym of the predefined monitor
methods m are specified by

bodywait = ?signal; returngetlock

bodynotify = !signal ; return bodynotifyAll = !signal all; return

using the auxiliary statements !signal, !signal all, ?signal, and returngetlock . In all
three cases the caller must own the lock of the callee object (cf. rule Callmonitor),
as expressed by the predicate owns , defined below. If not, the caller will dead-
lock, as, once devoid of the lock, the caller stops and will never obtain it. In
Java, invoking a monitor method without owning the lock raises an exception,
which terminates the culprit thread, but lets the rest of the program continue.
In this sense, our model is faithful to the behavior in Java.

A thread can block itself on an object whose lock it owns by invoking the
object’s wait-method, thereby relinquishing the lock and placing itself into the
object’s wait set (cf. rule Callmonitor). Formally, the wait set wait(T, α) of an
object is given as the set of all stacks in T with a top element of the form
(α, τ, ?signal; stm). After having put itself on ice, the thread awaits notification
by another thread which invokes the notify-method of the object. The notifier
must own the lock of the object in question. The !signal-statement in the notify-
method thus reactivates a single thread waiting for notification on the given ob-
ject (see rule Signal). Analogously to the wait set, the notified set notified(T, α)
of α consists of all stacks in T with top element of the form (α, τ, returngetlock),
i.e., threads which have been notified and trying to get hold of the lock again.
According to rule Returnwait , the receiver can continue after notification in ex-
ecuting returngetlock only if the lock is free. Note that the notifier does not hand

6 The assertion language

m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E

∈ domc(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)
Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm) ◦ (β, τ
m,c

init , body
m,c

)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, stm) ◦ (β, τ ′, returngetlock)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 1. Operational semantics of the monitor methods

over the lock to the one being notified but continues to own it. This behavior is
known as signal-and-continue monitor discipline [9].

If no threads are waiting on the object, the !signal of the notifier is without
effect (cf. rule Signalskip). The notifyAll-method generalizes notify in that all
waiting threads are notified via the !signal all-broadcast (cf. rule SignalAll).
The effect of this statement is given by setting signal(T, α) as (T \ wait(T, α))∪
{ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate: A
thread ξ owns the lock of β iff ξ executes some synchronized method of β, but not
its wait-method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T and
a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β) ∪ notified(T, β). The
definition is used analogously for single threads. An invariant of the semantics
is that at most one thread can own the lock of an object at a time.

3 The assertion language

In this section we introduce assertions to specify properties of JavaMT programs.
The assertion logic consists of a local and a global sublanguage. The local asser-
tion language is used to annotate methods in terms of their local variables and
of the instance variables of the class to which they belong. The global assertion
language describes a whole system of objects and their communication structure

The assertion language 7

and will be used in the cooperation test. In the assertion language we add the
type Object as the supertype of all classes, and we introduce logical variables z
different from all program variables. Logical variables are used for quantification
and as free variables to represent local variables in the global assertion language.
Expressions and assertions are interpreted relative to a logical environment ω,
assigning values to logical variables.

Assertions are program expressions, extended by logical variables and quan-
tification. Global assertions may furthermore contain qualified references. Note
that when the global expressions E and E′ refer to the same object, that is, E
and E′ are aliases, then E.x and E′.x denote the same variable.

Quantification can be used for all types, also for reference types.4 However,
the existence of objects dynamically depends on the global state, something
one cannot speak about on the local level. Nevertheless, one can assert the
existence of objects on the local level, provided one is explicit about the domain
of quantification. Thus quantification over objects in the local assertion language
is restricted to ∀z ∈ e. p for objects and to ∀z v e. p for lists of objects, and
correspondingly for existential quantification and for composite types. Global
assertions are evaluated in the context of a global state. Thus, quantification is
allowed unrestricted for all types and ranges over the set of existing values.

To express a local property p in the global assertion language, we define the
lifting substitution p[z/this] by simultaneously replacing in p all occurrences of
this by z, and transforming all occurrences of instance variables x into qualified
references z.x. We assume z not to occur in p. For notational convenience we view
the local variables occurring in the global assertion p[z/this] as logical variables.
Formally, these local variables are replaced by fresh logical variables.

The effect of assignments to instance variables is expressed on the global
level by the substitution P [~E/z.~x], which replaces in the global assertion P the

instance variables ~x of the object referred to by z by the global expressions ~E. To
accommodate properly for the effect of assignments, though, we must not only
syntactically replace the occurrences z.xi of the instance variables, but also all
their aliases E′.xi, when z and the result of the substitution applied to E′ refer
to the same object. As the aliasing condition cannot be checked syntactically,
we define the main case of the substitution by a conditional expression [8]:

(E′.xi)[~E/z.~x] = if E′[~E/z.~x] = z then Ei else (E′[~E/z.~x]).xi fi .

The substitution is extended to global assertions homomorphically. We will also
use P [~E/z.~y] for arbitrary variable sequences ~y possibly containing logical vari-
ables, whose semantics is defined by simultaneously applying the substitution
[~Ex/z.~x] and the usual capture-avoiding substitution [~Eu/~u], where ~x and ~u

are the sequences of the instance and local variables of ~y, and ~Ex and ~Eu the
corresponding subsequences of ~E.

4 In this paper we use mathematical notation like ∀x. p etc. for phrases in abstract
syntax. The concrete syntax used by Verger is an adaptation of jml, which we
employ in typewriter font when displaying concretely annotated program text.

8 The proof system

4 The proof system

The proof system has to accommodate for dynamic object creation, shared-
variable concurrency, aliasing, method invocation, synchronization, and, espe-
cially, reentrant monitors and thread coordination. Soundness and completeness
of the proof method is shown in [4]. The following section defines how to augment
and annotate programs resulting in proof outlines, before Section 4.2 describes
the proof method, the tool support, and two examples.

4.1 Proof outlines

For a complete proof system it is necessary that the transition semantics of
JavaMT can be encoded in the assertion language. As the assertion language
reasons about the local and global states, we have to augment the program with
fresh auxiliary variables to represent information about the control points and
stack structures within the local and global states. An augmentation extends a
program by assignments to auxiliary variables, which we call observations. The
additional assignments are executed atomically as multiple assignments ~y′ := ~e ′.
Furthermore, the observations have, in general, to be “attached” to statements
they observe in a non-interleavable manner. This is syntactically represented
using the special comment /∗1〈~y := ~e〉∗/ which attaches the observation to the
preceding statement. As method calls u := e0.m(~e) conceptually consist of two
steps —handing over the parameters and reception of the result being stored in
u— we need an additional form to observe atomically the reception of the return
value. This form is represented as /∗2〈~y := ~e〉∗/ . A stand-alone observation not
attached to any statement is written as /∗〈~y := ~e〉∗/ ; it can be inserted at any
point in the program. For readability, in the following we use the shortcuts
〈stm〉 , 〈stm〉1 , and 〈stm〉2 for /∗〈stm〉∗/ , /∗1〈stm〉∗/ , and /∗2〈stm〉∗/ .

The augmentation does not influence the control flow of the program but en-
force a particular scheduling policy. An assignment statement and its observation
are executed simultaneously. Object creation and its observation are executed
in a single computation step, in this order. For method call, communication,
sender, and receiver observations are executed in a single computation step, in
this order. This means they are executed atomically in the sense that they can-
not be interleaved by other threads. Points which can be interleaved we call
control points. Points between communication and its observation cannot be in-
terleaved; we call them auxiliary points. We require that the caller observation
in a self-communication may not change the values of instance variables.

Example 2. Extending an assignment x := e to x := e; 〈u := x; 〉1 stores the
value of x prior to the execution of x := e in the auxiliary variable u. Extending
it to x := e; 〈u := x; 〉 stores the value of x in u after the execution of x := e.

Example 3. We can store the number objects created by an instance using an
auxiliary integer instance variable and by extending each object creation state-
ment in the class of the instance to u := newc; 〈n := n + 1; 〉1 .

The proof system 9

Example 4. We extend Example 3 by additionally extending each call u :=
e0.m(~e) with m 6= start in c to u := e0.m(~e); 〈m := n; 〉1 〈m := n − m; 〉2 .
Then the value of m after method call, but before return stores the number
of objects created up to the call. After return, it stores the number of objects
created during method evaluation.

Example 5. Let k be an auxiliary integer instance variable of class c. We can
count the number of local configurations executing in an instance of c by extend-
ing each method body stm; return eret in c to 〈k := k+1; 〉1 stm; return eret ; 〈k :=
k − 1; 〉1 .

The above examples show how to count objects, local configurations in an
object, etc. But this information is not sufficient for a complete proof system:
we have to be able to identify those entities. In the following we define a num-
ber of specific auxiliary variables used to formulate the verification conditions.
The variables are automatically included in all augmentations. The built-in aug-
mentation is not visible to the user, but may be used in the augmentation and
annotation.

As mentioned, an important point of the proof system to achieve complete-
ness is the identification of communicating objects and threads. We identify a
thread by the object in which it has begun its execution. We use the type Thread

thus as abbreviation for the type Object. This identification is unique, since an
object’s start-method can be invoked only once. During a method call, the callee
thread receives its own identity as an auxiliary formal parameter thread.

A local configuration is identified by the object in which it executes together
with the value of its auxiliary local variable conf storing a unique object-internal
identifier. Its uniqueness is assured by the auxiliary instance variable counter, in-
cremented for each new local configuration in that object. The callee receives the
“return address” as auxiliary formal parameter caller of type Object×Int×Thread,
storing the identities of the caller object, the calling local configuration, and the
caller thread. Note that the thread identities of caller and callee are the same in
all cases but the invocation of a start-method. The run-method of the initial ob-
ject is executed with the parameters (thread, caller) = (α0, (null , 0,null)), where
α0 is the initial object.

To capture mutual exclusion and the monitor discipline, the instance variable
lock of type Thread × Int stores the identity of the thread who owns the lock, if
any, together with the number of synchronized calls in the call chain. Its initial
value (null , 0) indicates that the lock is free. The instance variables wait and
notified of type Thread × Int are the analogues of the wait - and notified -sets of
the semantics and store the threads waiting at the monitor, respectively those
having been notified. Besides the thread identity, the number of synchronized
calls is stored. In other words, these variables remember the old lock-value prior
to suspension which is restored when the thread becomes active again. The
boolean instance variable started, finally, remembers whether the object’s start-
method has already been invoked. All auxiliary variables are initialized as usual.

For the update of lists, which are represented in PVS by finite sequences
finseq[t] of type t, we need the following functions, whose PVS definition is auto-

10 The proof system

matically generated by Verger: Given a sequence s and an element e, the function
index retrieves the index of an occurrence of e in s, if any, and gives −1 other-
wise. The function choose assigns to each non-empty sequence a non-negative
integer smaller than the length of the sequence; for the empty sequence its value
is −1. The expression remove(s, i) gives s without its ith element if 0 ≤ i ≤ |s|,
and returns s otherwise. The predicate e ∈ s is syntactically represented by
includes(s, e). The function append appends an element at the end of a sequence,
and finally o concatenates two sequences. The above functions are deterministic.
The use of the specific auxiliary variables is illustrated by the following example,
where (: e1, . . . , en :) is the notation for tuples and [: t1, . . . , tn :] for their types,
i.e., product types; proj(s, i) is the projection on the ith component:

Example 6. For the class

public class Annotation extends Thread{
void m1 (){}
synchronized void m2() {}
public void run(){ this .m1();}

}

Verger generates the following proof outline by extending the class with the
built-in augmentation:

public class Annotation extends Thread {
/* < finseq[[:Thread,int:]] wait; >*/

/* < finseq[[:Thread,int:]] notified; >*/

/* < boolean started; >*/

/* < int counter; >*/

/* < [:Thread,int:] lock; >*/

void m1(Thread thread , [: Object ,int ,Thread :] caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

return;
}

synchronized void m2(Thread thread , [: Object ,int ,Thread :]
caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1; lock = (: thread,proj(lock ,2)

+1:);>*/

return;
/*1<lock = (: proj(lock ,2) == 1 ? null : proj(lock ,1),proj(lock ,2) -1:);>

*/

}

public void run(Thread thread , [: Object ,int ,Thread :] caller
) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1; started = true;>*/

this .m1(thread , (: this ,conf ,thread :));
return;

} }

The class is further extended with the specification of the monitor methods:

The proof system 11

public void wait (Thread thread , [: Object ,int ,Thread :]
caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1;

wait = append(wait ,lock); lock = (:null ,0:);>*/

return;
/*1<lock = notified[get(notified,thread)];

notified = remove(notified,get(notified,thread));>*/

}

public void notify(Thread thread , [: Object ,int ,Thread :]
caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

/*<wait = remove(wait ,choose(wait));

notified = append(notified,wait[choose(wait)]);>*/

return;
}

public void notifyAll (Thread thread , [: Object ,int ,Thread :]
caller) {
/* < int conf; >*/

/*1<conf = counter; counter = counter+1;>*/

/*<notified = o(notified ,wait); wait = empty_seq ();>*/

return;
}

The user may additionally augment and annotate the monitor methods by spe-
cial comments. Note that the statements of the monitor methods, generated by
Verger, do not use the auxiliary statements !signal, !signal all, and ?signal of the
semantics. Instead we implement the wait and notify methods by means of aux-
iliary instance variables wait and notified which represent the corresponding sets
of the semantics. In the augmented wait-method both the waiting and the noti-
fied status of the executing thread are represented by a single control point. The
two statuses can be distinguished by the values of the wait and notified variables.

To specify invariant properties of the system, the augmented programs are
annotated by attaching local assertions to each control and auxiliary point. In
Verger syntax, assertions are special comments /∗{p}∗/ , /∗1{p}∗/ , etc., as shown
in the examples below. For readability, we also use the shortcuts {p} , {p}1 , etc.
We use the triple notation {p} stm {q} and write pre(stm) and post(stm) to refer
to the pre- and the post-condition of a statement.

For assertions at auxiliary points we use the following notation: The anno-
tation

{p0} u := new c; {p1}
1 〈~y := ~e; 〉1 {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
where p1 at the auxiliary point should hold directly after object creation but
before the observation. The annotation

{p0} u := e0.m(~e); {p1}
1 〈~y1 := ~e1; 〉1 {p2}

2

{p3}
3 〈~y4 := ~e4; 〉2 {p4}

12 The proof system

assigns p0 and p4 as pre- and postconditions to the method invocation; p1 is
assumed to hold directly after method call, but prior to its observation; p2 de-
scribes the control point of the caller after method call and before return; finally,
p3 specifies the state directly after return but before its observation. For the callee
side, the annotation of method bodies stm; return e; works analogous (cf. [4]).

Besides pre- and postconditions, for each class c, the annotation defines a
local assertion Ic called class invariant, which may refer only to the instance
variables of c, and which expresses invariant properties of instances of the class.5

We require that for each method of a class, the class invariant is the precondition
of the method body. Finally, a global assertion GI called the global invariant
specifies properties of communication between objects. As such, it should be
invariant under object-internal computation. For that reason, we require that
for all qualified references E.x in GI with E of type c, all assignments to x
in class c occur in the observations of communication or object creation. Note
that the global invariant is not affected by the object-internal monitor signaling
mechanism. We require that in the annotation no free logical variables occur. An
augmented and annotated program is called a proof outline or asserted program.

Example 7. The following proof outline annotates the code of Example 1. Note
how we define the functions owns and free for and use them in the assertions.
Note also the annotation of the wait method, expressing that it is not called,
and thus the assertions need not be invariant under its built-in augmentation.

1 // function definitions

2 /*{ boolean owns(Thread thread , [:Thread,int:] lock) =

3 thread!=null && thread==proj(lock ,1) }*/

4 /*{ boolean free_for(Thread thread , [: Thread,int:] lock) =

5 thread!=null && (thread==proj(lock ,1) || proj(lock ,1)==null) }*/

7 public class Account{
8 private int x;

10 /*{ x>=0 }*/ //class invariant

12 // annotation of the wait method

13 /*[wait]*/ /*1{ false }*/ /*{ false }*/

14 /* < return; >*/ /*1{ false }*/ /*[]*/

16 private void change_balance (int i){
17 /*{ i >0 || (x+i >=0 && owns(thread,lock)) }*/

18 x = x+i;
19 /*{ i >0 || owns(thread,lock) }*/

20 }

22 public void deposit (int i){
23 /*{i >0}*/

24 change_balance (i);
25 }

5 The notion of class invariant commonly used for sequential object-oriented languages
differs from our notion: In a sequential setting, it is sufficient that the class invariant
holds initially and is preserved by whole method calls, but not necessarily in between.

The proof system 13

27 public synchronized void withdraw (int i){
28 /*1{ free_for(thread,lock) }*/

29 /*{ i >0 && owns(thread,lock) }*/

30 if (x>=i) {
31 /*{ x>=i && i >0 && owns(thread,lock) }*/

32 change_balance (-i);
33 /*2{ i>0 }*/

34 /*{ owns(thread,lock) }*/

35 }
36 return;
37 /*1{ owns(thread,lock) }*/

38 }
39 }

All verification conditions generated from the above proof outline (see the fol-
lowing section) have been proven automatically by PVS, using the grind strategy.

4.2 Verification conditions

The proof system formalizes a number of verification conditions which induc-
tively ensure that for each reachable configuration the local assertions as well
as the global and the class invariants hold. They are grouped, as usual, into
initial conditions, and for the inductive step into local correctness and tests for
interference freedom and cooperation. Again, for details and for soundness and
completeness we refer to [4]. Here, we informally introduce the proof system and
illustrate it by applying the Verger tool to the proof outline of Example 7.

4.2.1 The Verger tool The tool supports the automated application of the
proof system to proof outlines. Its input is a proof outline, its output contains
the definitions of the reference types used in the proof outline, and the veri-
fication conditions in PVS syntax. The verification conditions can be verified
interactively in PVS.

Before dealing with verification conditions, let us have a look how objects are
represented in PVS. Besides a theory defining objects, two additional theories
are generated for each class: One defining the reference type, and one specifying
the state of class instances. In this way, the classes can use each other’s type
definition without direct mutual dependency.

Note that we do not define states in general, but specify an arbitrary single
state. The type Object of the assertion language is not represented, but the
PVS definition specifies all objects existing in the given state. The verification
conditions should be satisfied by all states. Instead of showing the quantification,
the PVS implementation assures validity of the conditions for the given arbitrary
state. This simple representation increases the proof automation.

Example 8. For the class class c { int x; }, Verger generates the following
type definitions:

Object : THEORY
BEGIN

14 The proof system

null : int
Object_type : NONEMPTY_TYPE = {p:PRED [int] | p(null)}

CONTAINING (LAMBDA (i:int): TRUE)
Object ?: Object_type
Object: NONEMPTY_TYPE = (Object ?) CONTAINING null
class_name : NONEMPTY_TYPE = { cn:string | cn = "c"}

CONTAINING "c"
class : [Object ->class_name]

END Object

c_type : THEORY
BEGIN

IMPORTING Object
c?: [Object ->bool] = LAMBDA (i:Object): i=null OR class

(i)="c"
c: NONEMPTY_TYPE = (c?) CONTAINING null
c_nn : TYPE = {i:c | i/= null }

END c_type

c: THEORY
BEGIN

IMPORTING c_type
x : [c_nn -> int]
started : [c_nn -> bool] ...

END c

4.2.2 Local correctness A proof outline is locally correct, if the usual ver-
ification conditions [10] for standard sequential constructs hold. For instance,
the effect of an assignment ~y := ~e is expressed by substituting ~e for ~y in the
assertions. We have no local verification conditions for communication or object
creation, and neither for the observations attached to them. The postconditions
of such statements express assumptions about the communicated values and is
verified in the cooperation test. Invariance of the class invariant is covered by
the interference freedom test.

Example 9 (Local correctness). For the proof outline of Example 7, two local
conditions are generated. The first one for the assignment in line 18 expresses
that the class invariant together with the precondition of the assignment imply
the assignment’s postcondition. The second one shows, that the precondition
of the if-statement in line 29 in withdraw, the class invariant, and the boolean
condition of the if-statement together imply the assertion of line 31:

change_balance_0 : LEMMA
((i >0 OR (x+i >=0 AND owns (thread ,lock))) AND x >=0)
IMPLIES (i>0 OR owns (thread ,lock))

withdraw_0 : LEMMA
((i >0 AND owns(thread ,lock)) AND x>=0 AND x>=i)
IMPLIES (x>=i AND i >0 AND owns (thread ,lock))

The proof system 15

4.2.3 The interference freedom test Invariance of local assertions under
computation steps in which they are not involved is assured by the proof obliga-
tions of the interference freedom test. Since JavaMT does not support qualified
references to instance variables, we only have to deal with invariance under ex-
ecution within the same object. Affecting only local variables, communication
and object creation do not change the instance states of the executing objects.
Thus we only have to cover invariance of assertions annotating control points
over assignments, including observations of communication. Assertions {p}1 and
{p}3 at auxiliary points do not have to be shown invariant. To distinguish local
variables of the assertion from those of the assignment we rename the variables.
All local variables of the thread executing the assignment get the extension 1,
all local variables of the assertion are extended by 2, and all instance variables
by inst. If the assignment does not change the values of any variables occurring
in the assertion, no conditions get generated.

Generally, the interference freedom test defines for each assertion p at a
control point and each assignment ~y := ~e in the same class c a condition of
the form p∧ pre(~y := ~e)∧ Ic ∧ interleavable → p[~e/~y]. The additional antecedent
interleavable is explained in the following: An assertion p has to be invariant under
an assignment ~y := ~e only if the local configuration described by the assertion is
not active in the computation step executing the assignment, which we express
in terms of the auxiliary variables thread, caller, and conf, introduced earlier.
If p and ~y := ~e belong to the same thread, i.e., thread 1 = thread 2, then the
only assertions endangered are those at control points waiting for a return value
earlier in the current execution stack. Invariance of a local configuration under
its own execution, however, need not be considered and is excluded by requiring
conf 1 6= conf 2. Interference with the matching return statement in a self-
communication need also not be considered, because communicating partners
execute simultaneously. The interference freedom condition gets the antecedent
thread 1 = thread 2 → ret , where ret is

– conf 2 6= conf 1, for assertions {p}2 attached to control points waiting for
return, if ~y := ~e is not the observation of return;

– conf 2 6= conf 1 ∧ (this 6= proj(caller 1, 1) ∨ conf 2 6= proj(caller 1, 2)), for
assertions {p}2 , if ~y := ~e observes return;

– false, otherwise.

If the assertion and the assignment belong to different threads, interference
freedom must be shown in any case except for the self-invocation of the start-
method. Furthermore, concurrent execution of synchronized methods by different
threads is possible only, if the assertion is at a control point waiting for a return
value. The interference freedom test becomes an additional antecedent of the
form thread 1 6= thread 2 → cond ; for technical details we refer to [4].

Example 10 (Interference freedom). Satisfaction of the class invariant of the
proof outline of Example 7 is assured by the condition

%precondition assignment

16 The proof system

((i_1 >0 OR (x_inst+i_1 >=0 AND owns (thread_1 ,lock_inst)))
AND
%class invariant

x_inst >= 0)
%class invariant after execution

IMPLIES (x_inst+i_1 >=0)

generated for the only assignment (18), which changes the balance x. That (31)
is invariant under the same assignment, is assured by the condition

%preconditions assignment

((i_1 >0 OR (x_inst+i_1 >=0 AND owns (thread_1 ,lock_inst)))
AND
%assertion

x_inst >= i_2 AND i_2 >0 AND owns (thread_2 ,lock_inst) AND
%class invariant

x_inst >= 0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES

%assertion after execution

(x_inst+i_1 >=i_2 AND i_2 >0 AND owns (thread_2 ,lock_inst))

If i 1 > 0, then x inst ≥ i 2 implies x inst + i 1 ≥ i 2, and the condition is sat-
isfied, which corresponds to the concurrent execution of the methods withdraw

and deposit. Otherwise, owns(thread 1, lock inst), owns(thread 2, lock inst), and
thread 1 6= thread 2 lead to a contradiction. This case corresponds to the concur-
rent execution of withdraw, which is not possible. There is a similar condition for
the case that two threads are concurrently executing the change balance method,
showing that (17) is invariant under (18).

The remaining conditions are all generated for invariance under changing
the lock value. There are altogether 5 assertions at control points, which have
to be shown invariant under entering and exiting the wait method. As the wait-
method, however, is not invoked, as expressed by its annotation, the left-hand
side of the generated implications is false.

The only remaining assignments changing the lock value are the observations
at the beginning and at the end of the synchronized mathsfwithdraw method.
Assertions in that method that are not at a control point waiting for return,
does not have to be invariant under the execution of withdraw. Thus only the
assertions (17) and (19) in change balance have to be shown invariant, which
yields 4 conditions. For invariance of (17) under entering the withdraw method
we get:

%precondition assignment

(free_for (thread_1 ,lock_inst) AND
%assertion

(i_2 >0 OR (x_inst+i_2 >=0 AND owns (thread_2 ,lock_inst)))
AND

%class invariant

x_inst >=0 AND
%interleavable

(thread_1 =thread_2 IMPLIES false) AND
(thread_1 /= thread_2 IMPLIES true)) IMPLIES

%assertion after execution

The proof system 17

(i_2 >0 OR
(x_inst+i_2 >=0 AND
owns (thread_2 ,(thread_1 ,(PROJ_2(lock_inst)+1)))))

Note that the predicates free for(thread 1, lock inst), owns(thread 2, lock inst), and
thread 1 6= thread 2 together lead to a contradiction: If a thread executing the
private change balance-method owns the lock, then no other thread can enter the
synchronized withdraw-method. The remaining three conditions are analogous.

Example 11 (Wait). The following example illustrates properties of the wait-
method.6 All conditions generated for the proof outline are proven in PVS.

1 /*{ boolean owns(Thread thread , [:Thread,int:] lock) =

2 thread!=null && proj(lock ,1)==thread }*/

3 /*{ boolean not_owns(Thread thread , [: Thread,int:] lock) =

4 thread!=null && proj(lock ,1)!=thread }*/

5 /*{ boolean free_for(Thread thread , [: Thread,int:] lock) =

6 thread!=null && (thread==proj(lock ,1) || lock==(:null ,0:)) }*/

7 /*{ boolean disjunct(finseq[[:Thread,int:]] x) =

8 (\ forall int i,j; 0 <=i && 0 <=j && i<length(x)&& j<length(x) && i!=

j; proj(x[i],1)!=proj(x[j],1)) }*/

10 public class WaitExample {
11 /* < finseq[[:Thread,int:]] x;>*/

13 /*{ disjunct(x) }*/ //class invariant

15 /*[wait]*/ /*1{ owns(thread,lock) }*/

16 /*{ not_owns(thread,lock) && proj(caller,1)==this && includes(x ,(:

thread,proj(caller ,2):)) }*/

17 /*<return;>*/

18 /*1{ lock==(:null ,0:) && proj(caller ,1)==this && includes(x,(:

thread,proj(caller ,2):)) && get(notified,thread)!= -1 } */

19 /*[]*/

21 public synchronized void m(){
22 /*1{ free_for(thread,lock) && (\ forall int i;true;!includes(x,(:

thread,i:))) }*/

23 /*1< x=append(x,(:thread,counter:)); >*/

24 /*{ owns(thread,lock) && includes(x ,(:thread,conf:)) }*/

25 try { this .wait () ;} catch (InterruptedException e)
{}

26 /*2{ not_owns(thread,lock) && includes(x ,(:thread,conf:)) }*/

27 /*{ owns(thread,lock) && includes(x ,(:thread,conf:)) }*/

28 return;
29 /*1{ owns(thread,lock) && includes(x,(:thread,conf:)) }*/

30 /*1< x=remove(x,index(x,(:thread,conf:))); >*/

31 }
32 }

The wait-method can be called only by a thread owning the lock of the callee
object, as expressed by the precondition (24). After invoking wait, the thread

6 We currently do not handle exceptions in JavaMT and its proof theory. To call the
wait-method, however, we must syntactically catch InterruptedExceptions. But,
since we do not support the interrupt method, it cannot be thrown.

18 The proof system

gives the lock free, as formalized in (26). When returning, it becomes the lock
owner again, as stated by (27).

We use the auxiliary instance variable x to store, for each local configura-
tion executing m, the identities of the thread and the local configuration, to
identify local configurations in caller-callee relationship. We can exclude, for
instance, from the interference freedom test the invariance of (26) under the
built-in return-observation of its callee, setting the lock owner to the identity
of the executing thread. Clearly, (26) would not be invariant under the return-
observation of its callee; caller and callee execute a common step and the control
point of the caller moves from (26) to (27). We get the following interference
freedom condition for setup, where thread 1 = thread 2 leads to a contradiction:

1 %precondition assignment

2 (lock_inst =(null ,0) AND PROJ_1(caller_1)=this AND
3 includes (x_inst ,(thread_1 ,PROJ_2(caller_1))) AND
4 get(notified_inst ,thread_1)/=(-1) AND
5 %assertion

6 not_owns (thread_2 ,lock_inst) AND includes (x_inst ,(
thread_2 ,conf_2)) AND

7 %class invariant

8 disjunct (x_inst) AND
9 %interleavable

10 (thread_1 =thread_2 IMPLIES
11 (conf_1 /= conf_2 AND (this /= PROJ_1(caller_1) OR

conf_2 /= PROJ_2(caller_1)))) AND
12 (thread_1 /= thread_2 IMPLIES true)) IMPLIES
13 %assertion after execution

14 (not_owns (thread_2 ,seq(notified_inst)(get(notified_inst ,
thread_1))) AND

15 includes (x_inst ,(thread_2 ,conf_2)))

4.2.4 The cooperation test Whereas the interference freedom test assures
invariance of assertions under steps in which they are not involved, the coop-
eration test deals with inductivity for communicating partners, assuring that
the global invariant, the preconditions, and the class invariants of the involved
statements imply their postconditions after the joint step. Additionally, the as-
sertions at the auxiliary points before the corresponding observations must hold
immediately after communication. The global invariant expresses global prop-
erties of the auxiliary instance variables which can be changed by observations
of communication, only. Thus the global invariant is automatically preserved by
the execution of non-communicating statements. For communication and object
creation, however, the invariance must be shown as part of the cooperation test.

In the following we introduce the cooperation test for method invocation. For
object creation we again refer to [4]. Since different objects may be involved, the
cooperation test is formulated in the global assertion language. Local properties
are expressed in the global language using the lifting substitution. To avoid
name clashes between local variables of the partners, we extend the names of
local variables of the caller by 1 and those of the callee by 2.

The proof system 19

Let z and z′ be logical variables representing the caller, respectively the
callee object in a method call. We assume the global invariant, the class in-
variants of the communicating partners, and the preconditions of the com-
municating statements to hold prior to communication. For method invoca-
tion, the precondition of the callee is its class invariant. In case of a synchro-
nized method invocation, the communication must be enabled, i.e., the lock
of the callee object has to be free or owned by the caller. This is expressed by
z′.lock = (null, 0)∨proj(z′.lock, 1) = thread 1, where thread 1 is the caller-thread.
For the invocation of the monitor methods we require that the executing thread
is holding the lock. An additional predicate E0 = z′ in the condition of a method
call e0.m(~e) states, that z′ is indeed the callee object, where E0 is e0[z/this] with
every local variable name suffixed by 1.

For returning from a method we have similar verification conditions (see
[4]). Here we remark only that returning from the wait-method assumes that
the thread has been notified and that the callee’s lock is free. Remember that
method invocation hands over the return address, and that the values of formal
parameters remain unchanged. Furthermore, actual parameters may not contain
instance variables, i.e., their interpretation does not change during method ex-
ecution. Therefore, the formal and actual parameters can be used to identify
partners being in caller-callee relationship, using the built-in auxiliary variables.

The effect of communication, changing local states only, is expressed by si-
multaneous substitution. This means, in case of a method call, the formal pa-
rameters get replaced by the actual ones expressed in the global language. The
effect of the caller observation 〈~y := ~e〉1 to a global assertion P is expressed by
the substitution P [~e/z.~y]. The effect of the callee-observation is handled simi-
larly. Note the order: first communication takes place, followed by the sender
and then the receiver observation.

Example 12 (Cooperation test). For the proof outline of Example 7, three global
conditions are generated: one for the method call at (24), one for the call at
(32), and one for corresponding the return for the second call. Note that we
do not have any conditions for returning from the first call (24), because all
postconditions are true by definition. The first condition

FORALL (caller:Account) : caller /= null IMPLIES
FORALL (callee:Account) : callee /= null IMPLIES

%precondition caller

((i_1 >0 AND
%class invariant caller and callee + caller-callee relationship

Account.x(caller) >=0 AND
Account.x(callee) >=0 AND
caller=callee) IMPLIES

%postcondition callee

(i_1 >0 OR (Account .x(callee)+i_1 >=0 AND owns (thread_1 ,
Account.lock(callee)))))

states that the class invariants and the preconditions of caller and callee imply
the postcondition of the callee. The PVS-expression c.x(z) represents the quali-
fied reference z.x for z of type c. Note that the global invariant, the postcondition

20 Conclusion

of the caller, and the assertions at the auxiliary points are by definition true. The
caller-callee relationship of the partners is assured by requiring caller = callee,
since it is a self-call. The condition for the second call is similar. The condition
for return assures the caller-callee relationship of the partners by additionally
requiring, that the formal parameters equal the actual ones. Applied to the built-
in auxiliary parameter thread, this requirement implies for example that caller
and callee are the same thread, i.e., thread 1 = thread 2, which we need to show
that the caller owns the lock after communication:

FORALL (caller:Account) : caller /= null IMPLIES
FORALL (callee:Account) : callee /= null IMPLIES

%precondition caller

((i_1 >0 AND
%class invariant caller

Account.x(caller) >=0 AND
%precondition callee

(i_2 >0 OR owns (thread_2 ,Account.lock(callee))) AND
%class invariant callee

Account.x(callee) >=0 AND
%caller-callee relationship

caller=callee AND i_2=(- i_1) AND thread_2 =thread_1
AND

caller_2 =(caller ,conf_1 ,thread_1))
IMPLIES

%postcondition caller

owns (thread_1 ,Account.lock(caller)))

5 Conclusion

This paper presents a tool-supported assertional proof method for a multi-
threaded sublanguage of Java including its monitor discipline. This builds on
earlier work ([3] and especially [5]). The underlying theory, the proof rules, and
their soundness and completeness are presented in greater detail in [4], where
here we introduced the assertional proof system on a small number of examples,
which have been verified using the Verger tool.

Related work As far as proof-systems and verification support for object-oriented
programs is concerned, research mostly concentrated on sequential languages.
Early examples of Hoare-style proof systems for a sequential object-oriented lan-
guages are [18] and [26, 27, 18]. With Java’s rise to prominence, research more
intensively turned to (sublanguages of) Java, as opposed of capturing object-
oriented language features in the abstract. In this direction, jml [25] has emerged
as some kind of common ground for asserting Java programs. Another trend is to
offer mechanized proof support for the languages. For instance, Poetzsch-Heffter
and Müller [36, 34, 33, 35] develop a Hoare-style programming logic presented in
sequent formulation for a sequential kernel of Java, featuring interfaces, subtyp-
ing, and inheritance. Translating the operational and the axiomatic semantics
into the HOL theorem prover allows a computer-assisted soundness proof. The

Conclusion 21

work in the Loop-project (cf. eg. [29, 24]) also concentrates on a sequential sub-
part of Java, translating the proof-theory into PVS and Isabelle/HOL.

The work [38, 37] use (a modification of) the object constraint language OCL
as assertional language to annotate UML class diagrams and to generate proof
conditions for Java-programs. The work [12] presents a model checking algo-
rithm and its implementation in Isabelle/HOL to check type correctness of Java
bytecode. In [41] a large subset of JavaCard, including exception handling, is for-
malized in Isabelle/HOL, and its soundness and completeness is shown within
the theorem prover. The work in [2] presents a Hoare-style proof-system for a
sequential object-oriented calculus [1]. Their language features heap-allocated
objects (but no classes), side-effects and aliasing, and its type system supports
subtyping. Furthermore, their language allows nested statically let-bound vari-
ables, which requires a more complex semantical treatment for variables based
on closures, and ultimately renders their proof-system incomplete. Their asser-
tion language is presented as an extension of the object calculus’ language of
type and analogously, the proof system extends the type derivation system. The
close connection of types and specifications in the presentation is exploited in
[40] for the generation of verification conditions.

Work on proof systems for parallel object-oriented languages or in partic-
ular the multithreading aspects of Java is more scarce. [15] presents a sound
and complete proof system in weakest precondition formulation for a parallel
object-based language, i.e., without inheritance and subtyping, and also without
reentrant method calls. Later work [32] [17] [16] include more features, especially
cater for Hoare logic for inheritance and subtyping.

A survey about monitors in general, including proof-rules for various monitor
semantics, can be found in [13].

Future work As future work, we plan to extend JavaMT by further constructs, like
inheritance and subtyping. To deal with subtyping on the logical level requires a
notion of behavioral subtyping [7]. An extension of the semantics and the proof
theory to detect deadlocks and termination is also of interest.

Acknowledgments We thank Cees Pierik for fruitful discussions and sugges-
tions, and furthermore Tim D’Avis for careful reading and commenting on an
earlier version of this document.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. M. Abadi and K. R. M. Leino. A logic of object-oriented programs. In M. Bidoit
and M. Dauchet, editors, Proceedings of TAPSOFT ’97, volume 1214 of Lecture
Notes in Computer Science, pages 682–696, Lille, France, Apr. 1997. Springer-
Verlag. An extended version of this paper appeared as SRC Research Report 161
(September 1998).

22 Conclusion

3. E. Ábrahám-Mumm and F. de Boer. Proof-outlines for threads in Java. In
C. Palamidessi, editor, Proceedings of CONCUR 2000, volume 1877 of Lecture
Notes in Computer Science. Springer-Verlag, Aug. 2000.

4. E. Ábrahám-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification for
Java’s monitor concept: Soundness and completeness. Technical Report TR-ST-
02-3, Lehrstuhl für Software-Technologie, Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität zu Kiel, 2002. to appear.

5. E. Ábrahám-Mumm, F. de Boer, W.-P. de Roever, and M. Steffen. Verification
for Java’s reentrant multithreading concept. In M. Nielsen and U. H. Engberg,
editors, Proceedings of FoSSaCS 2002, volume 2303 of Lecture Notes in Computer
Science, pages 4–20. Springer-Verlag, Apr. 2002. A longer version, including the
proofs for soundness and completeness, appeared as Technical Report TR-ST-02-1,
March 2002.

6. J. Alves-Foss, editor. Formal Syntax and Semantics of Java. LNCS State-of-the-
Art-Survey. Springer-Verlag, 1999.

7. P. America. A behavioural approach to subtyping in object-oriented programming
languages. 443, Phillips Research Laboratories, January/April 1989.

8. P. America and F. de Boer. Reasoning about dynamically evolving process struc-
tures. Formal Aspects of Computing, 6(3):269–316, 1993.

9. G. R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley, 2000.

10. K. R. Apt. Ten years of Hoare’s logic: A survey – part I. ACM Transactions on
Programming Languages and Systems, 3(4):431–483, Oct. 1981.

11. K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for communicating
sequential processes. ACM Transactions on Programming Languages and Systems,
2:359–385, 1980.

12. D. Basin, S. Friedrich, and M. Gawkowski. Verified bytecode model checkers. In
V. A. Carreño, C. A. Muñoz, and S. Tahar, editors, Theorem Proving in Higher
Order Logics (TPHOLs’02), pages 47–66, August 2002.

13. P. A. Buhr, M. Fortier, and M. H. Coffin. Monitor classification. ACM Computing
Surveys, 27(1):63–107, Mar. 1995.

14. P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based structural
operational semantics of multi-threaded Java. In Alves-Foss [6], pages 157–200.

15. F. S. de Boer. A WP-calculus for OO. In W. Thomas, editor, Proceedings of
FoSSaCS ’99, volume 1578 of Lecture Notes in Computer Science, pages 135–156.
Springer-Verlag, 1999.

16. F. S. de Boer and C. Pierik. Computer-aided specification and verification of anno-
tated object-oriented programs. In B. Jacobs and A. Rensink, editors, Proceedings
of the Fifth International Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS 2002), volume 209, pages 163–177. Kluwer, 2002.

17. F. S. de Boer and C. Pierik. Towards an environment for the verification of an-
notated object-oriented programs. Technical report UU-CS-2003-002, Institute of
Information and Computing Sciences, University of Utrecht, Jan. 2003.

18. C. C. de Figueiredo. A proof system for a sequential object-oriented language.
Technical Report UMCS-95-1-1, University of Manchester, 1995.

19. R. W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19–32, 1967.

20. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

21. C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12:576–580, 1969. Also in [22].

Conclusion 23

22. C. A. R. Hoare and C. B. Jones, editors. Essays in Computing Science. Interna-
tional Series in Computer Science. Prentice Hall, 1989.

23. M. Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

24. B. Jacobs, J. van den Berg, M. Huisman, M. van Barkum, U. Hensel, and H. Tews.
Reasoning about classes in Java (preliminary report). In Object Oriented Program-
ing: Systems, Languages, and Applications (OOPSLA) ’98, pages 329–340. ACM,
1998. in SIGPLAN Notices.

25. G. T. Leavens, A. L. Baker, and C. Ruby. JML: a Java modelling language. In
Formal Underpinnings of Java Workshop (at OOPSLA’98), 1998.

26. G. T. Leavens and W. E. Wheil. Reasoning about object-oriented programs that
use subtypes. In Object Oriented Programing: Systems, Languages, and Applica-
tions (OOPSLA) ’90 (Ottawa, Canada), pages 212–223. ACM, 1990. Extended
Abstract.

27. G. T. Leavens and W. E. Wheil. Specification and verification of object-oriented
programs using supertype abstraction. Acta Informatica, 1994. An expanded
version appeared as Iowa State Unversity Report, 92-28d.

28. G. M. Levin and D. Gries. A proof technique for communicating sequential pro-
cesses. Acta Informatica, 15(3):281–302, 1981.

29. The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/˜bart/LOOP/, 2001.

30. S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta
Informatica, 6(4):319–340, 1976.

31. S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system. In
D. Kapur, editor, Automated Deduction (CADE-11), volume 607 of Lecture Notes
in Computer Science, pages 748–752. Springer-Verlag, 1992.

32. C. Pierik and F. S. de Boer. A syntax-directed Hoare logic for object-oriented
programming concepts. Technical report UU-CS-2003-010, Institute of Information
and Computing Sciences, University of Utrecht, 2003.

33. A. Poetzsch-Heffter. A logic for the verification of object-oriented programs. In
R. Berghammer and F. Simon, editors, Proceedings of Programming Languages and
Fundamentals of Programming, pages 31–42. Institut für Informatik und Praktische
Mathematik, Christian-Albrechts-Universität Kiel, Nov. 1997. Bericht Nr. 9717.

34. A. Poetzsch-Heffter. Specification and Verification of Object-Oriented Programs.
Technische Universität München, Jan. 1997. Habilitationsschrift.

35. A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented
languages. In D. Gries and W.-P. de Roever, editors, Proceedings of PROCOMET
’98. International Federation for Information Processing (IFIP), Chapman & Hall,
1998.

36. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
S. Swierstra, editor, Programming Languages and Systems, volume 1576 of Lecture
Notes in Computer Science, pages 162–176. Springer, 1999.

37. B. Reus, R. Hennicker, and M. Wirsing. A Hoare calculus for verifying Java real-
izations of OCL-constrained design models. In H. Hussmann, editor, Fundamental
Approaches to Software Engineering, volume 2029 of Lecture Notes in Computer
Science, pages 300–316. Springer-Verlag, 2001.

38. B. Reus and M. Wirsing. A Hoare-logic for object-oriented programs. Technical
report, LMU München, 2000.

39. R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine. Springer-
Verlag, 2001.

24 Conclusion

40. F. Tang and M. Hofmann. Generation of verification conditions for Abadi and
Leino’s logic of objects (extended abstract). In Proceedings of the 9th Interna-
tional Workshop on Foundations of Object-Oriented Languages (FOOL’02), 2002.
A longer version is available as LFCS technical report.

41. D. von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency – Practice
and Experience, 2001. to appear.

42. D. von Oheimb and T. Nipkow. Hoare logic for NanoJava: Auxiliary variables,
side effects and virtual methods revisited. In L.-H. Eriksson and P.-A. Lind-
say, editors, Proceedings of Formal Methods Europe: Formal Methods – Getting
IT Right (FME’02), volume 2391 of Lecture Notes in Computer Science, pages
89–105. Springer-Verlag, 2002.

43. J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With Uml. Object Technology Series. Addison-Wesley, 1999.

