
Inductive Proof Outlines for

Multithreaded Java with Exceptions

—Extended Abstract—

30. April, 2004

Erika Ábrahám1, Frank S. de Boer2,
Willem-Paul de Roever1, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
{eab,wpr,ms}@informatik.uni-kiel.de

2 CWI Amsterdam, The Netherlands
F.S.de.Boer@cwi.nl

1 Introduction

In this extended abstract we briefly introduce an assertional proof system for
a multithreaded sublanguage of Java. The language includes recursion, aliasing,
object and thread creation, Java’s synchronization mechanism, and exception
handling, but ignores the issues of inheritance and subtyping. The proof system
is sound and relatively complete, and allows also to prove deadlock freedom [2].

Verification proceeds in three phases: First the program is augmented by fresh
auxiliary variables and annotated with assertions used in the style of Floyd [4,
5] intended to hold during program execution when the flow of control reaches
the annotated point. An augmented and annotated program is called a proof

outline [12]. Afterwards, the proof system, applied to the proof outline, yields a
number of verification conditions assuring that each program execution conforms
to the annotation. Finally, the verification conditions must be proven. We use
the theorem prover PVS [13] for this purpose.

With augmentation and annotation specified by the user, the Verger tool

takes care of the second phase, i.e., for a proof outline it automatically generates
the verification conditions in the syntax of PVS. The third phase, the actual
verification within the theorem prover, is interactive. For the examples we did,
however, most of the conditions could be discharged automatically using the
built-in proof strategies of PVS. Human interaction was needed mostly for the
proof of properties whose formulation required quantifiers.

This work extends earlier results [1] by including exception handling. This
is the first sound and relatively complete assertion-based proof method for a
concurrent Java sublanguage including both synchronization and exception han-
dling. Research in the field of verification for object-oriented programs mostly
focused on sequential languages. The Loop-project [6, 10], for instance, develops
methods and tools for the verification of sequential object-oriented languages

2 Ábrahám et al.

e ::= x | u | this | null | f(e, . . ., e)
eret ::= ǫ | e

stm ::= x := e | u := e | u := newc | u := e.m(e, . . ., e) | e.m(e, . . ., e)
| throw e | try stm ; catch (c u) stm ; . . . catch (c u) stm ; finally stm yrt

| ǫ | stm ; stm | if e then stm else stm fi | while e do stm od . . .

modif ::= nsync | sync

meth ::= modif m(u, . . ., u){ stm ; return eret}
meth run ::= nsync run(){ stm; return }

methpredef ::= meth start methwait methnotify methnotifyAll

class ::= class c{meth . . .meth meth run methpredef }
classmain ::= class

prog ::= 〈class . . .class classmain〉

Table 1. Abstract syntax of the programming language

using PVS and Isabelle/HOL. Especially [8] and [7] formalize the exception
mechanism of Java. Poetzsch-Heffter and Müller [15] present a Hoare-style pro-
gramming logic for a sequential kernel of Java. Translating the operational and
the axiomatic semantics into the HOL theorem prover allows a computer-assisted
soundness proof. In [16] a large subset of JavaCard, including exception handling,
is formalized in Isabelle/HOL, and its soundness and completeness is shown
within the theorem prover.

2 The programming language

The abstract syntax of our language is shown in Table 1. The language is strongly
typed, where besides class types, we use booleans and integers as primitive types,
and pairs and lists as composite types.

A Java program specifies a set of classes, where each class declares its own
methods and instance variables. The behavior of a program results from the
concurrent execution of methods. To support a clean interface between internal
and external object behavior, we exclude qualified references to instance vari-
ables. As a consequence, shared-variable concurrency is caused by simultaneous
execution within a single object, only, but not across object boundaries.

3 The assertion language

To support a clean interface between internal and external object behavior, we
disallow qualified references to instance variables. To mirror this modularity, the
assertion logic consists of a local and a global sublanguage. Local assertions are
used to annotate methods in terms of their local variables and of the instance
variables of the class to which they belong. Global assertions describe a whole
system of objects and their communication structure and will be used in the
cooperation test.

Inductive Proof Outlines for Multithreaded Java with Exceptions 3

4 The proof system

For a complete proof system it is necessary that the transition semantics can
be encoded in the assertion language. As the assertion language reasons about
the local and global states, we have to augment the program with assignments
to fresh auxiliary variables which we call observations to represent information
about the control points and stack structures within the local and global states.
Auxiliary variables are variables not occurring in the program and may be added
to the program to observe certain aspects of the flow of control without affect-
ing it. In general, the observations record information about the intra-object
interleaving of threads, which gives rise to shared-variable concurrency, or the
inter-object communication via method calls and returns.

Besides user-definable auxiliary variables, our proof system is formulated in
terms of built-in auxiliary variables, automatically included into all augmenta-
tions and used in the verification conditions. These auxiliary variables record
information needed to identify threads and local configurations, and to describe
monitor synchronization.

Invariant program properties are specified by an annotation, associating as-
sertions with the control points of the augmented program. In contrast to the
pre- and post-specifications for methods in a sequential context, in our concur-
rent setting each control point needs to be annotated to capture the effect of
interleaving.

Besides pre- and postconditions, the annotation defines for each class a local
assertion called the class invariant, specifying invariant properties of instances
of the class in terms of its instance variables. Finally, a global assertion called
the global invariant specifies properties of communication between objects.

An augmented and annotated program is called a proof outline or an asserted

program.

Invariance of the program properties as specified by the annotation is guar-
anteed by the verification conditions of the proof system, which are grouped
as follows. Initial correctness covers satisfaction of the properties in the initial
program configuration. The execution of a single method body in isolation is
captured by local correctness conditions, using the local assertion language. In-
terference between concurrent method executions is covered by the interference

freedom test [9, 12], formulated also in the local language. It has especially to
accommodate for reentrant code and the specific synchronization mechanism.
Possibly affecting more than one object, communication and object creation is
covered by the cooperation test, using the global language. Communication can
take place within a single object or between different objects. As these cases
cannot be distinguished syntactically, our cooperation test combines elements
from similar rules in [3] and in [9] for CSP.

4 Ábrahám et al.

5 Conclusion

In this work we briefly introduced a sound and complete tool-supported asser-
tional proof system for a Java sublanguage including concurrency, synchroniza-
tion, and exception handling, but no inheritance.

There are a lot of challenging and interesting research topics in the field,
which still need further analysis. For future work, we plan to extend the pro-
gramming language by further constructs, like inheritance and subtyping. In
fact, given a general theory of inheritance, e.g., along the lines of [14], we can
straightforwardly extend the proof system. We are also interested in the devel-
opment of a compositional proof system. Also further development of the Verger
tool is of interest.

References

1. Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin Steffen.
Inductive proof-outlines for monitors in Java. In Najm et al. [11], pages 155–
169. (http://www.informatik.uni-freiburg.de/ eab/fmoods03.ps). A longer version
appeared as technical report TR-ST-03-1, April 2003 (http://www.informatik.uni-
kiel.de/inf/deRoever/techreports/03/tr-st-03-1.pdf).

2. Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever, and Martin Steffen.
Inductive proof outlines for multithreaded Java with exceptions. Technical Report
0313, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-
Universität zu Kiel, December 2003. Available at http://www.informatik.uni-
kiel.de/reports/2003/0313.html .

3. Krzysztof R. Apt, Nissim Francez, and Willem-Paul de Roever. A proof system
for communicating sequential processes. ACM Transactions on Programming Lan-
guages and Systems, 2:359–385, 1980.

4. Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor,
Proc. Symp. in Applied Mathematics, volume 19, pages 19–32, 1967.

5. Charles A. R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12:576–580, 1969.

6. Marieke Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, University of Nijmegen, 2001.

7. Marieke Huisman and Bart Jacobs. Java program verification via a Hoare logic
with abrupt termination. In T. Maibaum, editor, Proceedings of FASE’00, volume
1783 of Lecture Notes in Computer Science, pages 284–303. Springer-Verlag, 2000.

8. Bart Jacobs. A formalisation of Java’s exception mechanism. In David Sands,
editor, Proceedings of ESOP 2001, volume 2028 of Lecture Notes in Computer
Science, pages 284–301. Springer-Verlag, 2001.

9. Gary Levin and David Gries. A proof technique for communicating sequential
processes. Acta Informatica, 15(3):281–302, 1981.

10. The LOOP project: Formal methods for object-oriented systems.
http://www.cs.kun.nl/ bart/LOOP/ , 2001.

11. Elie Najm, Uwe Nestmann, and Perdita Stevens, editors. Proceedings of the 6th
IFIP International Conference on Formal Methods for Open Object-Based Dis-
tributed Systems (FMOODS ’03), Paris, volume 2884 of Lecture Notes in Computer
Science. Springer-Verlag, November 2003.

Inductive Proof Outlines for Multithreaded Java with Exceptions 5

12. Susan Owicki and David Gries. An axiomatic proof technique for parallel programs.
Acta Informatica, 6(4):319–340, 1976.

13. Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verifica-
tion system. In Deepak Kapur, editor, Automated Deduction (CADE-11), volume
607 of Lecture Notes in Computer Science, pages 748–752. Springer-Verlag, 1992.

14. Cees Pierik and Frank S. de Boer. A syntax-directed Hoare logic for object-oriented
programming concepts. In Najm et al. [11], pages 64–78. A extended version
appeared as University of Utrecht Technical Report UU-CS-2003-010.

15. Arnd Poetzsch-Heffter and Peter Müller. A programming logic for sequential Java.
In S. Doaitse Swierstra, editor, Programming Languages and Systems, volume 1576
of Lecture Notes in Computer Science, pages 162–176. Springer, 1999.

16. David von Oheimb and Tobias Nipkow. Hoare logic for NanoJava: Auxiliary vari-
ables, side effects and virtual methods revisited. In Lars-Henrik Eriksson and
Peter A. Lindsay, editors, Proceedings of Formal Methods Europe: Formal Methods
– Getting IT Right (FME’02), volume 2391 of Lecture Notes in Computer Science,
pages 89–105. Springer-Verlag, 2002.

