Replace this file with prentcsmacro.sty for your meeting,

or with entcsmacro.sty for your meeting.
Both can be found at the ENTCS Macro Home Page.

Characteristic u-Calculus Formulas for
Underspecified Transition Systems™

Harald Fecher and Martin Steffen

Christian-Albrechts- University Kiel, Germany
{hf,ms}@informatik. uni-kiel. de

Abstract

Underspecification, which is essential for specification formalisms, is usually ex-
pressed by equivalences, simulations, or logic approaches. We introduce underspec-
ified transition systems (UTSs) as general model general model for underspecifica-
tion, where, e.g., transitions point to sets of states. We argue for the generality
of the UTSs by showing that the class of all UTSs is strictly more expressive than
the standard equivalences and simulation approaches, in the sense that more sets
of transition systems can be expressed. Additionally, a characteristic formula in
terms of the p-calculus is presented for every finite state UTS. Furthermore, we
show that UTSs can finitely describe sets of transition systems, whenever they can
be described finitely by the other standard approaches except for trace-set extension
or u-calculus descriptions.

Key words: underspecification, transition systems, bisimulation,
simulation, p-calculus

1 Introduction

Specification languages abstract away from program details and describe pro-
grams on an abstract level. Hence, underspecification is an important feature
of specification languages. For instance, program are often specified by pre-
and post conditions, which usually allow different possible implementations,
in other words, underspecification is used.

Action based systems are typically specified by temporal logics, like the u-
calculus [10], or by using more operational approaches, like labeled transition
systems [9]. In logical approaches, underspecification appears naturally, as
usually not the system is specified in all detail. In labeled transition systems,
on the other hand, equivalence or simulation relations are usually used to

* Part of this work has been financially supported by IST project Omega (IST-2001-33522)
and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

(©2006 Published by Elsevier Science B. V.

FECHER AND STEFFEN

achieve underspecification. Unfortunately, approaches based standard equiv-
alence or simulation relations are insufficient to describe relevant underspeci-
fication appearing in practice, since they can either describe safety or liveness
properties but no combinations of these properties. For example, specifying
that action a must be possible, action b may be possible and no other action is
allowed ! cannot be done by standard equivalences or simulation approaches? .
Therefore, a more expressive operational based formalism is needed in order
to handle more practically relevant underspecification. Such formalisms are
also suitable as semantic domains for modeling languages like UML [19,20].

Therefore, we introduce an extended version of labeled transition systems,
called underspecified transition systems or UTSs for short. They already were
investigated in different context under the name of disjunctive modal tran-
sition systems [13] and they are a generalization of Larsen and Thomsen’s
modal transition systems [11,12]. In other words we have must transition
that must be matched by the implementation and we have may transition
that can be matched by the implementation (but it is not necessary to match
them). Furthermore, the implementation may not do more as the must and
may transition allow. Our generalization of this approach is that (must/may)
transitions of a UTS points from a state to a set of combinations of actions and
states. The meaning is that one, but not necessarily all of the action/state
combination (a, s) of the set of a transition from s has to be matched in the
implementation. This generalization is necessary to model underspecification
that appear, for example, in specification given by pre- and postconditions
where we know that one action specified by the pre- and postcondition has to
be possible but not necessarily all of them.

In this paper, we examine the expressive power of the class of all UTSs in
the sense that we compare the sets of transition systems describable by UTSs
using U-bisimulation with the standard equivalence and simulation techniques
and with the p-calculus. Note that U-bisimulation denotes our exact definition
that an implementation in terms of transition systems satisfy the specification
in terms of UTSs. For reason of simplicity, we do not consider weak versions,
i.e., we do not abstract away from internal execution. In particular, we show
that UTSs are strictly more expressive than transition systems compared by
trace inclusion, trace-set extension, bisimulation or simulation. Moreover, we
show that the UTS can be chosen to be finite, whenever the transition system
of the trace inclusion, bisimulation or simulations specification is finite. This
is in general not the case for trace-set extension. Furthermore, we show that
every set of transition systems describable by a finite UTS can be described by

1 For example the implementation that only allow a and the implementation that only
allow a and b satisfy this specification.

2 This simple example can be specified by using two different specification one for safety and
one for liveness. Nevertheless, if specification with a more complicated branching structure
are considered, simulation techniques are not sufficient, e.g., bisimulation is different from
simulation-equivalence [4].

FECHER AND STEFFEN

Ta T‘a7 b
a a
b

Fig. 1. Some Transition Systems

a p-calculus formula. This is done by defining characteristic formulas for finite
UTSs. On the other hand, we show that not every set of transition systems
describable by a p-calculus formula can be described by a finite UTS.

In outline, the paper is organized as follows: Section 2 introduces transi-
tion systems together with the concepts of trace-inclusion, trace-set extension,
bisimulation, and simulation. Underspecified transition systems together with
a corresponding notion of bisimulation, called U-bisimulation, are presented
in Section 3. This section also compares UTSs with the concepts presented in
Section 2 wrt. their expressive power. After a short review of the p-calculus
in Section 4, the characteristic formula of a UTS is given in Section 5, where
we also show that not all p-calculus formulas can be described by finite UTSs.
Section 6 concludes the paper, discussing related and future work.

2 Transition Systems

Labeled transition system [9] are defined as follows:

Definition 2.1 A (labeled) transition system (TS) is a tuple (S, L, —,3)
where S is the set of states, L the set of labels, —C S x L x S is the
transition relation, and s € S is the root state.

A TS is finite if both the set of states and the sets of labels are finite.

Some transition systems are illustrated in Figure 1. Transition systems are
used for underspecification, i.e., they can describe sets of transition systems
via equivalence and simulation relations. Standard representatives of these
approaches are given in the next subsections.

2.1 Traces
The typical equivalence notion in non-branching systems is trace equivalence:

Definition 2.2 The set of traces of a transition system 7" = (S, £, —,3) is
defined by

Te(T) = {(a1, ...,an) € L* | Isg, ..., n 1 50 =SAVi <n: 5 —> 54}

The transition systems 7 and T3 are called trace equivalent if Tr(T)) = Tr(T5).
3

FECHER AND STEFFEN

The transition systems 7T,; and Tge of Figure 1 are trace equivalent. In
the context of trace semantics, a TS is used for underspecification in that it is
meant to describe the set of all TS trace equivalent to it. Specification based
on equivalence is not always enough, since it does not allow less (respectively
more) behavior: all traces have to be matched. For example, we cannot specify
that the system has at least trace a or that the system cannot have more traces
as trace a and the empty trace. To gain more flexibility, trace set inclusion
has been considered:

Definition 2.3 Let T; = (5;, £, —;,s;) with ¢ € {1,2} be two TS over the
same set of labels. Then T is trace included in Ty (and Ty is trace-set extended
from T7) if Tr(7}) C Tr(T3).

Now, the set of all TSs that only allow the execution of actions a and b is
obtained by taking all TS that are trace included in Ty of Figure 1. On the
other hand, the set of all TS that are trace-set extended from 7, are those
TS exhibiting at least all traces generated from actions a and b.

2.2 Bisimulation

Traces as specification capture the linear behavior of a system and are too
abstract when the branching structure is of import. The fundamental notion
of equivalence in branching systems is bisimulation [16,21]:

Definition 2.4 Let T; = (S;, £, —;,s;) with ¢ € {1,2} be two TS over the
same set of labels. A bisimulation between T} and T5 is a relation R C 51 x5,
such that (51,3,) € R, and for all pairs (s1, s2) € R and labels a € £ we have

. a a [y
e if 5 — s, then sy — s, and (s, s,) € R for some s, and conversel
1 2 1522 29)
. a a ~
o if 59 — 55, then s; — s} and (s}, s,) € R for some s.

Two transition systems are called bisimilar or bisimulation equivalent, if there
exists a bisimulation relating them.

A TS is used for specification in the sense that it describes the set of all
TS that are bisimilar to it. The standard technique in branching systems to
allow less (respectively more) behavior is simulation:

2.3 Simulation

Bisimulation can be seen as a symmetric variant of the notion of simulation,
which was introduced in [15]:

Definition 2.5 Let T; = (S;, £, —,,5;) with ¢ € {1,2} be two TS over the
same set of labeils. A simulation from T} to Trisa relation R C S; x Sy such
that (51,52) € R, and for all pairs (s1, s2) € R and labels a € £ we have

: a a 1o D /
if s; — 7, then sy — s5 and (s}, s5) € R, for some s .

4

FECHER AND STEFFEN

Ty liveness-simulates Ty (and T} safety-simulates Ty) if there exists a simula-
tion from T} to T5, relating their root states.

For example, the set of all TSs that safety-simulate Ty, of Figure 1 are
those TSs that and after an a-action, and not both a and b are possible. In
particular, 75, of Figure 1 is not included. Note that transitions system in
simulation relation with Ty must have exactly a and b as set of labels. The
set of all TS that liveness-simulates T, ; are those TSs where at every reachable
state both actions a and b are possible, e.g., Tye is not included.

Relating systems by simulation for underspecification is still too coarse,
since all behavior of the specification can be neglected when the safety-simulation
is used, respectively arbitrary behavior can be added in the case of liveness-
simulation. In other words, only safety or liveness properties can be specified
but no combinations of them.3 In particular the following example cannot be
specified using simulations.

Example 2.6 Consider the set of all TS where at the beginning action a has
to be possible, action b is allowed but no further actions are allowed at the
beginning.

That the set of TS described by this example cannot be described by trace
inclusion, trace-set extension or simulations can be seen as follows: If trace
inclusion or safety-simulation is used, then no a is necessary. If trace-set
extension or liveness-simulation is used, then also action c is allowed.

3 Underspecified Transition Systems

To handle situations of underspecification as given in Example 2.6, one can
use transition systems with two different kinds of transitions. One to denote
the steps mandatory for the implementation, called must transitions, and a
second transition relation to indicate steps which may occur, but that are
not necessary for the implementation, called may transitions. Such transition
systems are called modal transition systems [11]. Modal transition systems,
however, are not sufficient to model all behaviors that appear in practice:
Consider, for example, a system required to send a value v, denoted by the
action send(v). If this value v is specified by a pre- and postcondition, e.g., it
should be between 4 and 6, then one action of send(4), send(5), or , send(6)},
possibly leading to different states, has to be allowed but not necessarily all
of them. This cannot be specified by the modal transition systems, since if
no must transition exists, then no sending has to be present, but if a must
transition with label send(7) is used, then exactly this action send(i) has to
be present, which does not reflect the specification.

3 Using two different specifications for safety and liveness properties will not be sufficient if
systems with complicated branching structures are considered, e.g., bisimulation is different
from simulation-equivalence [4].

FECHER AND STEFFEN

uv
a
T
b

Fig. 2. Two Underspecified Transition Systems

U
1 a_ 3
0 b
b
2

In order to solve this problem, we generalize transitions from a relation
between states, labels, and states to a relation between states and sets of
combinations of labels and states. This idea is formalized in the following
definition, where the special element A is contained in the set of combinations
of labels and states iff this transition encodes a may transition.

Definition 3.1 [UTS| An underspecified transition system (UTS) is a tuple
(U, L,+—,U), where U is the set of states, £ the set of labels, — C U X
(PLxU)U{a})\{0}) is the underspecified transition relation, where P(.)
denotes the power set construction and _\ _ denotes the element removal
function, and U C U is the set of root states.

A transition u — M is called must transition, if A¢ M and may transition,
it Ae M.

A UTS is finite if its set of states and its set of labels are finite. A UTS is fully
determined, if it does not have may transitions and if the right-hand side of
every must transition and as well as the set of root states contain exactly one
element.

Underspecified transition system were also investigated under the name of
disjunctive modal transition systems in [13] and they are further considered
in the context of abstraction techniques in [22,3]. The intuitive meaning of a
UTS is made clear by defining the set of TS that satisfy a UTS. This will be
done in the next subsection, where it is also explained why the empty set is
not allowed in the underspecified transition relation. A graphical notation of
UTSs is given by dividing the head of an arrow such that the heads pointing
to the target states and such that the labels are drawn behind the division
(we use set of labels when the arrows corresponding to these labels pointing
to the same state). Furthermore, the beginning of an arrow is decorated by
the symbol A if the arrow corresponds to a may transition. The UTSs

U = ({0,1}, £,{(0,{(a,)}), (0, {(b, 1), a}), (1, {2} U (£ x {1}))},0)
U =({0,1,2,3}, £, {(0,{(a, 1), (b,2)}), (1, {(a,3), (b,2), (b,3), A} },0)
are drawn in Figure 2, where a,b € L.

Proposition 3.2 The class of all fully determined UTSs corresponds to the
class of all TS. Furthermore, the isomorphism (° is obtained by mapping the

transition system (S, L, —,5) to (S, L, {(s,{(a,s)}) | s = '}, {5}).
6

FECHER AND STEFFEN

1 1

2 2

a1a3 a1b3
B
2

Fig. 3. Transition System U-bisimilar to the UTS of Figure 2
3.1 Underspecified Bisimulation

Next we formalize when an implementation given as TSsatisfies a specification
defined as UTS.

Definition 3.3 [U-bisimulation] Let T = (S5,£,—,3) be a TS and U =
(U, L, »—>,U) be a UTS over the same set of labels. An underspecified bisim-
ulation or U-bisimulation for short, between T and U is a relation R C S x U
such that Ju € U : (3,7) € R and for all (s,u) € R we have

o528 =3IM ur—— M AT : (a,u') € M' A (s,u') € R, and
o (ur— M'AAgE M) = 3(a,u/) € M':3s" 15 - 5" A(s',u') € R.

T and U are called underspecified bisimilar (U-bisimilar) if there exists a U-
bisimulation between them.

The first equation in the above definition ensures that every state s’ in the
implementation that can be reached by an execution s — s’ has an equivalent
counterpart ' in the specification that is not forbidden to be reached with an
a-action (IM' : u— M' A Fu : (a,u') € M’). On the other hand, for every
must step of the specification (u — M'A A¢ M’) there is an element in the
right hand side ((a,u’) € M’) such that its state has an equivalent counterpart
s’ which can be reached by an a-step (s — s'). This makes clear that
underspecified transitions of form u —— () are useless, and therefore forbidden,
since they cannot be matched by any implementation. Note that may steps
of the specification do not have to be matched by the implementation, but
can be used to match steps of the implementation. Obviously, transitions of
the form u — {A} are redundant and can be omitted. Transition systems
that are U-bisimilar to U®) of Figure 2 are presented in Figure 3. On the
other hand, the transition system that only consists of state 0 and possesses
no transitions is not U-bisimilar to &),

Furthermore, the set of all TS described in Example 2.6 is the set of all
TS that are U-bisimilar to 7)) of Figure 2. Note that it would be sufficient
to restrict may transitions to singleton sets, i.e., may transitions be elements
of U x L x U. We decided to take the more general approach in order to
simplify the notations (must and may transitions are encoded within the same
relation).

FECHER AND STEFFEN

Proposition 3.4 U-bisimilarity is closed under bisimilarity, i.e., if Ty is bisim-
war to Ty and Ty is U-bisimilar to U then Ty is U-bisimilar to U.

For each UTS, there always exists a U-bisimilar TS. More precisely, the
transition system obtained by removing all may transitions and by choosing
an element from every must transition yields a U-bisimilar one. Formally:

Proposition 3.5 Let U = (U, L,—,U) be a UTS and f be a function from
— NU x P((L x U))) to L x U with Y(u, M) € (— NU x P((L x
U)))) : f((u,M)) € M. Then the transition system (U, L,{(u,a,u’) | IM :
f((u, M)) = (a,u)},) is U-bisimilar to U whenever u € U.

The following proposition gives the justification to call the relation of De-
finition 3.3 U-bisimulation, even if it is not an equivalence relation.

Proposition 3.6 Let T; = (S;, L, —,5;) with i € {1,2} be two TS. Then Ty
15 bisimilar to Ty iff T1 is U-bisimilar to Lb(Tg), with (* as given in Proposition
3.2.

Weak versions of bisimulation, like weak bisimulation, delay bisimulation,
n-bisimulation and branching bisimulation (see, e.g., [5]), can be analogously
defined for U-bisimulation.

3.2 UTS versus Simulation

. From Proposition 3.6, we obtain that every set of transition systems derived
from bisimulation equivalence can also be described by U-bisimulation such
that finiteness of the specification is preserved, i.e., the UTS can be chosen
to be finite whenever the used TS is finite. Furthermore, simulations can
also be described by U-bisimulation such that finiteness of the specification is
preserved, which is stated in the following propositions.

Proposition 3.7 Let T; = (S;, L, —,5;) with i € {1,2} be two TS. Then
Ty safety-simulates Ty iff Ty is U-bisimilar to °(Ty), where (* is obtained by
mapping the transition system (S, L,—,3) to (S, L, {(s,{(a,s"),r}) | s —
545},

Proposition 3.8 Let T; = (S;, L, —,5;) with i € {1,2} be two TS. Then
Ty liveness-simulate Ty iff T is U-bisimilar to (5(Ty), where (¥ is obtained
by mapping the transition system (S, L, —,3) to (S, L, {(s,{(a,s)}) | s -
s UA(s, {(a, urue), A}) | a € LA s € SU{Utrue}}, {5})-

3.3 UTS versus Traces

Trace inclusion can be approximated by safety-simulation (and consequently
by U-bisimulation) such that finiteness of the specification is preserved:

Proposition 3.9 LetT; = (S;, £, —,5;) withi € {1,2} be two TS. Then T}
is trace included in Ty iff Ty is U-bisimilar to 1'**(Ty), where o* is obtained by

8

FECHER AND STEFFEN

mapping the transition system (S, L, —,3) to

(P(S),E, {(5, ((0,8),8)) [0 £ T AT ={s|Ts€S:5s-% 5’}}, {g}).

Obviously, every set of TSs obtained by trace-set extension can be de-
scribed by UTS, since every set of TSs closed under bisimulation can be de-
scribed by an UTS. This can be done by taking the disjoint union of their
states and their ‘transition’ and take the root state set as the collection of
their roots. But this technique in general yields an infinite UTS. Nevertheless,
is it possible to characterize sets of TSs obtained by trace-set-extension from
finite TSs by finite UTSs? The following proposition gives a negative answer
to this question:

Proposition 3.10 The set of all TSs that are trace-set extended from T, of
Figure 1 cannot be described by a finite UTS using U-bisimulation.

. From these propositions, we obtain that the class of all UTSs with U-
bisimulation is strictly more expressive (in the sense that more sets of transi-
tion systems are describable) than by trace-inclusion, bisimulation, and simu-
lation, since the set of transition systems described in Example 2.6 cannot be
described by these approaches.

4 p-Calculus

In this section, we represent the well-known p-calculus [10,2]: Let Var* be
a set of logical variables. The formulas of the p-calculus are given by the
following grammar:

6 = true | false | X | ()¢ | [alé | 6A |6V & | uX.6 | vX.0,

where X € Var* and a € L. The set of all formulas is denoted by F. A
formula is closed, if every occurrence of a variable X occurs inside a formula
of form puX.¢ or vX.¢. The semantics of the p-calculus is given as follows:

Definition 4.1 Let "= (S, £, —,3) be a TS. Then the interpretation func-

tion []7 : F x (Var* — P(S)) — P(S) is defined as:
[false]s. =0
[true]?-=S
[XT7 = pex)

[(a)olp={s € 5|35 € [g]7:5 — s}
[[al¢]s-={s€ S|Vs €S :s "5 =5 ¢c[s]r}

[61 A go]7 = [01]7 N [92]7

[01V @217 = [61]7 U [¢2]7
[1X ¢ =M € P(S) | [ol5™ ™ € M}
[vX.olp =\ (0 € P(S) | [0l 2 M}

9

FECHER AND STEFFEN

where p[X — M| denotes the function equals p except on X where it is equal
to M.

A transition system T = (S, L, —,5) satisfies a closed p-calculus formula
¢, written as T' |= ¢, if 5 € [¢]% for some p.

5 The Characteristic u-Calculus Formula of a UTS

To illustrate that the u-calculus is more expressive than UTSs, we define char-
acteristic p-calculus formulas for UTSs:

Definition 5.1 Let & = (U, £,—,U) be a finite UTS. The transformation
function Yy : P(U) x U — F (where we assume that U C Var*) is given by

Yu(Viu)=u ifueV

Ty(V,u) = vu. A \V (@Tu(Vuiubd) | A

M:u—MAAEM \ (a,u')eEM

N lal \/ Ty (VU {u},) ifug¢V

acl ' :AM :u— (M U(a,u’))

The characteristic formula of U is given by ¢y = \/yeg Yu(0,a).

The characteristic formula is well-defined, since |U| < 0o and |£| < co. It
is also easily seen that the characteristic formula is closed. The characteristic
formula of T of Figure 2 is:

vXo.((a)s”) A ([alef”) A (Blo7) A N\ [clfalse,

ceL\{a,b}

which is equivalent to (a)true A A\ .\ 1, [clfalse, and where state i is denoted

by X; and ¢\ = v X;. Ave []X1). The characteristic formula of T® of Figure
21s

vXo (@) v (0)65) A (o) A (BleS) A A\ [elfalse) with

ceL\{a,b}
o =X (o) A (B v o) A\ false)
ceL\{a,b}
gbgz) =vX,. /\ c|false gbéz) = vX3. /\ [c]false.
cel cel

Theorem 5.2 For all transition systems T' = (S, L, —,3) and for all finite
underspecified transition systems U = (U, L,—,U) we have

T is U-bisimilar to U iff T = ¢y
10

FECHER AND STEFFEN

Note that not all sets of TSs describable by infinite UTSs can be described
by a p-calculus formula. This follows immediately from the fact that a set of
bisimilar TSs that do not have a finite representation cannot be characterized
by a p-calculus formula, as shown in [18]. Furthermore, the p-calculus can
describe sets of TSs that cannot be described by finite UTSs:

Proposition 5.3 The set of all TSs that satisfy the p-calculus formula

~

6= 1X.(((@)X) v ({)true))

cannot be described by a finite UTS using U-bisimulation.

6 Conclusion and Related Work

We examined the expressive power of UTSs with respect to the set of tran-
sition system describable by them. We showed that they are strictly more
expressive than specifications based on trace inclusion, bisimulation, and sim-
ulation. Therefore, UTSs yield a nice specification formalism, since it allows
standard underspecification techniques in a single setting and allow even more
detailed specifications. Furthermore, we showed that there are sets of TSs ob-
tained from a finite transition system using trace-set extension that can only
be described by infinite UTSs. We presented characteristic p-calculus formu-
las for UTS s and showed that not all p-calculus formulas can be represented
by finite UTSs. We do not consider UTSs with propositions, but they can be
straightforwardly extended to deal with them.

In Section 3, we already discussed the modal transition systems of [11]. A
process algebra that deals with underspecification is introduced in [25] (see
also [14]). Their process algebra has, in particular, an alternative operator,
where exactly one of its argument has to be implemented. This is contrary to
our approach where we also allow that more than one alternative is provided
by the implementation. Another form of underspecification is the usage of
orders on actions [24], where the implementation may have a better action as
the recommended one. Our approach is more flexible, since it can use different
orders at every state.

By Hennessy and Milner [7], bisimilarity of (image-finite) processes can be
characterized by sets of p-calculus formulas that does not contain recursion.
The characterization of bisimilarity for finite CCS processes [17] by a single
formula was investigated in [6]. This was generalized in [23] to a construction
of a characteristic formula for finite-state processes. The direct derivation of
characteristic formulas from classic greatest fixpoint characterization of bisim-
ulation is presented in [18].

Future work is to examine weak versions of U-bisimulation. Another future
direction is to investigate a modified version of UTSs where the transitions
are interpreted such that exactly one instead of at least one element of the
right hand side of the transitions must (respectively may) be used for the

11

FECHER AND STEFFEN

implementation. Further investigation of algebraic formalisms like process
algebras [17,8], that can handle underspecification, is also of interest. In our
opinion, the class of all UTSs yields an appropriate semantical language for
such kinds of formalisms.

References

[1] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process
Algebra. North-Holland, 2001.

[2] J. Bradfield and C. Stirling. Modal logics and mu-calculi: An introduction. In
Bergstra et al. [1], pages 293-330.

[3] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-valued abstractions of
games: Uncertainty, but with precision. In Proceedings of the 19th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society Press, 2004.

[4] R. v. Glabbeek. The linear time-branching time spectrum I. The semantics of
concrete, sequential processes. In Bergstra et al. [1], pages 3-99.

[5] R. v. Glabbeek and W. P. Weijland. Branching time and abstraction in
bisimulation semantics. Journal of the ACM, 43(3):555-600, 1996.

[6] S. Graf and J. Sifakis. A modal characterization of observational congruence
on finite terms of CCS. Information and Control, 68(1-3):125-145, 1986.

[7] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137-161, 1985.

[8] C. A. R. Hoare. Communications Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

[9] R. M. Keller. Formal verification of parallel programs. Communications of the
ACM, 19:371-384, 1976.

[10] D. Kozen. Results on the propositional p-calculus. Theoretical Computer
Science, 27:333-354, 1983.

[11] K. G. Larsen and B. Thomsen. A modal process logic. In Proceedings of the
3rd Annual IEEE Symposium on Logic in Computer Science, pages 203-210.
IEEE Computer Society Press, 1988.

[12] K. G. Larsen and B. Thomsen. Partial specifications and compositional
verification. Theoretical Computer Science, 88:15-32, 1991.

[13] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems.
In Proceedings of the 5th Annual IEEE Symposium on Logic in Computer
Science, pages 108-117. IEEE Computer Society Press, 1990.

[14] M. E. Majster-Cederbaum. Underspecification for a simple process algebra of
recursive processes. Theoretical Computer Science, 266:935-950, 2001.

12

FECHER AND STEFFEN

[15] R. Milner. An algebraic definition of simulation between programs. In IJ-
CAI 71, pages 481-489. British Computer Society, 1971.

[16] R. Milner. A Calculus for Communicating Systems, volume 92 of LNCS.
Springer-Verlag, 1980.

[17] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[18] M. Miiller-Olm. Derivation of characteristic formulae. In MFCS’98 Workshop
on Concurrency, volume 18 of FElectronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, 1998.

[19] Object Management Group. UML 2.0 Infrastructure Specification, 2003.
http://wuw.omg.org/cgi-bin/doc?ptc/03-09-15.

[20] Object Management Group. UML 2.0 Superstructure Specification, 2003.
http://wuw.omg.org/cgi-bin/doc?ptc/03-08-02.

[21] D. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, Conference on Theoretical Computer Science, volume 104 of LNCS,
pages 167-183. Springer-Verlag, 1981.

[22] S. Shoham and O. Grumberg. Monotonic abstraction-refinement for CTL. In
K. Jensen and A. Podelski, editors, Tools and Algorithms for the Construction
and Analysis of Systems, volume 2988 of LNCS, pages 546-560. Springer-Verlag,
2004.

[23] B. Steffen and A. Ingdlfsdéttir. Characteristic formulae for processes with
divergence. Information and Computation, 110(1):149-163, 1994.

[24] B. Thomsen. An extended bisimulation induced by a preorder on actions.
Master’s thesis, Aalborg University Centre, 1987.

[25] S. Veglioni and R. De Nicola. Possible worlds for process algebras. In
D. Sangiorgi and R. de Simone, editors, CONCUR ’98: Concurrency Theory,
volume 1466 of LNCS, pages 179-193. Springer-Verlag, 1998.

13

