
INSTITUT FÜR INFORMATIK

UND PRAKTISCHE MATHEMATIK

A structural operational semantics for a

concurrent class calculus

Erika Ábrahám Marcello M. Bonsangue

Frank S. de Boer Martin Steffen

Bericht Nr. 0307

August 17, 2003

CHRISTIAN-ALBRECHTS-UNIVERSITÄT

KIEL

Institut für Informatik und Praktische Mathematik der
Christian-Albrechts-Universität zu Kiel

Olshausenstr. 40
D – 24098 Kiel

A structural operational semantics for a

concurrent class calculus

Erika Ábrahám Marcello M. Bonsangue

Frank S. de Boer Martin Steffen

Bericht Nr. 0307

August 17, 2003

e-mail: eab@informatik.uni-freiburg.de, marcello@liacs.nl,
F.S.de.Boer@cwi.nl, ms@informatik.uni-kiel.de

Part of this work has been financially supported by IST project Omega
(IST-2001-33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO

1122/9-2).

A Structural Operational Semantics for a

Concurrent Class Calculus

August 17, 2003

Erika Ábrahám1,2, Marcello M. Bonsangue3, Frank S. de Boer4, and Martin
Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent ν-calculus has been investigated as a core
calculus for imperative, object-oriented languages with multithreading
and heap-allocated objects. From an abstract point of view, the combi-
nation of this form of concurrency with objects corresponds to features
known from the popular language Java. One distinctive feature, however,
of the concurrent object calculus is that it is object-based, whereas the
mainstream of object-oriented languages is class-based.

This technical report extends the concurrent ν-calculus by introducing
classes and explores some of the semantical consequences. The semantics
will serve as the basis for a proof of full abstraction wrt. to a may-testing
based notion of observability.
Keywords: multithreading, class-based object-oriented languages, for-
mal semantics.

Table of Contents

1 Introduction . 2
2 A concurrent class calculus . 5
3 Type system . 7
4 Operational semantics . 8

4.1 Internal steps . 10
4.2 External behavior of a component . 11
4.3 Connectivity contexts and cliques . 13
4.4 External steps . 15
4.5 Examples . 20
4.6 Trace semantics . 21

4.6.1 Lazy instantiation . 22
4.6.2 Traces . 25

5 Conclusion . 26
A Operational semantics: ν-binders with connectivity 27

1 Introduction

The semantics of a program is what “it means”. Alas,5 not only are there many
possibilities to describe “the” meaning of a program —denotational, operational,
logically, equationally with various intermediate shades— but also there are
many possible choices what the meaning should actually be.

A standard approach, which is also philosophically appealing, is not to start
defining what program is but what one (wishes to) observe about the program or
more generally the program fragment. Still, there are of course different choices,
but often the choice of a notion of observability is much simper to define, to
understand, and to defend, in one word, less arbitrary, than an outright definition
of the semantics. The coincidence of a (in most cases) denotational notion of
equivalence and observable equivalence is known as the full abstraction problem
and has been studied for numerous languages and settings.

Our particular interest in the field are semantics of multithreaded, object-
oriented languages in the style of Java. In the context of concurrent, object-
based programs, Jeffrey and Rathke [3] offered an answer to the full abstraction
problem. Starting from may-testing as a very simple notion of observation, their
result roughly says that, given a component as a set of objects and threads,
the fully abstract semantics consists of the set of traces at the boundary of the
component, where the traces record incoming and outgoing calls and returns
of the components. At this level, the result is unspectacular, since indeed it is
intuitively clear that in the chosen setting, the only possible way to observe

5 or fortunately, depending on the standpoint . . .

Introduction 3

something about a set of objects and threads is to exchange messages. It should
be equally clear, however, that for the language featuring multithreading, object
references with aliasing, and creation of new objects and threads, the details of
defining the semantics and proving the full abstraction result are all but trivial.

The result in [3] is developed within the concurrent ν-calculus [2], which has
been proposed as a core calculus for imperative, object-oriented languages with
multithreading and heap-allocated objects. It is an extension of the sequential
ν-calculus [5] and stands in the tradition of various object calculi (cf. [1] for one
definite reference) and also the π-calculus [4, 6].

One distinctive feature of the ν-calculus is that it is object-based, which in
particular means that there are no classes as templates for new objects.6 This
is in contrast to the mainstream of object-oriented languages whose code is
organized in classes. This report addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state and the methods, and thread, which are the active entities,
classes come into play. Classes serve as a blueprint for their instances and can be
conceptually understood as particular objects supporting just a method which
allows to generate instances.

May it as it be, what is important in our context is that now the division
between the component or program fragment under observation, and its en-
vironment also separates classes: There are classes internal to the component
and those belonging to the environment which plays the role of the program’s
observer. As a consequence, not only calls and returns are exchanged at the
interface between component and environment, but instantiation requests, as
well. This possibility of cross-border instantiation is absent in the object-based
setting: Objects are created by directly providing the code of their implemen-
tation, not referring to the name of a class, which has as a consequence that
the component creates only component-objects and dually the environment only
environment objects.

To understand the bearing on the semantics of this change, we must be aware
that the interesting part of the problem is not so much to just cover the possible
behavior at the interface —there is little doubt that sequences of calls, returns,
and instantiations with enough information at the labels would do— but to
characterize it exactly, i.e., to exclude impossible environment interaction. As

6 The terms “object-based” and “object-oriented” are sometimes used to distinguish
between two flavors of languages with objects: object-oriented languages, in this man-
ner of speaking, support classes and inheritance, whereas object-based languages do
without classes. Instead, they offer more complex operations on objects, for instance
general method update.

4 Introduction

an obvious example, a trace with two consecutive calls from the same thread
without a return in between should not be part of the behavior of a component.

Let us concentrate on the issue of instantiation across the demarcation line
between component and its environment, and imagine that the component cre-
ates an instance of an environment class. The first question is: does this yield a
component object or an environment object? As the code of the object is pro-
vided by the external class which is in the hand of the observer, the interaction
between the component and the newly created object can lead to observable
effects and must therefore be traced. In other words, instances of environment
classes belong to the environment, and symmetrically those of internal classes
to the component.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case, an object of the program, say o1 instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2 respectively o3.

o1

o2

o3

c2 c3
program environment

Fig. 1. Two instances of external classes

Now in this situation it is impossible, that there be an incoming call from
the environment carrying both names o2 and o3, since the only entity which is
aware of both references is o1. Unless the component gives away the reference to
the environment, o2 and o3 are completely separated.

Thus, in order to exclude impossible combinations of object reference in the
communication labels, the component has to keep track which objects of the
environment are connected. The component has, of course, by no means full in-
formation about the complete system; after all it can at most trace what happens
at the interface, and the objects of the environment can exchange information
“behind the component’s back”. Therefore, the component must conservatively
over-approximate the potential knowledge of objects in the environment, i.e., it
must make worst-case assumptions concerning the proliferation of knowledge,
which means it must assume that

A concurrent class calculus 5

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must include a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others, and
furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

To summarize: The report investigates a class-based variant of the concurrent
ν-calculus, formalizing the ideas sketched above about cliques of objects. Instan-
tiation itself, even across the environment-program boundary, is not observable,
since the calculus does not have constructor methods. Therefore we present also
a variant of the semantics with “lazy instantiation”, i.e., where an externally
created object is created only at the point, when it is actually accessed the for
the first time.

Overview The report is organized as follows. We start in Section 2 and Section 3
with the syntax of the calculus and its type system. In this part, the development
is rather close to the one in [3]. Section 4 contains the operational semantics,
including a variant with lazy instantiation. Finally, Section 5 contains remarks
about related and future work. Appendix A presents and alternative formulation
of semantics which explicitly reprents connectivity information as part of the
component itself, which simplifies the static checking.

2 A concurrent class calculus

This section presents the syntax of the class-based calculus we will use for our
study. Indeed, it is more or less a syntactic extension of the concurrent object
calculus or concurrent ν-calculus from [2, 3].

Compared to the object-based concurrent ν-calculus, the basic change is the
introduction of classes, where a class is a named collection of methods just
as an object in the object calculus. One difference between an object and a
class concerns the nature of its name or identifier. Class names are the literals
introduced when defining the class; the may be hidden using the ν-binder but
unlike object names, the scopes for class names are static. Object names, on the
other hand, are first-order citizens of the calculus in that they can be stored
in variables, passed to other objects as method parameters, making the scoping
dynamcic, and especially they can be created freshly by instantiating a class.
There are no constant object names; the only way to get a new reference is
instatiation.7

7 The calculus does not contain an explicit constant name for the undefined reference,
e.g. nil .

6 A concurrent class calculus

The calculus is a typed language; also the operational semantics will be de-
veloped for well-typed program fragments, only. Besides base types B if wished
—we will allow ourselves integers, booleans, . . . , where convenient— the type
none represents the absence of a return value and thread is the type for a named
thread. The type [(l1:U1, . . . , lk:Uk)] of a class fixes the method labels l1 to lk
and the method types, where each method is typed by the functional type from
the tuple of inputs to the return type. The name n of a class serves as the type
for the instances of the class. The grammar is shown in Table 1.

T ::= B | none | thread | [l:U, . . . , l:U] | n | [(l:U, . . . , l:U)]
U ::= T × . . . × T → T

Table 1. Types

A program is given by a collection of classes, where the empty collection is
denoted by 0. A class n[(O)] carries a name n and defines the implementation of
its methods, and analogously for objects. A method ς(n:T).λ(x1:T1, . . . , xn:Tk).t
provides the definition of the method body abstracted over the formal parameters
of the method. The name parameter n plays a specific role: It is the “self”
parameter wich is bound to the identity of the object upon method call. The
body itself is a sequential piece of code, i.e., an (anonymous) thread. Besides
named objects and classes, the dynamic configuration of a program can contain
as active entities named threads n〈t〉, which, like objects, can be dynamically
created. Unlike objects, threads are not instantiated by some statically named
entity (a “thread class”), but directly created by providing the code. A thread is
either a value v, or a sequence of expressions, where the let -construct is used for
local declarations and sequencing; stop stands for the deadlocked or terminated
thread. Besides threads, expressions comprise conditionals and method calls,
furthermore object creation via instantiation, creation of new threads, and a
reference to the current thread. Values, finally, are either variables x or names n
(and true, false , 0, 1, . . . when convenient). For the names, we will generally use
n and its syntactic variants as name for threads (or just in general for names),
o for objects, and c for classes. The abstract syntax is displayed in Table 2.

We further will use the following syntactic abbreviations. The sequential
composition t1; t2 of two threads stands for let x:T = t1 in t2, where x does
not occur free in t2. Instance variables or fields are treated as specific form of
methods, namely of empty parameter list, i.e., an instance variable declaration
f = v is expanded to ςn:T.λ().v, a field access x.f to x.f(), and field update to
x := v to v.f ⇐ ςo:T .λ().v′.

Type system 7

C ::= 0 | R ‖ R | ν(n:T).R | n[(O)] | n[O] | n〈t〉 program
O ::= l = m, . . . , l = m object
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l ⇐ m | currentthread

| new n | new〈t〉
v ::= x | n values

Table 2. Abstract syntax

In the class-based setting, furthermore, we will not make use of general
method update, and we additionally disallow (read and write) references to fields
across object boundaries.8

3 Type system

The type system or static semantics presented next characterizes the well-typed
programs. The derivation rules are given in Table 3 and 4.

Table 3, to begin with, defines the typing on the level of global configura-
tions, i.e., on “sets” of threads, objects, and classes, all named. On this level,
the typing judgments are of the form ∆ ` C : Θ, where ∆ and Θ are finite
mappings from names to types. In the judgment, ∆ plays the role of the typing
assumptions about the environment, and Θ the commitments of the configura-
tion, i.e., the names offered to the environment. This means, ∆ must contain
at least all external names referenced by C and dually Θ mentions at most the
names offered by C.

The empty configuration is denoted by 0; it is well-typed in any context and
exports no names (cf. rule T-Empty). Two configurations in parallel can refer
mutually to each other’s commitments, and together offer the union of their
names (cf. rule T-Par). It will be an invariant of the operational semantics that
the identities of parallel entities (except for thread names) are unique. Therefore,
Θ1 and Θ2 in the rule for parallel composition are merged disjointly, as far as
the object and class references are concerned.

On the static level of the type system, the ν-binder hides the bound name
within its scope (cf. rule T-Nu). Note that for ν(n:T).C, the ν-bound name
is not added to the assumption context ∆, but to the commitment Θ. This
means, the ν-construct not only introduces a local scope for its bound name but

8 [3] are slightly more general in this respect, they only disallow write-access —
including method update— across component boundaries, by introducing the se-
mantic notion of write closedness. The theory does not depend on this difference.
Therefore we content ourselves here with the simpler syntactic restriction which
completely disallows field access across object boundaries.

8 Operational semantics

asserts something quite stonger, namely the existence of a likewise named entity.
This highlights one difference of let-bindings for variables and the introduction
of names via the ν-operator: the language construct to introduce names is the
new -operator, which opens a new local scope and a named component running
in parallel. The let-bound variable is stack allocated and thus checked in a stack-
organized variable context Γ . Names created by new are heap allocated and thus
checked in a “parallel” context (cf. the assumption-commitment rule T-Par).
The instantiated object will be available in the exported context Θ by rule
T-NObj. The rules for the named entities introduce the name and its type into
the commitment (cf. rules T-NObj, T-NClass, T-NThread).

T-Empty

∆ ` 0 : ()

∆, Θ2 ` C1 : Θ1 ∆, Θ1 ` C2 : Θ2
T-Par

∆ ` C1 ‖ C2 : Θ1, Θ2

∆ ` C : Θ, n:T
T-Nu

∆ ` ν(n:T).C : Θ

; ∆, c:T ` [(O)] : T
T-NClass

∆ ` c[(O)] : (c:T)

; ∆, o:c ` [O] : [T] ∆ ` c : [(T)]
T-NObj

∆ ` o[O] : (o:c)

; ∆, n: thread ` t : none
T-NThread

∆ ` n〈t〉 : (n: thread)

Table 3. Static semantics (configurations)

The typing rules of Table 4 formalize typing judgements for threads and ob-
jects and their syntactic sub-constituents. Besides assumptions about the pro-
vided names of the environment kept in ∆ as before, the typing is done relative to
assumption about occuring free variables. They are kept separately in a variable
context Γ , a finite mapping from variables to types.

The typing rules are rather straightforward and in many cases identical to
the ones for the concurrent ν-calculus [3]. Different from the object-based setting
are the ones dealing with classes. Rule T-Class is the introduction rule for class
types, the rule of instantiation of a class T-NewC requires reference to a class-
typed name. Note also that the deadlocking expression stop has every type.

4 Operational semantics

Next we present the operational semantics of the calculus. Again, the formal-
ization is quite close to the one for the object calculus, except the parts dealing
with classes. The basic steps of the semantics are given in two levels: internal

Operational semantics 9

Γ ; ∆ ` m1:T1 . . . Γ ; ∆ ` mk:Tk T = [(l1:T1, . . . , lk:Tk)]
T-Class

Γ ; ∆ ` [(l1 = m1, . . . , lk = mk)] : T

Γ ; ∆ ` m1:T1 . . . Γ ; ∆ ` mk:Tk T = [l1:T1, . . . , lk:Tk]
T-Obj

Γ ; ∆ ` [l1 = m1, . . . , lk = mk] : T

Γ, x1:T1, . . . , xk:Tk; ∆, n:c ` t : T ′ Γ ; ∆ ` c : T T = [(. . . , l:T1 × . . . × Tk → T ′, . . .)]
T-Meth

Γ ; ∆ ` ς(n:c)λ(x1:T1, . . . , xk:Tk)t : T.l

Γ ; ∆ ` v : c Γ ; ∆ ` c : [(. . . , l:T1 × . . . × Tk → T, . . .)] Γ ; ∆ ` v1 : T1 . . . Γ ; ∆ ` vk : Tk

T-Call

Γ ; ∆ ` v.l(v1, . . . , vk) : T

Γ ; ∆ ` v : c Γ ; ∆ ` c : T Γ ; ∆ ` v′ : T.l
T-FUpdate

Γ ; ∆ ` v.f := v′ : T

Γ ; ∆ ` c : [(T)]
T-NewC

Γ ; ∆ ` new c : c

Γ ; ∆ ` t : T
T-NewT

Γ ; ∆ ` new〈t〉 : thread

T-CurrT

Γ ; ∆ ` currentthread : thread

Γ ; ∆ ` e : T1 Γ, x:T1; ∆ ` t : T2

T-Let

Γ ; ∆ ` let x:T1 = e in t : T2

Γ ; ∆ ` v1 : T1 Γ ; ∆ ` v2 : T1 Γ ; ∆ ` e1 : T2 Γ ; ∆ ` e2 : T2

T-Cond

Γ ; ∆ ` if v1 = v2 then e1 else e2 : T2

T-Stop

Γ ; ∆ ` stop : T

Γ (x) = T
T-Var

Γ ; ∆ ` x : T

∆(n) = T
T-Name

Γ ; ∆ ` n : T

T-Block

Γ ; ∆ ` block : T

Γ ; ∆ ` v : T
T-Return

Γ ; ∆ ` return[o1] v : T ′

Table 4. Static semantics (2)

10 Operational semantics

steps, i.e., those whose effect is completely confined within a configuration, and
those with external effect.

4.1 Internal steps

n〈let x:T = v in t〉 n〈t[v/x]〉 Red

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 n〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

n〈let x:T = (if v = v then e1 else e2) in t〉 n〈let x:T = e1 in t〉 Cond1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉 n〈let x:T = e2 in t〉 Cond2

n〈let x:T = currentthread in t〉 n〈let x:T = n in t〉 CurrentThread

c[(O)] ‖ n〈let x:c = new c in t〉 c[(O)] ‖ ν(o:c).(o[O] ‖ n〈let x:c = o in t〉) NewOi

n〈let x:T = new〈t〉 in t1〉 ν(n2:T).(n〈let x:T = n2 in t〉 ‖ n2〈t〉) NewT

n〈let x:T = stop in t〉 n〈stop〉 Stop

o[O] ‖ n〈let x:T = o.l(~v) in t〉
τ
−→ o[O] ‖ n〈let x:T = O.l(o)(~v) in t〉 Calli

o[O] ‖ n〈let x:T = n.f := v in t〉
τ
−→ o[O.f := v] ‖ n〈let x:T = o in t〉 FUpdate

Table 5. Internal steps

We start in Table 5 with the internals steps, where we distinguish between
confluent steps, written , and other internal transitions, written

τ
−→, i.e., those

potentially leading to race conditions in the context of threads running in par-
allel. For instance, the first 5 rules of the table deal with the basic sequential
constructs, all as -steps. The basic evaluation mechanism is substitution (rule
Red). Note that the rule requires that the leading let-bound variable of a thread
can be replaced only by values, which makes the reduction strategy determinis-
tic, at least per thread. The stop-thread terminates for good, i.e., the rest of the
thread will never be executed (cf. rule Stop).

The step NewOi describes the creation of an instance of an internal class
c[(O)], i.e., a class whose name is contained in the configuration. Note that instan-
tiation is a confluent step. The object in O is taken as template for the created
object. The identity of the object is new and local —for the time being— to
the instantiating thread; the new named object and the thread are thus en-
closed in a ν-binding. Rule Calli treats an internal method call, i.e., a call
to an object contained in the configuration. In the step, O.l(o)(~v) stands for

t[o/n][~v/~x], when the object O equals [. . . , l = ς(s:T). λ(~x:~T).t, . . .]. Note also

that the step is a
τ
−→-step, not a confluent one. The same holds for field up-

date in rule FUpdate, where [l1 = m1, . . . lk = mk, f = v′].f := v stands for
[l1 = m1, . . . , lk = mk, f = v, . . .]. Note further, that instances of a component

Operational semantics 11

class invariantly belong to the component and not the environment. This means
that an instance of a component class resides after instantiation in the com-
ponent, and named objects will never be exported from the component to the
environment or vice versa; of course, references to objects may well be exported.

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 6 and the relation is im-
ported into the reduction relations in Table 7. Note that besides the structural
rules, all syntactic entities are always tacitly understood modulo α-conversion.

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 6. Structural congruence

C ≡ ≡ C′

C C′

C C′

C ‖ C′′
 C′ ‖ C′′

C C′

ν(n:T).C ν(n:T).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′ τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T).C
τ
−→ ν(n:T).C′

Table 7. Reduction modulo congruence

4.2 External behavior of a component

The external behavior of a component is given in terms of labeled transitions.
The transitions describe the communication at the interface of an open program.
For the completeness of the semantics, it is crucial ultimately to consider only
communication traces realizable by an actual program context which, together
with the component, yields a well-typed closed program.

For single labeled steps, one has to insist, for instance, that calling a method
of an external object refers to an object actually present in the environment, or
dually that incoming calls have as target only objects exported to the outside,
and furthermore that the communicated values are in accordance to the well-
typedness assumption. Therefore, at least in first approximation, the transitions

12 Operational semantics

are given between typing judgments ∆ ` P : Θ. Again this general starting point
is similar to the situation for the object calculus in [3].

A further local condition concerns which combinations of names can occur in
communications. This phenomenon does not occur in the object based setting
and merits a closer discussion before we embark on the formalization in the
following section.

To take a simple example, assume the component creates an instance of
a class resident in the environment. Similar to the internal steps as given in
Table 5, this will be done by some thread of the component executing a new -
statement, with the difference that the instantiated class does not occur inside
the component as in rule NewOi, but is listed in the assumption context ∆.

As the class is part of the environment and thus in the hand of the observer,
it can be used to make observations via its instances. Consequently, its instance
belongs to the environment, as well, and communication from and to this object
will be traced. While occurring likewise at the interface between the component
and the environment, however, the instantiation itself cannot be used by the
context to make any observations about the component. This is a consequence
of two facts. First, our language does not support constructors which, in the hand
of the environment, could be used to make distinguishing observations. Secondly,
exchanging a class by another and thus exchanging its instances does not make
a difference in the overall behavior unless the component communicates with
the instances; the pure existence of one object or another does not make any
difference.9

Assume now that the component creates two instances of an external class
or of two different external classes; the class types of the two objects do not
play a role. As just explained, the objects named o1 and o2, say, are themselves
part of the environment. Is it possible in this situation that a communication
occurs where o1 issues a call to an object of the component with o2 as argument?
Clearly the answer is no, unless the component has given away the identity of
o2 to o1, since otherwise there is no means that o1 could have learned about the
existence of o2! Therefore, such a communication must be deemed illegal. (Cf.
also the informal discussion in the introductory Section 1, especially Figure 1).

These considerations have the following two consequences. First and most
importantly, the component must keep track of which identities it gives away to
which object in order to exclude situations as just described. To be able to do
so and as a second consequence, the communication with the environment must
be labeled in such a way, that sender and receiver are contained in the label.
This means we augment the programs such that always caller and callee can be
transmitted in the communication; in general, this is not the case; for instance
in the case of a method call, the caller is anonymous. Therefore, transitions are
labeled with the kind of communication, the thread identifier, the transmitted

9 The attentive reader will have noticed that there is another assumption underlying
the non-observability of instantiation, namely that there is no bound on the number
of objects in the system, i.e., there is no “out-of-heapspace” situation.

Operational semantics 13

values, and in case of calls, the name of the method. The labels are shown in
Table 8. To indicate that the caller identity is meant as an augmentation, we
write it in brackets: [o]. For the return label, caller and callee are not needed.

γ ::= n〈[o]call o.l(~v)〉 | n〈return(v)〉 basic labels
| creates o | ν(n:T).γ

a ::= γ? | γ! send and receive labels

Table 8. Labels

For the transmitted values, the labels further distinguish between a free trans-
mission of a value, i.e., a name already commonly known by the communication
partners, and the transmission of fresh names, where the name occurs under the
typed ν-binder. For instance, for object creation, the identity o2 of the freshly
instantiated object is always transmitted bound, which is noted in the label as
ν(o:c).creates o. Note that for instantiation, the thread identity and the creator
are not needed in the label.

4.3 Connectivity contexts and cliques

For the book-keeping of which objects of the environment have been told which
identities, a well-typed component must take into account the relation of object
and thread names from the assumption context ∆ amongst each other, and the
knowledge of objects from ∆ about those exported by the component, i.e., those
from Θ. Besides the relationships amongst objects, we need to keep one piece of
information concerning the “connectivity” of threads. In order to exclude situ-
ations where a known thread leaves the environment into one clique of objects
but later returns to the component coming from a different clique without con-
nection to the first, we remember for each thread that has left the component
the object from ∆ it has left into.

Formally, the semantics of an open component is given by labeled transitions
between judgments of the form ∆; E∆ ` C : Θ; EΘ , where

E∆ ⊆ ∆× (∆ + Θ) . (1)

and dually EΘ ⊆ Θ × (Θ + ∆). We will write n1 ↪→ n2 (“n1 may know n2”) for
pairs from these relations.

In analogy to the name contexts ∆ and Θ, E∆ expresses assumptions about
the environment, and EΘ commitments of the component. For the formulation of
the semantics itself, the commitment contexts EΘ would not really be needed:
It is unnecessary to advertise the approximated EΘ-commitments to exclude
impossible behavior if one has the code of the component at hand to formulate
the semantics. Nevertheless, a symmetric situation is advantageous, for instance

14 Operational semantics

if we come to characterize the possible traces of a component independent from
its implementation.

As mentioned, the component has to keep track in E∆, which objects of the
environment are connected, and symmetrically for its own objects in EΘ. The
component has, of course, by no means full information about the complete sys-
tem; after all it can at most trace what happens at the interface, and the objects
of the environment can exchange information “behind the component’s back”.
Therefore, the component must conservatively overapproximate the potential
knowledge of objects in the environment, i.e., it must make worst-case assump-
tions concerning the proliferation of knowledge, which means it must assume
that

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

More technically, the worst case assumptions about the actual situation are
represented as the reflexive, transitive, and symmetric closure of the ↪→-pairs of
objects from ∆ the component maintains. Given ∆, Θ, and E∆, we write � for
this closure, i.e.,

� , (↪→↓∆ ∪ ←↩↓∆)∗ ⊆ ∆×∆ . (2)

Note that we close the part of ↪→ concerning only environment objects from ∆,
but not wrt. objects at the interface, i.e., the part of ↪→ ⊆ ∆×Θ. We will also
need the union of � ∪�; ↪→⊆ ∆× (∆ + Θ), for which we will also write �↪→.
As judgment, we use ∆; E∆ ` v1 � v2 : Θ respectively ∆; E∆ ` v1 �↪→ v2 : Θ.
For Θ, EΘ, and ∆, the definitions are applied dually, and sometimes we allow
ourselves to write just E∆ ` v1 � v2, leaving ∆ and Θ to be understood from
the context.

The relation� is an equivalence relation on the objects from ∆ and partitions
them in equivalence classes. As a manner of speaking, we call a set of object
names from ∆ (or dually from Θ) such as for all objects o1 and o2 from that
set, ∆; E∆ ` o1 � o2 : Θ, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

Remark 1 (Thread identifier). As a side remark concerning the use of thread
names n in E∆: As mentioned, besides connections between objects, E∆ contains
also information about thread names. The stored information about threads is
rather restricted, though. In case that the active thread has left the component,
the only thing which needs to be remembered is the object into which the thread
has left the component. Since thread identifiers cannot be stored in variables or
communicated in method calls, there are no pairs of the form p ↪→ n in E∆,
when n is a thread identifier. Also, for each thread name n from ∆, there is at
most one pair n ↪→ o in E∆, where o is an object reference from ∆. Since, unlike
object names, a thread name n can (and will) occur in the domain of ∆ and
Θ, the disjoint union ∆ + Θ is not literally true. It holds, however, for object
names, which play the crucial role in the development.

Operational semantics 15

Having introduced E∆ and EΘ as part of the judgment, we must still clarify
what it “means”, i.e., when does ∆; E∆ ` C : Θ; EΘ hold? Besides the typing
part, which remains unchanged, this concerns the commitment part EΘ. The
relation EΘ asserts about the component C that the connectivity of the objects
from the component is not larger than the connectivity entailed by EΘ. Given
a component C and to object names o1 from Θ and o2 from Θ + ∆, we write
C ` o1 ↪→ o2, if C = C′ ‖ o1[. . . , f = o2, . . .], i.e., o1 contains in one of its fields
a reference to o2. We can thus define:

Definition 1. The judgment ∆; E∆ ` C : Θ; EΘ holds, if ∆ ` C : Θ, and if
C ` n1 ↪→ n2, then EΘ; Θ ` n1 �↪→ n2 : ∆.

We often simply write ∆; E∆ ` C : Θ; EΘ to assert that the judgment is satisfied.
Note again, that the pairs listed in a commitment context EΘ do not require

the existence of connections in the components, it is rather the contrapositive
situation: If EΘ does not imply that two objects are in connection, possibly
following the connection of other objects, then they must not be in connection
in C. Thus, a larger EΘ means a weaker specification. To make this precise, let
us define what it means for one context to be stronger than another:

Definition 2 (Entailment). ∆1; E∆1 ; Θ1 ` ∆2; E∆2 ; Θ2 iff. for all names n ∈
∆2 and n′ ∈ ∆2 × (∆2 + Θ2) we have: if ∆1; E∆1 ; Θ1 ` n �↪→ n′, then
∆2; E∆2 ; Θ2 ` n�↪→ n′.

Note that since � is reflexive on ∆2, the above definition implies ∆1 ≥ ∆2, by
which we mean that the binding context ∆1 is an extension of ∆2 wrt. object
names (analogously we write ∆2 ≤ ∆1 when ∆2 is extended by ∆1, and say that
∆2 is a subcontext of ∆1).

4.4 External steps

After having clarified the interpretation of the connectivity contexts E∆ and
EΘ, we can address the external behavior of a component more formally. The
external semantics is given by transitions between ∆; E∆ ` C : Θ; EΘ judgments
and shown in Table 9 for the exchange of free names and in Table 10 dealing
with bound names.

To get a general impression, let us first go through the rules ignoring the
relational part concerning the E∆- and EΘ-assumptions. For incoming calls,
given in rules CallI1 and CallI2, we need to distinguish whether the calling
thread is already resident in the configuration, i.e., whether it is a reentrant
call wrt. the configuration, or not. In case the thread visits the configuration
for the first time (rule CallI1), the execution of the method body, terminated
by a return, is added in parallel. In case of a reentrant call, a blocked part of
the thread is already contained in the configuration (cf. rule CallI2), the new
method body is “stacked” on top of the prior, blocked part. When the activity of
a thread returns to the environment (cf. rule ReturnO), the return-statement
is “popped-off” the thread; in combination with the rules for incoming calls we

16 Operational semantics

; ∆ ` o1 : [. . .] ; ∆, Θ ` o2.l(~v) : T o2 ∈ Θ ∆ ` n : thread n /∈ dom(Θ)

∆; E∆ ` [o1] �↪→ ~v : Θ ∆; E∆ ` [o1] �↪→ o2 : Θ ∆; E∆ ` n � [o1] : Θ

É∆ = E∆ \n Θ́ = Θ, n: thread ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)
CallI1

∆; E∆ ` C : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ` C ‖ n〈let x:T = o2.l(~v) in return[o1] x〉 : Θ́; ÉΘ

; ∆ ` o1 : [. . .] ; ∆, Θ ` o2.l(~v) : T o2 ∈ Θ ∆ ` n : thread

E∆ ` [o1] �↪→ ~v : Θ E∆ ` [o1] �↪→ o2 : Θ E∆ ` n � [o1] : Θ

É∆ = E∆ \n Θ́ = Θ, n: thread ÉΘ = EΘ + (o2 ↪→ ~v, n ↪→ o2)
CallI2

∆; E∆ ` C ‖ n〈let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ` C ‖ n〈let x:T = o2.l(~v) in return[o1] x; let x′:T ′ = [o2] blocks for o′
2 in t〉 : Θ; ÉΘ

É∆ = E∆ + ([o1] ↪→ v, n ↪→ [o1]) ÉΘ = EΘ \n
RetO

∆; E∆ ` C ‖ n〈let x:T = return[o1] v in t〉 : Θ; EΘ
n〈return(v)〉!
−−−−−−−−→ ∆; É∆ ` C ‖ n〈t〉 : Θ; ÉΘ

o2 ∈ ∆ É∆ = E∆ + (o2 ↪→ ~v, n ↪→ o2) ÉΘ = EΘ \n
CallO

∆; E∆ ` C ‖ n〈let x:T = [o1] o2.l(~v) in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉!
−−−−−−−−−−−−−→

∆; É∆;` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ

; ∆, Θ ` v : T ∆; E∆ ` o2 �↪→ v : Θ ∆; E∆ ` n ↪→ o2 : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o1 ↪→ v, n ↪→ [o1])
RetI

∆; E∆ ` C ‖ n〈let x:T = [o1] blocks for o2 in t〉 : Θ; EΘ
n〈return(v)〉?
−−−−−−−−−→

∆; É∆ ` C ‖ n〈t[v/x]〉 : Θ; ÉΘ

c ∈ ∆
NewO

∆; E∆ ` n〈let x:T = new c in t〉 : Θ; EΘ

ν(o3:c).createso3!
−−−−−−−−−−−−→

∆, o3:c; E∆ ` n〈let x:T = o3 in t〉 : Θ; EΘ

C(c) = [(O)] c ∈ Θ E∆ ` É∆ ↓∆×(∆+Θ)

NewI

∆; E∆ ` C : Θ; EΘ

ν(o3:c).createso3?
−−−−−−−−−−−−→ ∆; É∆ ` C ‖ o3[O] : o3:c, Θ; EΘ

Table 9. External steps

see that the remaining part of the thread remains blocked. Similarly, calling
an external object leaves the local execution in a blocked state, waiting for the
matching return carrying the returned value (cf. rule CallO and ReturnI).
Note that the name context ∆ is used to distinguish an external call in rule
CallO from an internal one which is covered by the corresponding rule from
Table 5.

As for E∆ resp. EΘ and the relationship of communicated values, the incom-
ing and outgoing communication play dual roles. Remember that the relation
E∆ contains pairs of objects (and thread names) from ∆ as well as from Θ, and
dually for EΘ. In general, EΘ overapproximates the actual connectivity of the
component, while the assumption context E∆ is consulted to exclude impossible
combinations of incoming values.

Operational semantics 17

Now for the incoming call both in rule CallI1 and CallI2, we require that
the caller o1 be acquainted with the callee o2 and with all of the (object reference)
arguments. Furthermore it must be checked that the incoming thread originates
from a group of objects in connection with the one to which the thread had left
the component the last time: ∆; E∆ ` n� [o1] : Θ.10

To be able to assure these connectivity conditions, the identity of the callee
has been remembered as part of the block-syntax when the call was issued.
It is worth mentioning that in rule ReturnI the proviso that the callee o2

knows indirectly the caller o1, i.e., ∆; E∆ ` o2 �↪→ o1 : Θ is not needed.
Neither is it necessary to require in analogy to the situation for the incoming
can that the thread is acquainted with the callee. If fact, both requirements
will be automatically assured for traces where calls and return occur in correct
manner.

A commonality for incoming communication from a thread n is that the
(only) pair n ↪→ o for some object reference o is removed from E∆, for which we
write E∆ \n

Outgoing communication, on the other hand, does not impose restrictions as
premise; instead it extends the pool of assumption E∆ by adding communicated
names. After an outgoing call, for instance, it is assumed that the callee knows
all the arguments it has received and furthermore that the thread now knows
the callee-identity (cf. rule CallO). A analogous extension of E∆ is done for
outgoing returns in rule ReturnO, except that the caller as the receiver of the
return communication is anonymous as far as the label is concerned.

The last two rules NewO and NewI handle instantiation across the compo-
nent boundary. In the first case, the instantiation inside the configuration refers
to a class available in the environment, i.e., for a name c ∈ ∆. The reference
to the new object is kept locally in the creator thread and the identity and its
type is communicated to the outside, where the label ν(o3:c).creates o3! indi-
cates that the identity is assumed to be fresh.11 Dually, NewI allocates a new
object when requested from outside by looking up the code of the object; in the
rule C(c) = [(O)] abbreviates C ≡ c[(O)] ‖ C′; that C is of this form is assured
by the static type system. Unlike the situation in the object calculus, object
creation can have an external effect, namely when a class outside the current
configuration is instantiated.

Another phenomenon not encountered so far is the fact that for an incoming
instantiation in rule NewI, a new identity is transmitted, i.e., an identity re-
ceived by bound transmission. The proviso of NewI dealing with the extension
of E∆ to É∆ is discussed together with the rules for bounded communication to
which we come after a short digression.

Before looking at the rules dealing with the ν-binders, the following technical
side remark discusses in more detail the formulation of the rules for incoming
calls and the role of the caller therein.

10 Since the caller o1 is in the domain of ∆, we can write n� [o1] instead of n�↪→ [o1].
11 Later, this step will be unobservable.

18 Operational semantics

Remark 2 (Caller identity). Note that in the situation of rules CallIi, the caller
o1 might be unknown to the component so far, which means that it is introduced
in the call-step to the component via scope extrusion with the help of the rules
of Table 10 below. Since in the step for the incoming call, the identity of o1 is
arbitrary except that o1 must be connected to the callee, the arguments, and
the thread, of course, and since furthermore ultimately the identity of the caller
is ignored in the trace semantics, one could imagine also the following variant of
the rule: leaving out o1 in the call-labels, the proviso of the CallI-rules can be
equivalently written as

∃o1. ∆; E∆ ` o1 �↪→ ~v : Θ ∧∆; E∆ ` o1 �↪→ o2 : Θ ∧∆; E∆ ` n�↪→ o1 : Θ ,

which perhaps expresses the intuition more clearly: for an incoming call to be
possible, there must exist some caller, whose identity does not play a role and
which is appropriately connected. In effect, the existential quantification would
then range in some sense over the objects already known from ∆ and those (yet)
unknown.

Why are then the callers o1 mentioned in the label and thus participating in
the dynamic scoping mechanism of the semantics instead of taking the solution
of the above existential formula? First the ν-binder has a flavor of existential
quantification, therefore the scoping mechanism can handle the issue.

Besides that, the technical reason for the decision to augment the traces and
the programs with the caller identity has to do with the necessary bookkeeping
of the connectivity contexts, especially for returns. When the corresponding
outgoing return for the call under consideration happens, it is clear that the call
returns to the same object o1 who issued the call. Whether the caller is included
in the label or treated by existential quantification, in any case an element of
guessing is involved in rules CallIi, but it is crucial, that in order to update
E∆ in rule ReturnO appropriately, one needs to remember the choice o1 taken
at call-time. The cleanest way to remember it is to record the pick in the trace
and rely on the scoping mechanism of the ν-binders.

Note that the type or interface of the caller plays (almost) no role: as long
as the object has a method at all, it can issue a call, since the interface speaks
only about the ability of accepting calls. ut

Building upon these rules, the ones from Table 10 take additionally scoping
information into account. The rules deal with calls and returns, only, as the
special case of instantiation has been handled already in Table 9.

The ν-binder for configurations influence only names occurring freely in the
label (cf. rule Comm). In case of a bound input (cf. rule BIn), the name’s scope
is extruded into the component and therefore the step of the premise is checked
in the extended assumption ∆, n:T . The treatment of the knowledge base E∆

requires a closer look. When the new name n is introduced to the component,
it is from then on part of the known names, and the component must estimate
the possible acquaintances of n. In general, the new name of an object will be

Operational semantics 19

n /∈ fn(a) ∆; E∆ ` C : Θ, n:T ; EΘ
a
−→ ∆́; É∆ ` Ć : Θ́, n:T ; ÉΘ

Comm

∆; E∆ ` ν(n:T).C : Θ; EΘ
a
−→ ∆́; É∆ ` ν(n:T).Ć : Θ́; ÉΘ \n

n ∈ fn(γ) ∆; E∆ ` ∆, n:T ; E′

∆ ↓∆×(∆+Θ): Θ′

∆, n:T ; E′

∆ ` C : Θ; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BIn

∆; E∆ ` C : Θ; EΘ
ν(n:T).γ?
−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

n ∈ fn(γ) ∆; E∆ 6` T : [(. . .)]

∆; E∆ ` C : Θ, n:T ; EΘ + E(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOut

∆; E∆ ` ν(n:T).C : Θ; EΘ
ν(n:T).γ!
−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

Table 10. External steps (scoping for calls and returns)

related to some other objects, the question only is, to which ones? As the name
is fresh to the component and nothing is known yet about the connectivity of
the object, the component may just guess to which ones the new object belongs.
This means, the rule non-deterministically extends the assumptions E∆ to E′

∆

by adding pairs n′ ↪→ n, where n is the new identity.
Now the gist is to understand that while the component may guess which

acquaintances the new object has, it is not completely free to do so! Since E∆

is maintained as a worst-case assumption about the connectivity of the known
external objects, learning about the existence of a fresh object must not inval-
idate this assumption. Intuitively, by creating new objects, which are initially
unknown to the component, the environment cannot contact objects it could not
contact otherwise. This restriction is captured in the proviso

∆; E∆ ` ∆′; E′
∆ ↓∆×(∆+Θ): Θ ,

where ∆′ = ∆, n:T in the rule, which requires that the addition of connectivity
of the new identity n added to ∆ may not lead to new derivable equations for
the objects previously known. The requirement, ∆; E∆ ` E′

∆ ↓∆×(∆+Θ): Θ thus
stands for the implication: If ∆′; E′

∆ ` o1 �↪→ o2 : Θ, then ∆; E∆ ` o1 �↪→
o2 : Θ, for all o1 from ∆ and o2 from ∆, Θ. In other words, E′

∆ is a conservative
extension of E∆ wrt. the old objects. For illustration, see also Example 2 below.

Remains the case for bound output, where the scope of the name is extruded,
marking it as bound on the label. The corresponding rule BOut, and especially
the transition in the premise is checked with the extended commitment Θ, n:T .
For the connectivity, we add all names from Θ′ × (Θ′ + ∆) where Θ′ = Θ, n:T ,
which according to C are acquainted with n. We write E(C, n) for that set of
names.

Note that the operational rules do not contain rules for communication or
synchronization. The reason is that we are not interested in axiomatizing the
behavior of parallel composition in general, but are content to characterize the

20 Operational semantics

external behavior of one parallel component. It would be rather straightforward
to add such synchronization rules, though, folding matching pairs of communi-
cation steps into a τ -step, respectively a -step in case of instantiation.

4.5 Examples

The following two short examples illustrate the transition semantics for receiving
a bound value, especially the interplay of the basic rules of Table 9 and those
treating scoping from Table 10. The second example especially shows the role
the conservative guessing of connectivity of new incoming names.

Example 1. We take the label ν(o3:c3).ν([o1]:c1).t〈[o1]call o2.l(o3)〉?, where both
caller and the argument are bound. In the derivation, ∆′ and ∆′′ represent
extended assumption contexts, i.e., ∆′ = ∆, o3:c3 and ∆′′ = ∆′, o1:c1. Similarly,
the extended relation E′′

∆ equals E′′
∆ = E∆, o1 ↪→ o2, o1 ↪→ o3 and moreover,

E′′′
∆ = E′′

∆ \n. In the rules we concentrate on the connectivity information and
elide premises dealing with well-typedness of the communicated arguments. Since
furthermore we leave internal structure of C unspecified, we also leave the form
of the commitment context EΘ and its variants unspecified.

o2 ∈ Θ o1 ∈ ∆′′

∆′′; E′′
∆ ` [o1] � o3 : Θ ∆′′; E′′

∆ ` [o1] �↪→ o2 : Θ ∆′′; E′′
∆ ` n � [o1] : Θ

CallIi

∆
′′
; E

′′
∆ ` C : Θ; EΘ

n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ` C

′
: Θ

′
; E

′
Θ

BIn

∆
′
; E∆ ` C : Θ; EΘ

ν([o1]:c1).n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ` C

′
: Θ

′
; E

′
Θ

BIn

∆; E∆ ` C : Θ; EΘ

ν(o3:c3).ν([o1]:c1).n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ` C

′
: Θ

′
; E

′
Θ

Swapping the order of the binding occurrences for caller and argument in
the label yields a slightly different derivation; here ∆′ = ∆, [o1]:c1 and ∆′′ =
∆′, o3:c3, and for the relation E′

∆ = E∆, o1 ↪→ o2 and E′′
∆ = E′

∆, o1 ↪→ o3:

o2 ∈ Θ o1 ∈ ∆′′

∆′′; E′′
∆ ` [o1] � o3 : Θ E′′

∆ ` [o1] �↪→ o2 : Θ ∆′′; E′′
∆ ` n � [o1] : Θ

CallIi

∆
′′
; E

′′
∆ ` C : Θ; EΘ

n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ` C

′
: Θ

′
; E

′
Θ

BIn

∆
′
; E

′
∆;` C : Θ; EΘ

ν(o3:c3).n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ;` C

′
: Θ

′
; E

′
Θ

BIn

E∆; ∆ ` C : Θ; EΘ

ν([o1]:c1).ν(o3:c3).n〈[o1]call o2.l(o3)〉?
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ ∆

′′
; E

′′′
∆ ` C

′
: Θ

′
; E

′
Θ

ut

Example 2. Assume two cliques of objects in the environment, objects oi
1 and

objects oj
3, i.e., ∆; E∆ ` oi

1 � oj
1 : Θ and ∆; E∆ ` oi

3 � oj
3 : Θ, but ∆; E∆ 6`

oi
1 � oj

3 : Θ. Let now the component do an incoming communication step
learning about a new identity, o0 say, as the calling object.

o2 ∈ Θ ; ∆′ ` o0 : [. . .] ∆′; E′
∆ ` [o0] �↪→ o2 : Θ

E′
∆; ∆′ ` C : Θ; EΘ

n〈[o0]call o2.l1()〉?
−−−−−−−−−−−−−→ E′

∆; ∆′ ` C′ : Θ′; E′
Θ ∆; E∆ ` ∆′; E′

∆ ↓∆×(∆+Θ): Θ

∆; E∆ ` C : Θ; EΘ

ν([o0]:c1).n〈[o0]call o2.l1()〉?
−−−−−−−−−−−−−−−−−−−−→ ∆′; E′

∆ ` C′ : Θ′; E′
Θ

Operational semantics 21

Assume that E∆ is extended into E′
∆ = E∆, o0 ↪→ o2, o0 ↪→ o1

1, i.e., guessing
that o0 knows (what turns out in the subderivation step to be) the callee o2 as
well as o1

1, for instance (one could have taken any subset of the oi
1 or alterna-

tively of the oj
3). This guess allows to derive as second transition step, that the

meanwhile known object o0 —at least known by way of augmentation— calls o2

again and this time passes o2
1, say, as parameter:

o2 ∈ ∆′ ∆′, E′
∆ ` [o0] �↪→ o2 : Θ′ ∆′; E′

∆ ` [o0] �↪→ o2
1 : Θ′

∆′; E′
∆ ` C′ : Θ′; E′

Θ

n′〈[o0]call o2.l1(o2
1)〉?

−−−−−−−−−−−−−−−→ E′′
∆; ∆′ ` C′′ : Θ′′; E′′

Θ

As mentioned above, instead of guessing o0 ↪→ oi
1 in the first step, one might

as well have chosen o0 ↪→ oj
3 instead (except that in that case the second step

would not have been derivable).
What would not be accepted as legal BIn-step is, that the relation E′

∆ con-

tains both o0 ↪→ oi
1 and o0 ↪→ oj

3 pairs. This would mean that by receiving

the new identity o0, suddenly the objects oi
1 and oj

3 are connected in the eyes
of the component. This is impossible, however, since the component makes a
worst-case assumption about the known objects, and object creation in the
environment cannot be used to merge cliques of objects. Formally, the wrong
guess would mean that ∆′; E′

∆ is not a conservative extension of ∆; E∆, since

∆′; E′
∆ ` oi

1 � oj
3 : Θ but ∆; E∆ 6` oi

1 � oj
3 : Θ. ut

4.6 Trace semantics

This section contains the denotational semantics for well-typed components,
which is, as in the object-based setting, a trace semantics, containing all se-
quences of external steps of the program fragment. On the surface, the trace
semantics presented here looks quite similar to the one for the object based
setting.

One obvious change compared to the object-based framework are the labeled
steps for cross-border instantiation creates o2? and creates o2! (plus ν-bindings).
Another, more superficial difference is that, to keep track of the connectivity,
we were led to incorporate also the caller into the labels for method calls. A
final difference does not refer to the form of a single trace, but to the set of all
traces of a component, for which we will write [[∆; E∆ ` C : Θ; EΘ]]trace . In all
but degenerated cases, a component does not possess one single trace, but an
(infinite) set of traces.12 Crucial for the semantics (or any trace semantics) are
its closure properties, which characterize, given a set of traces in [[∆; E∆ ` C :
Θ; EΘ]]trace , which traces are necessarily included, too. Abstractly speaking, the
new situation that the environment can instantiate isolated cliques of objects
in the component, or from a dual perspective, that the observing context may

12 The only case is an component where no object has a method, no activity of its
own, and with especially no classes containing methods, since otherwise the trace
set contains incoming calls.

22 Operational semantics

may not be able to coordinate all its observations makes the closures larger.
Again from the dual perspective of the observer, it increases the “uncertainty
of observation” and leads thus to a coarser notion of observational preorder
(although depending on the connectivity contexts). But first we get rid of the
create-labels in the semantics.

4.6.1 Lazy instantiation In the operational semantics of Section 4, instanti-
ations across the component boundary are visible. Without constructor methods,
however, it is clear, that the instantiation alone and the fact that an object is
existent in the environment cannot be used by an observer. The only way to do
observations is by method calls. Therefore, a fully abstract trace semantics must
not contain the labels createso2! and createso2?

In this section we present, as intermediate step, a variant of the external step
semantics from Table 9 and Table 10 where object creation across the component
boundary is not visible. Instead, new objects are incorporated only at the point
when they are first communicated to the other side or used from the other side.
To distinguish the two forms of semantics, we call the one from Section 4 the
semantics with eager instantiation or in short early semantics, the one presented
here the semantics with lazy instantiation or late semantics.

As in the early operational semantics, there are rules dealing with the core
labels without binding, and rules for scoping. For the core labels, the rules for
the late semantics are identical to those from Table 9 except that the rules
for incoming and outgoing object instantiation NewI and NewO are missing.
Instead, the set of rules is extended by the following rule NewOlazy :13

c ∈ ∆

∆; E∆ ` n〈let x:c = new c in t〉 : Θ; EΘ ∆; E∆ ` ν(o3:c).n〈let x:c = o3 in t〉 : Θ; EΘ

Instead of exporting the newly created name of the object plus the object
itself immediately to the environment, the name is kept local until, if ever, it
gets into contact with the environment. When this happens, the new instance
will not only become known to the environment, but the object will also be
instantiated in the environment.

The fact that in the above rule the object is not yet created means that the
interpretation of the ν-binder slightly changes. Up to now, and as mentioned in
connection with the type system in Section 3, a term νn:T.C could be interpreted
as the assertion that C contains the named entity n, where n refers to an object,
a class, or a thread. With lazy instantiation and in presence of NewOlazy , this no
longer holds, since the execution of the new -statement reserves a new name for
the object, but does not immediately creates the object itself. Related to that,

13 Doing a -step, the rule would seems to fit well into the internal steps. Neverthe-
less, we consider it as a step between typing judgments, as the step relies on the
environmental information that the appropriate class c is externally available.

Operational semantics 23

the typing rule T-Nu for the ν-binder requires a small refinement. In case the
binder refers to an object whose class is a class of the environment and which
which consequently will reside itself in the environment, the binding is to be
added to the assumption context ∆ and not to Θ.

∆ ` C : Θ, n:T ∆ 6` T : class
T-Nui

∆ ` ν(n:T).C : Θ

∆, o:c ` C : Θ ∆ ` c : class
T-Nue

∆ ` ν(n:T).C : Θ

Remark 3 (Lazy instantiation). The fact that in the presence of lazy instantia-
tion the ν-binder does not assert the existence of the named entity might seem
strange. Note, however, that some alternatives to the rule NewOlazy and the
refinement of the type system do not work. For instance, it is not possible to
change rule NewOlazy in such a way that not only the new name is introduced
but also the object is already created to be kept in pristine condition until it is
needed and then to copy it to the environment. By simultaneously creating the
name and instantiating the object, the ν-binder would stipulate the existence
of a corresponding object. However, the class being instantiated is represented
in the assumption context only in form of its type or interface; thus there is
not enough information to create an instance of the external class inside the
component .

Another tempting alternative would be to not use the ν-construct at all, but
directly put the binding o3:c from rule NewOlazy into the assumption context.
That’s not possible, either, as in this case the necessity for the environment to
actually create an object when it is needed, is unnoticed. ut

Besides these changes, the scoping rules in the late semantics contain two
additional rules to deal with new objects, BOutnew and BInnew (cf. Table 11).
They take care that objects whose reference has been created locally in the com-
ponent are finally created in the environment, where they belong, the first time
there name is exported; dually for instances of component classes instantiated
by the environment.

The first case corresponds to rule BOutnew , where unlike the situation in
BOut, the assumption context is extended by the new name. Note here that
the new object is unknown in the environment at the current stage; therefore
E∆ is not extended in the judgement prior to the transition in the premise. In
contrast, the name o might already be passed around internally, which means
that EΘ must be extended in the same way as in rule BOut.

For BInnew , the situation is dual. Remember that the connectivity context
E∆ contains also pairs from ∆ × Θ. Therefore, it has to be checked also here
that E′

∆ is a conservative extension of E∆.
The following example illustrates the working of lazy instantiation.

Example 3. Assume that c2 and c3 are two external classes, i.e., c2, c3 ∈ ∆. Let
further o1 be a component object, which is already known to the environment,

24 Operational semantics

n /∈ fn(a) ∆; E∆ ` C : Θ, n:T ; EΘ
a
−→ ∆́; É∆ ` Ć : Θ́, n:T ; ÉΘ

Comm

∆; E∆ ` ν(n:T).C : Θ; EΘ
a
−→ ∆́; É∆ ` ν(n:T).Ć : Θ́; ÉΘ \n

n ∈ fn(γ) ∆; E∆ ` ∆, n:T ; E′

∆ ↓∆×(∆+Θ): Θ′

∆, n:T ; E′

∆ ` C : Θ; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BIn

∆; E∆ ` C : Θ; EΘ
ν(n:T).γ?
−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

n ∈ fn(γ) ∆; E∆ 6` T : [(. . .)]

∆; E∆ ` C : Θ, n:T ; EΘ + E(C,n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOut

∆; E∆ ` ν(n:T).C : Θ; EΘ
ν(n:T).γ!
−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) Θ ` c : [(. . .)] C(c) = [(O)]

∆; E′

∆ ` C : Θ, o:c; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ ∆; E∆ ` ∆; E′

∆ ↓∆×(∆+Θ): Θ
BInnew

∆; E∆ ` C : Θ; EΘ
ν(o:c).γ?
−−−−−→ ∆́; É∆ ` Ć ‖ o[O] : Θ́; ÉΘ

o ∈ fn(γ) ∆ ` c : [(. . .)]

∆, o:c; E∆ ` C : Θ; EΘ + E(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOutnew

∆; E∆ ` ν(o : c).C : Θ; EΘ
ν(o:c).γ!
−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

Table 11. External steps (scoping, late)

Operational semantics 25

i.e., Θ ` o1 : c1 for some class c1 in Θ. The following steps describe a situation,
where a thread creates an object of the external class c2, and calls a method
of this object. Furthermore, it passes to the callee o2 the reference to another
object o3, which likewise is an instance of an external class, namely c3 and which
is unknown to the environment yet:

1 ∆; E∆ ` ν(o3:c3).n〈let x:c′ = new c′ in[o1] x.l(o3); t〉 : Θ; EΘ

2 ∆; E∆ ` ν(o3:c3, o2:c2).n〈let x:c′ = o2 in[o1] x.l(o3); t〉 : Θ; EΘ

3 ∆; E∆ ` ν(o3:c3, o2:c2).n〈[o1] o2.l(o3); t〉 : Θ; EΘ
ν(o2:c2,o3:c3).n〈[o1]call o2.l(o3)〉!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4 ∆, o2:c2, o3:c3; E′
∆

` n〈[o1] blocks for o2; t〉 : Θ; EΘ

After some internal steps, both o2 and o3 escape to the environment by lazy
instantiation (rule NewOlazy).

As mentioned, in the example we have chosen o1 to be an externally known
internal instance, while the argument o3 and the callee o2 are not yet published
and exported external instances. Note that the rules does not allow an analogous
step in the situation, where also the caller o1 is an instance of an external class.

4.6.2 Traces A trace of a well-typed component is a sequence of external steps
in the late semantics, i.e., not containing instantiation labels. The corresponding
rules are given in Table 12. We write [[∆; E∆ ` C : Θ; EΘ]]trace for the set of
traces of a component ∆; E∆ ` C : Θ; EΘ .

C =⇒ C′

Internal

∆; E∆ ` C : Θ; EΘ
ε

=⇒ ∆; E∆ ` C′ : Θ; EΘ

∆1; E∆1 ` C2 : Θ1; EΘ1

a
−→ ∆2; E∆2 ` C2 : Θ2; EΘ2

Base

∆1; E∆1 ` C1 : Θ1; EΘ1

a
=⇒ ∆2; E∆2 ` C2 : Θ2; EΘ2

∆1; E∆1 ` C1 : Θ1; EΘ1

s1=⇒ ∆2; E∆2 ` C2 : Θ2; EΘ2

s2=⇒ ∆3; E∆3 ` C3 : Θ3; EΘ3
Conc

∆1; E∆1 ` C1 : Θ1; EΘ1

s1s2=⇒ ∆3; E∆3 ` C3 : Θ3; EΘ3

Table 12. Traces

Except that cross-border instantiation is postponed, the late and the early
semantics coincide. We write

s
=⇒l when referring to traces according to the late

semantics, and
s

=⇒e to those of the early semantics. Analogously [[]]ltrace denotes
the set of late traces of a component, and [[]]etrace the set of early traces, where
the instantiation steps are removed.

Lemma 1 (Late = early). Assume ∆, E∆ ` C : Θ. Then [[∆; E∆ ` C :
Θ]]ltrace = [[∆; E∆ ` C : Θ]]etrace

Proof. Lengthy but straightforward. ut

26 Conclusion

5 Conclusion

In this report we presented, as an extension of the work of [3], an operational
semantics and a trace semantics of a class-based, object-oriented calculus with
multithreading. The seemingly innocent step from an object-based setting as in
[3] to a framework with classes requires quite some extension in the operational
semantics to characterize the possible behavior of a component. In particular it is
necessary to keep track of the potential connectivity of objects of the environment
to exclude impossible communication labels.

It may therefore be instructive, to review the differences in this conclusion,
to explain them from a higher perspective, especially trying to understand how
the result of [3] can be understood as a special case of the framework explored
here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer. This leads to the crucial difference between object-
based languages, instantiating from objects, and class-based language, instanti-
ating from classes: In the class-based setting, instantiation may reach across the
demarcation line between component and environment, while in the object-based
setting, this is not possible: the program only instantiates program objects, and
the environment only objects belonging to the environment. All other compli-
cations, expounded here at some great length, follow from this difference. The
most visible complication is that it is necessary to represent the dynamic object
structure into the semantics, or rather an approximation of the connectivity of
the environment objects. Another way to see it is, that in the setting of [3], there
is only one clique in the environment, i.e., in the worst case, which is the relevant
one, all environment objects are connected with each other. Since the component
cannot create environment objects (or vice versa), never new isolated cliques are
created. The object-based case can therefore be understood where invariantly
(and trivially) E∆ = ∆ × (∆ + Θ), while in our setting, we take into account
that E∆ may be more specific.

We see this study of the semantics as a step towards a full-abstraction result
for the class-based calculus, on which we will report separately, once the details
are hammered out.

Other future work is to extend the language and the semantics in a number
of ways. One inherent feature of the calculus is that objects are input enabled.
This disallows to model directly synchronized methods as in Java. The extension
of the language and should be comparatively mild; the detailed adaptation of
the semantics and the characterization of the legal traces may still be tricky.
Another interesting but non-trivial generalization is to consider cloning of ob-
jects, i.e., to create a replica of an object, identical to the original one up-to
the object’s identity. In a certain way, instantiation of a class is just like cloning
with the restricting that only objects in their initial state can be obtained by the
operation, while cloning can be applied to an object in mid-life. The ability to
create an object in a state different from the initial one makes new observations

Operational semantics: ν-binders with connectivity 27

possible, most notably the branching structured gets exposed. One therefore has
to generalize the linear-time framework of traces to a branching-time view. We
are currently working on the generalization of our results in this respect.

Even more challenging is to take serious the notion of classes in that they
are not only considered as generator of new objects by instantiation, but also as
template for new classes, i.e., to consider inheritance and subtyping. This makes
new “observations” on classes possible, namely by subclassing.

Acknowledgements We would like to thank Karsten Stahl for “active lis-
tening” even to the more byzantine details and dead ends of all this. Thanks
likewise to Willem-Paul de Roever for careful reading and spotting many sloppy
points. Part of this work has been financially supported by IST project Omega
(IST-2001-33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing.
In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
1998.

3. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

4. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.
Information and Computation, 100:1–77, Sept. 1992.

5. A. M. Pitts and D. B. Stark. Observable properties of higher-order functions that
dynamically create local names, or: What’s new. In A. M. Borzyszkowski and
S. Soko lowski, editors, Proceedings of MFCS ’93, volume 711 of Lecture Notes in

Computer Science, pages 122–141. Springer-Verlag, Sept. 1993.
6. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

A Operational semantics: ν-binders with connectivity

This section sketches an alternative presentation of the late operational seman-
tics from Section 4. One particular part of the definition is disappointing, namely
the fact that connectivity information is contained in the contexts E∆ and EΘ,
but the ν-binders inside the component contain only the name of the entity, but
not its connectivity. In order to achieve subject reduction, as a consequence, we
where forced to recheck the connectivity of the component each time a new name
is exported to the environment (cf. Rule BOut in Table 10).

In order to remedy this, we extend the calculus such that the ν-binder con-
tains connectivity information, as well. The main requirement in this context
is, that this information must be stable under internal reduction. Without this

28 Operational semantics: ν-binders with connectivity

stability, a local, context-free definition of the internal reduction relation similar
to the one from Table 5 would not be possible, since local reduction steps could
then influence encapsulating ν-constructs.

One part of the connectivity information which remains invariant is who cre-
ated whom. This information suffices to get an accurate picture of the relation-
ship between the objects, since the graph structure which evolves by exchanging
values between objects can only connect parts of the object structure which are
related by descendence: no object starts its life on its own and them contacts
the rest of the objects “out of the blue”.

To represent the connectivity, the syntax is extended such that

ν(Θ, EΘ).C

describes a component with local names Θ and connectivity EΘ of the commu-
nicated names.

The syntax is further augmented to record the creator of a new instance: the
instantiation statement takes now the form

let x:c = [self]new c in t

where self is the ς-bound self-parameter of the corresponding method. Further-
more, the grammar for components (cf. Table 2) is extended to include the
production C ::= n ↪→ n.

In the internal steps from Table 5, the rule for internal object creation NewOi

is replaced by the following one, which additionally to the instantiation of the
object also adds the fact that the creator now knows (or may know) the new
instance to the component:

c[(O)] ‖ n〈let x:c = [o1] new c in t〉 c[(O)] ‖ ν(o:c).(o1 ↪→ o ‖ o[O] ‖ n〈let x:c = o in t〉)

The rules for structural congruence ≡ are unchanged as are the ones for
reduction modulo congruence (Table 6 and Table 7). Exporting and importing
now also connectivity information, the form of the labels is extended. Instead of
having the operational rules guessing the connectivity, the labels are carry now
explicit information. This, the binding of a label now takes the form:

ν(∆, E∆).γ , (3)

where in case of an incoming communication, we use as usual ν(Θ, EΘ).γ and
its syntactic variants.

The rule NewOlazy for lazy instantiation of an external class is adapted
analogous to rule Newi:

c ∈ ∆

∆; E∆ ` n〈let x:c = [o1] new c in t〉 : Θ; EΘ

∆; E∆ ` ν(o3:c).o1 ↪→ o3 ‖ n〈let x:c = o3 in t〉 : Θ; EΘ

Operational semantics: ν-binders with connectivity 29

The most visible changes concern the external steps exchanging scope infor-
mation, of course.

n /∈ fn(a) ∆; E∆ ` C : Θ, n:T
a
−→ ∆́; É∆ ` Ć : Θ́, n:T ; ÉΘ

Comm

∆; E∆ ` ν(n:T).C : Θ
a
−→ ∆′; E′

∆ ` ν(n:T).C′ : Θ́; ÉΘ \n

n ∈ fn(γ) ∆′ = ∆, n:T E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆′; E′

∆ ↓∆×(∆+Θ): Θ

∆′; E′

∆ ` C : Θ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BIn

∆; E∆ ` C : Θ
ν(n:T ;Ẽ∆).γ?
−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

n ∈ fn(γ) ∆; E∆ 6` T : [(. . .)]

∆; E∆ ` (C \n) : Θ, n:T ; EΘ + EΘ(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOut

∆; E∆ ` ν(n:T).C : Θ; EΘ
ν(n:T ;EΘ(C,n)).γ!
−−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

o ∈ fn(γ) Θ ` c : [(. . .)] C(c) = [(O)]

Θ′ = Θ, o:c E′

∆ = E∆ + Ẽ∆ ∆; E∆ ` ∆; E′

∆ ↓∆×(∆+Θ): Θ

∆; E′

∆ ` C : Θ′; EΘ
γ?
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BInnew

∆; E∆ ` C : Θ
ν(o:c;Ẽ∆).γ?
−−−−−−−−→ ∆́; É∆ ` Ć ‖ o[O] : Θ́; ÉΘ

o ∈ fn(γ) ∆ ` c : [(. . .)]

∆, o:c; E∆ ` C : Θ; EΘ + EΘ(C, n)
γ!
−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

BOutnew

∆; E∆ ` ν(o : c).C : Θ; EΘ
ν(o:c;EΘ(C,n)).γ!
−−−−−−−−−−−→ ∆́; É∆ ` Ć : Θ́; ÉΘ

Table 13. External steps, scoping

The rule Comm when the binding does not affect any free name of the label
remains unchanged. When a scope opens, making a name known to the envi-
ronment (cf. rule BOut), we export also its connectivity to the environment.
Unlike the treatment of the corresponding rule in Table 11, the rule here can
use the connectivity information kept directly as ↪→-pairs in the component.
When exporting the name n, it is crucial that not only all pairs n ↪→ n′ and
n′ ↪→ n with n′ ∈ Θ, are exported, but all names in Θ related to n via the
closure � resp. �↪→: if EΘ end up with less connectivity as the objects (and
threads) of the component actually realize, subject reduction breaks. In abuse
of notation we write E(C, n) for this set. Note that unlike in rule the rule from
Table 11, E(C, n) or EΘ(C, n) here only uses the “parallel entities” n1 ↪→ n2 of
the component and does not refer to the named objects themself.

Having exported the connectivity information for n to the context by extend-
ing EΘ to EΘ +EΘ(C, n), there is no need in keeping the information inside C as

30 Operational semantics: ν-binders with connectivity

well. Therefore we remove all information concerning n from the component, for
which we write C \n. Note that the object or the thread itself is not removed,
of course, only any ↪→-pairs mentioning it. Note further that rule BOut deals
only with the export of names of entities resident in the component. The premise
∆; E∆ 6` T : [(. . .)] takes care of that.14

Reception of new names is treated in the dual rule BIn. The component
receives not only a fresh name n with the corresponding type information, but
also its connectivity E′

∆; both pieces of information are added to the respective
assumption context, where it is checked that E∆ is extended conservatively.

The last two rules deal with lazy instantiation across the component bound-
ary. In rule BOutnew , this means the reference to an object from an environment
class (stipulated by ∆ ` c : [(. . .)]) is communicated boundedly to the environ-
ment. Unlike as in rule BOut, the reference is kept after scope extrusion in the
assumption environment, as the object itself resides in the environment. The
code for instantiation on part of the creator in the component must have been
executed some time before by rule NewOlazy from above, which lead to a pair
o′ ↪→ o running in parallel in the component, if o′ is the creator. For the trans-
mitted connectivity in the label, it is clear that after creation of the new name
o at the component side, the name is known by the creator, as indicated by
o′ ↪→ o, which might give the knowledge away, of course, so that o is known to
other objects from the component. The object o itself, however, does not itself
know of any other object —how should it, it is not even instantiated yet.

Let us illustrate the semantics on a small example. It is a bit more complex
than the similar Example 3, i.e., populated with more objects, and uses the
alternative rules of this section.

Example 4 (Lazy instantiation (1)). Given two external classes c2 and c3 from
∆. Let further o1 be a component object already known to the environment, i.e.,
Θ ` o1 : c1 for some class c1 in Θ. The following steps describe a situation, where
a thread creates an object of the external class c2, and calls a method of this
object. Furthermore, it passes to the callee o2 the reference to another object
o3, which likewise is an instance of an external class, namely c3 and which is
unknown to the environment yet. A fourth object o4, in contrast, is contained in
the component and already known to the environment, i.e., o4 ∈ dom(Θ), and
furthermore, o5 is a yet unknown instance in C′:

1 ∆; E∆ ` ν(o3:c3).(C′ ‖ n〈let x:c′ = [o1] new c′ in[o1] x.l(o3, o4); t〉) : Θ; EΘ

2 ∆; E∆ ` ν(o3:c3, o2:c2).(C′ ‖ o1 ↪→ o2 ‖ n〈let x:c′ = o2 in[o1] x.l(o3, o4); t〉) : Θ; EΘ

3 ∆; E∆ ` ν(o3:c3, o2:c2).(C′ ‖ o1 ↪→ o2 ‖ n〈[o1] o2.l(o3); t〉) : Θ; EΘ
ν(o2:c2,o3:c3;E).n〈[o1]call o2.l(o3,o4)〉!

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4 ∆, o2:c2, o3:c3; E′
∆

` C′′ ‖ n〈[o1] blocks for o2; t〉 : Θ; EΘ

After some internal steps, which amongst other things, create the pair o1 ↪→ o2

inside the component, both the newly created o2 and the previously created o3

escape to the environment by lazy instantion (rule NewOlazy).
The interesting part of the reduction is the extenal step from line (3) to (4).

The communicated relation E Let us abbreviate the pre-configuration of the
14 Export of names by lazy instantiation is treated in rule BOutlazy .

Operational semantics: ν-binders with connectivity 31

step ∆; E∆ ` ν(o3:c3, o2:c2).(o1 ↪→ o2 ‖ n〈[o1] o2.l(o3); t〉) : Θ; EΘ as ∆; E∆ `
C : Θ; EΘ . The situation as given in line (3) is graphically sketched in Figure 2.
The arrows between represent the ↪→-relation, the dotted arrows from c2 and

o1

o2

o3o4

o5

c2 c3

•
•

•

∆Θ

o1, o4, c1, c4, c5 ∈ Θ

Fig. 2. Lazy instantiation

c3 indicate that o2 and o3 are references to not-yet-existing instances, and the
bubble around o1 and o2 indicates (informally) the current scope of the reference
o2; to keep the picture simple, not other scopes are represented. The •’s are object
references whose exact identity is unimportant for the example.

o2 ∈ ∆2 É3
∆ = E∆ + (o2 ↪→ (o3, o4, o5), n ↪→ o2) É3

Θ = E3
Θ \n

CallOut

∆2; E∆ ` C3 : Θ3; E3
Θ

n〈[o1]call o2.l(o3,o4,o5)〉!
−−−−−−−−−−−−−−−−−−→ ∆2; É3

∆ ` Ć3 : Θ́3; É3
Θ

BOut

∆
1
, o2:c2; E∆ ` C

2
: Θ; EΘ

ν(o5:c5;E′
Θ

)γ!
−−−−−−−−−−→ ∆

2
; É

3
∆ ` C : Θ́

3
; É

3
Θ

BOut
1
new

∆, o3:c3; E∆ ` C1 : Θ; EΘ

ν(o2:c2)γ!
−−−−−−−→ ∆2; É3

∆ ` C : Θ́3; É3
Θ

BOut
0
new

∆; E∆ ` C0 : Θ; EΘ

ν(o3:c3).γ!
−−−−−−−−→ ∆3; É3

∆ ` C : Θ́3; É3
Θ

∆ E∆ Θ EΘ ∆́ É∆ Θ́ ÉΘ

3 ∆2 E∆ Θ, o5:c5 EΘ + E′

Θ ∆2 E∆ + (o2 ↪→ o3, o4, o5, n ↪→ o2) Θ3 \n E3
Θ \n

2 ∆1, o2:c2 E∆ Θ EΘ ∆2 É3
∆ Θ́3 É3

Θ

1 ∆, o3:c3 E∆ Θ EΘ ∆2 É3
∆ Θ́3 É3

Θ

0 ∆ E∆ Θ EΘ ∆2 É3
∆ Θ́3 É3

Θ

Table 14. Contexts (o1, o4, c1, c4, c5, n ∈ Θ)

32 Operational semantics: ν-binders with connectivity

The contexts are summarized in Table 14, where the numbers in the first col-
umn refer to the lines of the judgements of the derivation tree, and where 0 is the
root at the bottom. Furthermore, by convention, the entities named ∆́, Θ́, etc.,
refer to their state after the corresponding step. Separately, Table 15 contains
the form of the components; the components are read up-to ≡-congruence. The
primed object references are the •’s from the pictorial representation. We assume
that they are all scoped within the component, i.e., ~o′:~c′ in C3 is the binding
occurrence of the primed references. The rest C′ of the component contains the
actual named entitities, i.e., the primed objects just mentioned and besides that
the objects and classes of the commitment context Θ, o5:c5.

C Ć

3 o1 ↪→ o2 ‖ n〈[o1] o2.l(o3, o4, o5); t〉 ‖ ν(~o:~c)





o1 ↪→ o′ ↪→ o4 ‖
o1 ↪→ o′′ ↪→ o5 ‖
o1 ↪→ o′′′ ↪→ o3 ‖ C′





2 ν(o5:c5) C3 Ć3 \ o5

1 ν(o2:c2) C2

0 ν(o3:c3) C1

Table 15. Components

The component Ć3 equals C3 where the thread n goes into the blocked state
and waiting for the return of the method, as indicated in the reduction steps at
the beginning of this example. The component Ć3 equals C3 with all all “public
acquaintances” of o5 removed. The interconnection structure of the objects after
the step is shown in Figure 3.

o1

o2

o3o4

o5

c2 c3

•
•

•

∆Θ

o1, o4, o5, c1, c4, c5 ∈ Θ n, o2, o3, c2, c3 ∈ ∆

Fig. 3. After the communication

Operational semantics: ν-binders with connectivity 33

In the BOut0
new -step, the context E′

∆ in the label carries the acquaintances
of object o3. The object is freshly created in this step, as is o1, therefore there are
no acquaintances of the form o3 ↪→ o, independant of whether o is a component
or environment object. Of course conversely, the reference o3 itself might be
known already even if the instance is not actually created, i.e., there might be
pairs o′ ↪→ o3 inside the component, where o′ is either bound in Θ or occurs
(modulo structural congruence) together with o′ ↪→ o3 in the scope of a νo′:c′-
binder. Note that it is not possible —already for reason of proper scoping— that
o′ ∈ dom(Θ) and o′ ↪→ o3 ∈ EΘ!

The same remarks apply to o1, the callee of the transition, whose scope is
exported in the derivation step BOut1

new . Note that especially there are o1 and
o3 cannot know of each other.

The next deriviation step —working bottom up in a goal directed manner—
is an instance of BOut justifies a “standard” scope extrusion, where only the
name, namely the reference o5 to a component instance, is exported, without any
instantiation involved. A difference from the lazy instantiation steps is, that now
the label carries a nontrivial connectivity part, E′

Θ in the derivation. According
to the definition of rule BOut from Table 13, E′

Θ contains all objects from the
current name assumption and commitment contexts, thus in the example from

EΘ, E∆, o1:c1, o3:c3 .

If we (informally) assume that the picture of Figure 2 is complete in the sense
that no object and acquaintances are presents other than those indicated by the
arrows and that furthermore the •-references corresponds to component-local
instances, then we can conclude:

E′
Θ = o5 ↪→ o4, o5 ↪→ o1, o5 ↪→ o2, o5 ↪→ o3 ⊆ Θ, ∆2 .

This exported connectivity, however, merits a closer look. First note that clearly
the primed object references o′, o′′, and o′′′ are not mentioned in the relation
E′

Θ. The reason is that they are not (yet) known to the environment; hence it
makes no sense to commit oneself about its connectivity.15

More interesting is the justification of, for instance, o5 ↪→ o4. In particular,
the justification for this pair in E′

Θ is not that Θ; EΘ ` o5 �↪→ o4 : ∆2!
Indeed, since we assume that the intermediate names o′ and o′′ are not advertised
via Θ to the environment but locally scoped, Θ; EΘ 6` o5 �↪→ o4 : ∆2. The
reason why o5 ↪→ o4 must be listed on the transition label and added to EΘ

as mandated by rule BOut is, that C2 is ≡-congruent to a component where
o5 and o4 are connected using the reflexive, symmetric, and transitive closure
from the ↪→-arrows in the component as well as the assumptions from EΘ.16

The same arguments justify o5 ↪→ o1 as part of Θ′, and similarly o5 ↪→ o3 and

15 More technically, if for instance o′ is locally scoped within the component, there is
no way to refer to it outside, for instance in the connectivity context; that’s the
fundamental meaning of scope.

16 In the particular example here, EΘ is actually not needed.

o5 ↪→ o2, where the latter two are different insofar, as o2, o3 are members of the
environment assumption ∆2.

As mentioned, in the example, we have chosen o1 and o4 to be an externally
known internal instances, while the argument o3 and the callee o2 are not yet
published and exported external instances. Note that the rules does not allow
an analogous step in the situation, where also the caller o1 is an instance of an
external class. ut

Index

C ` o1 ↪→ o2, 16
E∆, 13
E∆ ` o1 � ~v, 18
∆; E∆ ` C : Θ; EΘ, 16
∆; E∆ ` v1 � v2 : Θ, 14
∆; E∆ ` v1 �↪→ v2 : Θ, 14
∆; E∆ ` ∆′; E′

∆ ↓∆×(∆+Θ): Θ, 20
∆1; E∆1 , Θ1 ` ∆2; E∆2 , Θ2, 16
∆1 ≥ ∆2, 16
∆1 ≤ ∆2, 16
nil , 6
π-calculus
– polyadic, 29
 , 10
[[]]etrace , 26
[[]]ltrace , 26
[[∆; E∆ ` C : Θ; EΘ]]trace , 22, 26
τ
−→, 10

s
=⇒e, 26

s
=⇒l, 26
a (label), 13
s, 26

abstract syntax, 6
acquaintance, 14
α-conversion, 11

clique, 14
cloning, 28, 29
closure, 23

field, 6
– access, 6

– declaration, 6
– update, 6

instance variable, 6
instantiation
– typing, 8

label, 13
lazy instantiation, 23, 24
– example, 24

method update, 7

operational semantics, 8

reentrant call, 16
rule
– Red, 10

semantics
– late vs. early, 26
sequential composition, 6
step
– confluent, 10
– internal, 10
structural congruence, 11
subcontext, 16

thread class, 6
trace, 26
tree of creation, 30

write closedness, 7

