
Object Connectivity and Full Abstraction

for a Concurrent Calculus of Classes

Draft technical report, July 1, 2004

Erika Ábrahám1,2 and Marcello M. Bonsangue3 and Frank S. de Boer4 and
Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent object calculus has been investigated as a
core calculus for imperative, object-oriented languages with multithread-
ing and heap-allocated objects. The combination of this form of concur-
rency with objects corresponds to features known from the popular lan-
guage Java. One distinctive feature, however, of the concurrent object
calculus is that it is object-based, whereas the mainstream of object-
oriented languages is class-based.
This work explores the semantical consequences of introducing classes to
the calculus. Considering classes as part of a component makes instan-
tiation a possible interaction between component and environment. A
striking consequence is that in order to characterize the observable be-
havior we must take connectivity information into account, i.e., the way
objects may have knowledge of each other. In particular, unconnected
environment objects can neither determine the absolute order of inter-
action and furthermore cannot exchange information to compare object
identities.
We formulate an operational semantics that incorporates the connectiv-
ity information into the scoping mechanism of the calculus. As instanti-
ation itself is unobservable, objects are instantiated only when accessed
for the first time (“lazy instantiation”).
Furthermore we use a corresponding trace semantics for full abstraction
wrt. a may-testing based notion of observability.

Keywords: multithreading, class-based object-oriented languages, for-
mal semantics, full abstraction

1 Introduction

The notion of component is well-advertised as structuring concept for software
development. At the bottom line, a component means a “program fragment”
being composed, which raises the question what the semantics of a component
is. A natural approach is to take an observational point of view: two components
are observably equivalent, when no observing context can tell them apart.

2 Introduction

In the context of concurrent, object-based programs and starting from may-
testing as a very simple notion of observation, Jeffrey and Rathke [JR02] provide
a fully abstract trace semantics for the language. Their result roughly states that,
given a component as a set of objects and threads, the fully abstract semantics
consists of the set of traces at the boundary of the component, where the traces
record incoming and outgoing calls and returns. At this level, the result is as one
would expect, since intuitively in the chosen setting, the only possible way to
observe something about a set of objects and threads is by exchanging messages.
It should be equally clear, however, that for the language featuring multithread-
ing, object references with aliasing, and creation of new objects and threads, the
details of defining the semantics and proving the full abstraction result are far
from trivial.

The result in [JR02] is developed within the concurrent object-calculus [GH98],
an extension of the sequential ν-calculus [PS93] which stands in the tradition
of various object calculi [AC96] and also of the π-calculus [MPW92,SW01]. One
distinctive feature of the ν-calculus is that it is object-based, which in particular
means that there are no classes as templates for new objects.5 This is in contrast
to the mainstream of object-oriented languages where the code is organized in
classes. This report addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state and the methods, and threads, which are the active entities,
classes come into play. Classes serve as a blueprint for their instances and can be
conceptually understood as particular objects supporting just a method which
allows to generate instances.

Important in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the object-based setting: Objects are
created by directly providing the code of their implementation, not referring to
the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects. To understand
the bearing of this change on the semantics, we must realize that the interesting
part of the problem is not so much to just cover the possible behavior at the

5 The terms “object-based” and “object-oriented” are sometimes used to distinguish
between two flavors of languages with objects: object-oriented languages, in this man-
ner of speaking, support classes and inheritance, whereas object-based languages do
without classes. Instead, they offer more complex operations on objects, for instance
general method update.

Introduction 3

interface —there is little doubt that sequences of calls, returns, and instantia-
tions with enough information at the labels would do— but to characterize it
exactly, i.e., to exclude impossible environment interaction. As an obvious exam-
ple, a trace with two consecutive calls from the same thread without outgoing
communication in between cannot be part of the component behavior.

Let’s concentrate on the issue of instantiation across the demarcation line
between component and its environment, and imagine that the component cre-
ates an instance of an environment class. The first question is: does this yield a
component object or an environment object? As the code of the object is pro-
vided by the external class which is in the hand of the observer, the interaction
between the component and the newly created object can lead to observable ef-
fects and must thus be traced. In other words, instances of environment classes
belong to the environment, and those of internal classes to the component.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case, an object of the program, say o1 instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2 respectively o3.

o1

o2

o3

c1 c2 c3

program environment

Fig. 1. Instances of external classes

In this situation it is impossible, that there be an incoming call from the
environment carrying both names o2 and o3, as the only entity aware of both
references is o1. Unless the component gives away the reference to the environ-
ment, o2 and o3 are completely separated.

Thus, in order to exclude impossible combinations of object references in
the communication labels, the component must keep track which objects of the
environment are connected. The component has, of course, by no means full in-
formation about the complete system; after all it can at most trace what happens
at the interface, and the objects of the environment can exchange information
“behind the component’s back”. Therefore, the component must conservatively
over-approximate the potential knowledge of objects in the environment, i.e., it
must make worst-case assumptions concerning the proliferation of knowledge,
which means it must assume that

1. once a name is out, it is never forgotten, and

4 A concurrent class calculus

2. if there is a possibility that a name is leaked from one environment object
to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must include a representation of them. New cliques
can be created, as new objects can be instantiated without contact to others, and
furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

2 A concurrent class calculus

This section presents the syntax of the class-based calculus we will use for our
study. Indeed, it is more or less a syntactic extension of the concurrent object
calculus from [GH98,JR02].

Compared to the object-based calculus, the basic change is the introduction
of classes, where a class is a named collection of methods just as an object in the
object calculus. Since in the class-based setting we do not need general method
update, we distinguish between methods and fields.

One difference between an object and a class concerns the nature of its name
or identifier. Class names are the literals introduced when defining the class;
they may be hidden using the ν-binder but unlike object names, the scopes for
class names are static. Object names, on the other hand, are first-order citizens
of the calculus in that they can be stored in variables, passed to other objects
as method parameters, making the scoping dynamic, and especially they can be
created freshly by instantiating a class. There are no constant object names; the
only way to get a new reference is instatiation.6

The calculus is a typed language; also the operational semantics will be de-
veloped for well-typed program fragments, only. Besides base types B if wished
—we will allow ourselves integers, booleans, . . . , where convenient— the type
none represents the absence of a return value and thread is the type for a named
thread. The name n of a class serves as the type for the named instances of the
class. Finally we need for the type system, i.e., as auxiliary type construction,
the type or interface of unnamed objects, written [l1:U1, . . . , lk:Uk] and the type
for classes, written [(l1:U1, . . . , lk:Uk)]. The grammar is shown in Table 1.

T ::= B | none | thread | [l:U, . . . , l:U] | [(l:U, . . . , l:U)] | n
U ::= T × . . . × T → T

Table 1. Types

6 The calculus does not contain an explicit constant name for the undefined reference,
e.g. nil .

A concurrent class calculus 5

A program is given by a collection of classes, objects, and threads, where the
empty collection is denoted by 0. A class n[(O)] carries a name n and defines the
implementation of its methods and fields, whereas objects n[n, F] contain only
fields plus a reference to the corresponding class. A method ς(n:T).λ(x1:T1, . . . , xk:Tk).t
provides the definition of the method body abstracted over the formal parame-
ters of the method. The name parameter n plays a specific role: It is the “self”
parameter wich is bound to the identity of the object upon method call. The
body itself is a sequential piece of code, i.e., an (anonymous) thread. Besides
named objects and classes, the dynamic configuration of a program can contain
as active entities named threads n〈t〉, which, like objects, can be dynamically
created. Unlike objects, threads are not instantiated by some statically named
entity (a “thread class”), but directly created by providing the code. A thread is
either a value v, or a sequence of expressions, where the let -construct is used for
local declarations and sequencing; stop stands for the deadlocked or terminated
thread. Besides threads, expressions comprise conditionals and method calls, fur-
thermore object creation via class instantiation, creation of new threads, and a
reference to the current thread. Values, finally, are either variables x or names n
(and true, false , 0, 1, . . . when convenient). For the names, we will generally use
n and its syntactic variants as name for threads (or just in general for names),
o for objects, and c for classes. The abstract syntax is displayed in Table 2.

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | n〈t〉 program
O ::= M, F object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l := v | currentthread
| new n | new〈t〉

v ::= x | n values

Table 2. Abstract syntax

We further will use the following syntactic abbreviations and conventions.
Instance variables or fields can be seen as specific form of methods, namely of
empty parameter list, i.e., an instance variable declaration f = v is equivalent
to f = ς(n:T).λ().v, field access x.f to x.f(). In the class-based setting, we
have to distinguish between fields, which are included into the objects and are
updateable, and methods, which remain in the class, so we introduced syntacti-
cally fields as subcategory of methods. For simplicity of presentation, we adopt
the convention, that when writing as class c[(F, M)], F contains the fields as
all members of the required form, and the proper methods M none. It would

6 Type system

be straightforward, to generalize this scheme, i.e., to declare syntactically some
zero-parameter members as fields (which are included into the objects in may
be updated later) and other as proper methods, which remain in the classes.

The sequential composition t1; t2 of two threads stands for let x:T = t1 in t2,
where x does not occur free in t2. We additionally disallow (read and write)
references to fields across object boundaries.7

3 Type system

The type system or static semantics presented next characterizes the well-typed
programs. The derivation rules are shown in Tables 3 and 4.

Table 3, to begin with, defines the typing on the level of global configura-
tions, i.e., on “sets” of threads, objects, and classes, all named. On this level,
the typing judgments are of the form ∆ ⊢ C : Θ, where ∆ and Θ are finite
mappings from names to types. In the judgment, ∆ plays the role of the typing
assumptions about the environment, and Θ the commitments of the configura-
tion, i.e., the names offered to the environment. This means, ∆ must contain
at least all external names referenced by C and dually Θ mentions at most the
names offered by C.

The empty configuration is denoted by 0; it is well-typed in any context and
exports no names (cf. rule T-Empty). Two configurations in parallel can refer
mutually to each other’s commitments, and together offer the union of their
names (cf. rule T-Par). It will be an invariant of the operational semantics that
the identities of parallel entities, except for thread names, are unique. Therefore,
Θ1 and Θ2 in the rule for parallel composition are merged disjointly, as far as
the object and class references are concerned.

On the static level of the type system, the ν-binder hides the bound name (cf.
the rules T-Nui and T-Nue). The two variants of the rule distinguish whether
the bound name n, resp. o, is an instance of an external class. If not, which
corresponds to rule T-Nui, the ν-bound name in ν(n:T).C is not added to the
assumption context ∆ in the premise, but to the commitment Θ. This combines
the situations where the name stands for a instance of an internal class, or
to a thread name. In this situation, the ν-construct does not only introduce
a local scope for its bound name but asserts something stonger, namely the
existence of a likewise named entity. This highlights one difference of let-bindings
for variables and the introduction of names via the ν-operator: the language
construct to introduce names is the new -operator, which opens a new local
scope and a named component running in parallel. Rule T-Nue captures the
situation, when the name stands for an instance of an external class. In this case,
the assumption context is extended, with the intuition that, once instantiated,

7 [JR02] are slightly more general in this respect: They only forbid write-access —
including method update— across component boundaries, by introducing the se-
mantic notion of write closedness. The theory does not depend on this difference.
Therefore we content ourselves here with the simpler syntactic restriction which
completely disallows field access across object boundaries.

Type system 7

the object named o will reside in the environment. We call the fact that object
references of external objects can be introduced and instantiated only later when
first used, lazy instantiation; see Section 4 for the operational behavior.

The let-bound variable is stack allocated and thus checked in a stack-organized
variable context Γ . Names created by new are heap allocated and thus checked
in a “parallel” context (cf. again the assumption-commitment rule T-Par). The
instantiated object will be available in the exported context Θ by rule T-NObj.
The rules for the named entities introduce the name and its type into the com-
mitment (cf. rules T-NObj, T-NClass, T-NThread).

T-Empty

∆ ⊢ 0 : ()

∆, Θ2 ⊢ C1 : Θ1 ∆, Θ1 ⊢ C2 : Θ2
T-Par

∆ ⊢ C1 ‖ C2 : Θ1, Θ2

∆ ⊢ C : Θ, n:T ∆ 6⊢ T : [(. . .)]
T-Nui

∆ ⊢ ν(n:T).C : Θ

∆, o:c ⊢ C : Θ ∆ ⊢ c : [(. . .)]
T-Nue

∆ ⊢ ν(o:c).C : Θ

; ∆, c:T ⊢ [(O)] : T
T-NClass

∆ ⊢ c[(O)] : (c:T)

; ∆ ⊢ c : [(TF , TM)] ; ∆, o:c ⊢ [F] : [TF]
T-NObj

∆ ⊢ o[c, F] : (o:c)

; ∆, n: thread ⊢ t : none
T-NThread

∆ ⊢ n〈t〉 : (n: thread)

Table 3. Static semantics (components)

The typing rules of Table 4 formalize typing judgments for threads and ob-
jects and their syntactic sub-constituents. Besides assumptions about the pro-
vided names of the environment kept in ∆ as before, the typing is done relative to
assumptions about occuring free variables. They are kept separately in a variable
context Γ , a finite mapping from variables to types.

The typing rules are rather straightforward and in many cases identical to the
ones from [JR02]. Different from the object-based setting are the ones dealing
with objects and classes. Rule T-Class is the introduction rule for class types,
the rule of instantiation of a class T-NewC requires reference to a class-typed
name. Note also that the deadlocking expression stop has every type.

Later, the abbreviation o :: T will be useful to express that an object reference
o is an instance of a class with type T when the actual name of the class is not
needed. More precisely ∆ ⊢ o :: T stands for ∆ ⊢ o : c and ∆ ⊢ c : T . Analogously
for Γ ; ∆ ⊢ o :: T , of course.

8 Type system

Γ ; ∆ ⊢ m1 : T1 . . . Γ ; ∆ ⊢ mk : Tk T = [(l1:T1, . . . , lk:Tk)]
T-Class

Γ ; ∆ ⊢ [(l1 = m1, . . . , lk = mk)] : T

Γ ; ∆ ⊢ f1 : T1 . . . Γ ; ∆ ⊢ fk : Tk T = [l1:T1, . . . , lk:Tk]
T-Obj

Γ ; ∆ ⊢ [l1 = f1, . . . , lk = fk] : T

Γ, x1:T1, . . . , xk:Tk; ∆, n:c ⊢ t : T ′ Γ ; ∆ ⊢ c : T T = [(. . . , l:T1 × . . . × Tk → T ′, . . .)]
T-Memb

Γ ; ∆ ⊢ ς(n:c).λ(x1:T1, . . . , xk:Tk).t : T.l

Γ ; ∆ ⊢ v : c Γ ; ∆ ⊢ c : [(. . . , l:T1 × . . . × Tk → T, . . .)] Γ ; ∆ ⊢ v1 : T1 . . . Γ ; ∆ ⊢ vk : Tk

T-Call

Γ ; ∆ ⊢ v.l(v1, . . . , vk) : T

Γ ; ∆ ⊢ v : c Γ ; ∆ ⊢ c : T Γ ; ∆ ⊢ v′ : T.f
T-FUpdate

Γ ; ∆ ⊢ v.f := v′ : c

Γ ; ∆ ⊢ c : [(T)]
T-NewC

Γ ; ∆ ⊢ new c : c

Γ ; ∆ ⊢ t : T
T-NewT

Γ ; ∆ ⊢ new〈t〉 : thread

T-CurrT

Γ ; ∆ ⊢ currentthread : thread

Γ ; ∆ ⊢ e : T1 Γ, x:T1; ∆ ⊢ t : T2

T-Let

Γ ; ∆ ⊢ let x:T1 = e in t : T2

Γ ; ∆ ⊢ v1 : T1 Γ ; ∆ ⊢ v2 : T1 Γ ; ∆ ⊢ e1 : T2 Γ ; ∆ ⊢ e2 : T2

T-Cond

Γ ; ∆ ⊢ if v1 = v2 then e1 else e2 : T2

T-Stop

Γ ; ∆ ⊢ stop : T

Γ (x) = T
T-Var

Γ ; ∆ ⊢ x : T

∆(n) = T
T-Name

Γ ; ∆ ⊢ n : T

Table 4. Static semantics (2)

Operational semantics 9

4 Operational semantics

Next we present the operational semantics of the calculus. The formalization is
similar to the one for the object calculus, except the parts dealing with classes
and especially cross-border instantiation. The basic steps of the semantics are
given in two levels: internal steps, i.e., those whose effect is completely confined
within a configuration, and those with external effect.

4.1 Internal steps

We start in Table 5 with the internals steps, where we distinguish between con-
fluent steps, written , and other internal transitions, written

τ
−→, i.e., those

potentially leading to race conditions in the context of threads running in par-
allel. For instance, the first 5 rules of the table deal with the basic sequential
constructs, all as -steps. The basic evaluation mechanism is substitution (cf.
rule Red). Note that the rule requires that the leading let-bound variable of
a thread can be replaced only by values, which makes the reduction strategy
deterministic, at least per thread. The stop-thread terminates for good, i.e., the
rest of the thread will never be executed (cf. rule Stop).

n〈let x:T = v in t〉 n〈t[v/x]〉 Red

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 n〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

n〈let x:T = (if v = v then e1 else e2) in t〉 n〈let x:T = e1 in t〉 Cond1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉 n〈let x:T = e2 in t〉 Cond2

n〈let x:T = stop in t〉 n〈stop〉 Stop

n〈let x:T = currentthread in t〉 n〈let x:T = n in t〉 CurrentThread

c[(F, M)] ‖ n〈let x:c = new c in t〉 c[(F, M)] ‖ ν(o:c).(o[c, F] ‖ n〈let x:c = o in t〉) NewOi

n1〈let x:T = new 〈t〉 in t1〉 ν(n2:T).(n1〈let x:T = n2 in t1〉 ‖ n2〈t〉) NewT

c[(F, M)] ‖ o[c, F] ‖ n〈let x:T = o.l(~v) in t〉
τ
−→ c[(M)] ‖ o[c, F] ‖ n〈let x:T = M.l(o)(~v) in t〉 Calli

o[c, F] ‖ n〈let x:T = o.f := v in t〉
τ
−→ o[c, F.f := v] ‖ n〈let x:T = o in t〉 FUpdate

Table 5. Internal steps

The step NewOi describes the creation of an instance of a component in-
ternal class c[(F, M)], i.e., a class whose name is contained in the configura-
tion. Note that instantiation is a confluent step. The fields F of the class are
taken as template for the created object, and the identity of the object is
new and local —for the time being— to the instantiating thread; the new
named object and the thread are thus enclosed in a ν-binding. Rule Calli

10 Operational semantics

treats an internal method call, i.e., a call to an object contained in the con-
figuration. In the step, M.l(o)(~v) stands for t[o/s][~v/~x], when method suite

[M] equals [. . . , l = ς(s:T).λ(~x:~T).t, . . .]. Note also that the step is a
τ
−→-step,

not a confluent one. The same holds for field update in rule FUpdate, where
[c, (l1 = f1, . . . , lk = fk, f = v′).f := v] stands for [c, l1 = f1, . . . , lk = fk, f = v].
Note further that instances of a component class invariantly belong to the com-
ponent and not to the environment. This means that an instance of a component
class resides after instantiation in the component, and named objects will never
be exported from the component to the environment or vice versa; of course,
references to objects may well be exported.

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 6 where in the fourth
axiom, n does not occur free in C1, and the relation is imported into the reduction
relations in Table 7. Note that all syntactic entities are always tacitly understood
modulo α-conversion.

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 6. Structural congruence

C ≡ ≡ C′

C C′

C C′

C ‖ C′′ C′ ‖ C′′

C C′

ν(n:T).C ν(n:T).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′ τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T).C
τ
−→ ν(n:T).C′

Table 7. Reduction modulo congruence

4.2 External behavior of a component

The external behavior of a component is given in terms of labeled transitions.
The transitions describe the communication at the interface of an open program.
For the completeness of the semantics, it is crucial ultimately to consider only

Operational semantics 11

communication traces realizable by an actual program context which, together
with the component, yields a well-typed closed program. We call such traces
legal. The legality of a trace has various aspects, where one can distinguish local
and global aspects: local conditions pertain to a single communication label of a
trace, while a global one refers to whole traces. More concretely, the only global
condition will assure that a trace is well-balanced wrt. the calls and returns of
each thread; this is in analogy to the treatment in [JR02] and we will come to
this point later in Section 4.5.

For single labeled steps, one has to insist, for instance, that calling a method
of an external object refers to an object actually present in the environment, or
dually that incoming calls have as target only objects exported to the outside,
and furthermore that the communicated values are in accordance to the well-
typedness assumption. Therefore, at least in first approximation, the transitions
are given between typing judgments ∆ ⊢ C : Θ. Again this general starting point
is similar to the situation for the object calculus in [JR02].

A further local condition concerns which combinations of names can occur in
communications. This phenomenon does not occur in the object-based setting
and merits a closer discussion before we embark on the formalization in the
following section.

To take a simple example, assume the component creates an instance of
a class resident in the environment. Similar to the internal steps as given in
Table 5, this will be done by some thread of the component executing a new -
statement, with the difference that the instantiated class does not occur inside
the component as in rule NewOi, but is listed in the assumption context ∆.

As the class is part of the environment and thus in the hand of the observer,
it can be used to make observations via its instances. Consequently, its instance
belongs to the environment, as well, and communication from and to this object
will be traced. While occurring likewise at the interface between the component
and the environment, however, the instantiation itself cannot be used by the
context to make any observations about the component. This is a consequence
of two facts. First, our language does not support constructors which, in the hand
of the environment, could be used to make distinguishing observations. Secondly,
exchanging a class by another and thus exchanging its instances does not make
a difference in the overall behavior unless the component communicates with
the instances; the pure existence of one object or another does not make any
difference.8

Assume now that the component creates two instances of an external class
or of two different external classes; the class types of the two objects do not
play a role. As just explained, the objects named o1 and o2, say, are themselves
part of the environment. Is it possible in this situation that a communication
occurs where o1 issues a call to an object of the component with o2 as argument?
Clearly the answer is no, unless the component has given away the identity of

8 The attentive reader will have noticed that there is another assumption underlying
the non-observability of instantiation, namely that there is no bound on the number
of objects in the system, i.e., there is no “out-of-heapspace” situation.

12 Operational semantics

o2 to o1, since otherwise there is no means that o1 could have learned about the
existence of o2! Therefore, such a communication must be deemed illegal. (Cf.
also the informal discussion in the introductory Section 1, especially Figure 1).

As a consequence must keep track of which identities it gives away to which
object in order to exclude situations as just described. Thus the communication
with the environment must be labeled appropriately, which means that tran-
sitions are labeled with the kind of communication, the thread identifier, the
transmitted values, and in case of calls, the name of the method. Note that
object creation is not included by a specific communication label and that the
caller is not part of the label. The labels are shown in Table 8.

γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 8. Labels

For the transmitted values, the labels further distinguish between a free trans-
mission of a value, i.e., a name already commonly known by the communication
partners, and the transmission of fresh names, where the name occurs under the
typed ν-binder.

4.3 Connectivity contexts and cliques

For the book-keeping of which objects of the environment have been told which
identities, a well-typed component must take into account the relation of object
and thread names from the assumption context ∆ amongst each other, and the
knowledge of objects from ∆ about those exported by the component, i.e., those
from Θ. Besides the relationships amongst objects, we need to keep one piece of
information concerning the “connectivity” of threads. In order to exclude situa-
tions where a known thread leaves the component into one clique of objects but
later returns to the component coming from a different clique without connec-
tion to the first, we remember for each thread that has left the component the
object from ∆ it has left into.

Formally, the semantics of an open component is given by labeled transitions
between judgments of the form ∆; E∆ ⊢ C : Θ; EΘ , where

E∆ ⊆ ∆× (∆ + Θ) , (1)

and dually EΘ ⊆ Θ × (Θ + ∆). We will write n1 →֒ n2 (“n1 may know n2”) for
pairs from these relations.

In analogy to the name contexts ∆ and Θ, E∆ expresses assumptions about
the environment, and EΘ commitments of the component. For the formulation of
the semantics itself, the commitment contexts EΘ would not really be needed:
It is unnecessary to advertise the approximated EΘ-commitments to exclude

Operational semantics 13

impossible behavior with the code of the component at hand to formulate the
semantics. Nevertheless, a symmetric situation is advantageous, for instance if
we come to characterize the possible traces of a component independent from
its implementation (cf. Section 6.1).

As mentioned, the component has to overapproximate in E∆ which objects
of the environment are connected, and symmetrically for its own objects in EΘ.
The worst case assumptions about the actual situation are represented as the
reflexive, transitive, and symmetric closure of the →֒-pairs of objects from ∆ the
component maintains. Given ∆, Θ, and E∆, we write ⇌ for this closure, i.e.,

⇌ , (→֒↓∆×∆ ∪ ←֓↓∆×∆)∗ ⊆ ∆×∆ . (2)

Note that we close the part of →֒ concerning only environment objects, but
not wrt. objects at the interface, i.e., the part of →֒ ⊆ ∆ × Θ. We will also
need the union of ⇌ ∪ ⇌; →֒ ⊆ ∆ × (∆ + Θ), for which we will also write
⇌→֒ (in the definition, “;” denotes relational composition). As judgment, we
use ∆; E∆ ⊢ v1 ⇌ v2 : Θ respectively ∆; E∆ ⊢ v1 ⇌→֒ v2 : Θ. For Θ, EΘ, and
∆, the definitions are applied dually, and sometimes we allow ourselves to write
just E∆ ⊢ v1 ⇌ v2, leaving ∆ and Θ to be understood from the context.

The relation⇌ is an equivalence relation on the objects from ∆ and partitions
them in equivalence classes. As a manner of speaking, we call a set of object
names from ∆ (or dually from Θ) such that for all objects o1 and o2 from that
set, ∆; E∆ ⊢ o1 ⇌ o2 : Θ, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

Remark 1 (Thread identifier). As mentioned, besides connections between ob-
jects, E∆ contains also information about thread names. The stored information
about threads is rather restricted, though. In case the active thread has left the
component, the only thing to be remembered is the object into which the thread
has left the component. Since thread identifiers cannot be stored in variables or
communicated in method calls, there are no pairs of the form p →֒ n in E∆,
when n is a thread identifier. Also, for each thread name n from ∆, there is at
most one pair n →֒ o in E∆, where o is an object reference from ∆. Since, unlike
object names, a thread name n can (and will) occur in the domain of ∆ and
Θ, the disjoint union ∆ + Θ is not literally true. It holds, however, for object
names, which play the crucial role in the development. See also Lemma 7 in the
appendix. ⊓⊔

Having introduced E∆ and EΘ as part of the judgment, we must still clarify
what it “means”, i.e., when does ∆; E∆ ⊢ C : Θ; EΘ hold? Besides the typing
part, which remains unchanged, this concerns the commitment part EΘ. The
relation EΘ asserts about the component C that the connectivity of the objects
from the component is not larger than the connectivity entailed by EΘ. Given
a component C and two object names o1 from Θ and o2 from Θ + ∆, we write
C ⊢ o1 →֒ o2, if C = C′ ‖ o1[. . . , f = o2, . . .], i.e., o1 contains in one of its fields
a reference to o2. We can thus define:

14 Operational semantics

Definition 1. The judgment ∆; E∆ ⊢ C : Θ; EΘ holds, if ∆ ⊢ C : Θ, and if
C ⊢ n1 →֒ n2, then EΘ; Θ ⊢ n1 ⇌→֒ n2 : ∆.

We often simply write ∆; E∆ ⊢ C : Θ; EΘ to assert that the judgment is satisfied.
Note again, that the pairs listed in a commitment context EΘ do not require

the existence of connections in the components, it is rather the contrapositive
situation: If EΘ does not imply that two objects are in connection, possibly
following the connection of other objects, then they must not be in connection
in C. Thus, a larger EΘ means a weaker specification.

4.4 External steps

After having clarified the interpretation of the connectivity contexts E∆ and EΘ,
we can address the external behavior of a component more formally. It is given
by transitions between ∆; E∆ ⊢ C : Θ; EΘ judgments and shown in Table 10.

Object creation across the component boundary is not immediately visible.
The reason is that without constructor methods, instantiation alone and the
fact that an object exists cannot be used by an observer. The only way to do
observations is by method calls. Therefore, objects are incorporated only at the
point when they are first communicated to the other side or used from the other
side.

In [ÁBdBS03], we used as starting point a formulation of the semantics,
where instantiation is recorded as an explicit step (but hidden afterwards in
the traces), which we called semantics with eager instantiation or in short early
semantics. Both formulations are equivalent. See [ÁBdBS03] for details.

To formulate the external communication, we need to augment the syntax
by two additional expressions o1 blocks for o2 and o2 return to o1 v. The first
one denotes a method body in o1 waiting for a return from o2, and dually the
second expression returns v from o2 to o1. The corresponding typing rules are
shown in Table 9. Note that the return-expression has an arbitrary type, which
reflects the fact that control flow never reaches the point after the return.

T-Block

Γ ; ∆ ⊢ o1 blocks for o2 : T

Γ ; ∆ ⊢ v : T
T-Return

Γ ; ∆ ⊢ o2 return to o1 v : T ′

Table 9. Static semantics (3)

To get a general impression, let us first go through the rules ignoring the
relational part concerning the E∆- and EΘ-assumptions. For incoming calls,
given in rules CallI1 and CallI2, we need to distinguish whether the calling
thread is already resident in the configuration, i.e., whether it is a reentrant
call wrt. the configuration, or not. In case the thread visits the configuration

Operational semantics 15

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉) static(∆, Θ)

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v, n →֒ o2) ∆́; É∆ = ∆; E∆ + ∆′;⊙ →֒ (∆′, Θ′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆′ ⊢ n : thread Θ′ ⊢ n : thread ; ∆́, Θ́ ⊢ ~v : ~T

∆́; É∆ ⊢ n⇌ ⊙⇌→֒ ~v, o2 : Θ́ ∆ ⊢ ⊙
CallIi

∆; E∆ ⊢ C : Θ; EΘ
a

−→ ∆́; É∆ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = o2.l(~v) in o2 return to ⊙ x〉 : Θ́; ÉΘ

a = ν(Θ′, ∆′). n〈call o2.l(~v)〉! (Θ′, ∆′) = fn(n〈call o2.l(~v)〉 ∩ Φ Φ́ = Φ \(Θ′, ∆′)

o2 ∈ dom(∆́) static(∆, Θ)

∆́; É∆ = ∆; E∆ + ∆′; (o2 →֒ ~v, n →֒ o2) Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′) \n
CallOi

∆; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = ⊙ o2.l(~v) in t〉) : Θ; EΘ
a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = ⊙ blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉)

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v, n →֒ o2) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆′ ⊢ n : thread Θ′ ⊢ n : thread ; ∆́, Θ́ ⊢ ~v : ~T

∆́; É∆ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : Θ́ ∆ ⊢ o1 : c1
CallI1

∆; E∆ ⊢ C : Θ; EΘ
a

−→ ∆́; É∆ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = o2.l(~v) in o2 return to o1 x〉 : Θ́; ÉΘ

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉)

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v, n →֒ o2) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ; ∆́, Θ́ ⊢ ~v : ~T ∆ ⊢ o1 : c1

∆́; É∆ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : Θ́ tblocked = let x′:T ′ = o′
2 blocks for o′

1 in t
CallI2

∆; E∆ ⊢ C ‖ n〈tblocked〉 : Θ; EΘ
a

−→

∆́; É∆ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = o2.l(~v) in o2 return to o1 x; tblocked〉 : Θ́; ÉΘ

a = ν(Θ′, ∆′). n〈return(v)〉! (Θ′, ∆′) = fn(v) ∩ Φ Φ́ = Φ \(Θ′, ∆′)

∆́; É∆ = ∆; E∆ + ∆′; (o1 →֒ v, n →֒ o1) Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′) \n
RetO

∆; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = o2 return to o1 v in t〉) : Θ; EΘ
a
−→ ∆́; É∆ ⊢ ν(Φ́).(C ‖ n〈t〉) : Θ́; ÉΘ

a = ν(Θ′, ∆′). n〈call o2.l(~v)〉! (Θ′, ∆′) = fn(n〈call o2.l(~v)〉 ∩ Φ Φ́ = Φ \(Θ′, ∆′) o2 ∈ dom(∆́)

∆́; É∆ = ∆; E∆ + ∆′; (o2 →֒ ~v, n →֒ o2) Θ́; ÉΘ = Θ; EΘ + Θ′; E(C, Θ′) \n
CallO

∆; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = [o1] o2.l(~v) in t〉) : Θ; EΘ
a

−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = o1 blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(∆′, Θ′). n〈return(v)〉? dom(∆′, Θ′) ⊆ fn(v)

Θ́; ÉΘ = Θ; EΘ + Θ′, (o1 →֒ v, n →֒ o1) ∆́; É∆ = ∆; E∆ + ∆′, (o2 →֒ (∆′, Θ′)) \n

; ∆́, Θ́ ⊢ v : T ∆́; É∆ ⊢ o2 ⇌→֒ v : Θ́
RetI

∆; E∆ ⊢ C ‖ n〈let x:T = o1 blocks for o2 in t〉 : Θ; EΘ
a
−→ ∆́; É∆ ⊢ C ‖ n〈t[v/x]〉 : Θ́; ÉΘ

c ∈ dom(∆)
NewOlazy

∆; E∆ ⊢ n〈let x:c = new c in t〉 : Θ; EΘ ∆; E∆ ⊢ ν(o3:c).n〈let x:c = o3 in t〉 : Θ; EΘ

Table 10. External steps

16 Operational semantics

for the first time (rule CallI1), the execution of the method body, terminated
by a return, is added in parallel. In case of a reentrant call, a blocked part of
the thread is already contained in the configuration (cf. rule CallI2), the new
method body is “stacked” on top of the prior, blocked part. The case CallIi

can be seen as special case of CallI1 and takes care of the situation where a
thread crosses the border between component and environment for the first time,
namely by an incoming call.

When the activity of a thread returns to the environment (cf. rule RetO),
the return-statement is “popped-off” the thread; in combination with the rules
for incoming calls we see that the remaining part of the thread remains blocked.
Note further in this context, that the let-bound variable x in rule RetO does
not occur free in the remainder of the thread t.

Calling an external object leaves the local execution in a blocked state, wait-
ing for the matching return carrying the returned value (cf. rules CallO and
RetI). Note that the name context ∆́ is used to distinguish an external call in
rule CallO from an internal one which is covered by the corresponding rule
from Table 5.

As for E∆ resp. EΘ and the relationship of communicated values, the incom-
ing and outgoing communication play dual roles. Remember that the relation
E∆ contains pairs of objects (and thread names) from ∆ as well as from Θ, and
dually for EΘ. In general, EΘ overapproximates the actual connectivity of the
component, while the assumption context E∆ is consulted to exclude impossible
combinations of incoming values.

Incoming calls update the commitment context EΘ in that it remembers that
the callee o2 now knows (or rather may know) the arguments ~v, and furthermore
that the thread n has entered o2. For the role of the caller o1 resp. ⊙, a few more
words are in order. First of all, the caller is not transmitted in the label which
means that it remains anonymous to the callee.9 To gauge, however, whether the
call is possible in the external semantics and to adjust the bookkeeping about
the connectivity appropriately, in particular when returning later, the transition
chooses among possible sources of the call. Indeed, the actual identity of the
caller is not needed; it suffices to know the clique of the caller. As representative
for the clique, an equivalence class of object identities, we simply pick one object.
With the only exception of the initial (external) step, the scope of at least one
object of the calling clique must have escaped to the component, for otherwise
there would be now way of the caller to address o2 as callee. In other words, for at
least one object o1 from the clique of the actual caller (who remains anonymous),
the judgment ∆ ⊢ o1:c holds prior to the call.

The antecedent of the call-rules requires, that the caller o1 is acquainted with
the callee o2 and with all of the arguments. In case of the very first call, we take
⊙ as the source of the call, which is assumed to be resident in the environment.
Furthermore it must be checked that the incoming thread originates from a group
of objects in connection with the one to which the thread had left the component

9 Of course, the caller may transmit its identity to the callee as part of the arguments,
but this nevertheless does not reveal to the callee who “actually” called.

Operational semantics 17

the last time: ∆́; É∆ ⊢ n ⇌ o1 : Θ́.10 Once chosen, the assumed identity of the
caller is remembered as part of the return-syntax.

It is worth mentioning that in rule RetI the proviso that the callee o2 knows
indirectly the caller o1, i.e., ∆; E∆ ⊢ o2 ⇌→֒ o1 : Θ is not needed. Neither is it
necessary to require in analogy to the situation for the incoming call that the
thread is acquainted with the callee. If fact, both requirements will be automat-
ically assured for traces where calls and return occur in correct manner.

The labels carries furthermore information as to which names are transmit-
ted bound. For incoming calls, the binding part is of the form (∆′, Θ′) where we
mean by convention, that ∆′ are the names being added to ∆, and analogously
for Θ′ and Θ. For object names, the distinction is based on the class types. For
thread names, the reference is contained both in ∆′ and Θ′, and class names
are never transmitted. For the object names in the incoming communication
∆′ contains the external references which are freshly introduced to the compo-
nent by scope extrusion. Θ′ on the other hand are the objects which are lazily
instantiated as part of this step inside the component. Note that while the ac-
quaintance of the caller with the arguments transmitted free is checked against
the current assumption, acquaintance with the ones transmitted bound is added
to the assumption context.

A commonality for incoming communication from a thread n is that the
(only) pair n →֒ o for some object reference o is removed from E∆, for which we
write E∆ \n.

Outgoing communication does not impose restrictions as premise; instead it
extends the pool of assumption E∆ by adding communicated names. After an
outgoing call, for instance, it is assumed that the callee knows all the arguments
it has received and furthermore that the thread now knows the clique of the
caller. (cf. rule CallO).

Outgoing returns (cf. rule RetO) work analogously, except that no trans-
mission of object identities is needed.

Remains the rule NewOlazy for instantiating an external class. Instead of ex-
porting the newly created name of the object plus the object itself immediately
to the environment, the name is kept local until, if ever, it gets into contact with
the environment. When this happens, the new instance will not only become
known to the environment, but the object will also be instantiated in the envi-
ronment.11 The actual instantiation —incoming as well as outgoing— is done
when handling the exchange of bound names in the next section.

10 Since the caller o1 is in the domain of ∆, we can write n⇌ o1 instead of n⇌→֒ o1.
11 Doing a -step, the rule seems to fit well into the internal steps. Nevertheless, we

consider it as step between typing judgments, as the step relies on the environmental
information that the appropriate class c is externally available.

18 Operational semantics

4.5 Trace semantics and ordering on traces

Next we present the semantics for well-typed components, which, as in the
object-based setting, takes the sequences of external steps of the program frag-
ment as starting point.

Not surprisingly, a major complication now concerns the connectivity of ob-
jects. In this context, the caller identity, while not visible by the callee, plays
a crucial role in keeping track of assumed connectivity, in particular to connect
the effect of an return to a possible caller clique. To this end, the operational
semantics hypothesizes about the originator of incoming calls and remembers
the guess as “auxiliary” annotation in the code for return (cf. the L-CallI-rules
from Table 10).12

The (hypothetical) connectivity of the environment influences what is observ-
able. Very abstractly, the fact the observer falls into a number of independent
cliques increases the “uncertainty of observation”. We can point to two reasons
responsible for this effect. One is that separate observer cliques cannot determine
the relative order of events concerning only one of the environment cliques. To
put it differently: a clique of objects can only observe the order of event pro-
jected to its own members. We will worry about this later when describing the
all possible reorderings or interleavings of a given trace. Secondingly, separate
observers cannot cooperate to compare identities. This means, as long as not in
contact, the observers cannot find out whether identities sent to each of them
separately are the same or not. In terms of projections to the observing clique
it means that local projections are considered up to α-conversion, only.

The above discussion should not mislead us to consider the behavior of
two observerving cliques as completely independent. For instance, observers can
merge which means that identities, separate and local prior to the merge, be-
come comparable and the now joint clique can find out whether local interaction
of the past used the same identities or not. The absolute order of local events of
the past, however, cannot be reconstructed after merging.

Another more subtle point, independant from merging of observers is, that to
a certain degree, the events local to one clique do influence interaction concerning
another clique which in other words implies that considering only the separate
local projections of a global behavior to the observers is too abstract to be sound.

To understand the point, consider as informal example a situation of a com-
ponent C1 with two observing cliques in the environment and a sequence s of
labels at the interface of the component being observed. Assume further that s1

is the projection of s to the first observer and s2 the projection to the second,
and assume that s = s1s2 meaning that s1 precedes s2 when considered as global
behavior. For sake of the argument, assume additionally that C1 is not able to
perform the interaction in the swapped order s2s1. Given a second component
C2 being more often successful, i.e., that C1 ⊑may C2, what does this implies for
C2’s behavior?

12 We will us an analogous trick when describing the set of all possible behaviors under
a given assumption and commitment context independant of the code in Section 6.1.

Operational semantics 19

Since the environment can be programmed in such a way that it reports
success only after completing s1 resp. s2, it is intuitively clear that C2 must
be able to exhibit s1 resp. s2. But the environment cannot observe whether C2

performs s1 and s2 in the same run, as does C1. We can only be sure of is that
there is a run of C2 which is able to do s1 and a (potentially different) one which
does s1, each of which is taken as independent sign of success. This does not
mean, however, that the order of s1s2 does not play a role at all. Consider the
situation where C2 can perform s2s1 but not s1s2 as C1: In this case, C1 6⊑may C2,
i.e., C2 is not successful while C1 is, namely in an environment where s2 is
possible and reports success but s1 can be hindered from completion. In other
words, taking the behavior s1s2 of C1 as starting point we cannot consider in
isolation the fact that s2 is possible by C2 as well, the order of s1 preceding s2

is important inasmuch it s1 can prevent success for s2. So C1 6⊑may C2 and the
fact that C1 performs the sequence s1s2 means, that C2 can perform s2 after a
prefix of s1. Since the common environment has already proven in cooperation
with C1 that it is able to perform s1, it cannot prevent success of C2 by blocking.

To sum up the discussion and independent of the details: to capture the
observable behavior appropriately, we need to be able to define the projection
of the external steps to the observer cliques. Now the labels for method calls in
the external semantics do not contain information concerning the caller, which
means given trace as a sequence of labels, we have no indication for incoming
calls concerning the originating environment clique.13

A way to remedy this lack of information is to augment the labels as recorded
in the traces by the missing information. So instead of the call label from Table 8,
we use

n〈[o1]call o2.l(~v)〉 (3)

as annotated call label, where [o1] denotes the caller, respectively the clique of
the caller. The augmented transition are generated simply by using the caller
rules from Table 10 where the caller is added to the transition labels in the
obvious way.

Remark 2 (Caller identity). An alternative formulation of the labelled transi-
tions is possible, where there the caller is incorporated in the labels from the
start. The semantics in [ÁBdBS03] was formulated that way. Since ultimately,
the caller remains unobservable and is needed solely to determine a possible
connectivity structure of the environment, we decided not to mention the caller
identity in the labels to stress the anonymicity of the caller.

A trace of a well-typed component is a sequence of external steps. The corre-
sponding rules are given in Table 11. For ∆1; E∆1

⊢ C1 : Θ1; EΘ1

ǫ
=⇒ ∆2; E∆2

⊢
C2 : Θ2; EΘ2

, we write shorter ∆1; E∆1
⊢ C1 : Θ1; EΘ1

=⇒ ∆2; E∆2
⊢ C2 :

Θ2; EΘ2
.

13 For outgoing calls, the relevant environment clique is mentioned explicitely as the
receiver of the call. Concerning returns, the concerned environment clique is deter-
mined by the matching call.

20 Operational semantics

C1 =⇒ C2
Internal

∆; E∆ ⊢ C1 : Θ; EΘ

ǫ
=⇒ ∆; E∆ ⊢ C2 : Θ; EΘ

∆1; E∆1 ⊢ C1 : Θ1; EΘ1

a
−→ ∆2; E∆2 ⊢ C2 : Θ2; EΘ2

Base

∆1; E∆1 ⊢ C1 : Θ1; EΘ1

a
=⇒ ∆2; E∆2 ⊢ C2 : Θ2; EΘ2

∆1; E∆1 ⊢ C1 : Θ1; EΘ1

s1=⇒ ∆2; E∆2 ⊢ C2 : Θ2; EΘ2

s2=⇒ ∆3; E∆3 ⊢ C3 : Θ3; EΘ3
Conc

∆1; E∆1 ⊢ C1 : Θ1; EΘ1

s1s2=⇒ ∆3; E∆3 ⊢ C3 : Θ3; EΘ3

Table 11. Traces

With the labels augmented by the caller identity, we can define the projection
of a trace onto a clique as the part of the sequence containing all the labels with
objects from that clique. Remember that a clique of an object o ∈ Θ consists
of all objects from Θ acquainted with o. Thus the equivalence ⇌ partitions Θ
into equivalence classes, and formally we could write [o]/EΘ

or [o]/⇌
for that

equivalence class. For simplicity, we sometimes just write [o].

The definition of projection of an (augmented) trace onto a clique of environ-
ment objects is straightforward, one simply jettisons all actions not belonging to
that clique. One only has to be careful dealing with exchange of bound names,
i.e., scope extrusion. The trace to start from is global and thus scope extruction
of fresh names to the environment is accounted for only on a global label, namely
whether the outside in its entirety has been told the name or not. From the local
perspective of one environment clique, a name which has been given before by
the component to another clique, nevertheless is as good as new, since it has no
way of comparing the name with the identity previously sent to other cliques.

Given a global trace, its projection onto one particular clique of objects as
given at the end of the trace can be defined straightforwardly by induction on
the length of the trace, appending actions at the end.

Definition 2 (Projection). Assume as trace ∆; E∆ ⊢ C : Θ; EΘ
s

=⇒ ∆́; É∆ ⊢
Ć : Θ́; ÉΘ and let ∆́ contain at least one object reference, then the projection
of s onto a clique [o] of environment objects according to ∆́; É∆ is written as
s ↓[o] and defined by induction on the length of s: s ↓[o] is defined as the first
component of (s, Φ) ↓[o], where Φ = ∆, Θ, and the projection of (s, Φ) ↓[o] is
given by Table 12.

Based on the above discussion, we can now define the order on traces as
follows.

Definition 3 (⊑trace). ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 : Θ; EΘ, if

the following holds. If ∆; E∆ ⊢ C1 : Θ; EΘ
sa

=⇒ ∆′; E′
∆ ⊢ C1 : Θ′; E′

Θ, then

∆; E∆ ⊢ C2 : Θ; EΘ
t

=⇒ ∆′′; E′′
∆ ⊢ C1 : Θ′′; E′′

Θ such that

Full abstraction 21

(ǫ, Φ) ↓[o]= (ǫ, Φ)

(t, Φ) ↓[o]= (t′, Φ′) receiver (γ!) /∈ [o]

(tγ!, Φ) ↓[o]= (t′, Φ′)

Φ′

2 = fn(ν(Φ′

1).γ) \Φ′

(t, Φ) ↓[o]= (t′, Φ′) receiver(γ!) ∈ [o]

(t ν(Φ′

1).γ!, Φ) ↓[o]= (t′ ν(Φ′

1, Φ
′

2).γ!, (Φ′, Φ′

1, Φ
′

2))

(t, Φ) ↓[o]= (t′, Φ′) sender(γ?) /∈ [o]

(tγ?, Φ) ↓[o]= (t′, Φ′)

(t, Φ) ↓[o]= (t′, Φ′) sender (γ?) ∈ [o]

(t ν(Φ′′).γ?, Φ) ↓[o]= (t′ ν(Φ′′).γ?, (Φ′, Φ′′))

Table 12. Projection

– t ↓[o′]= sa ↓[oa] for some clique [o′] according to Θ′′; E′′
Θ and when [oa] is the

environment clique to which a belongs, and
– for all cliques [o] according to ∆′; E′

∆, there exists a clique [o′] according to
∆′′; E′′

∆ such that t ↓[o′]4 sa ↓[o].

If ∆; E∆ ⊢ C1 : Θ; EΘ =⇒ ∆′; E′
∆ ⊢ C1 : Θ′; E′

Θ, then ∆; E∆ ⊢ C2 : Θ; EΘ =⇒
∆′′; E′′

∆ ⊢ C1 : Θ′′; E′′
Θ.

5 Full abstraction

In this section we address the problem of full abstraction of the calculus. We
start by explaining the notion of observation we will work with.

5.1 Notion of observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on some
notion of observability.

As starting point we choose, as [JR02], a (standard) notion of semantic
equivalence or rather semantic implication —one program allows at least the
observations of the other. It is based on a particular, simple form of contextual
observation: being put into a context, the component, together with the context,
is able to reach a defined point, which is counted as the successful obervation.
A context C[] is a program “with a hole”. In our setting, the hole is filled with
a program fragment consisting of a component C in the syntactical sense, i.e.,
consisting of the parallel composition of (named) classes, named objects, and
named threads, and the context is the rest of the programs such that C[C] gives
a well-typed closed program ∆; E∆ ⊢ C′ : Θ; EΘ, where closed means that it
can be typed in the empty contexts, i.e., ⊢ C′ : ().

An appropriate way to report success in an object-oriented language is to
decree one particular method reporting success and wait to observe whether the

22 Full abstraction

program together with the context reaches a point where that method is invoked.
This event of success reporting or observability predicate may be called barbing.
Technically, the definitions slightly deviates from the one used in [JR02]. For
the observation, there must be some visible piece of information shared between
the program and the outside world, otherwise there is nothing to observe. While
[JR02] use an external object for this purpose, in our setting, an external class,
which first must be instantiated, seems more appropriate, but the choice is not
very crucial as far as the resulting theory is concerned. So assume a class cb of
type [(succ : ()→ none)], abbreviated as barb. A component C strongly barbs on
cb, written C ↓cb

, if

C ≡ ν(~n:~T , b:cb).C
′ ‖ n〈let x:none = b.succ() in t〉 , (4)

i.e., the call to the success-method of an instance of cb is enabled.14 Furthermore,
C barbs on b, written C ⇓cb

, if it can reach a point which strongly barbs on cb,
i.e.,

C =⇒ C′ ⇓cb
. (5)

We can now define may testing preorder [Hen88] as in [JR02].

Definition 4 (May testing). Assume ∆; E∆ ⊢ C1 : Θ; EΘ and ∆; E∆ ⊢ C2 :
Θ; EΘ. Then ∆; E∆ ⊢ C1 ⊑may C2 : Θ; EΘ, if

(C1 ‖ C) ⇓cb
implies (C2 ‖ C) ⇓cb

(6)

for all Θ, cb:barb; EΘ ⊢ C : ∆; E∆.

5.2 Soundness

Next we prove soundness of the semantics, i.e., that the trace semantics is not
“too abstract”. In the proof, as well as the one for completeness, a component
is interacting with a surrounding program context, i.e., both do complementary
actions. Given a trace s, the dual or complementary trace s̄ equals s but with
all labels γ! dualized to γ?, and vice versa.

Complementary traces describe the situation where component and envi-
ronment can act together and where the complementary communication steps
cancel out into internal behavior. Not only, however, is it necessary to compose
traces, but also typed components. When putting together two components,
their respective domains are disjoint wrt. resident named objects and classes.
This disjointness does not hold, however, for named threads, since each half of
the program contains its share of the threads, with all the blocked (except one)
method bodies “stacked” one upon the other with the let-construct.

Now in order to compose two components, the two “halves” of each stack
must be merged (“zipped”) to form one combined stack. Given two components,
we write C1 ! C2 for the result of the merging. As the definition is equivalent
to the one in [JR02], we elide the definition here; it is given in the appendix.
14 The notion of barbing was first introduced for the π-calculus in [MS92].

Full abstraction 23

Proposition 1 (Soundness). If ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 :
Θ; EΘ, then ∆; E∆ ⊢ C1 ⊑may C2 : Θ; EΘ.

Proof. Assume ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 : Θ; EΘ, and further-
more that we are given a component C0 as environment for C1 and C2 with
Θ, cb:barb; EΘ ⊢ C0 : ∆; E∆ such that (C1 ‖ C0) ⇓cb

.
By definition of barbing, (C1 ‖ C0) ⇓cb

implies that (C1 ‖ C0) =⇒ C′ ↓cb
for

some component C′. The component C1 ‖ C0 is well-typed and so Lemma 10
yields C1 ‖ C0 ≡ C1 ! C0. Further by the decomposition Lemma 20, C0 and C1

can perfom complementary traces, i.e.:

∆, cb:barb; E∆ ⊢ C1 : Θ; EΘ
s

=⇒ ∆′, cb:barb; E′
∆ ⊢ C′

1 : Θ′, Ψ ′; E′
Θ

and

Θ, cb:barb; EΘ ⊢ C0 : ∆, E∆
s̄

=⇒ Θ′, cb:barb; E′
Θ ⊢ C′

0 : ∆′, Ψ ′; E′
∆ ,

where C′ ≡ ν((∆′, Θ′, Ψ ′) \ (∆, Θ)).C′
1 ! C′

0. According to Lemma 11, C′ ↓cb

implies that C′
1 or C′

0 strongly barbs on cb, i.e., we need to distinguish, whether
the component C′

1 or the observer C′
0 reports success. We start with the case

that the observer does.

Case: C′
0 ↓cb

The assumption C′
0 ↓cb

means that

Θ′, cb:barb; E′
Θ ⊢ C′

0 : ∆′, Ψ ′; E′
∆

ā
−→

where the external label ā is of the form

ν(b:cb) n〈call b.succ()〉! or ν(n: thread , b:cb) n〈call b.succ()〉! .

Let [o]i be the cliques of ∆′, Ψ ′ according to E′
∆, i.e., equivalence classes of

object references from ∆′, Ψ ′. Let furthermore si denote s ↓[o]i , i.e., the projec-
tion of the global trace onto the ith environment clique. Dually for s̄ and s̄i.
Note that the domain of ∆′ is non-empty, so there is at least one equivalence
class, and thus the projections are well-defined.

Now consider the É∆-clique of C′
0 that reports success, i.e., that issues ā,

which is the É∆-equivalence class of o as mentioned in label ā, and assume that
sj is the corresponding projection of the global trace s.

Define s′ as the longest prefix of s, such that the last action of s′ is an action
belonging to the clique [o]j ; if there is no such action in s, s′ is the empty trace.
The trace s̄′ is the dual prefix of s̄. Since the set of traces of a component is
prefix-closed, we get

∆, cb:barb; E∆ ⊢ C1 : Θ; EΘ
s′

=⇒ ∆′, cb:barb; E′
∆ ⊢ C′′

1 : Θ′′, Ψ ′′; E′′
Θ

and

Θ, cb:barb; EΘ ⊢ C0 : ∆, E∆
s̄′

=⇒ Θ′′, cb:barb; E′′
Θ ⊢ C′′

0 : ∆′′, Ψ ′′; E′′
∆

24 Completeness

and furthermore that C′′
0 can still report success, i.e., Θ′′, cb:barb; E′′

Θ ⊢ C′
0 :

∆′′, Ψ ′′; E′′
∆

a
−→ as next step. Since ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 :

Θ; EΘ, there exists a trace t′ such that

∆, cb:barb; E∆ ⊢ C2 : Θ; EΘ
t′

=⇒ ∆′′′, cb:barb; E′′′
∆ ⊢ C′′′

2 : Θ′′′, Ψ ′′′; E′′′
Θ .

Additionally, let [o′]j be the cliques of ∆′′, Ψ ′′ according to E′′′
Θ and t′j denote

t′ ↓[o′]j , i.e., the projection of t to the clique [o′]j . Then for all cliques [o]j where
i 6= j, there exists a clique [o′]k such that t′ ↓[o]k= t′k 4 s′i = s′ ↓[o]i, and
furthermore there exists a clique [o′]l such that t′ ↓[o′];= t′l = s′j = s′ ↓[o]j . By
Lemma 16, the oberserver C0 can complement the shorter traces t′, as well, i.e.

Θ, cb:barb; EΘ ⊢ C0 : ∆
t̄′

=⇒ Θ′′′, cb:barb; E′′′
Θ ⊢ C′′′

0 : ∆′′′, Ψ ′′′; E′′′
∆ ,

followed by the success-reporting a as next step:

Θ′′′, cb:barb; E′′′
Θ ⊢ C′′′

0 : ∆′′′; E′′′
∆

a
−→ .

By the composition Lemma 15, C2 together with C0 reduces as follows

C2 ‖ C0 =⇒ C′′′

where C′′′ = ν((∆′′′, Θ′′′, Ψ ′′′) \ (∆, Θ)) (C′′′
2 ! C′′′

0). Since C′′′
2 ↓cb

, this means
by Lemma 11 that C′′′ ↓cb

, and hence C2 ‖ C0 ⇓cb
, as required.

Case: C′
1 ↓cb

This case, where the component itself reports success, cannot occur. The reason
is that the component C1 is well-typed in a context without cb, i.e., ∆; E∆ ⊢ C1 :
Θ; EΘ, which means it cannot itself instantiate an object b of class cb. Neither
is it possible that its partner C0 transmits such an object to C1 in the trace s,15

as this would require that C1 contained a method whose type would mention cb

(either as argument or as return type). ⊓⊔

6 Completeness

6.1 Legal traces

A crucial step for completeness is an exact characterization of all possible traces
of a component, the legal ones. The question of legality has various aspects. First
of all, the calls and returns of the thread must be “parenthetic”, i.e., each return
must have a matching call prior in the trace. Furthermore, we must take into
account whether the thread is resident inside the component or outside. If the
thread is currently active inside, it cannot at the same time issue a call from
outside. Finally, as already explained in connection with the operational seman-
tics, the component must make a worst-case assumption about the relationship

15 Note that transmission does not imply instantiation. Objects of type cb are lazily
instantiated external to C1 ‖ C0.

Completeness 25

of the external objects among each other to exclude impossible combinations of
transmitted object names and threads.

The legal traces are specified by a type system for judgments of the form:

∆; E∆ ⊢ r ⊲ s : trace Θ; EΘ ,

stipulating that under the type and relational assumptions ∆ and E∆ and with
the commitments Θ and EΘ, the trace s is legal. In the judgment, r represents
the past history of the trace which is consulted in the derivation to assure that
calls and returns appear in a balanced manner and that the component behaves
deterministically. Remember from Section 3 that o :: T expresses that the object
reference o is an instance of a class with type T , leaving the actual name of the
class unspecified. The rules for legal traces are shown in Table 13.

Distinguishing according to the nature of the first action a of the trace, the
rules check whether a is possible, i.e., whether it is well-typed and adheres to
the restrictions imposed by the connectivity context. Furthermore, the contexts
are updated appropriately, and the rules recur checking the tail of the trace. The
rules are completely symmetric wrt. incoming and outgoing communication. As
for the external steps, we write the labels γ! in the form ν(Θ, ∆).γ′!, where γ′

does not contain any further binders and where by convention Θ contains the
name binding for instances of component classes and ∆ those for environment
classes.

The empty trace is always legal. An incoming call (cf. rule L-CallI) may
introduce new names in the component by scope extrusion, thus adding ∆′ to
the assumption context in the premise. Likewise, the assumption context for
connectivity E∆ is extended by the fact that the caller knows the newly intro-
duced references, both the ones from the environment whose name is exported
to the component as well as those from Θ′ which are lazily instantiated in the
component. This is abbreviated by the addition of o1 →֒ (∆′, Θ′) to E′

∆ in the
premise.

In the case of the incoming call it means that the caller must be acquainted
with the callee and with all of the arguments, i.e., ∆́; É∆ ⊢ o1 ⇌→֒ o2 : Θ́ and
∆́; É∆ ⊢ o1 ⇌→֒ ~v : Θ́. Furthermore we require that it is possible that the thread
originates in the caller object, postulated by ∆; E∆ ⊢ n ⇌ o1 : Θ́. The three
mentioned conditions are condensed into the one-liner ∆́; É∆ ⊢ n ⇌ o1 ⇌→֒
~v, o2 : Θ́.

As for the external steps of the semantics in Table 10, we need to deal with
the fact that the calleer identity is not part of the label. Even if anonymous,
the caller plays a role insofar as calls may only be issued from cliques in contact
with the callee and with other references in the label, and furthermore it is
necessary for the proper bookkeeping of the connectivity assumption that the
return matching to the call returns to the clique the call came from. The the rules
for call labels simply nondeterministically choose one source clique, represented
here by o1, and remembers the pick in the history r. This means, stored in r are
call labels augmented with the identity of the caller, which we also used in the

26 Completeness

definition of projection (cf. Equation 3). In the rules, we write ao for the call
label augmented by o.

Coming back to the premises of rule L-CallI: For the commitment context
EΘ, simply the new knowledge is added that from now on the callee knows the
arguments and that the thread n now has entered the callee o2; the binding for
n is removed from the assumption context E∆ consequently. Finally we need to
check, whether an incoming call is possible in a next step at all, i.e., whether,
given the history r, the thread n is input enabled, (cf. Definition 15 for the
definition of enabledness).

Compared to communication via method calls, communication via return
slightly differs wrt. the connectedness and enabledness provisos. For a return to
be possible in a next step, there has to be a matching call in the history; this
is directly expressed using the pop-function. Furthermore, there are no premises
requiring well-connectedness.

Remark 3. Besides taking care of the connectivity contexts, the system for legal
traces presented in Table 13 differs in another aspect from the ones of [JR02]:
interpreting the rules in a goal-directed manner from conclusion to premises, it
works off the trace from head to tail. This is necessary since only in this way,
working from head to tail, we can take into account connectivity assumptions
changed by earlier interaction for later communications. The different order will
also be advantageous when it comes to definability. ⊓⊔

6.2 Closure wrt. prefix and input receptiveness

It is crucial for the completeness proof that the constructed environment program
does not just realize the given trace, but realizes it “exactly”. The intuitive reason
is as follows. Given a trace s1 of a component C1, the fact that there exists some
environment able to perform the dual trace s̄1 allows us to infer that also C2

in this context exhibits observable success. This alone does not help, since the
closed program Cs̄1

‖ C2 may reach the success-reporting state, but we need
an argument that allows to conclude that the success-state is reached in a run
where C2 performs the original trace s1! This means, given a legal trace s, the
component Cs must be programmed in such a way that, when composed to a
closed program, it forces its partner to exhibit the required trace.

In the sequential setting, this is rather straightforward, since a component
is internally deterministic. Nevertheless, it is not strictly true that a component
realizes exactly one trace: at least the set of traces of a component is prefix closed.
Furthermore, a trace can always be extended by an incoming communication
provided the component is input enabled, or that there is a due return.

Additionally, deterministic

Definition 5 (Information preorder). The information preorder on traces
∆; E∆ ⊢ s1 ⊑ s2 : Θ; EΘ is the reflexive and transitive relation generated by the
axioms from Table 14. The traces left and right of ⊑ are tacitly assumed to be
legal.

Completeness 27

The two rules reflect that traces are closed under prefix and that traces can
always be extended by an input. This is to be understood under the restriction
that both traces are legal according to the rules from Table 13. Especially, the
connectivity assumptions and commitments E∆ and EΘ must be met. Note
further that a component is enabled not only wrt. incoming calls but also wrt.
incoming returns. Also here, the legality assumption takes care that s can be
extended to s ν(∆).n〈return(v)〉? only if the trace is still balanced.

6.3 Definability

This section contains one the key to completeness. We start by sketching the line
of argument in the next section, before we provide the definability construction
in detail.

6.3.1 Outline of argument At the heart of the completeness result lies
definability: construct a program that realizes as exact as possible a given legal
trace. The construction of Cs, the component realizing a legal trace s, is therefore
by induction on the derivation using the rules of Table 13. Interpreting the rules
in a goal-directed manner, they check a trace for legality from head to tail, or
reading the rules conversely from premise to conclusion, the trace is extended at
its head. Thus the inductive definition of Cs constructs a program in a backward
manner, starting from a program realizing the empty trace and extending it step
by step with preceding environment interaction.

Besides the overall construction strategy, let us have a closer look what we
need to realize the construction. The rule system derives legality judgments of
the form

∆, E∆ ⊢ r ⊲ s : trace Θ, EΘ ,

where, as usual, ∆ and E∆ are the assumptions about the environment, and du-
ally Θ and EΘ the commitments of the component to be constructed. Therefore,
Θ and EΘ pose requirements on Cs which have to be programmed.16

Before we embark on the inductive construction of Cs itself, it is instructive to
abstractly think of which requirements the commitment assumptions express and
how the legality rules manipulate them, since Θ and EΘ must be implemented
by some “data structures” and their changes by some “algorithms”.

The context Θ lists all named components which have to be present and pub-
licly visible in Cs. As named components we have classes, objects, and threads.

16 As an aside: We write Cs for the inductively defined component realizing s. To be
overly precise, the component should be “indexed” by the derivation justifying le-
gality of s. Note however that the trace s determines the derivation, at least what
the sequence of applied rules is concerned. The rule system is not completely de-
terministic, however, as the connectivity of new objects can be guessed in different
ways.

28 Completeness

Concentrating for now on the objects, Θ is changed by scope extrusion when
internally created objects get exposed to the environment, i.e., their scope opens
across the component boundary. This sure can be the case for outgoing com-
munication, but in the lazy instantiation scheme we employ, also incoming com-
munication may make the component aware that the environment has created
instances of internal classes.

The connectivity context EΘ ⊆ Θ×(Θ+∆) stipulates for component objects
from Θ, which other objects from Θ and from ∆ it is expected to know and
which it is able to contact, when necessary. In principle, there are various ways to
implement EΘ. We adopt a distributed implementation, i.e., each object contains
in its instance state its share of EΘ.17 Being kept distributed over the members
of the clique, changes to EΘ must be propagated to all members.

We describe the implementation and the propagation not yet in concrete ν-
calculus terms and postpone the problem to ultimately encode the solution into
classes and objects (cf. Section ??).

The fact that EΘ is implemented in a distributed way does not literally mean
that each object has a local copy of the full EΘ available in its instance state,
rather than its local view of EΘ. This means each object keeps in its instance
state the list of objects from Θ as well as from ∆ it is aware of. In slight abuse
of notation we call the respective instance variable Θ; to distinguish it from the
abstract context Θ we will always reference it in a qualified manner as self .Θ.18

As mentioned before, the distributed implementation of EΘ makes it nec-
essary to broadcast across the clique any change to the connectivity context.
This change of EΘ occurs in the system for legal traces when dealing with in-
coming communication —reception of names may increase the knowledge of the
component clique— and for outgoing communication —new objects previously
unknown to the environment are exported; their connectivity is guessed and the
resulting change of EΘ has to be implemented.

In any case, the change of knowledge takes place in some object, namely the
caller resp. the callee in the communication. The object therefore has to update
its own knowledge accordingly and to inform all members of its clique about
the change. Other changes to Θ resp. EΘ requires to create new, appropriately
connected objects.

6.3.2 Static semantics with connectivity The judgment now is of the
form

∆; E∆ ⊢ C : Θ; EΘ . (7)

∆ and E∆ play again the role of assumptions; dually Θ and EΘ are commit-
ments for the contexts. The connectivity contexts E∆ and EΘ are interpreted
therefore as follows. The assumption E∆ stipulates that the connectivity of the

17 How to actually encode it in the calculus, we will discuss later.
18 Note that self .Θ corresponds more to a instance-local view of EΘ rather than Θ,

and can also contain objects from ∆.

Completeness 29

(known) objects of the environment is at most as given in E∆. Analogously, the
commitment asserts that the connectivity inside the component is not higher
than specified by EΘ. This means, given the judgment ∆; E∆ ⊢ C : Θ; EΘ, all
objects listed in Θ must be present in C, but for the connectivity, EΘ means,
all acquaintances of objects from C are covered by EΘ. Especially, EΘ makes no
assertion about actually connectivity, it is rather the contrapositive statement:
in terms of “commitment” or “guarantee”, the context EΘ can be thought of
guaranteeing that objects are not connected in the component C, if they ac-
quaintance cannot be deduced from EΘ.

6.3.3 Inductive definition of Cs With the auxiliary definitions of the previ-
ous section at hand, we are now in a position to define the component realizing
a given trace. The construction is given in the following proposition, where a
number of properties of the construction are proved at the same time.

Proposition 2. Given ∆; E∆ ⊢ r ⊲ s : trace Θ; EΘ, the component Cs is de-
fined by induction on the derivation of the legal-trace judgment by the cases in the
proof given below. Furthermore, the constructed component Cs has the following
properties.

1. It is well-typed, i.e., ∆ ⊢ Cs : Θ.
2. It is fully connected, i.e., ∆; E∆ ⊢S Cs : Θ; EΘ.
3. It is instance closed.
4. Depending on the enabledness condition of thread n after trace r, Cs is like-

wise enabled.
5. Assume ∆; E∆ ⊢ r ⊲ as : trace Θ; EΘ with subgoal ∆́; É∆ ⊢ ra ⊲ s :

trace Θ́; ÉΘ and Cas given according to the construction. Then ∆; E∆ ⊢S
Cas : Θ; EΘ

a
=⇒ ∆́; É∆ ⊢S Cs : Θ́; ÉΘ. Pictorially:

∆́; É∆ ⊢S Cs : Θ́; ÉΘ

construction

ssgg
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

∆; E∆ ⊢S Cas : Θ; EΘ
γ?

// +3 ∆́; É∆ ⊢S Cs : Θ́; ÉΘ .

∆́; É∆ ⊢S Cs : Θ́; ÉΘ

construction

ssgg
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g
g

∆; E∆ ⊢S Cas : Θ; EΘ
+3

γ!
// ∆́; É∆ ⊢S Cs : Θ́; ÉΘ .

Proof. Given Cs, we provide the construction of Cas for the various rules for legal
traces from Table 13. At the same time we prove preservation of the properties
claimed in the proposition.

30 Completeness

Case: L-Empty (base case)
The component ∆; E∆ ⊢ Cǫ : Θ; EΘ is of the following form. For each class name
c with Θ ⊢ c : [(T)], it contains a class c[(O)] realizing all required methods in

an empty way. I.e., if [(T)] = [(. . . , l:U, . . .)] with U = ~T → T , then O contains

a method labelled l and O.l = ς(s:c).λ(~x:~T). stop. Note that the expression
stop has any type (rule T-Stop). Likewise for all exported objects names o,
i.e., for all o with Θ ⊢ o :: T , there exists an object o[O] in the configuration
realizing as in the case of classes, all the required methods in an empty way.
I.e., if [(T)] = [(. . . , ~T → T ′, . . .)], then O contains a method labelled l with

O.l = ς(s:c).λ(~x:~T). stop. Finally, if Θ ⊢ n : thread for some thread name n, the
component contains n〈stop〉.

The component does not contain ν-binders. Especially all components men-
tioned above —classes, objects, and potentially one thread— are visible outside.

It is easy to check, that ∆; E∆ ⊢ Cǫ : Θ; EΘ is well-typed, well-connected,
and instance closed. Also the enabledness requirement of part 4 is satisfied: after
the empty trace, the thread is input- and output-enabled, which is covered by
the forms n〈stop〉 or by the situation, when there is no thread in the component.

Case: L-CallI: a = ν(∆′, Θ′). n〈call o2.l(~v)〉?
The configuration ∆́; É∆ ⊢S Cs : Θ́; ÉΘ after accepting the call, i.e., for trace s
in the premise of L-CallI, is of the form:

∆́; É∆ ⊢S C′
s ‖ Θ′(~O) ‖ n〈tore〉 : Θ́; ÉΘ ,

with tore = tobody ; tie . The premise ∆ ⊢ r ⊲ a : Θ of rule L-CallI asserts that
after r and prior to the call, the thread n is input-call enabled. By Lemma 24, n
is output-return enabled after the trace ra. By assumption 4 of the proposition,
Cs is output-return enabled, i.e., of the form tore from Table 16.

By the premises of the rule we know that Θ́ = Θ + Θ′, where Θ′ con-
tains (besides potentially the thread identity) the identities of the lazily in-

stantiated component objects. The parallel component Θ′(~O) abbreviates the
instances of all lazily instantiated objects from Θ′ in their initial state. I.e., if
Θ′ = o′1:c

′
1, . . . , o′k:c′k or Θ′ = o′1:c

′
1, . . . , o′k:c′k, n: thread , then Θ′(~O) stands for

o′1[O
′
1] ‖ . . . ‖ o′k[O′

k], where for all class names c′i, the component C′
s ≡ c′i[(O

′
i)] ‖

C′′
s . Note that instance closedness guarantees the well-definedness of this as-

sumption, since as a consequence C′
s contains the classes required for the lazy

instantiation of the new objects.

Depending on whether the callee o2 is lazily instantiated or not, i.e., whether
o2 ∈ Θ′ \Θ or o2 ∈ Θ \Θ′, the instance o2 is part of C′

s or of Θ′(~O).

If o2 ∈ Θ \Θ′, the configuration after the call more specifically is of the form

∆́; É∆ ⊢S C′′
s ‖ o2[c2, F́2] ‖ c2[(Ḿ2)] ‖ Θ′(~O) ‖ n〈tore〉 : Θ́; ÉΘ .

Completeness 31

Let C̃s denote Cs except n〈tore〉. Now the configuration prior to the call for Cas

is constructed in the following steps. Let

C̃3
s , C̃s ⊕ (c2, ǎ, tobody) (8)

C̃2
s , C̃3

s ⊕ (~O2, ǎ) (9)

C̃1
s , C̃2

s ⊕ (Θ′(~O), script)) (10)

C̃as , C̃1
s \Θ

′(~O) (11)

using the (overloaded) operator from Definition 11 and 12. In the second step,

the set of objects ~O2 is defined as ~O2 = {o | Θ́; ÉΘ ⊢ o2 →֒ o : ∆́ ∧ Θ́ ⊢
o : c}.19 Note also the order of the second and the third step. In the third
step, all the futures of the newly instantiated component instances (by lazy
instantiation) are included as potential behavior into the respective classes. The
change of the scripts instance variable in the classes is therefore done after the
individual script -instance variabe of the objects have been changed in the second
construction step. Indeed, the order of the three construction steps here is the
exact reverse to the synchronization code added (cf. Definition 10). The last

step, defining C̃0
s = C̃as, removes the newly instantiated objects Θ(~O′) from the

compent, unsetting also the respective references to them. Thus, the component
∆; E∆ ⊢ Cas : Θ; EΘ before the call is given by:

∆; E∆ ⊢ n〈tie〉 ‖ C̃as : Θ; EΘ (12)

If otherwise o2 is lazily instantiated in the call, i.e., o2 ∈ Θ′ \Θ, the configu-
ration for Cas is given as:

∆; E∆ ⊢ C′′
s ‖ n〈tie〉 : Θ; EΘ .

Similarly, if the thread identity n has entered the component in this call for the
first time, i.e., if n ∈ ∆′ ∩Θ′, then the named thread n〈tie〉 is not present in the
configuration. Note that (n: thread) ∈ ∆ ∩Θ iff (n: thread) ∈ ∆ iff (n: thread) ∈
Θ, and analogously for the context pair ∆′ and Θ′ transmitted in the label.

Well-typedness of ∆; E∆ ⊢ Cas : Θ; EΘ follows directly from the well-
typedness assumption ∆́; É∆ ⊢ Cs : Θ́; ÉΘ. Likewise, well-connectedness of the
constructed Cas follows from well-connectedness of the given Cs. instantiated

By construction in rule L-CallI, ÉΘ contains the pair n →֒ o2 after the call,
but the commitment context for connectivity does not contain a pair mentioning
n. By one of the premises, however, we know ∆́; É∆ ⊢ n⇌ [o1] : Θ́, which means
in the case where (n: thread) ∈ ∆ ∩Θ, that E∆ contains a pair n →֒ o for some
object identifier o.

19 This means: we add ǎ to the instance variable script of all acquaintances of o2 using
the connectivity after the step, which might be larger than the connectivity before
the step, in case the step merges o2’s clique. Intuitively this reflects the fact that the
merging action is counted as common action already.

32 Completeness

As mentionend above, n is input-enabled before the call, i.e., after r. By
construction, tie satisfies the condition 4 of the proposition.

Concerning the reduction from the pre- to the post-configuration as stated
in part 5, we argue as follows:20

∆; E∆ ⊢S Cas : Θ; EΘ =

∆; E∆ ⊢ n〈tie〉 ‖ C̃as : Θ; EΘ
a

−→

∆́; É∆ ⊢ n〈let x:T = o2.l(~v) in o2 return to o1 x; tie〉 ‖ C̃1
s : Θ́; ÉΘ

τ
−→

∆́; É∆ ⊢ n〈let x:T = M2.l(o2)(~v) in o2 return to o1 x; tie〉 ‖ C̃1
s : Θ́; ÉΘ =

∆́; É∆ ⊢ n〈let x:T = tbody [o2/s][~v/~x] in o2 return to o1 x; tie〉 ‖ C̃1
s : Θ́; ÉΘ =⇒

∆́; É∆ ⊢S n〈let x:T = ta
ore in o2 return to o1 x; tie 〉 ‖ C̃3

s : Θ́; ÉΘ =

∆́; É∆ ⊢S n〈tore〉 ‖ (C̃s ⊕ (c2, ǎ, to
body) : Θ́; ÉΘ

The reduction uses the rules from Section 4 and for the internal reduction espe-
cially the Lemma 3 for input call synchronization. Note that all steps are those
of thread n and that only the very first step is an external one, namely a.

Case: L-RetO: a = ν(Θ′, ∆′). n〈return(v)〉!
The configuration ∆́; É∆ ⊢S Cs : Θ́; ÉΘ after the return, i.e., for trace s in the
premise of rule L-RetO, is of the form

∆́; É∆ ⊢S C′
s ‖ n〈tie〉 : Θ́; ÉΘ .

By premise pop n r = ν(∆′′, Θ′′). n〈[o1]call o2.l(~v)〉? of rule L-RetO, the thread
is output-return enabled after r. By Lemma 24, n is input enabled after ra. By
assumption 4 of the proposition, tie is of the form as given by Table 16.

Furthermore by the premise of the derivation rule, (Θ́, ÉΘ) = (Θ, EΘ) + Θ′,
where ÉΘ is a conservative extension of EΘ. We define the configuration prior
to the return for Cas by

∆; E∆ ⊢ C′
s ‖ n〈let x:T = tosync(Θ

′, ∆′); v̌ in?? return to o1 x; tie〉 : Θ; EΘ .
(13)

After trace r, i.e., before the outgoing return, the thread is, as said, output-return
enabled and the constructed trace satisfies the condition 4 of the proposition for
tore . Well-typedness and well-connectedness are checked straightforwardly.

Concerning the reduction required in part 5, the sequence follows by Lemma 1
and by rule RetO in combination with the binding rules BOut and Boutnew .21

20 The given sequence of steps assumes that o2 is not lazily instantiated in the call and
hence already present in the component prior to it, and likewise the thread named is
already present. The derivation thus corresponds to the situation of Equation (12)
from above. The situations where o2 is lazily instantiated or where n enters the
component for the first time work analogously.

21 The rule Boutthread is not needed: No thread name extrudes its scope via a return,
no matter whether incoming or outgoing. This is guaranteed by the requirement that
the trace is balanced.

Completeness 33

Case: L-CallO: a = ν(Θ′, ∆′). n〈call o2.l(~v)〉!

The premise ∆ ⊢ r ⊲ a : Θ of L-CallO stipulates that after r, i.e., prior
to the call, n is output-call enabled. Hence by Lemma 24, n is input-return
enabled after history ra, and thus by assumption in part 4 of the proposition,
the configuration ∆́; É∆ ⊢S Cs : Θ́; ÉΘ after the outgoing call, i.e., for the trace
s in the premise of rule L-CallO, is of the form22

∆́; É∆ ⊢S n〈tibody ; tie〉 ‖ C′
s : Θ́; ÉΘ

for some component C′
s and with tibody of the form

let y:T ′ = o1 blocks for o2 in (let x:T = tisync(y); toe ; t
o
sync ; v in o2 return to o1 x)

We distinguish whether the thread is exported for the first time to the environ-
ment.

Subcase: Θ ⊢ n : thread
By the premises of L-CallO, the commitment contexts Θ and especially EΘ

are extended in the step from Cas to Ćs in that (Θ́, ÉΘ) = (Θ, EΘ) + Θ′, where
ÉΘ is a conservative extension of EΘ. Thus the configuration for the component
Cas is defined as:23

∆; E∆ ⊢S n〈tobody ; tie〉 ‖ C′
s : Θ; EΘ (14)

with tobody given as

let x:T = t′oe ; t
o
sync ; v in o2 return to o1 x , (14)

which expands further to

let x:T = (tosync ; let y:T ′ = o2.l(~v) in tisync(y); toe ; t
o
sync ; v) in o2 return to o1 x .

(14)

As mentionend above, the trace is output (call) enabled after r, and the config-
uration for Cas complies to the requirement of part 4 of the proposition. The
well-typedness and well-connectedness conditions are again checked straightfor-
wardly.

22 We assume that n is already known in the environment. Otherwise, n would occur
in Cs under a ν-binder and escape via scope extrusion in the call-step.

23 Note that both the classes from Θ′ as well as the ones from ∆′ are handled by the
create-statement; the latter ones are the lazily instantiated objects, which will reside
in the environment after the communication.

34 Completeness

For part 5 we obtain:

∆; E∆ ⊢S Cas : Θ; EΘ =

∆; E∆ ⊢S C′
s ‖ n〈to

body ; tie〉 : Θ; EΘ =⇒

∆; E∆ ⊢S ν(Θ′, ∆′).(C′
s ‖ n〈let x:T = (let y:T ′ = o2.l(~v) in ti

sync(y); toe ; to
sync ; v) in o2 return to o′

1 x〉 ‖ ~o[~c]) : Θ; EΘ

∆; E∆ ⊢S ν(Θ′, ∆′).(C′
s ‖ n〈let y:T ′ = o2.l(~v) in(let x:T = ti

sync(y); toe ; to
sync ; v in o2 return to o′

1 x)〉 ‖ ~o[~c]) : Θ; EΘ
a

−→

∆; E∆ ⊢ ν(Θ′, ∆′).(C′
s ‖ n〈let y:T ′ = o1 blocks for o2 in(let x:T = ti

sync(y); toe ; to
sync ; v in o2 return to o′

1 x)〉 ‖ ~o[~c]) : Θ; EΘ =

∆́; É∆ ⊢S C′
s ‖ n〈ti

body ; tie〉 ‖ ~o[~c] : Θ́; ÉΘ =

∆́; É∆ ⊢S C′
s ‖ n〈tire〉 ‖ ~o[~c] : Θ́; ÉΘ

where ~o[~c] abbreviates o1[c1] ‖ . . . ‖ ok[ck] and furthermore ∆́ = ∆ + ∆′, Θ́ =
Θ + Θ′, and ÉΘ = EΘ + E(C, Θ′, ∆′).

In the reduction sequence, the crucial steps from line 2 to 3 are covered by
Lemma 1.

Subcase: Θ′ ⊢ n : thread
In this case the thread n is exported to the environment for the first time. There
are further two subcases. In case ∆; E∆ ⊢ n′ : thread for some thread n′, i.e., n
is not the initial thread, then component contains a named thread of the form
n′〈t〉 and the component Cas is given by ∆; E∆ ⊢S C̃ ‖ n′〈tont

sync ; t〉 : Θ; EΘ.
For both cases, the required properties are shown as in the first subcase.

Case: L-RetI: a = ν(∆′, Θ′). n〈return(v)〉?
By the premise pop n r = ν(∆′′, Θ′′).n〈[o1]call o2.l(~v)〉! of L-RetI, n is input-
return enabled after r. Furthermore, the premise reveils the identity of the caller.
By Lemma 24, n is output enabled after ra. By assumption from part 4, the
configuration for Cs after the incoming return, i.e., for the trace s in the premise
of L-RetI, is of the form

∆́; É∆ ⊢S C′
s ‖ n〈toe〉 : Θ́; ÉΘ

for some component C′
s and thread toe according to Table 16. We construct the

component before the incoming return as follows:24

∆; E∆ ⊢S C′
s ‖ n〈tibody ; tie〉 (15)

with tibody equalling

let y:T ′ = o1 blocks for o2 in (15)

(let x:T = tisync(y, ǎ); toe ; t
o
sync ; v in return to x)

As mentioned, thread n is input-return enabled after r and the constructed Cas

conforms to the requirements stated in 4 of the proposition.

24 By another premise we know that ∆́; É∆ ⊢ n⇌→֒ o2 : Θ́ which means that É∆ must
contain a pair n →֒ o′2 for some object identifier o′2. But note that the callee o2 need
not coincide with o′2! The latter o′2, stored in the assumption context, remembers
the object the thread n has visited when it had left the component the last time.
The pop-operation, on the other hand, finds the last matching call.

Completeness 35

For part 5 we reason as follows: By rule RetI in combination with the scoping
rules BIn and Binnew , and furthermore by the Lemma 2 for input synchroniza-
tion we can derive:

∆; E∆ ⊢S Cas : Θ; EΘ =

∆; E∆ ⊢S C′
as ‖ n〈to

body ; tie〉 : Θ; EΘ
a

−→

∆́; É∆ ⊢ C′
s ‖ n〈let y:T ′ = v in (let x:T = ti

sync(y, ǎ); toe ; to
sync ; v′ in return to x); tie 〉 : Θ́; ÉΘ

∆́; É∆ ⊢ C′
s ‖ n〈let x:T = ti

sync(v, ǎ); toe ; to
sync ; v′ in return to x; tie〉 : Θ́; ÉΘ =⇒

∆́; É∆ ⊢S C′
s ‖ n〈let x:T = toe ; to

sync ; v′ in return to x; tie〉 : Θ́; ÉΘ =

∆́; É∆ ⊢S C′
s ‖ n〈tore〉 : Θ́; ÉΘ

⊓⊔

Before we illustrate the construction on a few simple examples, we analyze
the cases of the definition in more detail.

For outgoing calls, the message is issued from some object which is acquainted
with the one mentioned in the label as sender. A further effect of an outgoing
call is, that new internal objects are communicated to the environment; they
are mentioned in Θ′ and must be created, using the create-statement (cf. Equa-
tion 14). Besides that, new external object can be created in a lazy manner, in
that ∆ is extended to ∆́, but this is under the responsibility of the environment.

For an incoming return, we prefix the thread by a block-expression to accept
the incoming return (cf. Equation 15). The incoming information may increase
the knowledge base EΘ to ÉΘ. This information has to be propagated through
the component. The component can learn new names in an incoming return,
but there can be no new thread name coming in. Therefore, no new threads
have to be created in this case. References to external instances, as introduced
by the extension from ∆ to ∆́, are under the responsibility of the environment.
The premise Θ́ = Θ +Θ′, finally, describes the lazy cross-border instantiation of
internal objects by the environment. Neither these have to be created by Cs.

Working backwards in the program construction, an incoming call is the
place where we “wrap up” a method. The code of the method body must be
added to the object (and the class) and bound to the method label label l
(cf. Equation 12). For an outgoing return according to case L-RetO, finally, we
again have to take care as in the case for outgoing calls, that all internal external
object references exported to the outside via Θ′ are created before handing back
the return value (cf. Equation 13).

6.3.4 Synchronization code Next we fill in in more detail the missing pieces
of code, namely the one for synchronization in the construction from Proposi-
tion 2. We start with an abstract description of what the synchronization is good
for.

Overview The pieces of synchronization code in the backward construction of
the component Cs come in two flavors, input and output synchronization code,

36 Completeness

and flank the corresponding external transition steps at the interface. Output
sychronization code precedes the corresponding output, and dually, input syn-
chronization trails the input action (cf. also the two diagrams in the formulation
of Proposition 2).

As the commitment contexts of the judgments are nothing else than a concise
specification of the component, what the synchronization has to achieve can be
clearly understood by looking at the change of the ∆; E∆ ⊢ C : Θ; EΘ- judgments
in external steps (cf. Tables 10, resp. Table 13). The changes are always additive,
i.e., the contexts only grow larger. To implement the extension of the typing
context Θ in an output step, the component must create corresponding objects,
whose references are then published. Likewise the component must cater for
lazily instantiated objects of the environment, which lead to an extension of
E∆ in an output step. On the other hand, the component is not responsible for
extensions of EΘ by incoming lazy instantiation.

For connectivity as specified by EΘ, we adopted a “distributed” implementa-
tion, i.e., all objects in a clique are kept fully-connected. Thus, if the connectivity
context EΘ is enlarged in an input step, the additional information must be dis-
tributed to all members of the clique.

We split the abstractly described synchronization task into the following four
sub-problems:

1. to create new objects to be made known or exported to the outside,
2. to propagate connectivity information to keep the component fully con-

nected,
3. to serialize the actions of the component to exhibit exactly the behavior

prescribed by the trace,25 and
4. to provide “mutual exclusion” to avoid interference.

The first point is straightforward: the synchronization code for output will
contain appropriate new -statements. The second point will be done by traversing
the clique, updating the connectivity knowledge of all of its members.

The serialization task mentioned in point 3 is not implied by the previous
discussion about how the commitment contexts and their change specify the im-
plementation task. It is mandated by the completeness proof in general. Anyway,
the task is to ensure that the actions and reactions of the component follow the
prescibed order (to the extent possible). For instance, consider that the trace
contains the following sequence of two actions γ?. γ′!, say

n〈call o2.l(~v)〉?. n′〈call o′2.l
′(~v′)〉! ,

where n 6= n′ and where the two actions concern the same clique. In this situation
the implementation must enforce the given order, i.e., it is necessary to assure

25 Of course, the component cannot completely serialize its behavior, for various rea-
sons. Especially, separate cliques cannot enforce a particular order of their respective
events.

Completeness 37

that thread n′ does not issue the second call before the first incoming call has
been accepted.

To achieve this, each object of the clique must be aware (and kept up-to date)
of the current status wrt. the sequence of interactions at the clique’s interface.
In the above situation for instance, the caller object of the second, outgoing call,
must be aware whether or not the first call γ? has already occurred.

In the concrete constructed component, the objects do not keep a history of
past interaction. Rather the current state is characterized by the future interac-
tion the component still has to realize. We call such a linear description of the
future of an object a script.26 The constructed component equips each object
(and ultimately each class) with one possible linear behavior. Since the instances
of the class may have to behave differently according to the given legal trace, the
class contains a set of possible futures. Concretely, the future behavior is imple-
mented by an instance variable script containing one sequence of actions, while
the class collects all possible futures in the scripts (plural) instance variable.
When an object is instantiated from a class, one future is picked at random.27

We maintain as invariant that all objects of a clique always agree on the common
future. We call such a clique script-consistent.

The output synchronization code checks, before it does the actual output,
whether

1. the component is (still) script-consistent and, if so,
2. whether the intended output action is indeed “next on the list”,

i.e., whether the future stored in script starts with the intended output action. If
so, the code cancels the action from the script and broadcasts this fact through-
out its clique. Before it does the check and the canceling the intended action is
not the expected one, the thread blocks. We use a guarded command like syntax
ǎ ⊲ t, where ǎ is the intended action (see below). Note that we need to check for
a consistent future in an output step since the clique may be enlarged, namely
by the newly created objects. Their future must be fit together with the future
of the rest of the clique.

For input synchronization, the situation is similar: the thread is allowed to
continue only if the current input action matches the expected one. Of course,
the match can be checked only after the component has received the data at its
interface; after all, objects are input enabled in our semantics.

In case of incoming calls, i.e., in case of L-CallI of the construction, the
situation is still a bit more complex: in this case, the code of the method is

26 While the scripts will be kept in an instance variable of each object, conceptually
they describe the future of the whole clique. The values of the scripts for each object
will be kept in sync, i.e., we will maintain the invariant that all members of a clique
agree upon their potential futures. Note further that while traces of a component
are tree-structured, the futures are linear, since the trees branch into the past, since
cliques only merge, but never split.

27 To be more precise: we cannot program that the instantiation itself does the random
choice, but it’s part of the synchronization code for instantiation.

38 Completeness

“wrapped up”, i.e., in first approximation copied from the thread into the method
body, which means, into the class. Of course, a method may be invoked more than
just once in a legal trace and, when letting the constructed component run, all
witnessed reactions must be possible and more stringently: for each occurrence
of the call on the trace, the corresponding reaction must follow. This means the
synchronisation code at the beginning of the method body must dispatch to the
right piece of code when invoked.28

When an object accepts a method call, it compares this action to the yet-
to-do script of the clique/object. If there is a matching one first in the script, it
“works it off” as described above. The body of each method therefore is mainly
a large conditional, and we generalize the guarded command syntax ǎ ⊲ t to
cover this branching:

case
ǎ1 ⊲ tbody1

. . .
ǎn ⊲ tbodyn

esac

Note that we do not require the branches to be disjoint. Informally, the intended
behavior of the construct is as follows: assume the method l is invoked via
the action n〈call o2.l(~v)〉?. The current action is compared with the expected
according to the script instance variable. If a is a possible next step, then one
matching branch is chosen and the future is shortened by one. This must be
done not just for the callee object, but for all members of the callee’s clique.
Since we assured at this point that the clique is script-consistent, the shortening
is well-defined. Note further that the class stores in its fields the static variants
ǎ . . . for comparison.

n〈case . . . ǎ ⊲ t . . . esac; t′〉 ‖ o[script = ǎ :: s, . . .] =⇒ n〈t; t′〉 ‖ o[script = s, . . .]

To avoid unduly complicated concurrent behavior or even inconsistency of
the data structures by interleaving of all interactions and data maniplation,
all the described book-keeping is done under mutucal exclusion, at least per
clique.29 We use the syntax (|t|) to indicate that the code t is executed without
interference from other threads. Intuitively, the opening parenthesis (| takes a
lock (if available) which ensures undisturbed access to the whole clique.30 The
dual |) releases the lock again. See below for details.
28 The attentive reader will have noticed that Proposition 2 does not require that the

constructed component shows no other reaction than the one given by the legal trace;
it shows only, that indeed Cs realizes the trace. For completeness, as mentioned, we
will need this exactitude.

29 Two different cliques cannot be coordinated, of course, as they are unconnected by
definition and enforcing mutex would require at least some bit of shared information.

30 Locking the whole, distributed network of the clique objects looks harder than it is.
Since we are after may-testing, only, we need not worry about deadlock, let alone

Completeness 39

We start with the synchronization action, i.e., the code used in the cases for
L-CallO and L-RetO. There, the code tosync is “called” with the intended next
action of the thread. The abstraction here is understood as meta-mathematical
notation, only; we cannot hand-over class names to a method. Also pick in the
definition is meant meta-mathematically: it calls a method (also) called pick for
all instance variables from ~x whose type is a internal class. The exact definitions
are given in the appendix.

Definition 6 (Synchronization, output). Given a component ∆; E∆ ⊢ C :
Θ; EΘ and furthermore ~c a number of class names, i.e., Θ, ∆ ⊢ ci : [(. . .)], for
all ci. Additionally assume Θ; EΘ ⊢ n →֒ o : Θ with Θ ⊢ n : thread. Then

tosync(~c, ǎ) , (| let ~x:~c = new(~c)
in pick (~x);

ǒ.propagate(~x);
ǎ ⊲ |) .

(16)

We will also use the following notation: Assume two object bindings ∆′ and Θ′

where ∆′ = ~o:~c and Θ′ = ~o′:~c′. Then tosync(∆
′, Θ′, ǎ) stands for tosync(~c,~c

′, ǎ).

Note that in the definition, the newly created references are first propagated
through the object graph, and only afterwards it is checked for script-consistency
and whether the next action is the expected one using the guard ǎ ⊲ ǫ. This
is necessary since we base the comparison in the guard ǎ upon the respective
instance variables (and not the local variables) and those are set by the propagate
method. Note further that ǒ is the instance variable representing the object
reference o, which corresponds to the “current object”, since we assumed n →֒ o.

The following lemma expresses that the output synchronization does the ex-
pected job, i.e., it creates the required internal objects mentioned in Θ′, initiates
the objects to be lazily instantiated in the external step to follow from ∆′, and
takes care the full-connectivity is preserved.

Lemma 1 (Synchronization, output). Given a fully-connected component
∆; E∆ ⊢S C ‖ n〈tosync(∆

′, Θ′, ǎ)〉 : Θ; EΘ. Additionally Θ; EΘ ⊢ n →֒ o : ∆ with
Θ ⊢ n : thread. If the component is script-consistent and o.script = ǎ :: s′ for
some s′, then

∆; E∆ ⊢S C ‖ n〈tosync(∆
′, Θ′, ǎ); t〉 : Θ; EΘ =⇒

∆; E∆ ⊢S ν(∆′, Θ′).C′ ‖ n〈t〉 : Θ; EΘ .

Proof. With the help of Lemma ?? for locks and the propagation Lemma 33 for
output. ⊓⊔

One case of synchronization requires special attention, namely when there is
an outgoing communication where a new thread is made known to the environ-
ment. This can only happen for method calls. The code is similar to the one of

loosing liveness or even fairness. It suffices that any failed attempt to obtain the lock
leads simply blocks or diverges.

40 Completeness

Definition 6 except that it is now part of a thread-creation statement. Note also,
that the expression currentthread , when being evalutated, refers to the newly
created thread.

Besides the situation, when a component thread is spawned by another one
already resident in the component, we also have to consider the case where the
thread is present in the component from the start. In this case, the thread is not
spawned by another one and there is no mechanism to “hand over” any values.
In other words, the thread has no access to any values already known to the
environment, and all values being exported by the call must not be acquainted
to any other objects. We assume that this very particular situation is given only
for one thread, the initial one.31

Definition 7 (Synchronization: Output call & thread creation). Given
a component ∆; E∆ ⊢ C : Θ; EΘ and furthermore ~c a number of class names,
i.e., Θ, ∆ ⊢ ci : [(. . .)], for all ci. Additionally assume Θ; EΘ ⊢ n →֒ o : Θ with
Θ ⊢ n : thread. Then

tont
sync(~c, ǎ) , (|new (let ~x:~c = new(~c)

in pick (~x);
ǒ.propagate(currentthread , ~x);
ǎ ⊲ |)) .

(17)

In case the new thread is the initial thread, the synchronization code needs not
be created:

tint
sync(~c, ǎ) , (| let ~x:~c = new(~c)

in pick (~x);
ǒ.propagate(currentthread , ~x);
ǎ ⊲ |) .

(18)

For inputs, we start with the simpler definition for returns. As can be seen in
the construction for Proposition 2, especially Table 16, the code is used as ab-
straction over the bound variable(s) used to hold the incoming values. We define
therefore tirsync and further below ticsync as abstraction which is again understood
as meta-mathematical convention. The definition is slightly more general than
necessary. The syntax of the calculus allows only a single return value, not a
vector. We use the more general definition for uniformity.

Definition 8 (Synchronization, input return). Given a fully-connected com-
ponent ∆; E∆ ⊢S C : Θ; EΘ, and additionally Θ; EΘ ⊢ n →֒ o : ∆ with

31 It would be straightforward to formulate the framework for more than one initial
thread. However, all initially running threads will belong to separate cliques and will
never be able to communicate or merge their cliques. A standard set-up therefore is
to start with just one single thread. In Java, this is the body of the main method of
the main class.

Completeness 41

Θ ⊢ n : thread. Then

tci
sync(~y, ǎ) , (| pick (~y);

ǒ.propagate(~x);
ǎ ⊲ |) .

(19)

To formulate the reduction property concisely, we introduce further notation
to denote the immediate next possible action as specified by the script instance
variables, either of the script variable of the object itself or of the scripts-variable
of the corresponding class.

Definition 9. Assume a well-typed, script-consistent component ∆; E∆ ⊢S C :
Θ; EΘ. Assume further a component object o[c, F] with Θ ⊢ o : c. Then we write
∆; E∆ ⊢S C : Θ; EΘ :: o 3 ǎ if one of the following two conditions hold:

1. o[c, F] = o[c, script = ǎ :: s′, . . .] for some s′.
2. o[c, F] = o[c, script = ⊥, . . .] and ǎ :: s′ ∈ c.scripts for some s′.

For a tuple ~v of values, we mean by ~v3 ǎ that v3 ǎ for all references v ∈ ~v where
Θ′ ⊢ v : c for some internal class name c with Θ′ ⊢ c : [(. . .)]; for references to
external classes, nothing is required.

Lemma 2 (Synchronization, input return). Assume a well-typed, fully-
connected component ∆́; É∆ ⊢S C′ ‖ n〈let x:T = tirsync(~v, ǎ); t′〉 : Θ́, EΘ, where

Θ; EΘ ⊢ n →֒ o : ∆ and Θ ⊢ o : c and let ÉΘ = EΘ + o →֒ ~v. Assume further
that the component is script-consistent and o,~v 3 ǎ. Then

∆́; É∆ ⊢ C′ ‖ n〈let x:T = tirsync(~v, ǎ); t′〉 : Θ́, E′
Θ =⇒

∆́; É∆ ⊢S C′ ‖ n〈t′〉 : Θ́; ÉΘ

Proof. With the help of Lemma ?? for locks and the propagation Lemma 32 for
input. ⊓⊔

In principle, the task for synchronization for incoming calls resembles the
previous cases, especially the case for input returns: store and propagate the
arguments in instance variable, choose a future for lazily instantiated objects,
check for script consistency and whether the next action is the expected one,
while avoiding interfernce by using the lock. What is different now is that the
synchronization code, together with the thread realizing the intended behavior,
is now to be found in the method body, i.e., in the respective class.

As a consequence, the synchronization code not only has to take care of
mutual exclusion and information propagation, it has also to dispatch to the right
piece of code in the method body. In the backward construction for Proposition 2,
we abstractly described the required code transformation by the ⊕-operator (cf.
especially Equation 12).

First we give the synchronization code ticsync to field incoming calls. It resem-
bles the code for treating incoming returns or the code for tosync . There are two

salient differences to tirsync(x, ǎ) from Definition 8, however. Being programmed

42 Completeness

as part of a class, it contains hard-coded the dispatch code over all known alter-
natives. Additionally, as static class code, the body cannot refer to the (static
representative) of the object’s identity which is not yet available. It uses directly
the local variable self instead. Note further that the callee object can itself be
lazily instantiated during the call in which case also its future is chosen. There-
fore, self is mentioned in the pick -code.

Definition 10 (Synchronization, input call).

tci
sync(self)(~x) , (|pick (self , ~x);

self .propagate(~x);
case

ǎ1 ⊲ |); tbody1

. . .
ǎn ⊲ |); tbodyn

esac

(20)

More rigorously, we refer to the synchronization code ticsync not as the full method
body, but as the part between the (|- and |)-brackets, only. Therefore, stictly
speaking, the code for input synchronization is defined as abstraction (on the
meta-mathematical level) ticsync(~x, ǎ1, . . . , ǎn, tbodyn

, . . . , tbodyn
), i.e., abstracted

not only over self and the parameters, but also over the alternatives.

Lemma 3 (Synchronization, input call). Assume a well-typed, fully-connected
component ∆́; É∆ ⊢S C : Θ́, EΘ where n →֒ o, and let ÉΘ = EΘ + o →֒ ~v. As-
sume further that the component is script-consistent with ∆́; É∆ ⊢ C : Θ́; ÉΘ ::
o,~v 3 ǎi. Then

∆; E∆ ⊢ n〈tirsync(o,~v, . . . , ǎi, . . . , tbodyi
, . . .); t〉 : Θ́; ÉΘ

a
=⇒

∆; E∆ ⊢S n〈tbodyi
; t〉 : Θ; EΘ .

Proof. Using the propagation Lemma 32. ⊓⊔

Now the ⊕-transformation for classes, used in the cases for L-CallI in the
backward construction of Cs, is readily defined: it simply adds another alterna-
tive to the method body. A further code transformation for classes, also denoted
by ⊕ is done at instantiation time, where the whole future of the object, collected
during the backward construction, is added to the set scripts of possible futures
of the class. Thus, the operation is the backward dual of the pick -code. Note
that the instance variable script contains only static values in the construction,
i.e., no reference values. Therefore we can just use the value of script as is in the
construction of scripts .

Conclusion 43

Definition 11 (⊕ on classes). Given a class c[(O)] of the form

c[(. l = ς(s:c)λ(~x:~T) (| pick (~x)
s.propagate(~x);
case

ǎ1 ⊲ |); tbody1

. . .
ǎn ⊲ |); tbodyn

esac)]

with n ≥ 0. Then c[(O)] ⊕ (ǎ, tbody) is defined as

c[(. . . l = ς(s:c)λ(~x:~T) (| pick (~x)
s.propagate(~x);
case

ǎ1 ⊲ |); tbody1

. . .
ǎn ⊲ |); tbodyn

ǎ ⊲ |); tbody
esac)] .

Overloading the symbol ⊕, c[(. . . scripts = S . . .)]⊕ script is defined by replacing
S by S ∪ script.

The final piece in the construction is the handling of the script -variable of
objects. As mentioned, each object stores in script its future, which is kept
consistent for all members of a clique at each moment. Thus in the backward
construction of Cs, the script -variable of all members of a clique are extended
at the head with this action (resp. the static variant of it).

Definition 12 (⊕ on objects). Given an object o[script = s, . . .], a static
variant ǎ of an action, then

o[script =, . . .]⊕ ǎ , o[script = ǎ :: script , . . .]

In the construction of Proposition 2, the ⊕ǎ-operation is applied to all members
of a clique. Thus the construction preserves script-consistency.

Theorem 1 (Definability). Assume ∆; E∆ ⊢ s : trace Θ; EΘ. Then ∆; E∆ ⊢

Cs : Θ; EΘ
s′

=⇒ if and only if ∆; E∆ ⊢ s′ ⊑ s : Θ; EΘ.

Theorem 2 (Completeness). If ∆ |= C1 ⊑may C2 : Θ, then [[C1]]trace ⊆
[[C2]]trace.

7 Conclusion

In this report we presented, as an extension of the work of [JR02], an opera-
tional semantics and a trace semantics of a class-based, object-oriented calculus

44 Conclusion

with multithreading. The seemingly innocent step from an object-based setting
as in [JR02] to a framework with classes requires quite some extension in the
operational semantics to characterize the possible behavior of a component. In
particular it is necessary to keep track of the potential connectivity of objects of
the environment to exclude impossible communication labels.

It is therefore instructive to review the differences in this conclusion and
explain them from a higher perspective, especially trying to understand how the
result of [JR02] can be understood as a special case of the framework explored
here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer. This leads to the crucial difference between object-
based languages, instantiating from objects, and class-based language, instan-
tiating from classes: In the class-based setting, instantiation may cross the de-
marcation line between component and environment, while in the object-based
setting, this is not possible: the program only instantiates program objects, and
the environment only objects belonging to the environment. All other compli-
cations, expounded here at some great length, follow from this difference. The
most visible complication is that it is necessary to represent the dynamic object
structure into the semantics, or rather an approximation of the connectivity of
the environment objects. Another way to see it is, that in the setting of [JR02],
there is only one clique in the environment, i.e., in the worst case, which is the
relevant one, all environment objects are connected with each other. Since the
component cannot create environment objects (or vice versa), never new iso-
lated cliques are created. The object-based case can therefore be understood by
invariantly (and trivially) taking E∆ = ∆ × (∆ + Θ), while in our setting, we
take into account that E∆ may be more specific.

Related work The work closest to ours clearly is the one of Jeffrey and Rathke
[JR02] about full abstraction in the original, i.e., object-based calculus. In effect,
the current paper can be seen as a direct extension of their work; not only do
we borrow much from the notation found there, also the general set-up of the
proof follows their path.

Nonetheless, the seemingly innocent change from an object-based to a class-
based setting entailed an all but trivial change in the denotational, fully abstract
semantics, notably by taking connectivity amongst objects into account, unnec-
essary in the object-based setting. It may therefore be instructive, to review
the differences in this conclusion, to explain them from a higher perspective,
especially trying to understand how the result of [JR02] can be understood as a
special case of the framework explored here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer. This leads to the crucial difference between object-
based languages, instantiating from objects, and class-based language, instanti-
ating from classes: In the class-based setting, instantiation may reach across the

Conclusion 45

demarcation line between component and environment, while in the object-based
setting, this is not possible: the program only instantiates program objects, and
the environment only objects belonging to the environment. All other complica-
tions, expounded here at some great length, follow from this difference.

The most visible complication is that it turns out necessary to represent the
dynamic object structure into the semantics, or rather an approximation of the
connectivity of the environment objects.

[Vis98] investigates the full-abstraction problem in an object calculus with
subtyping. The setting is a bit different from the more standard one as used
here as he does not compare an contextual semantics with an denotational one,
but a semantics by translation by a direct one. The paper considers neither
concurrency nor aliasing.

[FMS96] present a full-abstraction result for the π-calculus, the standard
process algebra for name passing and dynamically changing process structures.
The extensional semantics is given as a domain-theoretic, categorical model, and
using bisimulation equivalence as starting point, not may testing resp. traces as
here. [Yos96] gives equational full abstraction for standard translation of the
polyadic π-calculus into the monadic one. Without additional information, the
translation is not fully-abstract, and [Yos96] introduces graph-types as an ex-
tension to the π-calculus sorting to achieve full abstraction. The graph types
abstracts the dynamic behavior of processes. In capturing the dynamic behav-
ior of interaction, Yoshida’s graph types are rather different from the graph
abstracting the connectivity of objects presented here.

Future work We imagine to extend the language and result in a number of
way. One inherent feature of the calculus is that objects are input enabled. This
disallows to model directly synchronized methods as in Java. The extension of
the language and should be comparatively mild; the detailed adaptation of the
semantics and the characterization of the legal traces may still be tricky. Another
interesting but non-trivial generalization is to consider cloning of objects, i.e.,
to create a replica of an object, identical to the original one up-to the object’s
identity. In a certain way, instantiation of a class is just like cloning with the
restricting that only objects in their initial state can be obtained by instantia-
tion, while cloning can be applied to an object in mid-life. The ability to create
an object in a state different from the initial one makes new observations possi-
ble, most notably the branching structured gets exposed. One therefore has to
generalize the linear-time framework of traces to a branching-time view.

Even more challenging is to take serious the notion of classes in that they
are not only considered as generator of new objects by instantiation, but also as
template for new classes, i.e., to consider inheritance and subtyping. This makes
new “observations” on classes possible, namely by subclassing.

Acknowledgements We would like to thank Karsten Stahl for “active listen-
ing” even to the more byzantine details and dead ends of all this. Thanks likewise

46 Conclusion

to Willem-Paul de Roever for careful reading and spotting many sloppy points
and to Uwe Nestmann for pointing out and discussing related work. We are also
indepted to Ben Lukoschus for helping with some of the more arcane TEX-stunts.
Thanks likewise to Andreas Grüner for careful reading and improving a num-
ber of half-baken previous versions of the document. Part of this work has been
financially supported by IST project Omega (IST-2001-33522) and NWO/DFG
project Mobi-J (RO 1122/9-1, RO 1122/9-2).

References

ÁBdBS03. Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and Martin
Steffen. A structural operational semantics for a concurrent class calculus.
Technical Report 0307, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, August 2003.

AC96. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in
Computer Science. Springer, 1996.

FMS96. Marcelo Fiore, Eugenio Moggi, and Davide Sangiorgi. A fully-abstract
model for the π-calculus (extended abstract). In Proceedings of LICS ’96,
pages 43–54. IEEE, Computer Society Press, July 1996.

GH98. Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus:
Reduction and typing. In Uwe Nestmann and Benjamin C. Pierce, editors,
Proceedings of HLCL ’98, volume 16.3 of Electronic Notes in Theoretical
Computer Science. Elsevier Science Publishers, 1998.

GHL97. A. D. Gordon, P. D. Hankin, and S. B. Lassen. Compilation and equivalence
of imperative objects. In S. Ramesh and G. Sivakumar, editors, Proceedings
of FSTTCS ’97, volume 1346 of Lecture Notes in Computer Science, pages
74–87. Springer-Verlag, December 1997. Full version available as Technical
Report 429, University of Cambridge Computer Laboratory, June 1997.

Hen88. Matthew Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
JR02. Alan Jeffrey and Julian Rathke. A fully abstract may testing semantics for

concurrent objects. In Proceedings of LICS ’02. IEEE, Computer Society
Press, July 2002.

MPW92. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Information and Computation, 100:1–77, September
1992.

MS92. Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich,
editor, Proceedings of ICALP ’92, volume 623 of Lecture Notes in Computer
Science, pages 685–695. Springer-Verlag, 1992.

PS93. A. M. Pitts and D. B. Stark. Observable properties of higher-order func-
tions that dynamically create local names, or: What’s new. In Andrzej M.
Borzyszkowski and Stefan Soko lowski, editors, Proceedings of MFCS ’93,
volume 711 of Lecture Notes in Computer Science, pages 122–141. Springer-
Verlag, September 1993.

SW01. Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

Vis98. Ramesh Viswanathan. Full abstraction for first-order objects with recursive
types and subtyping. In Proceedings of LICS ’98. IEEE, Computer Society
Press, July 1998.

Conclusion 47

Yos96. Nobuko Yoshida. Graph types for monadic mobile processes. In V. Chandru
and V. Vinay, editors, Proceedings of FSTTCS ’96, volume 1180 of Lecture
Notes in Computer Science, pages 371–386. Springer-Verlag, 1996. Full
version as Technical Report ECS-LFCS-96-350, University of Edinburgh.

ZP97. Xiaogang Zhang and John Potter. Class-based models in the pi-calculus.
In Christine Mingins, Roger Duke, and Bertrand Meyer, editors, Proceed-
ing of The 25th International Conference in Technology of Object-Oriented
Languages and Systems (TOOLS Pacific ’97, Melbourne, Australia), pages
219–231, November 1997.

48 Proofs

A Proofs

The appendix collects proofs omitted from the main part of the paper and ad-
ditional lemmas.

A.1 Operational semantics

Lemma 4 (Disjointness of object and class references). Assume ∆1; E∆1
⊢

C1 : Θ1; EΘ1
For all reachable configurations, dom(∆) ∩ dom(Θ) = ∅ for all ob-

ject and class references.

Proof. By induction on the length of reduction. Internal steps and the rules for
structural congruence leave the contexts untouched. The external steps dealing
with scoping from Table 10 add a fresh object names only to either ∆ or to Θ,
and the freshness assumption assures that the new name does not occur on both
contexts. Class names are never exchanged bound. Only the rules for extending
the scope of thread identifiers BInthread and BOutthread lead to a non-empty
intersection of the domains of ∆ and Θ. ⊓⊔

Lemma 5 (Static nature of class names). If ∆; E∆ ⊢ C : Θ; EΘ
a
−→

∆́; É∆ ⊢ Ć : Θ́; ÉΘ, then for all class names c, c ∈ dom(∆) iff. c ∈ dom(∆́) and
likewise c ∈ dom(Θ) iff. c ∈ dom(Θ́).

Proof. Straightforward. Class names cannot be sent around, hence they never
occur in a communication label. ⊓⊔

The following lemma states that well-typedness of a component is preserved
under reduction. This property is also known as subject reduction.

Lemma 6 (Subject reduction). Assume ∆, E∆ ⊢ C : Θ, EΘ.

1. (a) If C C′, then ∆; E∆ ⊢ C′ : Θ; EΘ.

(b) If C
τ
−→ C′, then ∆, E∆ ⊢ C′ : Θ; EΘ.

(c) If C ≡ C′, then ∆; E∆ ⊢ C′ : Θ; EΘ.

2. If ∆; E∆ ⊢ C : Θ; EΘ
a
−→ ∆′; E′

∆ ⊢ C′ : Θ′; E′
Θ, then ∆′; E′

∆ ⊢ C′ : Θ′; E′
Θ.

status: Not done yet. We as-

sume it’s ok. Proof. All parts by induction on the length of derivation for the reduction step.
⊓⊔

Lemma 7.

We call a well-typed component ∆ ⊢ C : Θ (and analogously for components
∆; E∆ ⊢ C : Θ; EΘ) is instance closed, if for all identifiers o with ; Θ ⊢ o : c, also
; Θ ⊢ c : T . In other words, each object identifier typable in Θ and thus occurring
free in the component C, is an instance of a class also typable in Θ. Note that
the type systes assures that T is a class type, i.e., T = [(T ′)]. For example,
⊢ o[O′] ‖ c[(O)] : o:c, c:[(T)] is instance closed, but the component containing the
object o in isolation is not. Instance closedness is preserved under reduction.

Proofs 49

Lemma 8 (Preservation of instance closedness). Assume ∆; E∆ ⊢ C :

Θ; EΘ
a

=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ. If ∆; E∆ ⊢ C : Θ; EΘ is instance closed, then so
is ∆́; É∆ ⊢ Ć : Θ́; ÉΘ.

Proof. Straightforward, using subject reduction: Internal steps do not change the
contexts nor do they change the externally visible classes or objects. The same
holds for the structural rules. The external rules maintain instance closedness by
distinguishing in the exchange of bound (object) references according to the class:
Rule BInnew for an incoming lazy instantiation is enabled only if an instance of
a component class is sent. Lazy instantiation in outbound direction is described
by the internal rule NewOlazy (in combination with BOutnew). Also here, the
premises of the rules assure that o as instance of an environment class is not
instantiated internally. The rule for non-lazy scope extrusion BIn adds the new
objects’ identity to the assumption context, only. For BOut, scope extrusion
is achieved in combination with the non-lazy interal instantiation rule NewOi

from Table 5 which assure that both the object after the step and the class
are part of the component. The rule Comm and the ones dealing with scope
extrusion for a thread names finally leave the name contexts unchanged, at least
wrt. object and class names. ⊓⊔

In the whole development we will always assume that well-typed components
are instance closed. Under this assumption we will also used the following ab-
breviation. For ∆ ⊢ o : c and ∆ ⊢ c : T , we write shorter ∆ ⊢ o :: T , when the
name of the class c does not play a role.

The assumption and commitments context play, not surprisingly, a dual role
in the semantics. For instance, in case of incoming communication (cf. for in-
stance rule CallI), the assumption context is checked as premise, the com-
mitment context is updated. In connection with the exchange of bound names,
however, also the assumption context is updated. However, this does not lead to
new information about names already known. Again in the situation for incom-
ing communication: Since E∆ is maintained as a worst-case assumption about
the connectivity of the known external objects, learning about the existence of
a fresh object must not invalidate this assumption. Intuitively, by creating new
objects, initially unknown to the component, the environment cannot contact
objects it could not contact otherwise. In other words, the connectivity assump-
tion context É′

∆ after an incoming communication is a conservative extension of
E∆ wrt. the old objects.

The property that the addition of connectivity of the newly received in-
dentities added to ∆ may not lead to new derivable equations for the objects
previously known is formulated in the following lemma using a projection oper-
ator which simply resticts the graph of É∆ to the domain ∆ × (∆ + Θ). Thus,

∆; E∆ ⊢ C : Θ; EΘ
γ?
−→ ∆́; É∆ ⊢ C : Θ́; ÉΘ stands for the implication:

If ∆′; E′
∆ ⊢ o1 ⇌→֒ o2 : Θ, then ∆; E∆ ⊢ o1 ⇌→֒ o2 : Θ ,

for all o1 from ∆ and o2 from ∆, Θ. We can thus state.

50 Proofs

Lemma 9 (Conservativity of connectivity information). Assume a input

step ∆; E∆ ⊢ C : Θ; EΘ
γ?
−→ ∆́; É∆ ⊢ C : Θ́; ÉΘ. Then

∆; E∆ ⊢ ∆́; É∆ ↓∆×(∆+Θ): Θ

The situation for outgoing information is dual.

Proof. Straightforward. ⊓⊔

A.2 Soundness

The merge of two components respectively traces is defined as follows:

Definition 13 (Merge). For a pair of components respectively for a pair of
threads, ! is the symmetric, partial operator up-to ≡ defined by Table 17, where
in the last case for t1 ! t2, the expression e is block/return free and y /∈ fv(t2).

The definition is essentially the same as in [JR02]. The one minor difference
concerns t1!t2 in the case of merging a return statement with a blocked partner,
as the stack structure differes slightly in our situation as we need to remember
the caller of a method.

Note that the !-operation is partial, i.e., it may fail if the two participating
components and in particular two equally named threads cannot be combined
into a common stack. The rules for C1 ! C2 in the first part of the table are
mostly straightforward. For the empty component, there is nothing to merge.
Objects and classes do not participate in the merging, and likewise the scoping
operator is ignored. Two equally named threads are merged and the rest of the
components are merged recursively in the last equation.

For two threads, the !-operator is defined by case analysis on the outermost
let-construct (if there thread is not completely stopped). This corresponds to
the top-most part of the common stack for both threads. If one if the threads is
stopped, the combination of both is stopped, as well, since the stop-expression
unconditionally terminates a thread irrespective of trailing statements (cf. rule
Stop of Table 5). If a part of a thread is blocked in its topmost construct,
it indicates that it waits for a return of the activity from its partner (cf. rule
CallOut). In case the partner is a value, it means, the return will never happend
and the blocked part can be discarded. If otherwise the partner is about to
perform the return, the values is handed over, the two topmost let-bindings are
thereby popped off, and the merge-operator recurs through the rest of the two
threads. The last equation, finally, deals with the situation that the partner is not
(yet) a value or a return statement and rearranges the let-binding appropriately.

As far as objects and classes are concerned, merging of two components
behaves like their parallel composition:

Lemma 10 (‖ and !). If ∆; E∆ ⊢ C1 ‖ C2 : Θ; EΘ, then C1 ‖ C2 ≡ C1 ! C2.

Proof. By induction on the definition of !, i.e., the left-hand sides of the equa-
tions as given in Table 17.

Proofs 51

Case: 0 ! C
Directly by the corresponding rule for ‖ from Table 6.

Case: ((νn:T).C1) ! C2,
where n /∈ fn(C2). The merge is then given by (νn:T).(C1!C2), which by induc-
tion is equivalent to (νn:T).(C1 ‖ C2) which furthermore yields ((νn:T).C1) ‖
C2), since n /∈ fn(C2).

Case: (o[c] ‖ C1) ! C2, (c[O] ‖ C1) ! C2 and (n〈t〉 ‖ C1) ! C2

By straightforward induction, using associativity of the ‖-operator.

Case: (n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2)
In this case, the component (n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2) is not well-typed (cf.
especially rules T-Par and T-NThread from Table 3. ⊓⊔

For named threads, occurring on both sides of the !-operator, the respective
stack framed are “zipped” into a common stack (if possible). As a consequence:
If C = C1 ! C2 is defined, then an extenal step of a thread n is enabled for C
exactly if the step is enabled for C1 or for C2. For the special case of barbing,
this is expressed in the following lemma.

Lemma 11 (Merging and barbing). Assume C ≡ C1 ! C2. Then C ↓cb
iff.

C1 ↓cb
or C2 ↓cb

.

Proof. By induction on the definition of C1 ! C2, where we omit symmetric
cases. Before we start, recall the definition of barbing, stipulating that C ↓cb

if

C is structurally congruent to ν(~n:~T , b:barb). C′ ‖ n′〈let x:none in b.succ() in t〉.

Case: C1 ! 0
Since 0 is inert, directly C1 ↓cb

.

Case: C = (ν(n:T).C1) ! C2 ≡ ν(n:T).(C1 ! C2),
where n /∈ dom(C2). Assume C ↓cb

, i.e.,

ν(n:T).(C1 ! C2) ≡ ν(~n:~T , b:barb). C′ ‖ n′〈let x:none in b.succ() in t〉

it is of the form For the “only-if” direction assume

Case: C = (o[O] ‖ C1) ! C2 ≡ o[O] ‖ (C1 ! C2)
Assume C ↓cb

, i.e.,

o[O] ‖ (C1 ! C2) ≡ ν(~n:~T , b:barb). C′ ‖ n′〈let x:none in b.succ() in t〉 .

This implies that (C1 ! C2) ↓cb
. Hence by induction, C1 ↓cb

or C2 ↓cb
, and thus

(C1 ‖ o[c]) ↓cb
or C2 ↓cb

, as required.
For the reverse direction, assume (o[O] ‖ C1) ↓cb

, which implies C1 ↓cb
, and

thus by induction (C1 ! C2) ↓cb
, from which the case follows. The argument for

the second alternative, starting from C1 ↓cb
, is similar

Case: (c[(O)] ‖ C1) ! C2 ≡ c[(O)] ‖ (C1 ! C2)
Analogous.

52 Proofs

Case: (n〈t〉 ‖ C1) ! C2 ≡ n〈t〉 ‖ (C1 ! C2),
where n /∈ dom(C2). Analogous.

Case: (n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2) ≡ n〈t1 ! t2〉 ‖ (C1 ! C2),
where n /∈ dom(C2). First assume, (C1 ! C2) ↓cb

. Then the case follows by
induction, as in the previous cases. The only interesting case is when C′ =
C1 ! C2 and n = n′, i.e.,

n〈t1 ! t2〉 = n〈let x:none in b.succ() in t〉 .

In this case, the last clause of Table 17 applies, so that n〈t1〉 = n〈let y:T =
o1 blocks for o2 in t′1〉 and n〈t2〉 = n〈let y:none = b.succ() in t′2〉, which means
(n〈t1〉 ‖ C1) ↓cb

. The reverse direction is analogous. ⊓⊔

Lemma 12 (! and -step). If C1 ! C2 ≡ C and C1 Ć1, then C Ć
with Ć1 ! C2 ≡ Ć. Pictorially:

C1 ! C2

��
�O
�O
�O

C

��

�O
�O

Ć1 ! C2 Ć .

Proof. By induction on the length of derivation for C1 Ć1, using the opera-
tional axioms from Table 5 and the rules from Table 7, with the help of the rules
for structural congruence from Table 6. ⊓⊔

Lemma 13 (! and τ-step). If C1 !C2 ≡ C and C1
τ
−→ Ć1, then C

τ
−→ Ć with

Ć1 ! C2 ≡ Ć. Pictorially:

C1 ! C2

τ

��

C

τ

��

Ć1 ! C2 Ć .

Proof. Analogous to the proof of Lemma 12. ⊓⊔

Lemma 14. Assume ∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ and Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆

where C1 ! C2 ≡ C. If ∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ
γ?
−→ ∆́, Φ; É∆ ⊢ Ć1 : Θ́, Ψ́ ; ÉΘ

and Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆
γ!
−→ Θ́, Φ; ÉΘ ⊢ Ć2 : ∆́, Ψ́ ; É∆. Then C ≡

ν(Σ́ \Σ). Ć1 ! Ć2, where Σ = ∆, Θ; Ψ and Σ́ = ∆́, Θ́, Ψ́ . Pictorially

∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ

��

γ?
// ∆́, Φ; É∆ ⊢ Ć1 : Θ́, Ψ́ ; ÉΘ

��

Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆
γ!

//

��

Θ́, Φ; ÉΘ ⊢ Ć2 : ∆́, Ψ́ ; É∆

��

C1 ! C2 ν(Σ́ \Σ). Ć1 ! Ć2)

Proof. By case analysis on the form of the communication label γ.

Proofs 53

Case: γ = ν(∆′, Θ′, n: thread).n〈call o2.l(~v)〉
i.e., n /∈ dom(Ψ). By the operational rules of Tables ?? and ?? and the typing
rules, the two components are of the following form: C1 does not contain the
thread n and

C2 ≡ ν(n: thread , ∆′, Θ′, ~n:~T)(C′
2 ‖ n〈let x:T = [o1]o2.l(~v) in t〉) .

By convention, ∆′ contains objects from C2 and Θ′ those lazily instantiated to
be contained in C1 from this communication step on. After γ?, respectively γ!,
we get

Ć1 = C1 ‖ n〈let y:T = o2.l(~v) in o2 return to o1 y〉

and

Ć2 = ν(~n:~T). (C′
2 ‖ n〈let x:T = o1 blocks for o2 in t〉) .

and for the contexts after the step ∆́ = ∆, ∆′, Θ́ = Θ, Θ′, and Ψ́ = Ψ, n: thread .
Since the thread n is not contained in C1 and likewise the names from ∆′, Θ′,
and ~n are new for C1, we get by definition of the merge operator:

C1 ! C2 ≡ ν(∆′, Θ′, n: thread , ~n:~T). (C1 ! C′
2 ‖ n〈let x:T = [o1]o2.l(~v in t)〉) .

For the components Ć1 and Ć2 after the common step, the last two clauses in
the definition of merging yield

Ć1 ! Ć2 ≡ ν(~n:~T).(C1 ! C′′
2 ‖ n〈let y:T = [o1]o2.l(~v) in t[y/x]〉) ,

which means

C ≡ ν(Σ́ \Σ) (Ć1 ! Ć2) ,

as required.

Case: γ = ν(∆′, Θ′).n〈call o2.l(~v)〉,
with n /∈ dom(∆′, Θ′). Similar to the previous case.

Case: γ = ν(∆′, Θ′).n〈return(v)〉
Note that unlike the cases for method calls, the thread name cannot be transmit-
ted boundedly. Furthermore, if we only transmit a single (non-compound) value
v and not a vector as for method calls, then ∆′ or Θ′ are empty. For uniformity,
we treat them both in one case. By the operational rules of Tables ?? and ??,
the components must be of the following forms:

C1 ≡ ν(~n1:~T1). C′
1 ‖ n〈t1〉

= ν(~n1:~T1). C′
1 ‖ n〈let x:T = o1 blocks for o2 in t′1〉

and

C2 ≡ ν(∆′, Θ′, ~n2:~T2). C′
2 ‖ n〈t2〉

≡ ν(∆′, Θ′, ~n2:~T2). C′
2 ‖ n〈let x:T = o2 return to o1 v; t′2〉

54 Proofs

After the communication, the components look as follows (cf. rules RetI and
RetO):

Ć1 ≡ ν(~n1:~T1). C′
1 ‖ n〈t′1[v/x]〉 and Ć2 ≡ ν(~n2:~T2). C′

2 ‖ n〈t′2〉 .

For the change of contexts, we get ∆́ = ∆, ∆′, Θ́ = Θ, Θ′, and Ψ containing the
thread names remains unchanged, i.e., Ψ́ = Ψ .

Since the names from ~n2, ∆′, and from Θ′ are new for C1 and ~n1 new for C2,
the definition of ! for components and for threads (and using symmetry) gives
(we assume that ! has a stronger binding power than ‖):

C1 ! C2 ≡ ν(∆′, Θ′, ~n1:~T1, ~n2:~T2). (C′
1 ! C′

1 ‖ n〈t1 ! t2〉)

≡ ν(∆′, Θ′, ~n1:~T1, ~n2:~T2). (C′
1 ! C′

1 ‖ n〈t′1[v/x] ! t′2〉)

≡ ν(∆′, Θ′). ν(~n1:~T1, ~n2:~T2). (C′
1 ! C′

1 ‖ n〈t′1[v/x] ! t′2〉)

≡ ν(Σ́ \Σ). (ν(~n1:~T1). (C′
1 ‖ n〈t′1〉[v/x]) ! ν(~n1:~T1). (C′

2 ‖ n〈t′2〉)) .

= ν(Σ́ \Σ). (Ć1 ! Ć2) ,

which concludes the case. ⊓⊔

Lemma 15 (Trace composition). Assume ∆, Φ ⊢ C1 : Θ, Ψ and Θ, Φ ⊢

C2 : ∆, Ψ with C1 ! C2 ≡ C. If ∆, Φ ⊢ C1 : Θ, Ψ
s

=⇒ ∆′, Φ ⊢ C′
1 : Θ′, Ψ ′

and Θ, Φ ⊢ C2 : ∆, Ψ
s̄

=⇒ Θ′, Φ ⊢ C′
2 : ∆′, Ψ ′, then C =⇒ C′ where C′ ≡

ν(∆′, Θ′, Ψ ′ \∆, Θ, Ψ). C′
1 ! C′

2.

Proof (of trace composition (Lemma 15)). By induction on the length of reduc-
tion (cf. Table 11), using subject reduction and the Lemmas 12 and 13 dealing
with -steps resp. τ -steps of one of the partners, and Lemma 14, dealing with
communication between the partners, resolved in a common τ -step. ⊓⊔

Lemma 16 (Prefix).

Proof. Obvious ⊓⊔

A.2.1 Trace decomposition

Lemma 17. If ∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ and Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆ where
C1 ! C2 ≡ ν(~n:~T). (C′ ‖ n〈let x:T = e in t〉), then

∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ
s

=⇒ ∆́, Φ; É∆ ⊢ Ć1 : Θ́, Ψ́ ; ÉΘ

with Ć1 = ν(~n1:~T1). C′
1 ‖ n〈let x:T = e in t1〉 and

Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆
s̄

=⇒ Θ́, Φ; ÉΘ ⊢ Ć2 : ∆́, Ψ́ ; É∆

Proofs 55

and where ν(Σ́ \Σ).ν(~n1:~T1)(C
′
1 ‖ n〈t1〉)! Ć2 ≡ ν(~n:~T). (C′ ‖ n〈t〉). Pictorially

C1 ! C2

ss̄

��

ν(~n:~T). (C′ ‖ n〈let x:T = e in t〉)

(ν(~n1:~T1). C′
1 ‖ n〈let x:T = e in t1〉) ! Ć2

(ν(Σ).(ν(~n1:~T1). C′
1 ‖ n〈t1〉) ! Ć2 ν(~n:~T). (C′ ‖ n〈 t〉)

Proof. By induction on the definition of !.

Case: C1 ! C2 = C1 ! 0 ≡ C1 = ν(~n:~T). (C′
1 ‖ n〈let x:T = e in t〉)

In this case, s and s̄ are empty, Σ́ = Σ, ~n1 = ~n, and t1 = t.

Case: C1 ! C2 = (ν(n:T).C̃1) ! C2 ≡ ν(n:T).(C1 ! C2),
where n /∈ fn(C2).

Case: C1 ! C2 ≡ !

⊓⊔

Lemma 18 (Decomposition and -step). If C1!C2 ≡ C and C Ć, then

there exists a trace s such that ∆, Φ; E∆ ⊢ C1 : Θ, Ψ ; EΘ
s

=⇒ ∆́, Φ; É∆ ⊢ Ć1 :

Θ́, Ψ́ ; ÉΘ and Θ, Φ; EΘ ⊢ C2 : ∆, Ψ ; E∆
s̄

=⇒ Θ́, Φ; ÉΘ ⊢ Ć2 : ∆́, Ψ́ ; É∆, where
ν(Σ́ \Σ). Ć1 ! Ć2 ≡ Ć and where Σ = ∆, Θ, Φ and Σ́ = ∆́, Θ́, Φ́. Pictorially:

C1 ! C2

ss̄

��

C

��
�O
�O
�O

ν(Σ́ \Σ). (Ć1 ! Ć2) Ć

Proof. We start by looking at the form of the component C. It is able to do an
immediate -step, which must (ultimately) be justified by one of the axioms
Red, . . . , NewT from Table 5, or by NewOlazy from Table ??. This means, a
thread in C executes an top-most let-command, i.e.,

C = ν(~n:~T). (C′ ‖ n〈let x:T = e in t〉)

⊓⊔

Lemma 19 (Decomposition and τ-step).
Proof. ⊓⊔

Lemma 20 (Trace decomposition). Assume ∆, Φ ⊢ C1 : Θ, Ψ and Θ, Φ ⊢

C2 : ∆, Ψ with C1 ! C2 ≡ C. If C =⇒ C′, then ∆, Φ ⊢ C1 : Θ, Ψ
s

=⇒ ∆′, Φ ⊢

C1 : Θ′, Ψ ′ and Θ, Φ ⊢ C2 : ∆, Ψ
s̄

=⇒ Θ′, Φ ⊢ C′
2 : ∆′, Ψ ′, for some trace s where

C′ ≡ ν(∆′, Θ′, Ψ ′ \∆, Θ, Ψ). C′
1 ! C′

2.

Proof (of trace decomposition (Lemma 20)). status: not done.

56 Proofs

A.3 Legal traces

In this section we prove the results about the legal traces. The most important
is that the actually the observable behavior of a well-typed component.

We start with the auxiliary definition concerning the parenthetic nature of
calls and returns of a legal thread. As in [JR02], we define balance of a thread
and the operation pop as follows:

Definition 14 (Balance, Pop). The thread n is balanced in a sequence s if
one of the following conditions holds:

1. If n /∈ thread(s), then n is balanced in s.
2. If n is balanced in s1 and s2, then it is balanced in s1s2.
3. n is balanced in ν(∆, Θ).n〈call o2.l(~v)〉? s ν(Θ′, ∆′).n〈return(v)〉!, if it is

balanced in s.
4. n is balanced in ν(Θ, ∆).n〈call o2.l(~v)〉! s ν(∆′, Θ′).n〈return(v)〉?, if it is

balanced in s,

The function pop is defined as follows:

1. pop n s = ⊥, if n is balanced in s
2. pop n (s1as2) = a if a = ν(∆, Θ). n〈call o2.l(~v)〉? and n is balanced in s2.
3. pop n (s1as2) = a if a = ν(∆, Θ). n〈call o2.l(~v)〉! and n is balanced in s2.

With this definition, we can define when a thread can perform a input or
output action in the next step. Input enabledness stipulates whether, given a
sequence of past communication labels, an incoming call is possible in the next
step; analogously for output enabledness. Note that enabledness in the definition
refers to calls, only, not to returns; they are checked directly. To be input enabled,
it suffices to check that the thread has left the component, or that it is fresh to
the component.

Definition 15 (Enabledness). Let γ be a method call of the form ν(∆, Θ).n〈call o2.l(~v)〉.
Then call-enabledness of γ after the history r and in the contexts ∆ and Θ is
defined as:

∆; E∆ ⊢ r ⊲ γ? : Θ; EΘ if (n /∈ dom(Θ) or n ∈ dom(EΘ)) (21)

∆; E∆ ⊢ r ⊲ γ! : Θ; EΘ if (n /∈ dom(∆) or n ∈ dom(E∆)) (22)

We also say, a thread is input-call enabled after r if ∆ ⊢ r ⊲ γ? : Θ for some
incoming call label and we call the condition pop n r = ν(∆′). n〈call o2.l(~v)〉!
also input-return enabledness. The definitions are used dually for output-call
enabledness and output-return enabledness. When leaving the kind of commu-
nication unspecified we just speak of input-enabledness or output-enabledness.
Note that return-enabledness implies call-enabledness, but not vice versa.

The following lemma states a simple “invariant” about the form of the graphs
encoded by E∆ and EΘ for legal traces. The two environments E∆ and EΘ

connect object and thread names. The use of thread names is restricted, however:

Proofs 57

All known thread names are acquainted to exactly one object name, and the
connection is justified either by the assumption contect E∆ or the commitment
context EΘ. No thread name ever is ever known by another named entity. This
reflects the intuitition, that the top-most frame of each thread has to remember
the identity of the caller object.32 The Lemma is the analogue to Lemma 7 for
the dynamic semantics.

Lemma 21 (Invariants). Derivations for legal traces for ∆; E∆ ⊢ r ⊲ s :
trace Θ; EΘ preserve the following invariants for all subgoals ∆′; E′

∆ ⊢ r′ ⊲ s′ :
trace Θ; E′

Θ:

1. E′
∆ ⊆ ∆′ × (∆′ + Θ′) and E′

Θ ⊆ Θ′ × (Θ′ + ∆′).
2. dom(∆′) ∩ dom(Θ′) = ∅, for all object and class references.
3. for all thread names n:

(a) either n /∈ ∆′ ∪Θ′ or else n ∈ ∆′ ∩Θ′.
(b) if n ∈ ∆′ ∩Θ′, then

i. either n →֒ o ∈ E′
∆, for some object name o ∈ Θ′,

ii. or else n →֒ o ∈ E′
Θ, for some object name o ∈ ∆′.

(c) there exists no name p such that p →֒ n ∈ E′
∆ or p →֒ n ∈ E′

Θ

Proof. By induction on the rules from Table 13. ⊓⊔

Lemma 22 (Enabledness). Assume ∆; E∆ ⊢ r ⊲ s : trace Θ; EΘ.

1. If n is input-return enabled in r, then it is input-call enabled in r, and dually
for output-return enabledness and output-call enabledness.

2. For each thread identifier n ∈ ∆, either n is input-enabled or n is output-
enabled after r.

Proof. Part (1) is trivial as return enabledness is directly defined as special case
call enabledness. For part (2), assume n is input-enabled, which by the first part
implies that n is call-enabled. Then the result follows by Lemma 21, especially
part 3b. ⊓⊔

The following reformulates enabledness of a thread n exploiting the invariants
mentioned before.

Lemma 23. Assume ∆; E∆ ⊢ r ⊲ s : trace Θ; EΘ. Then for each thread identi-
fier n ∈ ∆ we have:

1. n is output enabled after r iff ∆; E∆ ⊢ n →֒ o : Θ or n /∈ ∆ ∪Θ.
2. n is input enabled after r iff Θ; EΘ ⊢ n →֒ o : ∆ or n /∈ ∆ ∪Θ.

Proof. Directly from the definition of enabledness (Definition ??) and using the
properties of Lemma 21. ⊓⊔

The following easy lemma characterizes the change of enabledness when a
trace is extended by a communication label.
32 Remember that the identity of the callee, which replaces the self-parameter of a

method need to be remembered for the purpose of characterizing the legal trace.

58 Proofs

Lemma 24 (Enabledness). Assume a thread name n and a legal trace ∆; E∆ ⊢
r : Θ; EΘ according to Table 13.

1. If a be an input-call label. If n is input-call enabled after r, then it is output-
return enabled after r a.

2. If a is an input-return label and if n is input-return enabled after r, then n
is output enabled after r a.

The situation in both cases is dual for output labels.

Proof. Cf. Definition ?? and Definition 14. Both parts of the Lemma follow
directly from the definition of enabledness. Especially, pop n (r a) = a is a direct
consequence of the definition of pop and balance. ⊓⊔

Lemma 25.

Lemma 26 (Prefix). If ∆; E∆ ⊢ st : trace Θ; EΘ, then ∆; E∆ ⊢ s : trace Θ; EΘ

by a proper sub-derivation, if t is not empty.

Proof. Immediate by the rules of Table ??: each label corresponds to an instance
of one rule. ⊓⊔

The following lemmas states that the type system for legal traces yields a
safe or sound overapproximation of the actual behavior of the labeled transition
system.

Lemma 27 (Soundness of legal traces). If ∆; E∆ ⊢ C : Θ; EΘ and ∆; E∆ ⊢

C : Θ; EΘ
s

=⇒, then ∆; E∆ ⊢ s : trace Θ; E∆.
status: Not yet done.

Proof. ⊓⊔

Lemma 28 (Trace duality). If ∆; E∆ ⊢ s : trace Θ; EΘ, then Θ, EΘ ⊢ s̄ :
trace ∆; E∆.

status: Seems clear.

Proof. By induction on the length of derivation of ∆; E∆ ⊢ s : trace Θ; EΘ. Each
rule of Table 13 has a dual counterpart. ⊓⊔

A.4 Closure

In this section we prove a few simple results about the closure relation. As in
the sequential setting, a component is internally deterministic, the closure set
has a rather simple form: the set of traces is closed under prefixing, and in a
situation where the component is input enabled, the trace can be extended by
an incoming communication.

The following lemma specifically holds only in the single-threaded case.

Lemma 29. If ∆; E∆ ⊢ s1γ! ⊑ s2γ! : trace Θ; EΘ and γ! /∈ s1, s2, then s1 = s2.

Proof. Immediate from the definition of ⊑ and from the assumption that the
output label γ! occurs neither in s1 nor in s2. ⊓⊔

Proofs 59

Lemma 30 (Information order duality). If ∆; E∆ ⊢ s1γ! ⊑ s2γ! : trace Θ; EΘ

and γ! /∈ s1, s2, then Θ; EΘ ⊢ s̄2 ⊑ s̄1 : trace ∆; E∆.

Proof. Immediate from reflexivity of ⊑, trace duality, and Lemma 29. ⊓⊔

The following lemmas for information order closure justifies the definition
the ⊑-relation: If a component realizes a trace s, all traces in the closure, i.e.,
all traces ⊑ s, are also possible.

Lemma 31 (Information order closure). If ∆; E∆ ⊢ C : Θ; EΘ
s2=⇒ and

∆; E∆ ⊢ s1 ⊑ s2 : trace Θ; EΘ, then ∆; E∆ ⊢ C : Θ; EΘ
s1=⇒.

status: seems ok.

Proof. Proceed by induction on the length of the derivation for the statement
∆; E∆ ⊢ s1 ⊑ s2 : trace Θ; EΘ . The cases for reflexivity, transitivity, and prefix-
ing are trivial.

Case: O-Input: ∆; E∆ ⊢ sγ? ⊑ s : trace Θ; EΘ

So we are given ∆; E∆ ⊢ C : Θ; EΘ
s

=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ. According to as-
sumption, sγ? is a legal trace i.e., ∆; E∆ ⊢ sγ? : trace Θ; EΘ, and we distinguish
the two subcases:

Subcase: γ? = n〈call o2.l(~v)〉?
In this case, legality is justified by rule L-CallIn in the last step. Inverting this
rule yields that the component is input enabled, i.e., ∆ ⊢ s ⊲ n〈call o2.~v〉?, and
furthermore that the incoming values meet the assumptions.33 By definition of
enabledness (Definition ??), either n /∈ ∆ and pop n s = ⊥, or pop n s = γ′!
which implies using the two subcases of Lemma 22(??) that either n /∈ dom(Θ)
or Ć = C′ ‖ n〈let x′:T ′ = o2 blocks for o1 in t〉. According to the situation,
the component ∆́; É∆ ⊢ Ć : Θ́; ÉΘ accepts the incoming call by rule CallIn1

respectively CallIn2, and instances of rule BIn.

Subcase: γ? = n〈return(v)〉?
Inverting rule L-ReturnIn gives that pop ns = ν(Θ′).n〈call o2.l(~v)〉!, hence by
Lemma 22(??), Ć is of the form C′ ‖ n〈let x:T = o2 blocks for o1 in t〉, hence
the step can be taken by rule ReturnIn and instances of rule BIn.

⊓⊔

Corollary 1 (Subsumption). If ∆; E∆ ⊢ s2 : trace Θ; EΘ and ∆; E∆ ⊢ s1 ⊑
s2 : Θ; EΘ, then ∆; E∆ ⊢ s1 : trace Θ; EΘ.

status: seem ok

Proof. By definability (Theorem 1), there exists a component Cs2
such that

∆; E∆ ⊢ Cs2
: Θ; EΘ

s2=⇒. By information order closure from Lemma 31 above,

also ∆; E∆ ⊢ Cs1
: Θ; EΘ

s1=⇒, whence the result follows by soundness of traces
from Lemma 27.

Note that the argument did not use the full power of definability of Theo-
rem 1: it suffices that there exists a component Cs2

realizing s2 and all traces
in its closure. The inverse direction that Cs1

does not realize more than those
traces is not needed. ⊓⊔

33 We ignore the static system here.

60 Proofs

A.5 Definability

A.5.1 Synchronization code A core construction we need is to broadcast
connectivity information through the object graph. An important invariant is
that the objects forming a clique are fully connected and reflect the specified
connectivity of the commitment context EΘ. The method of Definition 16 is
responsible for broadcasting any newly learnt names across a clique, thereby
re-establishing the full connectivity of the clique (cf. Lemma ??. The clique
broadcast is done by a method propagate : ~c→ Unit. It takes an array of (object)
names, compares it with the ones the object already knows. If this knowledge
is up-to date, the work is done. Otherwise, the object updates its information
and informs all objects it knows about the newly learned connectivity, which
will propagate them further.

Definition 16 (Propagate). Each object supports a method propagate imple-
mented as:

propagate(~o : ~c) , let ~onew = self .Θ − ~o in
if is empty(~onew)
then ()
else self .Θ := self .Θ + ~onew ;

∀o′ ∈ Θ. o′.propagate(self .Θ) .

(23)

Note that in the recursive self-call of the method, all known objects, i.e., the
value of the instance variable are handed over, not just the newly learnt objects.

The next lemmas characterize the behavior of the propagate method. First
the one as needed in the synchronization code for input. In that situation, the
external input step hands over the argument references by substitution. At this
point, before they are stored in instance variables (done by propagate , btw.), the
component is still fully connected, but since the commitment contexts Θ and EΘ

are already extended to reflect the new information, the component at this very
point does no longer satisfy the commitment in the strict way (i.e., using ⊢S).
The propagation procedure stores the newly learnt connectivity information in
the target object of the communication thereby violating the invariant of full-
connectivity; upon return, full-connectivity is reestablished:34

Lemma 32 (Propagate: Input). Assume a fully-connected component ∆; E∆ ⊢S
C′ ‖ n〈o.propagate(~o); t〉 : Θ; EΘ.

∆; E∆ ⊢S C′ ‖ n〈o.propagate(~o); t〉 : Θ; EΘ =⇒
∆; E∆ ⊢S C′′ ‖ n〈t〉 : Θ, EΘ + (o →֒ ~o, n →֒ [o])

Proof (of the propagation Lemma 32). In absence of interference, the propa-
gate method realizes a standard depth-first graph traversal of the objects of the
clique.35 ⊓⊔
34 As the lemma is formulated to describe the situation immediately after an incoming

communication, the thread n is already visible to the outside.
35 Since the graph structure of the clique is rather simple —the objects are fully con-

nected, with the potential exception of the argument object references. This means

Proofs 61

Next a similar property, now tailored to the situation for output communi-
cation. In that case, the task of the component is to create any required new
objects to be made known to the environment, and it uses the propagate-method
to make the new objects known internally before communicating their identities.

Lemma 33 (Propagate: Output). Assume a well-typed, fully-connected com-
ponent ∆; E∆ ⊢S C : Θ; EΘ of the form

∆; E∆ ⊢S ν(~n:~T , Θ′, ∆′).(C′ ‖ n〈o.propagate(Θ′, ∆′); t〉) : Θ; EΘ ,

where Θ′ and ∆′ are object names bindings with the usual conventions, i.e. Θ′ =
~o:~c and ∆′ = ~o′:~c′ where Θ ⊢ ci : [(Ti)] and ∆ ⊢ c′i : [(Ti)] for all ci and c′j. Assume
further Θ; EΘ ⊢ n →֒ o : ∆, i.e., the thread n is currently visiting o. Then

∆; E∆ ⊢ ν(~n:~T , Θ′, ∆′).(C′ ‖ n〈o.propagate(Θ′, ∆′); t〉) : Θ; EΘ =⇒

∆; E∆ ⊢S ν(~n:~T , Θ′, ∆′).(C′′ ‖ n〈t〉) : Θ; EΘ .

Proof (of the propagation Lemma 33). Analogous to the proof of the propagation
Lemma 32 for input. ⊓⊔

The following corollary combines the previous lemma with the creation of
objects from within the component and thus describes the situation for outgoing
communication, i.e., in particular the situation for Lemma 1

Corollary 2 (Propagate).

∆; E∆ ⊢S ν(~n:~T).C′ ‖ n〈let ~x:~c = o.new(~c) in o.propagate(~x); t〉 : Θ; EΘ =⇒

∆; E∆ ⊢S ν(~n:~T , Θ′, ∆′).C′′ ‖ n〈t〉 : Θ; EΘ

Proof. A direct consequence of the propagation Lemma ?? and the rule from
Table 5 resp. Table ??, in particular Newi and NewOlazy . ⊓⊔

the structure of the graph is not very “deep” and depth-first traversal seems weird
at first sight. For instance, if a clique simply learns one new fresh identity one could
do without recursion just instructing each object within reach, i.e., at a distance of
one, to update its knowledge. The situation is not that simple, however. In the case
when propagation is used to merge two or more cliques, the information of the pre-
viously disjoint cliques has to be combined and broadcast to all members. However,
one could think of more efficient algorithm exploiting better the fact that we are
dealing with groups of fully-connected groups of objects, but efficiency is not our
current concern.

62 Proofs

Proof (of Theorem 1 (Definability)). There are two directions to show. We start
with the easier “if”-direction.

So assume a legal trace ∆; E∆ ⊢ s : trace Θ; EΘ and assume ∆; E∆ ⊢ s′ ⊑

s trace : Θ; EΘ. Then show that ∆; E∆ ⊢ Cs : Θ; EΘ
s′

=⇒. With Lemma 31 it
suffices to show that ∆; E∆ ⊢ Cs : Θ; EΘ

s
=⇒. We prove this by induction on

the definition of Cs, which ultimately means by induction on the length of the
legality derivation for s (cf. the Definition 2).

Case: L-Empty

Immediate, as the empty trace is always possible.

Case: L-CallOut

We are given s = as′, where a = ν(Θ′, ∆′). n〈call o2.l(~v)〉!. By construction,
Cas′ is of the form (cf. Equation 14):

⊢ Cs′ ‖ n〈create(Θ′); propagate(Θ′);wait(o2, ~v); o2.delegate l(o1, ~v); t〉

By the rules of the operational semantics and Lemma ??

Cas′ ∗≡ ν(Θ′).Cs′ ‖ n〈propagate(Θ′);wait(o2, ~v); o2.delegate l(o1, ~v); t〉

⊓⊔

Data structures

Proof (of completeness (Theorem 2)). ⊓⊔status: not done, but with

all other lemmas in place, it’s

simple.

Index

C ⇓cb
, 22

C ⊢ o1 →֒ o2, 14
C ↓b, 22
E∆, 12
E∆ ⊢ o1 ⇌ ~v, 17
∆; E∆ ⊢ C : Θ; EΘ, 14
∆; E∆ ⊢ r ⊲ γ? : Θ; EΘ, 58
∆; E∆ ⊢ v1 ⇌ v2, 13
∆; E∆ ⊢ v1 ⇌→֒ v2 : Θ, 13
∆; E∆ ⊢ ∆́; É∆ ↓∆×(∆+Θ): Θ, 51
∆ ⊢ o :: T , 9, 50
Γ ; ∆ ⊢ o :: T , 9
(|, 40
|), 40
(| |), 40
s̄, 22
γ, 12
γ?, 12
⊑may , 22
⊑trace , 20
nil , 4
!, 51
– , 53
–

τ
−→ , 54

c[(O)] ⊕ (ǎ, t), 45
c[(O)] ⊕ script , 45
o 3 ǎ, 43
ν(Θ, ∆).γ, 25
γ!, 12
π-calculus
– polyadic, 47
pop, 57
propagate , 63
 , 9
script , 45
scripts , 45
τ
−→, 9
a (label), 12
ao, 26
s, 19
to
sync(∆′, Θ′, ǎ), 41

to
sync(~c), 41

abstract syntax, 5
acquaintance, 13

α-conversion, 10
augmentation, 14

balanced, 57
barb on, 22
– strongly, 22
broadcast, 62

caller identity, 18, 19, 26
clique, 13
– synchronization, 37
cloning, 47
completeness, 45
context, 21

definability, 45
dispatch, 44

eager instantiation, 14
enabledness, 58
– input-call, 58
– output-call, 58
external steps, 14

field, 6
– access, 6
– declaration, 6
– update, 6
finish, 4, 24, 29, 31–33, 37, 49, 55, 56, 60

information order
– closure, 61
– duality, 60
information preorder, 27
initial thread, 42
input enabledness, 39
– incoming return, 27
instance closedness, 49
instance variable, 5
instantiation
– typing, 7

label, 12
lazy instantiation
– typing, 7
legal trace, 57
lock, 40

64 Index

may testing preorder, 22
merge operator, 51
method update, 6
mutual exclusion, 40
– deadlock, 40
– fairness, 40
– liveness, 40

operational semantics, 9

projection, 19
– of a trace, 20
propagate, 62

reentrant call, 16
rule
– Red, 9

script, 39
script-consistency, 39
sequential composition, 6
soundness, 23
step

– confluent, 9
– internal, 9
structural congruence, 10
subject reduction, 49
synchronization code
– input, 39
– input call, 39, 44
– input return, 43
– output, 39, 41

thread class, 5
trace, 19
– complementary, 22
– composition, 56
– decomposition, 57
– legal, 25
– prefix closure, 27
trace duality, 60
traces
– soundness, 60

well-connected, 26
write closedness, 6

Index 65

L-Empty

E∆; ∆ ⊢ r ⊲ ǫ : trace Θ; EΘ

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? ∆ ⊢ ǫ ⊲ a : Θ static(∆, Θ) ∆ ⊢ ⊙

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v, n →֒ o2) ∆́; É∆ = ∆; E∆ + ∆′;⊙ →֒ (∆′, Θ′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆́ ⊢ n: thread Θ́ ⊢ n: thread ; ∆́, Θ́ ⊢ ~v : ~T

dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉) ∆́; É∆ ⊢ a⊙ ⊲ s : Θ́; ÉΘ
L-CallIi

∆; E∆ ⊢ ǫ ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). n〈call o2.l(~v)〉! ∆ ⊢ ǫ ⊲ a : Θ static(Θ, ∆) Θ ⊢ ⊙

∆́; É∆ = ∆; E∆ + (∆′; o2 →֒ ~v, n →֒ o2) Θ́; ÉΘ = Θ; EΘ + Θ′;⊙ →֒ (Θ′, ∆′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆́ ⊢ n: thread Θ́ ⊢ n: thread ; ∆́, Θ́ ⊢ ~v : ~T

dom(Θ′, ∆′) ⊆ fn(n〈call o2.l(~v)〉) ∆́; É∆ ⊢ a⊙ ⊲ s : Θ́; ÉΘ
L-CallOi

∆; E∆ ⊢ ǫ ⊲ a s : trace Θ; EΘ

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? ∆ ⊢ o1 : c1 ∆ ⊢ r ⊲ a : Θ

Θ́; ÉΘ = Θ; EΘ + (Θ′; o2 →֒ ~v, n →֒ o2) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′) \n

; Θ́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆́ ⊢ n: thread Θ́ ⊢ n: thread ; ∆́, Θ́ ⊢ ~v : ~T

dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉)

∆́; É∆ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : Θ́ ∆́; É∆ ⊢ r ao1
⊲ s : trace Θ́; ÉΘ

L-CallI

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). n〈return(v)〉! pop n r = ν(∆′′, Θ′′). n〈[o1]call o2.l(~v)〉?

∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ v, n →֒ o1 Θ́; ÉΘ = Θ; EΘ + Θ′; o2 →֒ (Θ′, ∆′) \n

dom(Θ′, ∆′) ⊆ fn(v) Θ ⊢ o2 : [. . . , l:~T → T, . . .] ; ∆, Θ́ ⊢ v : T

Θ́; ÉΘ ⊢ o2 ⇌→֒ v : ∆́ É∆; ∆́ ⊢ r a ⊲ s : trace Θ́; ÉΘ
L-RetO

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). n〈call o2.l(~v)〉! Θ ⊢ o1 : c1 ∆ ⊢ r ⊲ a : Θ

∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ ~v, n →֒ o2 Θ́; ÉΘ = Θ; EΘ + Θ′; o1 →֒ (Θ′, ∆′) \n

; ∆́ ⊢ o2 :: [(. . . , l:~T → T, . . .)] ∆́ ⊢ n: thread Θ́ ⊢ n: thread ; ∆́, Θ́ ⊢ ~v : ~T

dom(Θ′, ∆′) ⊆ fn(n〈call o2.l(~v)〉)

Θ́; ÉΘ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : ∆́ ∆́; É∆ ⊢ r ao1
⊲ s : trace Θ́; ÉΘ

L-CallO

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(∆′, Θ′). n〈return(v)〉? pop n r = ν(Θ′′, ∆′′). n〈[o1]call o2.l(~v)〉!

Θ́; ÉΘ = Θ; EΘ + (Θ′; o1 →֒ v, n →֒ o1) ∆́; É∆ = ∆; E∆ + ∆′; o2 →֒ (∆′, Θ′) \n

dom(∆′, Θ′) ⊆ fn(v) ∆ ⊢ o2 : [. . . , l:~T → T, . . .] ; ∆́, Θ́ ⊢ v : T

∆́; É∆ ⊢ o2 ⇌→֒ v : Θ́ ∆́; É∆ ⊢ r a ⊲ s : trace Θ́; ÉΘ
L-RetI

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

Table 13. Legal traces

66 Index

∆; E∆ ⊢ s ⊑ sr : trace Θ; EΘ O-Pref

∆; E∆ ⊢ sγ? ⊑ s : trace Θ; EΘ O-Input

replay
O-Output

∆; E∆ ⊢ sγ! ⊑ s : trace Θ; EΘ

∆; E∆ ⊢ sγ2?γ1!r ⊑ sγ1!γ2?r : trace Θ; EΘ O-OI

∆; E∆ ⊢ s ⊲ receiver (γ1?) 6⇌ sender(γ2!) : Θ; EΘ

O-IO

∆; E∆ ⊢ sγ2!γ1?r ⊑ sγ1?γ2!r : trace Θ; EΘ

∆; E∆ ⊢ s ν(∆′). γ2? γ1? r ⊑ s ν(∆′). γ1? γ2? r : trace Θ; EΘ O-II

∆; E∆ ⊢ s ν(Θ′). γ2! γ1! r ⊑ s ν(Θ′). γ1! γ2! r : trace Θ; EΘ O-OO

Table 14. Information preorder

T-Empty

∆; E∆ ⊢ 0 : (); ()

∆, Θ2; E∆, EΘ2 ⊢ C1 : Θ1; EΘ1 ∆, Θ1 E∆, EΘ2 ⊢ C2 : Θ2; EΘ2
T-Par

∆; E∆ ⊢ C1 ‖ C2 : Θ1, Θ2; EΘ1 , EΘ2

∆; E∆ ⊢ C : Θ, n:T ; EΘ + n
T-Nu

∆; E∆ ⊢ ν(n:T).C : Θ; EΘ

; ∆, c:T ; E∆ ⊢ [(O)] : T ; ()
T-NClass

∆; E∆ ⊢ c[(O)] : c:T ; ()

; ∆; E∆ ⊢ c : [(T)] ; ∆, o:T ; E∆ ⊢ [O] : [T]
T-NObj

∆; E∆ ⊢ o[O] : o:c; ()

; ∆, n: thread ⊢ t : none
T-NThread

∆ ⊢ n〈t〉 : (n: thread)

∆; E∆ ⊢ ∆′; E′

∆ ∆′; E′

∆ ⊢ C : Θ′; E′

Θ Θ′; E′

Θ ⊢ Θ; EΘ

T-Weaken

∆; E∆ ⊢ C : Θ; EΘ

Table 15. Static semantics with connectivity (configurations)

Index 67

tire ::= ti

body ; tie
tie ::= tire

| ǫ
ti

body ::= let y:T ′ = o1 blocks for o2

in (let x:T = ti
sync(y, ǎ); toe ; to

sync; v in o2 return to o1 x)
ti

body ::= let y:T ′ = o1 blocks for o2

in ti
sync(y); (let x:T = toe ; to

sync; v in o2 return to o1 x)
tore ::= to

body ; tie
to

body ::= let x:T = toe ; to
sync ; v in o2 return to o1 x

| stop
toe ::= to

sync; (let y:T = o.l(~v) in ti
sync(y)); toe

| ǫ

Table 16. Input and output enabled threads

0 ! C ≡ C
(ν(n:T).C1) ! C2 ≡ ν(n:T).(C1 ! C2) n /∈ fn(C2)
(o[O] ‖ C1) ! C2 ≡ o[O] ‖ (C1 ! C2)

(c[(O)] ‖ C1) ! C2 ≡ c[(O)] ‖ (C1 ! C2)
(n〈t〉 ‖ C1) ! C2 ≡ n〈t〉 ‖ (C1 ! C2) n /∈ dom(C2)

(n〈t1〉 ‖ C1) ! (n〈t2〉 ‖ C2) ≡ n〈t1 ! t2〉 ‖ (C1 ! C2) n /∈ dom(C2)

(let x:T = o1 blocks for o2 in t) ! stop ≡ stop
(let x:T = o1 blocks for o2 in t) ! v ≡ v
(let x:T = o1 blocks for o2 in t1) !

(let y:T ′ = o2 return to o1 v; t′2) ≡ t1[v/x] ! t′2
(let x:T = o1 blocks for o2 in t1) ! (let y:T ′ = e in t2) ≡ let y:T ′ = e in

((let x:T = o1 blocks for o2 in t1) ! t2)

Table 17. Merge

