
Classes, Object Connectivity, and Observability

— Extended Abstract —

30 April 2004

Erika Ábrahám1,2, Marcello M. Bonsangue3,
Frank S. de Boer4, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. We sketch the observational changes, from the viewpoint of
a fully-abstract semantics, when one adds classes to a setting consisting
only of objects, as in traditional object calculi.

1 Introduction

Concurrent object calculi have been investigated as a mathematical basis for
imperative, object-oriented languages with multithreading and heap-allocated
objects. In the context of concurrent, object-based programs and starting from
may-testing as a very simple notion of observation, Jeffrey and Rathke [5] provide
a fully abstract trace semantics for the language. Their result roughly says that,
given a component as a set of objects and threads, its fully abstract semantics
consists of the set of traces at the boundary of the component, where the traces
record incoming and outgoing calls and returns. At this level, the result is as one
would expect, since, intuitively, in the chosen setting the only possible way to
observe something about a set of objects and threads is by exchanging messages.
It should be equally clear, however, that for a language featuring multithreading,
object references with aliasing, and creation of new objects and threads, the
details of defining the semantics and proving the full abstraction result are far
from trivial.

The result in [5] is developed within the concurrent ν-calculus [3], an exten-
sion of the sequential ν-calculus [7] which belongs to the tradition of various
object calculi [1] and also of the π-calculus [6,8]. One distinctive feature of the
calculus is that it is object-based, which in particular means that there are no
classes as templates for new objects. This is in contrast to the mainstream of
object-oriented languages where the code is organized in classes. This report
addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting?



2 Ábrahám et. al.

Considering the observable behavior of a component, we have to take into
account that apart from objects, which are the passive entities, and threads,
which are the active entities, now classes come into play.

Important in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the pure object-based setting: Objects
are created by directly providing the code of their implementation, not referring
to the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects. To understand the
bearing of this change on the semantics, we must realize that the interesting part
of the problem is not so much to just cover the possible behavior at the interface
—there is little doubt that sequences of calls, returns, and instantiations with
enough information at the labels would do— but to characterize it exactly, i.e.,
to exclude impossible environment interaction.

Let’s concentrate on the issue of instantiation across the demarcation line
between component and its environment, and imagine that the component cre-
ates an instance of an environment class. The first question is: does this yield a
component object or an environment object? As the code of the object is pro-
vided by the external class which is in the hand of the observer, the interaction
between the component and the newly created object can lead to observable ef-
fects and must thus be traced. In other words, instances of environment classes
belong to the environment, and those of internal classes to the component.

Whereas in the above situation the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case an object of the program, say o1, instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2 respectively o3.

o1

o2

o3

c1 c2 c3

program environment

Fig. 1. Instances of external classes

In this situation it is impossible that
there be an incoming call from the envi-
ronment carrying both names o2 and o3,
as the only entity aware of both references
is o1. Unless the component gives away
the reference to the environment, o2 and
o3 are completely separated.

Thus, in order to exclude impossi-
ble combinations of object references in
the communication labels, the component
must keep track which objects of the en-
vironment are connected. The component
has, of course, by no means full informa-

tion about the complete system; after all it can at most trace what happens
at the interface, and the objects of the environment can exchange information



Object Connectivity 3

“behind the component’s back”. Therefore, the component must conservatively
over-approximate the potential knowledge of objects in the environment, i.e., it
must make worst-case assumptions concerning the proliferation of knowledge,
which means it must assume that

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, then this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must include a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others,
and furthermore cliques can merge, whenever the component leaks the identity
of a member of one clique to a member of another.

This extended abstract works with a class-based variant of the concurrent
object calculus, sketching how to formalize the ideas mentioned above about
cliques of objects, and mentions consequences concerning what is observable
about a program. For want of space, we concentrate here on the intuition and
refer to the technical report [2] for a deeper coverage.

2 A concurrent class calculus

Concentrating on the semantical issues of connectivity of objects, we omit the
exact syntax and ignore typing issues. The calculus is a syntactic extension of
the concurrent object calculus from [3,5]. The basic change is the introduction of
classes : A program is given by a collection of classes. A class c[(O)] carries a name
c and defines the implementation of its methods, and analogously for objects. A
method ς(n:T ).λ(x1:T1, . . . , xn:Tk).t provides the definition of the method body
abstracted over the formal parameters of the method and the ς-bound “self”
parameter [1]. Besides named objects and classes, the dynamic configuration of
a program can contain as active entities named threads n〈t〉, which, like objects,
can be dynamically created. We will generally use n and its syntactic variants as
name for threads (or just in general for names), o for objects, and c for classes.

Concerning the operational semantics of the calculus, the basic steps are
given in two levels: internal steps whose effect is completely confined within a
configuration (which we elide), and those with external effect.

2.1 Connectivity contexts and cliques

The external behavior of a component is given in terms of labeled transitions
describing the communication at the interface of an open program. As argued
in the introduction, it’s crucial in the presence of internal and external classes
and cross-border instantiation to keep track of connectivity of objects amongst
each other.



4 Ábrahám et. al.

The external semantics is formalized as labeled transitions between judg-
ments of the form ∆; E∆ ⊢ C : Θ; EΘ, where ∆; E∆ are the assumptions about
the environment of the component C and Θ; EΘ the commitments. The assump-
tions consist of a part ∆ concerning the existence (plus static typing information)
of named entities in the environment. For book-keeping “which objects of the
environment have been told which identities”, a well-typed component must
take into account the relation of object names from the assumption context ∆

amongst each other, and the knowledge of objects from ∆ about those exported
by the component, i.e., those from Θ. In analogy to the name contexts ∆ and
Θ, E∆ expresses assumptions about the environment, and EΘ commitments of
the component, where E∆ ⊆ ∆ × (∆ + Θ) and dually EΘ ⊆ Θ × (Θ + ∆). We
will write o1 →֒ o2 (“o1 may know o2”) for pairs from these relations. The pairs
are interpreted as the reflexive, transitive, and symmetric closure of the →֒-pairs
from ∆, i.e., given ∆, Θ, and E∆, we write ⇌ for this closure, i.e.,

⇌ , (→֒↓∆ ∪ ←֓↓∆)∗ ⊆ ∆×∆ .

We will also need the union of ⇌ ∪⇌; →֒ ⊆ ∆× (∆+Θ), for which we will also
write ⇌→֒.

The relation ⇌ is an equivalence relation on the objects from ∆ and partitions
them in equivalence classes. As a manner of speaking, we call a clique a set of
object names from ∆ such that for all objects o1 and o2 from that set, ∆; E∆ ⊢
o1 ⇌ o2 : Θ (or dually from Θ), and we speak of the clique of an object when
we mean the whole equivalence class.

2.2 Keeping track of connectivity

The component exchanges information with the environment via calls and re-

turns and the external semantics is given by transitions between ∆; E∆ ⊢ C :
Θ; EΘ judgments. We show as an example the reception of a method call (fielding
a return works similar and for outgoing communication, the situation is dual):

∆; E∆ ⊢ n ⇌ o1 ⇌→֒ ~v, o2 : Θ

É∆ = E∆ \n ÉΘ = EΘ + (o2 →֒ ~v, n →֒ o2)
CallI

∆; E∆ ⊢ C ‖ n〈let x′:T ′ = [o′
1] blocks for o′

2 in t〉 : Θ; EΘ

n〈[o1]call o2.l(~v)〉?
−−−−−−−−−−−−−→

∆; É∆ ⊢ C ‖ n〈let x:T = o2.l(~v) in return[o1] x; let x′:T ′ = [o′
1] blocks for o′

2 in t〉 : Θ; ÉΘ

The contexts play dual roles: EΘ overapproximates the actual connectivity
of the component, while the assumption context E∆ is consulted to exclude
impossible combinations of incoming values. For incoming calls we require that
the sender be acquainted with the transmitted arguments. In case of a call, the
caller o1 must additionally be acquainted with the callee o2 and, furthermore, the
calling thread must originate from a clique of objects connected with the one to
which the thread had left the component the last time: ∆; E∆ ⊢ n ⇌ [o1] : Θ.5

5 Actually, the caller itself remains anonymous, but the semantics must record the
calling clique.



Object Connectivity 5

While E∆ imposes restrictions for incoming communication, the commitment
context EΘ is updated when receiving new information. For instance in CallI,
the commitment ÉΘ after reception marks that now the callee o2 is acquainted
with the received arguments and furthermore that the thread n is visiting (for
the time being) the callee o2.

2.3 Scoping and lazy instantiation

Since new objects and threads can be created, the semantics has to take care of
dynamic scoping and the exchange of bound names. Apart from the connectivity,
this is done in a standard way, as in the object-calculus or the π-calculus. We
only mention a few particularities relevant in our context:

– Object creation across component boundaries is caused by the fact that the
component instantiates an environment class (or vice versa). This behavior
is absent in an object-based setting.

– Cross-border instantiation itself in unobservable, which is due to the fact
that the calculus does not feature constructor methods and that the heap
space is unbounded. As a consequence, there are no transitions labeled for
object creation; rather objects are created only when they are first referenced
(“lazy instantiation”).

– For newly learnt objects, also connectivity information must be exchanged,
i.e., the usual mechanism of scope extrusion must be enhanced by handling
connectivity information, as well.

2.4 Observability

Now we return to the question posed in the beginning: What is observable in
that class-based framework? As notion of observation, we take may-testing [4]
which roughly is defined as follows: Put a component or program fragment into a
context, let it run, and observe whether it is possible (“may”) that the program
reaches a success-reporting state. From this conventional, observational starting
point, the question arises: what is the corresponding denotational semantics? As
in the object-based setting, this gives rise to trace semantics, i.e., the behavior of
a component is characterized by sets of all its interactions with the environment.
Again, we only mention the salient differences to the pure object-based setting:

Connectivity: As outlined, an important change of the semantics is the need
to represent connectivity, i.e., groups of objects that may know each other.
The groups of objects are dynamic, in that new cliques can appear by cross-
border instantiation, and they might merge. The semantics must contain
only traces consistent with the connectivity structure.

Independent observers: The observing environment may be split into sep-
arate cliques of objects. Unable to coordinate their observations, the total
order of interaction between different observer cliques cannot be fully deter-
mined. If one ignores deadlock and divergence, the semantics falls apart in
separate behaviors per clique.



6 Ábrahám et. al.

Instantiation of classes: The semantics must be aware of the fact, that two
instances of the same class are initially equivalent (up-to their identity). This
means, they may behave equivalently, until they are subject to communica-
tion with the environment that makes a distinction possible.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural oper-
ational semantics for a concurrent class calculus. Technical Report 0307, Institut
für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
Aug. 2003.

3. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and typing.
In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98, volume 16.3
of Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
1998.

4. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
5. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent

objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
6. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.

Information and Computation, 100:1–77, Sept. 1992.
7. A. M. Pitts and D. B. Stark. Observable properties of higher-order functions that

dynamically create local names, or: What’s new. In A. M. Borzyszkowski and
S. Soko lowski, editors, Proceedings of MFCS ’93, volume 711 of Lecture Notes in

Computer Science, pages 122–141. Springer-Verlag, Sept. 1993.
8. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.


