
A Tool-supported Proof System

for Multithreaded Java?

July 23, 2003

Erika Ábrahám1, Frank S. de Boer2,
Willem-Paul de Roever1, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 CWI Amsterdam, The Netherlands

Abstract. Besides the features of a class-based object-oriented lan-
guage, Java integrates concurrency via its thread classes. The concur-
rency model includes shared-variable concurrency via instance variables,
coordination via reentrant synchronization monitors, synchronous mes-
sage passing, and dynamic thread creation.
To reason about safety properties of multithreaded Java programs, we
introduce an assertional proof method for a multithreaded sublanguage
of Java, covering the mentioned concurrency issues as well as the object-
based core of Java.
The verification method is formulated in terms of proof-outlines, where
the assertions are layered into local ones specifying the behavior of a
single instance, and global ones taking care of the connections between
objects. From the annotated program, a translator tool generates a num-
ber of verification conditions which are handed over to the interactive
theorem prover PVS.

1 Introduction

Besides the features of a class-based object-oriented language, Java integrates
concurrency via its thread classes. The semantical foundations of Java [GJS96]
have been thoroughly studied ever since the language gained widespread popular-
ity (e.g. [AF99,SSB01,CKRW99]). The research concerning Java’s proof theory
mainly concentrated on sequential sub-languages (e.g. [Hui01,vON02,PHM99]).
This work presents a tool-supported assertional proof system for Javasynch , a
subset of Java, featuring dynamic object creation, method invocation, object
references with aliasing, and, specifically, concurrency and Java’s monitor disci-
pline.

The behavior of a Javasynch program results from the concurrent execution
of methods. To support a clean interface between internal and external object
behavior, Javasynch does not allow qualified references to instance variables. As
a consequence, shared-variable concurrency is caused by simultaneous execution

? Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

2

within a single object, only, but not across object boundaries. To mirror this
modularity, the assertional logic and the proof system are formulated at two
levels, a local and a global one. The local assertion language describes the internal
object behavior. The global behavior, including the communication topology of
the objects, is expressed in the global language. As in the Object Constraint
Language (OCL) [WK99], properties of object-structures are described in terms
of a navigation or dereferencing operator.

The proof system is formulated in terms of proof outlines [OG76], i.e., of
programs augmented by auxiliary variables and annotated with Hoare-style as-
sertions [Flo67,Hoa69]. The satisfaction of the program properties specified by
the assertions is guaranteed by the verification conditions of the proof system.
The execution of a single method body in isolation is captured by standard
local correctness conditions, using the local assertion language. Interference be-
tween concurrent method executions is covered by the interference freedom test
[OG76,LG81], formulated also in the local language. It has especially to accom-
modate for reentrant code and the specific synchronization mechanism. Possibly
affecting more than one instance, communication and object creation is treated
in the cooperation test, using the global language. The communication can take
place within a single object or between different objects. As these cases can-
not be distinguished syntactically, our cooperation test combines elements from
similar rules in [AFdR80] and in [LG81] for CSP.

Our proof method is modular in the sense that it allows for separate interfer-
ence freedom and cooperation tests (Fig. 1). This modularity, which in practice
simplifies correctness proofs considerably, is obtained by disallowing the assign-
ment of the result of communication and object creation to instance variables.
Clearly, such assignments can be avoided by additional assignments to fresh local
variables and thus at the expense of new interleaving points.

Javasynch -
correctness

sequential
correctness

interference
freedom

cooperation
test

Fig. 1. Modularity of the proof system

augmentation

annotation

Syntax of
assertions

PVS

Verger

Semantics of
assertions

Verification
conditionsoutline

ProofJava
program tool

Program
correctness

proof

P
ro

o
f o

f th
e co

n
d

itio
n

s
C

o
n

d
itio

n
 g

en
era

tio
n

Fig. 2. The verification process

Computer-support is given by the tool Verger (VERification condition GEn-
eratoR), taking a proof outline as input and generating the verification condi-
tions as output. We use the interactive theorem prover PVS [ORS92] to verify
the conditions, for which we only need to encode the semantics of the assertion

3

language (cf. Figure 2). The verification conditions are generated by a syntax-
directed Hoare logic based on a logical modeling of assignments by means of
substitutions, instead of more semantic approaches using the global store model
[AL97,JKW03,vON02,PHM99], which requires an explicit encoding of the se-
mantics of assignments.

To transparently describe the proof system, we present it incrementally in
three stages: We start with a sequential, class-based sublanguage of Java and its
proof system in Section 2, featuring dynamic object creation and method invo-
cation. This level shows how to handle activities of a single thread of execution.
On the second stage we include concurrency in Section 3, where the proof sys-
tem is extended to handle dynamic thread creation and aspects of interleaving
and shared variable concurrency. Finally, we integrate Java’s monitor synchro-
nization mechanism in Section 4. Section 5 shows how we can prove deadlock
freedom, and Section 6 discusses related and future work.

The incremental development shows how the proof system can be extended
stepwise to deal with additional features of the programming language. Further
extensions with for example the concepts of inheritance and subtyping build
topics for future work.

In this paper, the verification conditions are formulated as standard Hoare-
triples {ϕ}stm{ψ}. Their meaning is, that if stm is executed in a state satisfying
ϕ, and the execution terminates, then the resulting state satisfies ψ. For the
formal semantics of Hoare-triples, given by means of a weakest precondition
calculus, for soundness and completeness of the proof method, and for the de-
scription of the tool support see [ÁdBdRS03].

2 The sequential sublanguage

In this section we start with a sequential part of our language, ignoring concur-
rency issues of Java, which will be added in later sections. Furthermore —and
throughout the paper— we concentrate on the object-based core Java, i.e., we
disregard inheritance and consequently subtyping, overriding, and late-binding.
For simplicity, we neither allow method overloading, i.e., we require that each
method name is assigned a unique list of formal parameter types and a return
type. In short, being concerned with the verification of the run-time behavior,
we assume a simple monomorphic type discipline.

Programs, as in Java, are given by a collection of classes containing instance
variable and method declarations. Instances of the classes, i.e., objects, are dy-
namically created, and communicate via method invocation, i.e., synchronous
message passing.

The languages we consider are strongly typed languages. Besides class types
c, they support booleans Bool and integers Int as primitive types, furthermore
pairs t × t and lists list t as composite types. Each domain is equipped with a
standard set of operators. Without inheritance and subtyping, the type system is
rather straightforward. Throughout the paper, we tacitly assume all constructs
of the abstract syntax to be well-typed, without further explicating the static

4

semantics here. We thus work with a type-annotated abstract syntax where we
omit the explicit mentioning of types when no confusion can arise.

2.1 Syntax

The abstract syntax of the sequential language Javaseq is summarized in Table 1.
Though we use the abstract syntax for the theoretical part of this work, our tool
supports Java syntax.

e ::= x | u | this | null | f(e, . . ., e)
eret ::= ε | e
stm ::= x := e | u := e | u := newc

| u := e.m(e, . . ., e) | e.m(e, . . ., e)
| ε | stm; stm | if e then stm else stm fi | while e do stm od . . .

meth ::= m(u, . . ., u){ stm ; return eret}
meth run ::= run(){ stm; return }

class ::= c{meth . . .meth}
classmain ::= c{meth . . .meth meth run}

prog ::= 〈class . . .class classmain〉

Table 1. Javaseq abstract syntax

For variables, we notationally distinguish between instance variables x ∈
IVar and local or temporary variables u ∈ TVar . Instance variables hold the
state of an object and exist throughout the object’s lifetime. Local variables are
stack-allocated; they play the role of formal parameters and variables of method
definitions and only exist during the execution of the method to which they
belong. We use Var = IVar ∪̇ TVar for the set of program variables with typical
element y. The set IVar c of instance variables of a class c is given implicitly by
the instance variables occurring in the class; the set of local variables of method
declarations is given similarly.

Besides using instance and local variables, expressions e ∈ Exp are built from
the self-reference this, the empty reference null, and from subexpressions using
the given operators. To support a clean interface between internal and external
object behavior, Javaseq does not allow qualified references to instance variables.

As statements stm ∈ Stm , we allow assignments, object creation, method
invocation, and standard control constructs like sequential composition, condi-
tional statements, and iteration. We write ε for the empty statement. A method
definition consists of a method name m, a list of formal parameters u1, . . . , un,
and a method body of the form stm; return eret , i.e., we require that method
bodies are terminated by a single return statement, giving back the control and
possibly a return value. The set Methc contains the methods of class c. We de-
note the body of method m of class c by bodym,c. A class is defined by its name
c and its methods, whose names are assumed to be distinct. A program, finally,

5

is a collection of class definitions having different class names, where classmain

defines by its run-method the entry point of the program execution. We call the
body of the run-method of the main class the main statement of the program.3

The run-method cannot be invoked.
Besides the mentioned simplifications on the type system, we impose for

technical reasons the following restrictions: We require that method invocation
and object creation statements contain only local variables, i.e., that none of the
expressions e0, . . . , en in a method invocation e0.m(e1, . . . , en) contains instance
variables. Furthermore, formal parameters must not occur on the left-hand side
of assignments. These restrictions imply that during the execution of a method
the values of the actual and formal parameters are not changed, and thus we can
use their equality to describe caller-callee dependencies when returning from a
method call. The above restrictions could be released by storing the identity of
the callee object and the values of the formal and actual parameters in additional
built-in auxiliary variables. However, the restrictions simplify the proof system
and thus they make it easier to understand the basic ideas of this work. Finally,
the result of an object creation or method invocation statement may not be
assigned to instance variables. This restriction allows for a proof system with
separated verification conditions for interference freedom and cooperation. It
should be clear that it is possible to transform a program to adhere to this
restrictions at the expense of additional local variables and thus new interleaving
points. Also this restriction could be released, without loosing the mentioned
modularity, but it would increase the complexity of the proof system.

2.2 Semantics

States and configurations Let Val t be the disjoint domains of the various
types t and Val = ˙⋃

t Val t, where ∪̇ is the disjoint union operator. For class
names c, the disjunct sets Valc with typical elements α, β, . . . denote infinite sets
of object identifiers. The value of the empty reference null in type c is nullc /∈
Valc. In general we will just write null , when c is clear from the context. We
define Valcnull as Valc ∪̇ {nullc} and correspondingly for compound types, and

Valnull = ˙⋃
t Val tnull . Let Init : Var → Valnull be a function assigning an initial

value to each variable y ∈ Var , i.e., null , false , and 0 for class, boolean, and
integer types, respectively, and analogously for compound types, where sequences
are initially empty. We define this /∈ Var , such that the self-reference is not in
the domain of Init .4

A local state τ ∈ Σloc of type TVar ⇀ Valnull is a partial function holding the
values of the local variables of a method. The initial local state τm,c

init of method m
3 In Java, the entry point of a program is given by the static main-method of the main

class. Relating the abstract syntax to that of Java, we assume that the main class
is a Thread-class whose main-method just creates an instance of the main class and
starts its thread. The reason to make this restriction is, that Java’s main-method is
static, but our proof system does not support static methods and variables.

4 In Java, this is a “final” instance variable, which for instance implies, it cannot be
assigned to.

6

of class c assigns to each local variable u of m the value Init(u). A local configura-
tion (α, τ, stm) of a thread executing within an object α specifies, in addition to
its local state τ , its point of execution represented by the statement stm. A thread
configuration ξ is a stack of local configurations (α0, τ0, stm0) . . . (αn, τn, stmn),
representing the call chain of the thread. We write ξ ◦ (α, τ, stm) for pushing a
new local configuration onto the stack.

An object is characterized by its instance state σinst ∈ Σinst , a partial func-
tion of type IVar ∪̇ {this} ⇀ Valnull , which assigns values to the self-reference
this and to the instance variables. The initial instance state σc,init

inst of instances
of class c assigns a value from Valc to this, and to each of its remaining instance
variables x the value Init(x). A global state σ ∈ Σ of type (˙⋃

c Valc) ⇀ Σinst

stores for each currently existing object, i.e., an object belonging to the domain
dom(σ) of σ, its instance state. The set of existing objects of type c in a state σ is
given by Valc(σ), and Valcnull (σ) = Valc(σ) ∪̇ {nullc}. For the remaining types,

Val t(σ) and Val tnull (σ) are defined correspondingly, Val (σ) = ˙⋃
t Val t(σ), and

Valnull (σ) = ˙⋃
t Val tnull (σ). A global configuration 〈T, σ〉 describes the currently

existing objects by the global state σ, where the set T contains the configuration
of the executing thread. For the concurrent languages of the later sections, T will
be the set of configurations of all currently executing threads. In the following,
we write (α, τ, stm) ∈ T if there exists a local configuration (α, τ, stm) within
one of the execution stacks of T .

We denote by τ [u 7→ v] the local state which assigns the value v to u and agrees
with τ on the values of all other variables; σinst [x 7→ v] is defined analogously,
where σ[α.x 7→ v] results from σ by assigning v to the instance variable x of object
α. We use these operators analogously for vectors of variables. We use τ [~y 7→~v]
also for arbitrary variable sequences, where instance variables are untouched;
σinst [~y 7→~v] and σ[α.~y 7→~v] are analogous. Finally for global states, σ[α 7→σinst]
equals σ except on α; note that in case α /∈ Val (σ), the operation extends the
set of existing objects by α, which has its instance state initialized to σinst .

Operational semantics Expressions are evaluated with respect to an instance
local state (σinst , τ), where the instance state gives meaning to the instance vari-
ables and the self-reference, whereas the local state determines the values of the
local variables. The main cases of the evaluation function are [[x]]

σinst ,τ

E = σinst (x)
and [[u]]

σinst ,τ

E = τ(u). The operational semantics of Javaseq is given inductively
by the rules of Table 2 as transitions between global configurations. The rules are
formulated such a way that we can re-use them for the concurrent languages of
the later sections. Note that for the sequential language, the sets T in the rules
are empty, since there is only one single thread in global configurations. We
elide the rules for the remaining sequential constructs —sequential composition,
conditional statement, and iteration— as they are standard.

Before having a closer look at the semantical rules for the transition relation
−→, let us start by defining the starting point of a program. The initial config-
uration 〈T0, σ0〉 of a program satisfies dom(σ0) = {α}, σ0(α) = σc,init

inst [this 7→α],
and T0 = {(α, τ run,c

init , body run,c)}, where c is the main class, and α ∈ Valc.

7

Assinst

〈T ∪̇ {ξ ◦ (α, τ, x:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ[α.x 7→[[e]]
σ(α),τ
E]〉

Assloc

〈T ∪̇ {ξ ◦ (α, τ, u:=e; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→[[e]]
σ(α),τ
E

], stm)}, σ〉

β ∈ Val c\Val (σ) σinst = σc,init
inst [this 7→ β] σ′ = σ[β 7→ σinst]

New

〈T ∪̇ {ξ ◦ (α, τ, u:=new
c; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ [u 7→ β], stm)}, σ′〉

m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E

∈ Val c(σ) τ ′ = τm,c
init [~u 7→[[~e]]

σ(α),τ
E

]
Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

τ ′′ = τ [uret 7→[[eret]]
σ(β),τ ′

E]
Return

〈T ∪̇ {ξ ◦ (α, τ, receive uret ; stm) ◦ (β, τ ′, return eret)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ ′′, stm)}, σ〉

Returnrun

〈T ∪̇ {(α, τ, return)}, σ〉 −→ 〈T ∪̇ {(α, τ, ε)}, σ〉

Table 2. Javaseq operational semantics

A configuration 〈T, σ〉 of a program is reachable if there exists a compu-
tation 〈T0, σ0〉−→∗〈T, σ〉 such that 〈T0, σ0〉 is the initial configuration of the
program and −→∗ the reflexive transitive closure of −→. A local configuration
(α, τ, stm) ∈ T is enabled in 〈T, σ〉, if it can be executed, i.e., if there is a com-
putation step 〈T, σ〉 → 〈T ′, σ′〉 executing stm in the local state τ and object
α.

Assignments to instance or local variables update the corresponding state
component (see rules Assinst and Assloc). Object creation by u := newc, as
shown in rule New, creates a new object of type c with a fresh identity stored
in the local variable u, and initializes its instance variables. Invoking a method
extends the call chain by a new local configuration (cf. Call). After initializing
the local state and passing the parameters, the thread begins to execute the
method body. When returning from a method call (cf. Return), the callee
evaluates its return expression and passes it to the caller which subsequently
updates its local state. The method body terminates its execution and the caller
can continue. We have similar rules not shown in the table for the invocation

8

of methods without return value. The executing thread ends its lifespan by
returning from the run-method of the initial object (see Returnrun).

2.3 The assertion language

The assertion logic consists of a local and a global sublanguage. Local assertions
p, q, . . . are used to annotate methods in terms of their local variables and of the
instance variables of the class to which they belong. Global assertions P,Q, . . .
describe a whole system of objects and their communication structure and will be
used in the cooperation test. In the assertion language we add the type Object

as the supertype of all classes, and we introduce logical variables z different
from all program variables. Logical variables are used for quantification and
as free variables to represent local variables in the global assertion language.
Expressions and assertions are interpreted relative to a logical environment ω,
assigning values to logical variables.

Assertions are boolean program expressions, extended by logical variables
and quantification.5 Global assertions may furthermore contain qualified refer-
ences. Note that when the global expressions E and E′ refer to the same object,
that is, E and E′ are aliases, then E.x and E′.x denote the same variable.

Quantification can be used for all types, also for reference types. However,
the existence of objects dynamically depends on the global state, something one
cannot speak about on the local level. Nevertheless, one can assert the exis-
tence of objects on the local level, provided one is explicit about the domain of
quantification. Thus quantification over objects in the local assertion language
is restricted to ∀z ∈ e. p for objects and to ∀z v e. p for lists of objects, and cor-
respondingly for existential quantification and for composite types. Unrestricted
quantification ∀z. p can be used in the local language for boolean and integer
domains only. Global assertions are evaluated in the context of a global state.
Thus, quantification is allowed unrestricted for all types and ranges over the set
of existing values.

The evaluations of local and global assertions are given by [[p]]
ω,σinst ,τ

L and
[[P]]ω,σ

G . The main cases are shown in Table 3. We write ω, σinst , τ |=L p for

[[p]]
ω,σinst ,τ

L = true, and |=L p if p holds in all contexts; we use analogously |=G

for global assertions.

To express a local property p in the global assertion language, we define the
lifting substitution p[z/this] by simultaneously replacing in p all occurrences of
this by z, and transforming all occurrences of instance variables x into qualified
references z.x. We assume z not to occur in p. For notational convenience we view
the local variables occurring in the global assertion p[z/this] as logical variables.
Formally, these local variables are replaced by fresh logical variables. We will
write P (z) for p[z/this], and similarly for expressions.

5 In this paper we use mathematical notation like ∀z. p etc. for phrases in abstract
syntax. The concrete syntax used by Verger is an adaptation of jml.

9

([[∃z. p]]
ω,σinst ,τ

L
= true) iff ([[p]]

ω[z 7→ v],σinst ,τ

L
= true for some v ∈ Val)

([[∃z∈e. p]]
ω,σinst ,τ

L
= true) iff ([[z∈e ∧ p]]

ω[z 7→ v],σinst ,τ

L
=true for some v ∈ Valnull)

[[E.x]]ω,σ

G
= σ([[E]]ω,σ

G
)(x)

([[∃z. P]]ω,σ

G
= true) iff ([[P]]

ω[z 7→ v],σ
G

= true for some v ∈ Valnull(σ))

Table 3. Semantics of assertions

2.4 The proof system

The proof system has to accommodate for dynamic object creation, aliasing,
and method invocation. Before describing the proof method we first show how to
augment and annotate programs resulting in proof outlines or asserted programs.

Proof outlines For a complete proof system it is necessary that the transition
semantics of Javaseq can be encoded in the assertion language. As the assertion
language reasons about the local and global states, we have to augment the
program with fresh auxiliary variables to represent information about the control
points and stack structures within the local and global states. Invariant program
properties are specified by the annotation.

An augmentation extends a program by atomically executed multiple as-
signments ~y := ~e to auxiliary variables, which we call observations. Further-
more, the observations have, in general, to be “attached” to statements they
observe in an atomic manner. For object creation this is syntactically repre-
sented by the augmentation u := newc; 〈~y := ~e〉new which attaches the observa-
tion to the object creation statement. Observations ~y1 := ~e1 of a method call
and observations ~y4 := ~e4 of the corresponding reception of a return value6 is
denoted by u := e0.m(~e); 〈~y1 := ~e1〉

!call 〈~y4 := ~e4〉
?ret . The augmentation 〈~y2 :=

~e2〉
?call stm; return eret ; 〈~y3 := ~e3〉

!ret of method bodies specifies ~y2 := ~e2 as the
observation of the reception of the method call and ~y3 := ~e3 as the obser-
vation attached to the return statement. Assignments can be observed using
~y := ~e; 〈~y′ := ~e ′

〉ass . A stand-alone observation not attached to any statement is
written as 〈~y := ~e〉 ; it can be inserted at any point in the program.

The augmentation does not influence the control flow of the program but en-
force a particular scheduling policy. An assignment statement and its observation
are executed simultaneously. Object creation and its observation are executed in
a single computation step, in this order. For method call, communication, sender,
and receiver observations are executed in a single computation step, in this or-
der. Points between a statement and its observation are no control points, since
the statement and its observation are executed in a single computation step; we

6 To exclude the possibility, that two multiple assignments get executed in a single
computation step in the same object, we require that caller observations in a self-
communication may not change the values of instance variables [ÁdBdRS03].

10

call them auxiliary points. In the following we call assignment statements with
their observations, unobserved assignments, alone-standing observations, or ob-
servations of communication or object creation general as multiple assignments,
since they are executed simultaneously.

In order to express the transition semantics in the logic, we identify each local
configuration by the object in which it executes together with the value of its
built-in auxiliary local variable conf storing a unique object-internal identifier.
Its uniqueness is assured by the auxiliary instance variable counter, incremented
for each new local configuration in that object. The callee receives the “return
address” as auxiliary formal parameter caller of type Object × Int, storing the
identities of the caller object and the calling local configuration. The parameter
caller of the initial invocation of the run-method of the initial object get the value
(null , 0).

Syntactically, the built-in augmentation translates each method definition
m(~u){stm} into m(~u, caller){〈conf, counter := counter, counter + 1〉?call stm}. Cor-
respondingly, method invocation statements u := e0.m(~e) get extended to u :=
e0.m(~e, (this, conf)).

For readability, in the examples of the following sections we will not explicitly
list the built-in augmentation; they are meant to be automatically included.

To specify invariant properties of the system, the augmented programs are
annotated by attaching local assertions to each control and auxiliary point. We
use the triple notation {p} stm {q} and write pre(stm) and post(stm) to refer to
the pre- and the post-condition of a statement. For assertions at auxiliary points
we use the following notation: The annotation

{p0} u := new c; {p1}
new 〈~y := ~e〉new {p2}

of an object creation statement specifies p0 and p2 as pre- and postconditions,
where p1 at the auxiliary point should hold directly after object creation but
before the observation. The annotation

{p0}u := e0.m(~e); {p1}
!call 〈~y1 := ~e1〉!call {p2}

wait {p3}
?ret 〈~y4 := ~e4〉?ret {p4}

assigns p0 and p4 as pre- and postconditions to the method invocation; p1 and
p3 are assumed to hold directly after method call and return, resp., but prior to
their observations; p2 describes the control point of the caller after method call
and before return. The annotation of method bodies stm; return e is as follows:

{p0}
?call 〈~y2 := ~e2〉?call {p1} stm; {p2} return e; {p3}

!ret 〈~y3 := ~e3〉!ret {p4}

The callee postcondition of the method call is p1; the callee pre- and postcondi-
tions of return are p2 and p4. The assertions p0 resp. p3 specify the states of the
callee between method call resp. return and its observation.

Besides pre- and postconditions, the annotation defines for each class c a local
assertion Ic called class invariant, specifying invariant properties of instances of

11

c in terms of its instance variables.7 We require that the precondition of each
method’s body is the class invariant. Finally, a global assertion GI called the
global invariant specifies properties of communication between objects. As such,
it should be invariant under object-internal computation. For that reason, we
require that for all qualified referencesE.x in GI with E of type c, all assignments
to x in class c occur in the observations of communication or object creation.
We require that in the annotation no free logical variables occur.

In the following we will also use partial annotation. Assertions which are not
explicitly specified are by definition true.

Verification conditions The proof system formalizes a number of verification
conditions which inductively ensure that for each reachable configuration the
local assertions attached to the current control points in the thread configuration
as well as the global and the class invariants hold. The conditions are grouped,
as usual, into initial conditions [ÁdBdRS03], and for the inductive step into local
correctness and tests for interference freedom and cooperation.

Arguing about two different local configurations makes it necessary to dis-
tinguish between their local variables, since they may have the same names; in
such cases we will rename the local variables in one of the local states. We use
primed assertions p′ to denote the given assertion p with every local variable u
replaced by a fresh one u′, and correspondingly for expressions.

Local correctness A proof outline is locally correct, if the properties of method
instances as specified by the annotation are invariant under their own execution.
For example, the precondition of an assignment must imply its postcondition af-
ter its execution. The following condition should hold for all multiple assignments
being an assignment statement with its observation, an unobserved assignment,
or an alone-standing observation:

Definition 1 (Local correctness: Assignment). A proof outline is locally
correct, if for all multiple assignments {p1}~y := ~e {p2} in class c, which is not
the observation of object creation or communication,

|=L {p1} ~y := ~e {p2} . (1)

The conditions for loops and conditional statements are similar. Note that we
have no local verification conditions for observations of communication and ob-
ject creation. The postconditions of such statements express assumptions about
the communicated values. These assumptions will be verified in the cooperation
test.

7 The notion of class invariant commonly used for sequential object-oriented languages
differs from our notion: In a sequential setting, it would be sufficient that the class
invariant holds initially and is preserved by whole method calls, but not necessarily
in between.

12

The interference freedom test Invariance of local assertions under computation
steps in which they are not involved is assured by the proof obligations of the
interference freedom test. Its definition covers also invariance of the class invari-
ants. Since Javaseq does not support qualified references to instance variables, we
only have to deal with invariance under execution within the same object. Affect-
ing only local variables, communication and object creation do not change the
instance states of the executing objects. Thus we only have to cover invariance
of assertions at control points over assignments in the same object, including ob-
servations of communication and object creation. To distinguish local variables
of the different local configurations, we rename those of the assertion.

Let q be an assertion at a control point and ~y := ~e a multiple assignment
in the same class c. In which cases does q have to be invariant under the ex-
ecution of the assignment? Since the language is sequential, i.e., q and ~y := ~e
belong to the same thread, the only assertions endangered are those at control
points waiting for return earlier in the current execution stack. Invariance of a
local configuration under its own execution, however, need not be considered
and is excluded by requiring conf 6= conf′. Interference with the matching re-
turn statement in a self-communication need also not be considered, because
communicating partners execute simultaneously. Let caller obj be the first and
caller conf the second component of caller. We define waits for ret(q, ~y := ~e) by

– conf′ 6= conf, for assertions {q}wait attached to control points waiting for
return, if ~y := ~e is not the observation of return;

– conf′ 6= conf ∧ (this 6= caller obj∨ conf′ 6= caller conf), for assertions {q}wait , if
~y := ~e observes return;

– false, otherwise.

The interference freedom test can now be formulated as follows:

Definition 2 (Interference freedom). A proof outline is interference free,
if for all classes c and multiple assignments ~y := ~e with precondition p in c,

|=L {p ∧ Ic} ~y := ~e {Ic} . (2)

Furthermore, for all assertions q at control points in c,

|=L {p ∧ q′ ∧ waits for ret(q, ~y := ~e)} ~y := ~e {q′} . (3)

Note that if we would allow qualified references in program expressions, we
would have to show interference freedom of all assertions under all assignments
in programs, not only for those occurring in the same class. For a program with
n classes where each class contains k assignments and l assertions at control
points, the number of interference freedom conditions is in O(c · k · l), instead of
O((c · k) · (c · l)) with qualified references.

Example 1. Let {p1} this.m(~e); {p2}
!call 〈stm1〉

!call {p3}
wait {p4}

?ret 〈stm2〉
?ret {p5} be an

annotated method call statement in a method m′ of a class c with an integer

13

auxiliary instance variable x, such that all assertions imply conf = x. I.e., the
identity of the executing local configuration is stored in the instance variable x.
The annotation expresses that the method m′ of c is not called recursively. That
means, in our sequential language, no pairs of control points in m′ of c can be
simultaneously reached.

The assertions p2 and p4 do not have to be shown invariant, since they are
attached to auxiliary points. Interference freedom neither requires invariance of
the assertions p1 and p5, since they are not at control points waiting for return,
and thus the antecedents of the corresponding conditions are false. Invariance
of p3 under the execution of the observation stm1 with precondition p2 requires
validity of |=L {p2 ∧ p

′
3 ∧ waits for ret(p3, stm1)} stm1 {p′3}. The assertion p2 ∧

p′3 ∧ waits for ret(p3, stm1) implies (conf = x) ∧ (conf′ = x) ∧ (conf′ 6= conf),
which evaluates to false. Invariance of p3 under stm2 is analogous.

Example 2. Assume a partially8 annotated method invocation statement of the
form {p1} this.m(~e); {conf = x ∧ p2}

wait {p3} in a class c with an integer auxil-
iary instance variable x, and assume that method m of c has the annotated
return statement {q1} return; {caller = (this, x)}!ret 〈stm〉!ret {q2} . The annotation
expresses that the local configurations containing the above statements are in
caller-callee relationship. Thus upon return, the control point of the caller moves
from the point at conf = x∧ p2 to that at p3, i.e, conf = x∧ p2 does not have to
be invariant under the observation of the return statement.

Again, the assertion caller = (this, x) at an auxiliary point does not have to be
shown invariant. For the assertions p1, p3, q1, and q2, which are not at a control
point waiting for return, the antecedent is false. Invariance of conf = x ∧ p2

under the observation stm with precondition caller = (this, x) is covered by the
interference freedom condition

|=L { caller = (this, x) ∧ (conf′ = x ∧ p′2)∧
waits for ret((conf = x ∧ p2), stm) } stm {conf′ = x ∧ p′2} .

The waits for ret assertion implies caller 6= (this, conf′), which contradicts the
assumptions caller = (this, x) and conf′ = x; thus the antecedent of the condition
is false.

Satisfaction of caller = (this, x) directly after communication and satisfaction
of p3 and q2 after the observation is assured by the cooperation test.

The cooperation test Whereas the interference freedom test assures invariance of
assertions under steps in which they are not involved, the cooperation test deals
with inductivity for communicating partners, assuring that the global invariant,
and the preconditions and the class invariants of the involved statements imply
their postconditions after the joint step. Additionally, the preconditions of the
corresponding observations must hold immediately after communication. The
global invariant expresses global invariant properties using auxiliary instance
variables which can be changed by observations of communication, only. Con-
sequently, the global invariant is automatically invariant under the execution of
8 As already mentioned, missing assertions are by definition true.

14

non-communicating statements. For communication and object creation, how-
ever, the invariance must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. Since different ob-
jects may be involved, the cooperation test is formulated in the global assertion
language. Local properties are expressed in the global language using the lift-
ing substitution. As already mentioned, we use the shortcuts P (z) for p[z/this],
Q′(z′) for q′[z′/this], and similarly for expressions. To avoid name clashes be-
tween local variables of the partners, we rename those of the callee. Remember
that after communication, i.e., after creating and initializing the callee local con-
figuration and passing on the actual parameters, first the caller, and then the
callee execute their corresponding observations, all in a single computation step.
Correspondingly for return, after communicating the result value, first the callee
and then the caller observation gets executed.

Let z and z′ be logical variables representing the caller, respectively the
callee object in a method call. We assume the global invariant, the class invari-
ants of the communicating partners, and the preconditions of the communicating
statements to hold prior to communication. For method invocation, the precon-
dition of the callee is its class invariant. That the two statements indeed repre-
sent communicating partners is captured in the assertion comm, which depends
on the type of communication: For method invocation e0.m(~e), the assertion
E0(z) = z′ states, that z′ is indeed the callee object. Remember that method
invocation hands over the “return address”, and that the values of formal pa-
rameters remain unchanged. Furthermore, actual parameters may not contain
instance variables, i.e., their interpretation does not change during method ex-
ecution. Therefore, the formal and actual parameters can be used at returning
from a method to identify partners being in caller-callee relationship, using the
built-in auxiliary variables. Thus for the return case, comm additionally states
~u′ = ~E(z), where ~u and ~e are the formal and the actual parameters. Return-
ing from the run-method terminates the executing thread, which does not have
communication effects.

As in the previous conditions, state changes are represented by assignments.
For the example of method invocation, communication is represented by the
assignment ~u′ := ~E(z), where initialization of the remaining local variables ~v

is covered by ~v′ := Init(~v). The assignments z.~y1 := ~E1(z) and z′.~y′2 := ~E′
2(z

′)
stand for the caller and callee observations ~y1 := ~e1 and ~y2 := ~e2, executed in
the objects z and z′, respectively. Note that we rename all local variables of the
callee to avoid name clashes.

15

Definition 3 (Cooperation test: Communication). A proof outline sat-
isfies the cooperation test for communication, if

|=G {GI ∧ P1(z) ∧Q′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm

{P2(z) ∧Q′
2(z

′)} (4)

|=G {GI ∧ P1(z) ∧Q
′
1(z

′) ∧ comm ∧ z 6= null ∧ z′ 6= null}

fcomm ; fobs1 ; fobs2

{GI ∧ P3(z) ∧Q′
3(z

′)} (5)

hold for distinct fresh logical variables z of type c and z′ of type c′, in the following
cases:

1. Call: For all statements {p1}uret := e0.m(~e); {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait

(or such without receiving a value) in class c with e0 of type c′, where method
m of c′ has body {q2}?call 〈~y2 := ~e2〉

?call {q3} stm; return eret , formal parameters
~u, and local variables ~v except the formal parameters. The callee class in-
variant is q1 = Ic′ . The assertion comm is given by E0(z) = z′. Further-

more, fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z), and fobs2 is

z′.~y′2 := ~E′
2(z

′).
2. Return: For all uret := e0.m(~e); 〈~y1 := ~e1〉

!call {p1}
wait {p2}

?ret 〈~y4 := ~e4〉
?ret {p3}

(or such without receiving a value) occurring in c with e0 of type c′, such
that method m of c′ has the return statement {q1} return eret ; {q2}!ret 〈~y3 :=
~e3〉

!ret {q3} , and formal parameter list ~u, the above equations must hold with
comm given by E0(z) = z′ ∧ ~u′ = ~E(z), and where fcomm is uret := E′

ret(z
′),

fobs1 is z′.~y′3 := ~E′
3(z

′), and fobs2 is z.~y4 := ~E4(z).
3. Returnrun : For {q1} return; {q2}!ret 〈~y3 := ~e3〉

!ret {q3} in the run-method of the
main class, p1 = p2 = p3 = true, comm = true, fobs1 is z′.~y′3 := ~E′

3(z
′), and

furthermore fcomm and fobs2 are the empty statement.

Example 3. This example illustrates how one can prove properties of parameter
passing. Let {p}e0.m(v,~e), with p given by v > 0, be a (partially) annotated
statement in a class c with e0 of type c′, and let method m(u, ~w) of c′ have the
body {q} stm; return where q is u > 0. Inductivity of the proof outline requires
that if p is valid prior to the call (besides the global and class invariants), then
q is satisfied after the invocation. Omitting irrelevant details, Condition 5 of the
cooperation test requires proving |=G {P (z)} u′ := v {Q′(z′)}, which expands to
|=G {v > 0} u′ := v {u′ > 0}.

Example 4. The following example demonstrates how one can express depen-
dencies between instance states in the global invariant and use this information
in the cooperation test.

Let {p}e0.m(~e), with p given by x > 0 ∧ e0 = o, be an annotated state-
ment in a class c with e0 of type c′, x an integer instance variable, and o

16

an instance variable of type c′, and let method m(~u) of c′ have the anno-
tated body {q} stm; return where q is y > 0 and y an integer instance vari-
able. Let furthermore z ∈ LVarc and let the global invariant be given by
∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0. Inductivity requires that
if p and the global invariant are valid prior to the call, then q is satisfied after
the invocation (again, we omit irrelevant details). The cooperation test Condi-

tion 5, i.e., |=G {GI ∧ P (z) ∧ comm ∧ z 6= null ∧ z′ 6= null} ~u′ := ~E(z) {Q′(z′)}
expands to

|=G {(∀z. (z 6= null ∧ z.o 6= null ∧ z.x > 0) → z.o.y > 0)∧
(z.x > 0 ∧ E0(z) = z.o) ∧ E0(z) = z′ ∧ z 6= null ∧ z′ 6= null }

~u′ := ~E(z)

{z′.y > 0}

Instantiating the quantification by z, the antecedent implies z.o.y > 0∧z′ = z.o,
i.e., z′.y > 0. Invariance of the global invariant is straightforward.

Example 5. This example illustrates how the cooperation test handles observa-
tions of communication. Let {¬b} this.m(~e){b}wait be an annotated statement in
a class c with boolean auxiliary instance variable b and let m(~u) of c have the
body {¬b}?call 〈b := true〉?call {b} stm; return. Condition 4 of the cooperation test
assures inductivity for the precondition of the observation. We have to show
|=G {¬z.b ∧ comm}~u′ := ~E(z){¬z′.b}, i.e., since it is a self-call, |=G {¬z.b ∧ z =

z′}~u′ := ~E(z){¬z′.b}, which is trivially satisfied. Condition 5 of the cooperation

test for the postconditions requires |=G {comm}~u′ := ~E(z); z′.b := true{z.b∧z′.b}

which expands to |=G {z = z′}~u′ := ~E(z); z′.b := true{z.b ∧ z′.b}, whose validity
is easy to see.

Besides method calls and return, the cooperation test needs to handle object
creation, taking care of the preservation of the global invariant, the postcondition
of the new-statement and its observation, and the new object’s class invariant.
We can assume that the precondition of the object creation statement, the class
invariant of the creator, and the global invariant hold in the configuration prior
to instantiation. The extension of the global state with a freshly created object is
formulated in a strongest postcondition style, i.e., it is required to hold immedi-
ately after the instantiation. We use existential quantification to refer to the old
value: z′ of type listObject represents the existing objects prior to the extension.
Moreover, that the created object’s identity stored in u is fresh and that the new
instance is properly initialized is expressed by the global assertion Fresh(z′, u)
defined as InitState(u)∧u 6∈ z′∧∀v. v ∈ z′∨v = u, where Init is a syntactical oper-
ator with interpretation Init (cf. page 5), IVar is the set of instance variables of
u, and InitState(u) is the global assertion u 6= null ∧

∧

x∈IVar \{this} u.x = Init(x),
expressing that the object denoted by u is in its initial instance state. To express
that an assertion refers to the set of existing objects prior to the extension of
the global state, we need to restrict any existential quantification in the asser-
tion to range over objects from z′, only. So let P be a global assertion and z′ of

17

type listObject a logical variable not occurring in P . Then P ↓ z′ is the global
assertion P with all quantifications ∃z. P ′ replaced by ∃z. obj(z) ⊆ z′ ∧ P ′,
where obj (v) denotes the set of objects occurring in the value v. Thus a predi-
cate (∃u. P) ↓ z′, evaluated immediately after the instantiation, expresses that
P holds prior to the creation of the new object. This leads to the following
definition of the cooperation test for object creation:

Definition 4 (Cooperation test: Instantiation). A proof outline satisfies
the cooperation test for object creation, if for all classes c′ and statements
{p1}u := newc; {p2}

new 〈~y := ~e〉new {p3} in c′:

|=G z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

→ P2(z) ∧ Ic(u) (6)

|=G {z 6=null ∧ z 6=u ∧ ∃z′.
(

Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′
)

}

z.~y := ~E(z)

{GI ∧ P3(z)} (7)

with z of type c′ and z′ of type listObject fresh.

Example 6. Assume a statement u := newc; {u 6= this} in a program, where
the class invariant of c is x ≥ 0 for an integer instance variable x. Condi-
tion 6 of the cooperation test for object creation assures that the class in-
variant of the new object holds after its creation. We have to show validity
of |=G (∃z′. Fresh(z′, u)) → u.x ≥ 0, i.e., |=G u.x = 0 → u.x ≥ 0, which is trivial.
For the postcondition, Condition 7 requires |=G {z 6= u}ε{u 6= z} with ε the
empty statement (no observations are executed), which is true.

3 Multithreading

In this section we extend the language Javaseq to a concurrent language Javaconc

by allowing dynamic thread creation. Again, we define syntax and semantics of
the language, before formalizing the proof system.

3.1 Syntax and semantics

Expressions and statements can be constructed as in Javaseq. The abstract syn-
tax of the remaining constructs is summarized in Table 4. As we focus on con-
currency aspects, all classes are Thread classes in the sense of Java: Each class
contains the pre-defined methods start and run. The run-methods cannot be
invoked directly. The parameterless start-method without return value is not
implemented syntactically; its semantics is described below. Note, that the syn-
tax does not allow qualified references to instance variables. As a consequence,
shared-variable concurrency is caused by simultaneous execution within a single
object, only, but not across object boundaries.

18

meth ::= m(u, . . ., u){ stm; return eret}
meth run ::= run(){ stm; return }

class ::= c{meth . . .meth meth run meth start}
classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 4. Javaconc abstract syntax

β = [[e]]
σ(α),τ
E

∈ Valc(σ) ¬started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)
Callstart

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm), (β, τ run,c
init , body run,c)}, σ〉

β = [[e]]
σ(α),τ
E ∈ Val (σ) started (T ∪ {ξ ◦ (α, τ, e.start(); stm)}, β)

Call
skip
start

〈T ∪̇ {ξ ◦ (α, τ, e.start(); stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 5. Javaconc operational semantics

The operational semantics of Javaconc extends the semantics of Javaseq by
dynamic thread creation. The additional rules are shown in Table 5. The first
invocation of a start-method brings a new thread into being (Callstart). The
new thread starts to execute the user-defined run-method of the given object
while the initiating thread continues its own execution. Only the first invocation
of the start-method has this effect (Call

skip
start).

9 This is captured by the predicate
started(T, β) which holds iff there is a stack (α0, τ0, stm0) . . . (αn, τn, stmn) ∈ T
such that β = α0. A thread ends its lifespan by returning from a run-method
(Returnrun of Table 2).10

3.2 The proof system

In contrast to the sequential language, the proof system additionally has to ac-
commodate for dynamic thread creation and shared-variable concurrency. Before
describing the proof method, we show how to extend the built-in augmentation
of the sequential language.

Proof outlines As mentioned, an important point of the proof system to
achieve completeness is the identification of communicating partners. For the
concurrent language we additionally have to be able to identify threads. We

9 In Java an exception is thrown if the thread is already started but not yet terminated.
10 The worked-off local configuration (α, τ, ε) is kept in the global configuration to

ensure that the thread of α cannot be started twice.

19

identify a thread by the object in which it has begun its execution. This identi-
fication is unique, since an object’s thread can be started only once. We use the
type Thread thus as abbreviation for the type Object. During a method call, the
callee thread receives its own identity as an auxiliary formal parameter thread.
Additionally, we extend the auxiliary formal parameter caller by the caller thread
identity, i.e., let caller be of type Object × Int × Thread, storing the identities of
the caller object, the calling local configuration, and the caller thread. Note that
the thread identities of caller and callee are the same in all cases but the invo-
cation of a start-method. The run-method of the initial object is executed with
the values (α0, (null , 0,null)) assigned to the parameters (thread, caller), where
α0 is the initial object. The boolean instance variable started, finally, remembers
whether the object’s start-method has already been invoked.

Syntactically, each formal parameter list ~u in the original program gets ex-
tended to (~u, thread, caller). Correspondingly for the caller, each actual parame-
ter list ~e in statements invoking a method different from start gets extended to
(~e, thread, (this, conf, thread)). The invocation of the parameterless start-method
of an object e0 gets the actual parameter list (e0, (this, conf, thread)). Finally, the
callee observation at the beginning of the run-method executes started := true.
The variables conf and counter are updated as in the previous section.

Verification conditions Local correctness is not influenced by the new issue of
concurrency. Note that local correctness applies now to all concurrently executing
threads.

The interference freedom test An assertion q at a control point has to be invari-
ant under an assignment ~y := ~e in the same class only if the local configuration
described by the assertion is not active in the computation step executing the
assignment. Note that assertions at auxiliary points do not have to be shown in-
variant. Again, to distinguish local variables of the different local configurations,
we rename those of the assertion.

If q and ~y := ~e belong to the same thread, i.e., thread = thread′, then we
have the same antecedent as for the sequential language. If the assertion and the
assignment belong to different threads, interference freedom must be shown in
any case except for the self-invocation of the start-method: The precondition of
such a method invocation cannot interfere with the corresponding observation
of the callee. To describe this setting, we define self start(q, ~y := ~e) by caller =
(this, conf′, thread′) iff q is the precondition of a method invocation e0.start(~e)
and the assignment is the callee observation at the beginning of the run-method,
and by false otherwise.

Definition 5 (Interference freedom). A proof outline is interference free,
if the conditions of Definition 2 hold with waits for ret(q, ~y := ~e) replaced by

interleavable(q, ~y := ~e)
def
= thread = thread′ → waits for ret(q, ~y := ~e) ∧

thread 6= thread′ → ¬self start(q, ~y := ~e) . (8)

20

Example 7. Assume an assignment {p} stm in an annotated method m of c, and
an assertion q at a control point in the same method, which is not waiting for
return, such that both p and q imply thread = this. I.e., the method is executed
only by the thread of the object to which it belongs. Clearly, p and q cannot
be simultaneously reached by the same thread. For invariance of q under the
assignment stm, the antecedent of the interference freedom condition implies
p∧ q′ ∧ interleavable(q, stm). From p∧ q′ we conclude thread = thread′, and thus
by the definition of interleavable(q, stm) the assertion q should be at a control
point waiting for return, which is not the case, and thus the antecedent of the
condition evaluates to false.

The cooperation test The cooperation test for object creation is not influenced
by adding concurrency, but we have to extend the cooperation test for com-
munication by defining additional conditions for thread creation. Invoking the
start-method of an object whose thread is already started does not have com-
munication effects. The same holds for returning from a run-method, which is
already included in the conditions for the sequential language as for the termi-
nation of the only thread. Note that this condition applies now to all threads.

Definition 6 (Cooperation test: Communication). A proof outline satis-
fies the cooperation test for communication, if the conditions of Definition 3 hold
for the statements listed there with m 6= start, and additionally in the following
cases:

1. Callstart : For all statements {p1}e0.start(~e); {p2}
!call 〈~y1 := ~e1〉

!call {p3} in
class c with e0 of type c′, comm is given by E0(z) = z′ ∧ ¬z′.started, where
{q2}?call 〈~y2 := ~e2〉

?call {q3} stm is the body of the run-method of c′ having formal
parameters ~u and local variables ~v except the formal parameters. As in the
Callcase, q1 = Ic′ , fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is z.~y1 := ~E1(z),

and fobs2 is z′.~y′2 := ~E′
2(z

′).

2. Call
skip
start : For the above statements, the equations must additionally hold

with the assertion comm given by E0(z) = z′∧ z′.started, q1 = Ic′ , q2 = q3 =

true, fobs1 is z.~y1 := ~E1(z), and fcomm and fobs2 are the empty statement.

4 The language Javasynch

In this section we extend the language Javaconc with monitor synchronization.
Again, we define syntax and semantics of the language Javasynch , before formal-
izing the proof system.

4.1 Syntax and semantics

Expressions and statements can be constructed as in the previous languages.
The abstract syntax of the remaining constructs is summarized in the Table 6.
Formally, methods get decorated by a modifier modif distinguishing between

21

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm; return eret}
meth run ::= nsync run(){ stm ; return }
methwait ::= nsync wait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }
methnotifyAll ::= nsync notifyAll(){ !signal all; return }
methpredef ::= meth start methwait methnotify methnotifyAll

class ::= c{meth . . .meth meth run methpredef }
classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 6. Javasynch abstract syntax

non-synchronized and synchronized methods.11 We use sync(c,m) to state that
method m in class c is synchronized. In the sequel we also refer to statements
in the body of a synchronized method as being synchronized. Furthermore, we
consider the additional predefined methods wait, notify, and notifyAll, whose defi-
nitions use the auxiliary statements !signal, !signal all, ?signal, and returngetlock .12

The operational semantics extends the semantics of Javaconc by the rules of
Table 7, where the Call rule is replaced. Each object has a lock which can be
owned by at most one thread. Synchronized methods of an object can be invoked
only by a thread which owns the lock of that object (Call), as expressed by the
predicate owns , defined below. If the thread does not own the lock, it has to wait
until the lock gets free. A thread owning the lock of an object can recursively
invoke several synchronized methods of that object, which corresponds to the
notion of reentrant monitors.

The remaining rules handle the monitor methods wait, notify, and notifyAll.
In all three cases the caller must own the lock of the callee object (Callmonitor).
A thread can block itself on an object whose lock it owns by invoking the ob-
ject’s wait-method, thereby relinquishing the lock and placing itself into the
object’s wait set. Formally, the wait set wait(T, α) of an object is given as the
set of all stacks in T with a top element of the form (α, τ, ?signal; stm). Af-
ter having put itself on ice, the thread awaits notification by another thread
which invokes the notify-method of the object. The !signal-statement in the
notify-method thus reactivates a non-deterministically chosen single thread wait-
ing for notification on the given object (Signal). Analogously to the wait set,
the notified set notified(T, α) of α is the set of all stacks in T with top ele-
ment of the form (α, τ, returngetlock), i.e., threads which have been notified and
trying to get hold of the lock again. According to rule Returnwait , the re-
ceiver can continue after notification in executing returngetlock only if the lock

11 Java does not have the “non-synchronized” modifier: methods are non-synchronized
by default.

12 Java’s Thread class additionally support methods for suspending, resuming, and
stopping a thread, but they are deprecated and thus not considered here.

22

m /∈ {start, run, wait, notify, notifyAll} modif m(~u){ body } ∈ Methc

β = [[e0]]
σ(α),τ
E

∈ Val c(σ) τ ′ = τm,c
init [~u 7→[[~e]]

σ(α),τ
E

] sync(c, m) → ¬owns(T, β)
Call

〈T ∪̇ {ξ ◦ (α, τ, u := e0.m(~e); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive u; stm) ◦ (β, τ ′, body)}, σ〉

m ∈ {wait, notify, notifyAll}

β = [[e]]
σ(α),τ
E

∈ Val c(σ) owns(ξ ◦ (α, τ, e.m(); stm), β)
Callmonitor

〈T ∪̇ {ξ ◦ (α, τ, e.m(); stm)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τm,c
init , bodym,c)}, σ〉

¬owns(T, β)
Returnwait

〈T ∪̇ {ξ ◦ (α, τ, receive; stm) ◦ (β, τ ′, returngetlock)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Signal

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)} ∪̇ {ξ′ ◦ (α, τ ′, ?signal; stm ′)}, σ〉 −→

〈T ∪̇ {ξ ◦ (α, τ, stm)} ∪̇ {ξ′ ◦ (α, τ ′, stm ′)}, σ〉

wait(T, α) = ∅
Signalskip

〈T ∪̇ {ξ ◦ (α, τ, !signal; stm)}, σ〉 −→ 〈T ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

T ′ = signal(T, α)
SignalAll

〈T ∪̇ {ξ ◦ (α, τ, !signal all; stm)}, σ〉 −→ 〈T ′ ∪̇ {ξ ◦ (α, τ, stm)}, σ〉

Table 7. Javasynch Operational semantics

is free. Note that the notifier does not hand over the lock to the one being no-
tified but continues to own it. This behavior is known as signal-and-continue
monitor discipline [And00]. If no threads are waiting on the object, the !signal

of the notifier is without effect (Signalskip). The notifyAll-method general-
izes notify in that all waiting threads are notified via the !signal all-broadcast
(SignalAll). The effect of this statement is given by setting signal(T, α) as
(T \ wait(T, α)) ∪ {ξ ◦ (β, τ, stm) | ξ ◦ (β, τ, ?signal; stm) ∈ wait(T, α)}.

Using the wait and notified sets, we can now formalize the owns predicate: A
thread ξ owns the lock of β iff ξ executes some synchronized method of β, but not
its wait-method. Formally, owns(T, β) is true iff there exists a thread ξ ∈ T and
a (β, τ, stm) ∈ ξ with stm synchronized and ξ /∈ wait(T, β) ∪ notified(T, β). The

23

definition is used analogously for single threads. An invariant of the semantics
is that at most one thread can own the lock of an object at a time.

4.2 The proof system

The proof system has additionally to accommodate for synchronization, reen-
trant monitors, and thread coordination. First we define how to extend the
augmentation of Javaconc, before we describe the proof method.

Proof outlines To capture mutual exclusion and the monitor discipline, the
instance variable lock of type Thread× Int stores the identity of the thread who
owns the lock, if any, together with the number of synchronized calls in the call
chain. Its initial value free = (null , 0) indicates that the lock is free. The instance
variables wait and notified of type list(Thread× Int) are the analogues of the wait -
and notified -sets of the semantics and store the threads waiting at the monitor,
respectively those having been notified. Besides the thread identity, the number
of synchronized calls is stored. In other words, these variables remember the
old lock-value prior to suspension which is restored when the thread becomes
active again. All auxiliary variables are initialized as usual. For values thread of
type Thread and wait of type list(Thread× Int), we will also write thread ∈ wait
instead of (thread , n) ∈ wait for some n.

Syntactically, besides the augmentation of the previous section, the callee
observation at the beginning and at the end of each synchronized method body
executes lock := inc(lock) and lock := dec(lock), respectively. The semantics of
incrementing the lock [[inc(lock)]]

σinst ,τ

E is (τ(thread), n+1) for σinst (lock) = (α, n).
Decrementing dec(lock) is inverse.

Instead of the auxiliary statements of the semantics, notification is repre-
sented in the proof system by auxiliary assignments operating on the wait and
notified variables. Entering the wait-method gets the observation wait, lock :=
wait ∪ {lock}, free; returning from the wait-method observes lock, notified :=
get(notified, thread), notified\{get(notified, thread)}. Given a thread α, the get
function retrieves the value (α, n) from a wait or notified set. The semantics
assures uniqueness of the association. The !signal-statement of the notify-method
is represented by the auxiliary assignment wait, notified := notify(wait, notified),
where notify(wait ,notified) is the pair of the given sets with one element, cho-
sen nondeterministically, moved from the wait into the notified set; if the wait
set is empty, it is the identity function. Finally, the !signal all-statement of
the notifyAll-method is represented by the auxiliary assignment notified,wait :=
notified ∪ wait, ∅.

Verification conditions Local correctness agrees with that for Javaconc. In
case of notification, local correctness covers also invariance for the notifying
thread, as the effect of notification is captured by an auxiliary assignment.

24

The interference freedom test Synchronized methods of a single object can be
executed concurrently only if one of the corresponding local configurations is
waiting for return: If the executing threads are different, then one of the threads
is in the wait or notified set of the object; otherwise, both executing local con-
figurations are in the same call chain. Thus we assume that either not both the
assignment and the assertion occur in a synchronized method, or the assertion
is at a control point waiting for return.13

Definition 7 (Interference freedom). A proof outline is interference free,
if Definition 5 holds in all cases, such that either not both p and q occur in a
synchronized method, or q is at a control point waiting for return.

For notification, we require also invariance of the assertions for the notified
thread. We do so, as notification is described by an auxiliary assignment executed
by the notifier. That means, both the waiting and the notified status of the
executing thread are represented by a single control point in the wait-method.
The two statuses can be distinguished by the values of the wait and notified

variables. The invariance of the precondition of the return statement in the wait-
method under the assignment in the notify-method represents the notification
process, whereas invariance of that assertion over assignments changing the lock
represents the synchronization mechanism. Information about the lock value will
be imported from the cooperation test as this information depends on the global
behavior.

Example 8. This example shows how the fact, that at most one thread can own
the lock of an object, can be used to show mutual exclusion. We use the assertion
owns(thread, lock) for thread 6= null ∧ thread(lock) = thread, where thread(lock)
is the first component of the lock value. Let furthermore free for(thread, lock) be
thread 6= null ∧ (owns(thread, lock) ∨ lock = free).

Let q, given by owns(thread, lock), be an assertion at a control point and let

{p}?call 〈stm〉?call with p
def
= free for(thread, lock) be the callee observation at the

beginning of a synchronized method in the same class. Note that the observa-
tion changes the lock value. The interference freedom condition |=L {p ∧ q′ ∧
interleavable(q, stm)}stm{q′} assures invariance of q under the observation stm.
The assertions p and q′ imply thread = thread′. The points at p and q can be
simultaneously reached by the same thread only if q describes a point waiting for
return. This fact is mirrored by the definition of the interleavable predicate: If q
is not at a control point waiting for return, then the antecedent of the condition
evaluates to false. Otherwise, after the execution of the built-in augmentation
lock := inc(lock) in stm we have owns(thread, lock), i.e., owns(thread′, lock), which
was to be shown.

13 This condition is not necessary for a minimal proof system, but reduces the number
of verification conditions.

25

The cooperation test We extend the cooperation test for Javaconc with synchro-
nization and the invocation of the monitor methods. In the previous languages,
the assertion comm expressed, that the given statements indeed represent com-
municating partners. In the current language with monitor synchronization, com-
munication is not always enabled. Thus the assertion comm has additionally to
capture enabledness of the communication: In case of a synchronized method
invocation, the lock of the callee object has to be free or owned by the caller.
This is expressed by z′.lock = free∨ thread(z′.lock) = thread, where thread is the
caller-thread, and where thread(z′.lock) is the first component of the lock value,
i.e., the thread owning the lock of z′. For the invocation of the monitor meth-
ods we require that the executing thread is holding the lock. Returning from
the wait-method assumes that the thread has been notified and that the callee’s
lock is free. Note that the global invariant is not affected by the object-internal
monitor signaling mechanism, which is represented by auxiliary assignments.

Definition 8 (Cooperation test: Communication). A proof outline sat-
isfies the cooperation test for communication, if the conditions of Definition 6
hold for the statements listed there with the exception of the Call-case, and
additionally in the following cases:

1. Call: For all statements {p1}uret := e0.m(~e); {p2}
!call 〈~y1 := ~e1〉

!call {p3}
wait

(or such without receiving a value) in class c with e0 of type c′, where method
m /∈ {start,wait, notify, notifyAll} of c′ is synchronized with body {q2}?call 〈~y2 :=
~e2〉

?call {q3} stm, formal parameters ~u, and local variables ~v except the formal
parameters. The callee class invariant is q1 = Ic′ . The assertion comm is
given by E0(z) = z′∧(z′.lock = free∨thread(z′.lock) = thread). Furthermore,

fcomm is ~u′, ~v′ := ~E(z), Init(~v), fobs1 is given by z.~y1 := ~E1(z), and fobs2 is

z′.~y′2 := ~E′
2(z

′). If m is not synchronized, z′.lock = free ∨ thread(z′.lock) =
thread in comm is dropped.

2. Callmonitor : For m ∈ {wait, notify, notifyAll}, comm is given by E0(z) =
z′ ∧ thread(z′.lock) = thread.

3. Returnwait : For {q1} returngetlock ; {q2}!ret 〈~y3 := ~e3〉
!ret {q3} in a wait-method,

comm is E0(z) = z′ ∧ ~u′ = ~E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.

Example 9. Assume the invocation of a synchronized method m of a class c,
where m of c has the body 〈stm〉?call {thread(lock) = thread} stm ′; return. Note
that the built-in augmentation in stm sets the lock owner by the assignment
lock := inc(lock). Omitting irrelevant details again, the cooperation test requires
|=G {true}z′.lock := inc(z′.lock){thread(z′.lock) = thread′}, which holds by the
definition of inc.

5 Proving deadlock freedom

The previous sections described a proof system which can be used to prove safety
properties of Javasynch programs. In this section we show how to apply the proof
system to show deadlock freedom.

26

A system of processes is in a deadlocked configuration, if no one of them is
enabled to compute, but not yet all started processes are terminated. A typical
deadlock situation can occur, if two threads t1 and t2 both try to gather the
locks of two objects z1 and z2, but in reverse order: t1 first applies for access to
synchronized methods of z1, and then for those of z2, while t2 first collects the
lock of z2, and tries to become the lock owner of z1. Now, it can happen, that
t1 gets the lock of z1, t2 gets the lock of z2, and both are waiting for the other
lock, which will never become free. Another typical source of deadlock situations
are threads which suspended themselves by calling wait and which will never get
notified.

What kind of Javasynch -statements can be disabled and under which condi-
tions? The important cases, to which we restrict, are

– the invocation of synchronized methods, if the lock of the callee object is
neither free nor owned by the executing thread,

– if a thread tries to invoke a monitor method of an object whose lock it doesn’t
own, or

– if a thread tries to return from a wait-method, but either the lock is not free
or the thread is not yet notified.

To be exact, the semantics specifies method calls to be disabled also, if the callee
object is the empty reference. However, we won’t deal with this case; it can be
excluded in the preconditions by stating that the callee object is not null.

Assume a proof outline with global invariant GI . For a logical variable z
of type Object, let I(z) = I[z/this] be the class invariant of z expressed on the
global level. Let the assertion terminated(z) express that the thread of z is already
terminated. Formally, we define terminated(z) = q[z/thread][z/this], where q is
the postcondition of the run-method of z. For assertions p in z′ let furthermore
blocked(z, z′, p) express that the thread of z is disabled in the object z′ at control
point p. Formally, we define blocked(z, z′, p) by

– ∃~v. p[z/thread][z′/this] ∧ e0.lock 6= free ∧ thread(e0.lock) 6= thread if p is the
precondition of a call invoking a synchronized method of e0,

– ∃~v. p[z/thread][z′/this]∧ thread(e0.lock) 6= thread if p is the precondition of a
call invoking a monitor method of e0,

– ∃~v. p[z/thread][z′/this]∧(z′.lock 6= free∨z /∈ z′.notified) if p is the precondition
of the return-statement in the wait-method, and

– false otherwise,

where ~v is the vector of local variables in the given assertion without thread, and
z and z′ fresh. Let finally blocked(z, z′) express that the thread of object z is
blocked in the object z′. It is defined by the assertion

∨

p∈Ass(z′) blocked(z, z′, p),

where Ass(z′) is the set of all assertions at control points in z′. Now we can
formalize the verification condition for deadlock freedom:

27

Definition 9. A proof outline satisfies the test for deadlock freedom, if

|=G (GI ∧ (9)

(∀z. z 6= null → (I(z) ∧

(z.started → (terminated(z) ∨ (∃z′. z′ 6= null ∧ blocked(z, z′)))))) ∧

(∃z. z 6= null ∧ z.started ∧ (∃z′. z′ 6= null ∧ blocked(z, z′))))

→ false .

The above condition states, that the assumptions that all started processes are
terminated or disabled, and that at least one thread is not yet terminated, i.e.,
that the program is in a deadlocked configuration, lead to a contradiction. Sound-
ness of the above condition, i.e., that the condition indeed assures absence of
deadlock, is easy to show. Completeness results directly from the completeness
of the proof method.

Example 10. In the following example, the assertion owns is as in Example 8,
proj (v, i) denotes the ith component of the tuple v, and not owns(thread, lock)
is thread 6= null ∧ proj(lock, 1) 6= thread. Again, the built-in augmentation is not
listed in the code. We additionally list instance and local variable declarations
type name;, where 〈type name;〉 declares auxiliary variables. We sometimes
skip return statements without giving back a value, and write explicitly ∀(z : t).p
for quantification over t-typed values.

The proof outline below defines two classes, Producer and Consumer, where
Producer is the main class. The initial thread of the initial Producer-instance
creates a Consumer-instance and calls its synchronized produce method. This
method starts the consumer thread and enters a non-terminating loop, producing
some results, notifying the consumer, and suspending itself by calling wait.
After the producer suspended itself, the consumer thread calls the synchronized
consume method, which consumes the result of the producer, notifies, and calls
wait, again in a non-terminating loop.

For readability, we only list a partial annotation and augmentation, which
already implies deadlock freedom. Invariance of the properties listed below has
been shown in PVS using an extended augmentation and annotation. Also dead-
lock freedom has been proven in PVS.

GI
def
=

(∀(p : Producer).(p 6= null ∧ ¬p.outside ∧ p.consumer 6= null) → p.consumer .lock = (null , 0))∧
(∀(c : consumer).(c 6= null ∧ c.started) → (c.producer 6= null ∧ c.producer.started))∧
(∀(c1 : consumer).(c1 6= null → (∀(c2 : consumer).c2 6= null → c1 = c2))

IProducer
def
= true

IConsumer
def
= (lock = (null , 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer, lock))∧

length(wait) ≤ 1

class Producer {

〈 Consumer consumer ; 〉
〈 boolean outside ; 〉

nsync wait(){ {false} }

nsync run(){

28

Consumer c;

c = newConsumer; 〈consumer = c〉new

{c = consumer ∧ ¬outside ∧ consumer 6= null ∧ consumer 6= this ∧ thread = this}

c.produce (); 〈outside = (if c = this then outside else true fi)〉!call

{false}

}
}

class Consumer {
int buffer;

〈 Producer producer ; 〉

nsync wait(){

{started ∧ not owns(thread, lock) ∧ (thread = this ∨ thread = producer)∧
(thread ∈ wait ∨ thread ∈ notified)}

}

sync produce (){
int i;

〈producer = proj (caller, 1)〉?call
i=0;
start();
while (true){

//produce i here
buffer = i;

{owns(thread, lock)}
notify ();

{owns(thread, lock)}
wait()

}
}

nsync run(){

{not owns(thread, lock) ∧ thread = this}

consume ();
{false}

}

sync consume (){
int i;

while (true){
i = buffer;
//consume i here

{owns(thread, lock)}
notify ();

{owns(thread, lock)}
wait()

}
}

}

Both run-methods have false as postcondition, stating that the corresponding
threads don’t terminate. The preconditions of all monitor method invocations
express that the executing thread owns the lock, and thus execution cannot be
enabled at these control points. The wait-method of Producer-instances is not
invoked; we define false as the precondition of its return-statement, implying
that disabledness is excluded also at this control point.

The condition for deadlock freedom assumes that there is a thread which is
started but not yet terminated, and whose execution is disabled. This thread is
either the thread of a Producer-instance, or that of a Consumer-instance.

We discuss only the case that the disabled thread belongs to a Producer-
instance z different from null; the other case is similar. Note that the control
of the thread of z cannot stay in the run-method of a Consumer-instance, since

29

the corresponding local assertion implies thread = this, which would contradict
the type assumptions. Thus the thread can have its control point prior to the
method call in the run-method of a Producer-instance, or in the wait-method of
a Consumer-instance. In the first case, the corresponding local assertion and the
global invariant imply that the lock of the callee is free, i.e., that the execution
is enabled, which is a contradiction. In the second case, if the thread of z exe-
cutes in the wait-method of a Consumer-instance z′, the local assertion in wait

together with the type assumptions implies z′.started∧not owns(z, z′.lock)∧ z =
z′.producer, and that z is either in the wait- or in the notified-set of z′.

According to the assumptions of the deadlock freedom condition, also the
started thread of z′ is disabled or terminated; its control point cannot be in a
Producer-instance, since that would contradict to the type assumptions. Thus
the control of z′ stays in the run- or in the wait-method of a Consumer-instance;
the annotation implies that the instance is z′ itself.

If the control stays in the run-method, then the corresponding local assertion
and the class invariant imply that the lock is free, since neither the producer,
nor the consumer owns it, which leads to a contradiction, since in this case the
execution of the thread of z′ would be enabled. Finally, if the control of the
thread of z′ stays in the wait-method of z′, then the annotation assures that the
thread doesn’t own the lock of z′; again, using the class invariant we get that
the lock is free.

Now, both threads of z and z′ have their control points in the wait-method
of z′, and the lock of z′ is free. Furthermore, both threads are disabled, and are
in the wait- or in the notified set. If one of them is in the notified set, then its
execution is enabled, which is a contradiction. If both threads are in the wait
set, then from z 6= z′ we imply that the wait-set of z′ has at least two elements,
which contradicts the class invariant of z′.

Thus the assumptions lead to a contradiction, which was to be shown.

6 Conclusion

This paper presents a tool-supported assertional proof method for a multi-
threaded sublanguage of Java including its monitor discipline. This builds on
earlier work ([ÁMdB00] and especially [ÁMdBdRS02]). The underlying theory,
the proof rules, their soundness and completeness, and the tool support are
presented in greater detail in [ÁdBdRS03].

Related work As far as proof-systems and verification support for object-oriented
programs is concerned, research mostly concentrated on sequential languages.
Early examples of Hoare-style proof systems for a sequential object-oriented
languages are [dF95] and [LW90,LW94]. With Java’s rise to prominence, re-
search more intensively turned to (sublanguages of) Java, as opposed of cap-
turing object-oriented language features in the abstract. In this direction, jml

[LBR98,LCC+03] has emerged as some kind of common ground for asserting Java
programs. Another trend is to offer mechanized proof support for the languages.

30

For instance, Poetzsch-Heffter and Müller [PHM99,PH97b,PH97a,PHM98] de-
velop a Hoare-style programming logic presented in sequent formulation for a
sequential kernel of Java, featuring interfaces, subtyping, and inheritance. Trans-
lating the operational and the axiomatic semantics into the HOL theorem prover
allows a computer-assisted soundness proof. The work in the Loop-project (cf.
e.g. [Loo01,JvdBH+98]) also concentrates on a sequential subpart of Java, trans-
lating the proof-theory into PVS and Isabelle/HOL.

The work [RW00,RHW01] use a modification of the object constraint language
OCL as assertional language to annotate UML class diagrams and to generate
proof conditions for Java-programs. The work [BFG02] presents a model check-
ing algorithm and its implementation in Isabelle/HOL to check type correctness
of Java bytecode. In [vO01] a large subset of JavaCard, including exception
handling, is formalized in Isabelle/HOL, and its soundness and completeness is
shown within the theorem prover. The work in [AL97] presents a Hoare-style
proof-system for a sequential object-oriented calculus [AC96]. Their language
features heap-allocated objects (but no classes), side-effects and aliasing, and
its type system supports subtyping. Furthermore, their language allows nested
statically let-bound variables, which requires a more complex semantical treat-
ment for variables based on closures, and ultimately renders their proof-system
incomplete. Their assertion language is presented as an extension of the ob-
ject calculus’ language of type and analogously, the proof system extends the
type derivation system. The close connection of types and specifications in the
presentation is exploited in [TH02] for the generation of verification conditions.

Work on proof systems for parallel object-oriented languages or in particu-
lar the multithreading aspects of Java is more scarce. [dB99] presents a sound
and complete proof system in weakest precondition formulation for a parallel
object-based language, i.e., without inheritance and subtyping, and also with-
out reentrant method calls. Later work [PdB03,dBP03,dBP02] includes more
features, especially catering for Hoare logic for inheritance and subtyping.

A survey about monitors in general, including proof-rules for various monitor
semantics, can be found in [BFC95].

Future work As ti future work, we plan to extend Javasynch by further constructs,
like inheritance, subtyping, and exception handling. Dealing with subtyping on
the logical level requires a notion of behavioral subtyping [Ame89].

Acknowledgments We thank Cees Pierik for fruitful discussions and sugges-
tions, and furthermore Tim D’Avis for careful reading and commenting on an
earlier version of this document.

References

[AC96] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer, 1996.

31

[ÁdBdRS03] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin
Steffen. A Hoare logic for monitors in Java. Techical report TR-ST-
03-1, Lehrstuhl für Software-Technologie, Institut für Informatik und
Praktische Mathematik, Christian-Albrechts-Universität zu Kiel, April
2003.

[AF99] Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume
1523 of LNCS State-of-the-Art-Survey. Springer-Verlag, 1999.

[AFdR80] K. R. Apt, N. Francez, and W.-P. de Roever. A proof system for com-
municating sequential processes. ACM Transactions on Programming
Languages and Systems, 2:359–385, 1980.

[AL97] Mart́ın Abadi and K. Rustan M. Leino. A logic of object-oriented pro-
grams. In Michel Bidoit and Max Dauchet, editors, Proceedings of TAP-
SOFT ’97, volume 1214 of Lecture Notes in Computer Science, pages
682–696, Lille, France, April 1997. Springer-Verlag. An extended ver-
sion of this paper appeared as SRC Research Report 161 (September
1998).

[ÁMdB00] Erika Ábrahám-Mumm and Frank S. de Boer. Proof-outlines for threads
in Java. In Catuscia Palamidessi, editor, Proceedings of CONCUR 2000,
volume 1877 of Lecture Notes in Computer Science. Springer-Verlag,
August 2000.

[ÁMdBdRS02] Erika Ábrahám-Mumm, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. Verification for Java’s reentrant multithreading
concept. In Mogens Nielsen and Uffe H. Engberg, editors, Proceedings
of FoSSaCS 2002, volume 2303 of Lecture Notes in Computer Science,
pages 4–20. Springer-Verlag, April 2002. A longer version, including the
proofs for soundness and completeness, appeared as Technical Report
TR-ST-02-1, March 2002.

[Ame89] Pierre America. A behavioural approach to subtyping in object-oriented
programming languages. 443, Phillips Research Laboratories, Jan-
uary/April 1989.

[And00] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tributed Programming. Addison-Wesley, 2000.

[BdBdRG03] Marcello Bosangue, Frank S. de Boer, Willem-Paul de Roever, and Su-
sanne Graf, editors. Proceedings of the First International Symposium
on Formal Methods for Components and Objects (FMCO 2002), Leiden,
Lecture Notes in Computer Science. Springer-Verlag, 2003.

[BFC95] Peter A. Buhr, Michel Fortier, and Michael H. Coffin. Monitor classifi-
cation. ACM Computing Surveys, 27(1):63–107, March 1995.

[BFG02] David Basin, Stefan Friedrich, and Marek Gawkowski. Verified byte-
code model checkers. In Victor A. Carreño, César A. Muñoz, and Sofiène
Tahar, editors, Theorem Proving in Higher Order Logics (TPHOLs’02),
volume 2410 of Lecture Notes in Computer Science, pages 47–66.
Springer-Verlag, August 2002.

[CKRW99] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An event-based
structural operational semantics of multi-threaded Java. In Alves-Foss
[AF99], pages 157–200.

[dB99] Frank S. de Boer. A WP-calculus for OO. In Wolfgang Thomas, editor,
Proceedings of FoSSaCS ’99, volume 1578 of Lecture Notes in Computer
Science, pages 135–156. Springer-Verlag, 1999.

32

[dBP02] Frank S. de Boer and Cees Pierik. Computer-aided specification and
verification of annotated object-oriented programs. In Bart Jacobs and
Arend Rensink, editors, Proceedings of the Fifth International Confer-
ence on Formal Methods for Open Object-Based Distributed Systems
(FMOODS 2002), volume 209, pages 163–177. Kluwer, 2002.

[dBP03] Frank S. de Boer and Cees Pierik. Towards an environment for the verifi-
cation of annotated object-oriented programs. Technical report UU-CS-
2003-002, Institute of Information and Computing Sciences, University
of Utrecht, January 2003.

[dF95] C. C. de Figueiredo. A proof system for a sequential object-oriented
language. Technical Report UMCS-95-1-1, University of Manchester,
1995.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz,
editor, Proc. Symp. in Applied Mathematics, volume 19, pages 19–32,
1967.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[HJ89] C. A. R. Hoare and Cliff B. Jones, editors. Essays in Computing Science.
International Series in Computer Science. Prentice Hall, 1989.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12:576–580, 1969. Also in [HJ89].

[Hui01] Marieke Huisman. Java Program Verification in Higher-Order Logic
with PVS and Isabelle. PhD thesis, University of Nijmegen, 2001.

[JKW03] Bart Jacobs, Joseph Kiniry, and Martijn Warnier. Java program verifi-
cation challenges. In Bosangue et al. [BdBdRG03].

[JvdBH+98] Bart Jacobs, Jan van den Berg, Marijke Huisman, M. van Barkum, Ul-
rich Hensel, and Hendrik Tews. Reasoning about classes in Java (prelim-
inary report). In Object Oriented Programing: Systems, Languages, and
Applications (OOPSLA) ’98, pages 329–340. ACM, 1998. in SIGPLAN
Notices.

[LBR98] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. JML: a Java mod-
elling language. In Formal Underpinnings of Java Workshop (at OOP-
SLA’98), 1998.

[LCC+03] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of jml accommodates both runtime assertion checking and
formal verification. In Bosangue et al. [BdBdRG03].

[LG81] G. M. Levin and D. Gries. A proof technique for communicating se-
quential processes. Acta Informatica, 15(3):281–302, 1981.

[Loo01] The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/˜bart/LOOP/, 2001.

[LW90] Gary T. Leavens and William E. Wheil. Reasoning about object-
oriented programs that use subtypes. In Object Oriented Program-
ing: Systems, Languages, and Applications (OOPSLA) ’90 (Ottawa,
Canada), pages 212–223. ACM, 1990. Extended Abstract.

[LW94] Gary T. Leavens and William E. Wheil. Specification and verification
of object-oriented programs using supertype abstraction. Acta Infor-
matica, 1994. An expanded version appeared as Iowa State Unversity
Report, 92-28d.

[OG76] Susan Owicki and David Gries. An axiomatic proof technique for par-
allel programs. Acta Informatica, 6(4):319–340, 1976.

33

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification
system. In D. Kapur, editor, Automated Deduction (CADE-11), volume
607 of Lecture Notes in Computer Science, pages 748–752. Springer-
Verlag, 1992.

[PdB03] Cees Pierik and Frank S. de Boer. A syntax-directed Hoare logic for
object-oriented programming concepts. Technical report UU-CS-2003-
010, Institute of Information and Computing Sciences, University of
Utrecht, 2003.

[PH97a] Arnd Poetzsch-Heffter. A logic for the verification of object-oriented
programs. In Rudolf Berghammer and Friedeman Simon, editors, Pro-
ceedings of Programming Languages and Fundamentals of Program-
ming, pages 31–42. Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität Kiel, November 1997. Bericht Nr. 9717.

[PH97b] Arnd Poetzsch-Heffter. Specification and Verification of Object-Oriented
Programs. Technische Universität München, January 1997. Habilita-
tionsschrift.

[PHM98] Arnd Poetzsch-Heffter and Peter Müller. Logical foundations for typed
object-oriented languages. In David Gries and Willem-Paul de Roever,
editors, Proceedings of PROCOMET ’98. International Federation for
Information Processing (IFIP), Chapman & Hall, 1998.

[PHM99] Arnd Poetzsch-Heffter and Peter Müller. A programming logic for se-
quential Java. In S.D. Swierstra, editor, Programming Languages and
Systems, volume 1576 of Lecture Notes in Computer Science, pages 162–
176. Springer, 1999.

[RHW01] Bernhard Reus, Rolf Hennicker, and Martin Wirsing. A Hoare calculus
for verifying Java realizations of OCL-constrained design models. In
H. Hussmann, editor, Fundamental Approaches to Software Engineer-
ing, volume 2029 of Lecture Notes in Computer Science, pages 300–316.
Springer-Verlag, 2001.

[RW00] Bernhard Reus and Martin Wirsing. A Hoare-logic for object-oriented
programs. Technical report, LMU München, 2000.

[SSB01] Robert Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine. Springer-Verlag, 2001.

[TH02] Francis Tang and Martin Hofmann. Generation of verification condi-
tions for Abadi and Leino’s logic of objects (extended abstract). In Pro-
ceedings of the 9th International Workshop on Foundations of Object-
Oriented Languages (FOOL’02), 2002. A longer version is available as
LFCS technical report.

[vO01] David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency
and Computation: Practice and Experience, 13(13):1173–1214, 2001.

[vON02] David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava: Auxil-
iary variables, side effects and virtual methods revisited. In L.-H. Eriks-
son and P.-A. Lindsay, editors, Proceedings of Formal Methods Europe:
Formal Methods – Getting IT Right (FME’02), volume 2391 of Lecture
Notes in Computer Science, pages 89–105. Springer-Verlag, 2002.

[WK99] Jos B. Warmer and Anneke G. Kleppe. The Object Constraint Lan-
guage: Precise Modeling With Uml. Object Technology Series. Addison-
Wesley, 1999.

