
Object Connectivity and Full Abstraction

for a Concurrent Calculus of Classes⋆

— Extended Abstract —

December 6, 2004

Erika Ábrahám2, Marcello M. Bonsangue3,
Frank S. de Boer4, and Martin Steffen1

1 Christian-Albrechts-University Kiel, Germany
2 University Freiburg, Germany

3 University Leiden, The Netherlands
4 CWI Amsterdam, The Netherlands

Abstract. The concurrent object calculus has been investigated as a
core calculus for imperative, object-oriented languages with multithread-
ing and heap-allocated objects. The combination of this form of concur-
rency with objects corresponds to features known from the popular lan-
guage Java. One distinctive feature, however, of the concurrent object
calculus is that it is object-based, whereas the mainstream of object-
oriented languages is class-based.

This work explores the semantical consequences of introducing classes
to the calculus. Considering classes as part of a component makes in-
stantiation a possible interaction between component and environment.
A striking consequence is that to characterize the observable behavior
we must take connectivity information into account, i.e., the way objects
may have knowledge of each other. In particular, unconnected environ-
ment objects can neither determine the absolute order of interaction and
furthermore cannot exchange information to compare object identities.
We formulate an operational semantics that incorporates the connectiv-
ity information into the scoping mechanism of the calculus. As instanti-
ation itself is unobservable, objects are instantiated only when accessed
for the first time (“lazy instantiation”).
Furthermore we use a corresponding trace semantics for full abstraction
wrt. a may-testing based notion of observability.
Keywords: multithreading, class-based object-oriented languages, for-
mal semantics, full abstraction

1 Introduction

The notion of component is well-advertised as structuring concept for software
development. Even if there is not too much agreement about what constitutes a

⋆ Part of this work has been financially supported by the IST project Omega (IST-
2001-33522) and the NWO/DFG project Mobi-J (RO 1122/9-1/2).

http://www-omega.imag.fr/
http://www.informatik.uni-kiel.de/protect unhbox voidb@x penalty @M {}mobij/

component in concrete software engineering terms, one aspect should go undis-
puted: At the bottom line, a component means a “program fragment” being
composed, which raises the question what the semantics of a component is. A
natural approach is to take an observational point of view: two components are
observably equivalent, when no observing context can tell them apart.

In the context of concurrent, object-based programs and starting from may-
testing as a simple notion of observation, Jeffrey and Rathke [7] provide a fully
abstract trace semantics for the language. Their result roughly states that, given
a component as a set of objects and threads, the fully abstract semantics consists
of the set of traces at the boundary of the component, where the traces record
incoming and outgoing calls and returns. At this level, the result is as one would
expect, since intuitively in the chosen setting, the only possible way to observe
something about a set of objects and threads is by exchanging messages.

The result in [7] is developed within the concurrent object calculus [5], an
extension of the sequential ν-calculus [10] which stands in the tradition of various
object calculi [1] and also of the π-calculus [9,11]. The chosen language has
been proposed as core calculus for imperative, object-oriented languages with
multithreading and heap-allocated objects, but distinctive feature is that it is
object-based, which in particular means that there are no classes as templates for
new objects. This is in contrast to the mainstream of object-oriented languages
where the code is organized in classes, one well-known example being Java. This
work addresses therefore the following question:

What changes when switching from an object-based to a class-based
setting, a setting which corresponds to features as found in a language
like multithreaded Java or C#?

Considering the observable behavior of a component, we have to take into
account that in addition to objects, which are the passive entities containing
the instance state, and threads, which are the active entities, classes come into
play. Classes serve as a blueprint for their instances and can be conceptually
understood as particular objects supporting just a method which allows to gen-
erate instances. Indeed, ultimately, the observer consists only of classes since the
program code is structured into classes, and objects exist only at run-time.

Crucial in our context is that now the division between the program frag-
ment under observation and its environment also separates classes: There are
classes internal to the component and those belonging to the environment. As a
consequence, not only calls and returns are exchanged at the interface between
component and environment, but instantiation requests, as well. This possibility
of cross-border instantiation is absent in the object-based setting: Objects are
created by directly providing the code of their implementation, not referring to
the name of a class, which means that the component creates only component-
objects and dually the environment only environment objects.

To understand the bearing of this change on what is observable, we con-
centrate on the issue of instantiation across the demarcation line between com-
ponent and its environment. The environment is considered as the observing

context which tries to determine the behavior of the component or program
under observation. So imagine that the component creates an instance of an en-
vironment class, and the first question is: does this yield a component object or
an environment object? As the code of the object is in the hand of the observer,
namely being provided by the external class, the further interaction between
the component and the newly created object can lead to observable effects and
must thus be part of the behavior at the component’s interface. In other words,
instances of environment classes belong to the environment, and dually those of
internal classes to the component.

To obtain a semantics which is abstract enough, it is crucial not just to cover
all possible interface behavior —there is little doubt that sequences of calls,
returns, and instantiations with enough information at the labels would do—
but to capture it exactly, i.e., to exclude impossible environment interaction.
As an obvious example: two consecutive calls from the same thread without
outgoing communication in between cannot be part of the component behavior.

Whereas in the above situation, the object is instantiated to be part of the
environment, the reference to it is kept at the creator, for the time being. So
in case an object of the program, say o1 instantiates two objects o2 and o3 of
the environment, the situation informally looks as shown in Figure 1, where the
dotted bubbles indicate the scope of o2, respectively of o3.

o1

o2

o3

c1 c2 c3

program environment

Fig. 1. Instances of external classes

In this situation, an incoming call from
the environment carrying both names o2

and o3 is impossible, as the only entity
aware of both references is o1. Unless the
component gives away the references to
the environment, o2 and o3 are and re-
main completely separated.

Thus, to exclude impossible combina-
tions of object references in the commu-
nication labels, the component must keep
track of which objects of the environ-
ment are connected. The component has,
of course, by no means full information

about the complete system; after all it can at most trace what happens at the
interface, and the objects of the environment can exchange information “be-
hind the component’s back”. Therefore, the component must conservatively over-
approximate the potential knowledge of objects in the environment, i.e., it must
make worst-case assumptions concerning the proliferation of knowledge, which
means it must assume that

1. once a name is out, it is never forgotten, and
2. if there is a possibility that a name is leaked from one environment object

to another, this will happen.

Sets of environment objects which can possibly be in contact with each other
form therefore equivalence classes of names —we call them cliques— and the
formulation of the semantics must contain a representation of them. New cliques

can be created, as new objects can be instantiated without contact to others, and
furthermore cliques can merge, if the component leaks the identity of a member
of one clique to a member of another.

This paper investigates a class-based variant of the object calculus, formal-
izing the ideas sketched above about cliques of objects. Instantiation itself, even
across the environment-program boundary, is unobservable, since the calculus
does not have constructor methods. In the semantics, an externally instantiated
object is created only at the point when it is actually accessed the for the first
time, which we call “lazy instantiation”. For want of space, we concentrate here
on the intuition and stress the differences to the object-based setting. For deeper
coverage we refer to the technical reports [2] and [3].

The paper is organized as follows. Section 2 contains the syntax of the calcu-
lus in which the result is presented, and a sketch of its semantics. In particular,
the notions of lazy instantiation and connectivity of objects are formalized. Af-
terwards, Section 3 elaborates on the trace semantics, Section 4 fixes the notion
of observability, and Section 5 states the full abstraction result. Finally in Sec-
tion 6, we discuss related work.

2 A concurrent class calculus

In this section, we present the calculus used in our development. As we con-
centrate on the semantical issues of connectivity of objects and the interface
behavior of a component, we only sketch the syntax, ignore typing issues and
also omit structural equivalence rules, as they are rather standard. As mentioned,
the reader will find details in the accompanying technical report.

The calculus is a syntactic extension of the concurrent object calculus from
[5,7]. The basic change is the introduction of classes, where a class is a named
collection of methods. In contrast to object references, class names are literals
introduced when defining the class; they may be hidden using the ν-binder but
unlike object names, the scopes for class names are static. Object names, on the
other hand, are first-order citizens of the calculus in that they can be stored
in variables, passed to other objects as method parameters, making the scoping
dynamic, and especially they can be created freshly by instantiating a class.

A program is given by a collection of classes. A class c[(O)] carries a name c

and defines the implementation of its methods and fields. An object o[c, F] stores
the current value of the fields or instance variables and keeps a reference to the
class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xn:Tk).t provides the method
body abstracted over the ς-bound “self” parameter and the formal parameters of
the method [1]. Besides named objects and classes, the dynamic configuration of
a program can contain as active entities named threads n〈t〉, which, like objects,
can be dynamically created. Unlike objects, threads are not instantiated by some
statically named entity (a “thread class” as in Java), but directly created by
providing the code. A thread basically is either a value (especially a reference
to another named entity) or a sequence of expressions, notably method calls

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | n〈t〉 program
O ::= M, F object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | n.l := v | currentthread

| new n | new〈t〉
v ::= x | n values

Table 1. Abstract syntax

(written o.l(~v)) and creation of new objects and new threads (new c and new〈t〉
where c is a class name and t a thread). We will generally use n and its syntactic
variants as name for threads (or just in general for names), o for objects, and c

for classes. Furthermore we will use f specifically for instance variables or fields,
we use f = v for field variable declaration, field access is written as x.f , and
field update5 as f.x := v.

Concerning the operational semantics of the calculus, the basic steps are
mainly given in two levels: internal steps whose effect is confined within a com-
ponent, and those with external effect. Interested mainly in the external behavior
we elide the definition of the internal steps.

The external behavior of a component is given in terms of labeled transi-
tions describing the communication at the interface of an open program. For the
completeness of the semantics, it is crucial ultimately to consider only commu-
nication traces realizable by an actual program context which, together with the
component, yields a well-typed closed program.

The concentration on actually realizable traces has various aspects, e.g., the
transmitted values need to adhere to the static typing assumptions, only publicly
known objects can be called from the outside, and the like. Being concerned with
the dynamic relationship among objects, we omit also these aspects here. Besides
that, this part is rather standard and also quite similar to the one in [7].

2.1 Connectivity contexts and cliques

The informal discussion in the introduction argued that in the presence of in-
ternal and external classes and cross-border instantiation, the component must
keep track of which identities it gives away to which objects in order to exclude
impossible behavior as described for instance in connection with Figure 1. The
external semantics is formalized as labeled transitions between judgments of the

5 We don’t use general method update as in the object-based calculus.

form

∆; E∆ ⊢ C : Θ; EΘ , (1)

where ∆; E∆ are the assumptions about the environment of the component C

and Θ; EΘ the commitments ; alternative names are the required and the pro-
vided interface of the component. The assumptions consist of a part ∆ concerning
the existence (plus static typing information) of named entities in the environ-
ment. For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation

of object names from the assumption context ∆ amongst each other, and the
knowledge of objects from ∆ about those exported by the component, i.e., those
from Θ. 6 In analogy to the name contexts ∆ and Θ, E∆ expresses assumptions
about the environment, and EΘ commitments of the component:

E∆ ⊆ ∆× (∆ + Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + ∆). We write o1 →֒ o2 (“o1 may know o2”) for pairs
from these relations. As mentioned, the component does not have full informa-
tion about the complete system and thus it must make worst-case assumptions
concerning the proliferation of knowledge. These worst-case assumptions are
represented as the reflexive, transitive, and symmetric closure of the →֒-pairs of
objects from ∆ the component maintains. Given ∆, Θ, and E∆, we write ⇌ for
this closure, i.e.,

⇌ , (→֒↓∆ ∪ ←֓↓∆)∗ ⊆ ∆×∆ . (3)

Note that we close →֒ only wrt. environment objects, but not wrt. objects at
the interface, i.e., the part of →֒ ⊆ ∆×Θ. We also need the union ⇌ ∪⇌; →֒
⊆ ∆ × (∆ + Θ), where the semicolon denotes relational composition. We write
⇌→֒ for that union. As judgment, we use ∆; E∆ ⊢ v1 ⇌ v2 : Θ, respectively
∆; E∆ ⊢ v1 ⇌→֒ v2 : Θ. For Θ, EΘ, and ∆, the definitions are applied dually.

The relation ⇌ is an equivalence relation on the objects from ∆ and partitions
them into equivalence classes. As a manner of speaking, we call a set of object
names from ∆ (or dually from Θ) such as for all objects o1 and o2 from that
set, ∆; E∆ ⊢ o1 ⇌ o2 : Θ, a clique, and if we speak of the clique of an object we
mean the whole equivalence class.

2.2 External steps

The external semantics is given by transitions between ∆; E∆ ⊢ C : Θ; EΘ judg-
ments (cf. Table 3). Besides internal steps a component exchanges information

6 Besides the relationships amongst objects, we need to keep one piece of information
concerning the “connectivity” of threads. To exclude situations where a known thread
leaves the component into one clique of objects but later returns to the component
coming from a different clique without connection to the first, we remember for each
thread that has left the component the object from ∆ it has left into.

with the environment via calls and returns. Using a lazy instantiation scheme for
cross-border object creation, there are no separate external labels for new -steps.
Thus, core labels γ are of the form n〈call o.l(~v)〉 and n〈return(v)〉. Names may
occur bound in a label ν(n:T).γ, and receiving and sending labels are written as
γ? and γ!. In this extended abstract, we omit the typing premises in the opera-

γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 2. Labels

tional rules (“only values consistent with the static typing assumptions may be
received” and the like) as they are straightforward and we concentrate on the
novel aspects, namely the connectivity information.

Connectivity assumptions and commitments As for the relationship of
communicated values, incoming and outgoing communication play dual roles:
EΘ overapproximates the actual connectivity of the component, while the as-
sumption context E∆ is consulted to exclude impossible combinations of in-
coming values. Incoming calls update the commitment context EΘ in that it
remembers that the callee o2 now knows (or rather may know) the arguments ~v,
and furthermore that the thread n has entered o2. For incoming communication
(cf. rules CallI2 and RetI)7 we require that the sender be acquainted with the
transmitted arguments.

For the role of the caller identity o1, a few more words are in order. The
antecedent of the call-rules requires, that the caller o1 is acquainted with the
callee o2 and with all of the arguments. However, the caller is not transmitted
in the label which means that it remains anonymous to the callee.8 To gauge,
whether an incoming call is possible and to adjust the book-keeping about the
connectivity appropriately, in particular when returning later, the transition
chooses among possible sources of the call. With the sole exception of the initial
(external) step, the scope of at least one object of the calling clique must have
escaped to the component, for otherwise there would be now way of the caller to
address o2 as callee. In other words, for at least one object o1 from the clique of
the actual caller (which remains anonymous), the judgment ∆ ⊢ o1:c holds prior
to the call. Furthermore it must be checked that the incoming thread originates

7 We omit rules dealing with the initial situation where the first thread crosses the
interface between environment and component.

8 Of course, the caller may transmit its identity to the callee as part of the arguments,
but this does not reveal to the callee who “actually” called. Indeed, the actual
identity of the caller is not needed; it suffices to know the clique of the caller. As
representative for the clique, an equivalence class of object identities, we simply pick
one object.

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? dom(∆′, Θ′) ⊆ fn(n〈call o2.l(~v)〉)

Θ́; ÉΘ = Θ; EΘ + (Θ′; n →֒ o2 →֒ ~v) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′) \n

∆́; É∆ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : Θ́ tblocked = let x′:T ′ = o′

2
blocks for o′

1
in t

CallI2

∆; E∆ ⊢ C ‖ n〈tblocked〉 : Θ; EΘ

a
−→

∆́; É∆ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = o2.l(~v) in o2 return to o1 x; tblocked〉 : Θ́; ÉΘ

a = ν(Θ′, ∆′). n〈return(v)〉! (Θ′, ∆′) = fn(v) ∩ Φ Φ́ = Φ \(Θ′, ∆′)

∆́; É∆ = ∆; E∆ + ∆′; (n →֒ o1 →֒ v) Θ́; ÉΘ = Θ; EΘ + Θ′; E(Ć, Θ′) \n
RetO

∆; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = o2 return to o1 v in t〉) : Θ; EΘ

a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ n〈t〉) : Θ́; ÉΘ

a = ν(Θ′, ∆′). n〈call o2.l(~v)〉! (Θ′, ∆′) = fn(n〈call o2.l(~v)〉 ∩ Φ

Φ́ = Φ \(Θ′, ∆′) o2 ∈ dom(∆́)

∆́; É∆ = ∆; E∆ + ∆′; (n →֒ o2 →֒ ~v) Θ́; ÉΘ = Θ; EΘ + Θ′; E(Ć, Θ′) \n
CallO

∆; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = [o1] o2.l(~v) in t〉) : Θ; EΘ

a
−→

∆́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = o1 blocks for o2 in t〉) : Θ́; ÉΘ

a = ν(∆′, Θ′). n〈return(v)〉? dom(∆′, Θ′) ⊆ fn(v)

Θ́; ÉΘ = Θ; EΘ + Θ′, (n →֒ o1 →֒ v) ∆́; É∆ = ∆; E∆ + ∆′, (o2 →֒ (∆′, Θ′)) \n

∆́; É∆ ⊢ o2 ⇌→֒ v : Θ́
RetI

∆; E∆ ⊢ C ‖ n〈let x:T = o1 blocks for o2 in t〉 : Θ; EΘ

a
−→ ∆́; É∆ ⊢ C ‖ n〈t[v/x]〉 : Θ́; ÉΘ

c ∈ dom(∆)
NewOlazy

∆; E∆ ⊢ n〈let x:c = new c in t〉 : Θ; EΘ ∆; E∆ ⊢ ν(o3:c).n〈let x:c = o3 in t〉 : Θ; EΘ

Table 3. External steps

from a group of objects in connection with the one to which the thread had left
the component the last time: ∆́; É∆ ⊢ n ⇌ o1 : Θ́. Once chosen, the assumed
identity of the caller is remembered as part of the return-syntax.

It is worth mentioning that in rule RetI the proviso that the callee o2 knows
indirectly the caller o1, i.e., ∆; E∆ ⊢ o2 ⇌→֒ o1 : Θ is not needed. Neither is it
necessary to require in analogy to the situation for the incoming call that the
thread is acquainted with the callee. If fact, both requirements will be automat-
ically assured for traces where calls and returns occur in correct manner.

A commonality for incoming communications from a thread n is that the
(only) pair n →֒ o for some object reference o is removed from E∆, for which we
write E∆ \n. While E∆ imposes restrictions for incoming communication, the
commitment context EΘ is updated when receiving new information. For instance
in CallI2, the commitment ÉΘ after reception marks that now the callee o2 is
acquainted with the received arguments and furthermore that the thread n is
visiting (for the time being) the callee o2. For outgoing communication, the E∆

and EΘ play dual roles. In the respective rules, E(Ć, Θ′) stands for the actual
connectivity of the component after the step, which needs to be made public in
the commitment context, in case new names escape to the environment.

Scoping and lazy instantiation In the explanation so far, we omitted the
handling of bound names, in particular bound object references. In the presence
of classes, a possible interaction between component and environment is in-
stantiation. Without constructor methods and assuming an infinite heap space,
instantiation itself has no immediate, observable side-effect. An observable effect
is seen only at the point when the object is accessed.

Rule NewOlazy describes the local instantiation of an external class. Instead
of exporting the newly created name of the object plus the object itself immedi-
ately to the environment, the name is kept local until, if ever, it gets into contact
with the environment. When this happens, the new instance will not only be-
come known to the environment, but the object will also be instantiated in the
environment.

For incoming calls, for instance, the binding part is of the form (∆′, Θ′) where
we mean by convention, that ∆′ are the names being added to ∆, and analogously
for Θ′ and Θ. For object names, the distinction is based on the class types. For
thread names, the reference is contained in ∆′ and Θ′, and class names are never
transmitted. For the object names in the incoming communication ∆′ contains
the external references which are freshly introduced to the component by scope
extrusion. Θ′ on the other hand are the objects which are lazily instantiated as
side-effect of this step, and which are from then on part of the component. In
the rules, the newly instantiated objects are denoted as C(Θ′).

Note that whereas the acquaintance of the caller with the arguments trans-
mitted free is checked against the current assumption, acquaintance with the
ones transmitted bound is added to the assumption context.

3 Trace semantics and ordering on traces

Next we present the semantics for well-typed components, which, as in the
object-based setting, takes the sequences of external steps of the program frag-
ment as starting point.

Not surprisingly, a major complication now concerns the connectivity of ob-
jects. In this context, the caller identity, while not visible by the callee, plays
a crucial role in keeping track of assumed connectivity, in particular to connect
the effect of a return to a possible caller clique. To this end, the operational
semantics hypothesizes about the originator of incoming calls and remembers
the guess as “auxiliary” annotation in the code for return (cf. rule L-CallI2

from Table 3).
The (hypothetical) connectivity of the environment influences what is observ-

able. Very abstractly, the fact the observer falls into a number of independent
cliques increases the “uncertainty of observation”. We can point to two reasons

responsible for this effect. One is that separate observer cliques cannot deter-
mine the relative order of events concerning only one of the environment cliques.
To put it differently: a clique of objects can only observe the order of events
projected to its own members. We will worry about this later when describing
the all possible reorderings or interleavings of a given trace. Secondly, separate
observers cannot cooperate to compare identities. This means, as long as sep-
arated, the observers cannot find out whether identities sent to each of them
separately are the same or not. In terms of projections to the observing clique
it means that local projections are considered up to α-conversion, only.

The above discussion should not mislead us to think that the behavior of two
observing cliques is completely independent. One thing to keep in mind is that
the observers can merge. This means that identities, separate and local prior to
the merge, become comparable, and the now joint clique can find out whether
local interaction of the past used the same identities or not. The absolute order
of local events of the past, however, cannot be reconstructed after merging.

Another more subtle point, independent from merging of observers, is that to
a certain degree, the events local to one clique do influence interaction concerning
another clique. This in other words implies that considering only the separate
local projections of a global behavior to the observers is too abstract to be sound.

To understand the point, consider as informal example a situation of a com-
ponent C1 with two observing cliques in the environment and a sequence s of
labels at the interface of the component being observed. Assume further that s1

is the projection of s to the first observer and s2 the projection to the second,
and assume that s = s1s2 meaning that s1 precedes s2 when considered as global
behavior. For sake of the argument, assume additionally that C1 is not able to
perform the interaction in the swapped order s2s1. Given a second component
C2 being more often successful, i.e., that C1 ⊑may C2, what does this imply
for C2’s behavior? The definition of may-preorder is given in Section 4. For the
moment, being successful can be thought of being able to reach some predefined
point which counted as success.

Since the environment can be programmed in such a way that it reports
success only after completing s1 resp. s2, it is intuitively clear that C2 must
be able to exhibit s1 resp. s2. But the environment cannot observe whether C2

performs s1 and s2 in the same run, as does C1. We can only be sure that
there is a run of C2 which is able to do s1 and a (potentially different) one
which does s2, each of which is taken as independent sign of success. This does
not mean, however, that the order of s1s2 does not play a role at all. Consider
for illustration the situation where C2 can perform s2s1 but not s1s2 as C1:
In this case, C1 6⊑may C2, i.e., C2 is not successful while C1 is, namely in an
environment where s2 is possible and reports success but s1 can be hindered from

completion. In other words, taking the behavior s1s2 of C1 as starting point we
cannot consider in isolation the fact that s2 is possible by C2 as well, the order
of s1 preceding s2 is important inasmuch as it s1 can prevent success for s2. So
C1 6⊑may C2 and the fact that C1 performs the sequence s1s2 means, that C2

can perform s2 after a prefix of s1. Since the common environment has already

proven in cooperation with C1 that it is able to perform s1, it cannot prevent
success of C2 by blocking.

To sum up and independently of the details: to capture the observable be-
havior appropriately, we need to be able to define the projection of the external
steps to the observer cliques. Now the labels for method calls in the external se-
mantics do not contain information concerning the caller, which means given a
trace as a sequence of labels, we have no indication for incoming calls concerning
the originating environment clique.9

A way to remedy this lack of information is to augment the labels as recorded
in the traces by the missing information. So instead of the call label described in
Section 2.2, we use n〈[o1]call o2.l(~v)〉 as annotated call label, where o1 denotes
the caller, respectively the clique of the caller. The augmented transitions are
generated simply by using the caller rules from Table 3 where the caller is added
to the transition labels in the obvious way.

A trace of a well-typed component is a sequence s of external steps, where
we write ∆1; E∆1

⊢ C1 : Θ1; EΘ1

s
=⇒ ∆2; E∆2

⊢ C2 : Θ2; EΘ2
. For ∆1; E∆1

⊢

C1 : Θ1; EΘ1

ǫ
=⇒ ∆2; E∆2

⊢ C2 : Θ2; EΘ2
, we write shorter ∆1; E∆1

⊢ C1 :
Θ1; EΘ1

=⇒ ∆2; E∆2
⊢ C2 : Θ2; EΘ2

.

With this information we can define the projection of a trace onto a clique
as the part of the sequence containing all the labels with objects from that
clique. Remember that a clique of an object o ∈ Θ consists of all objects from
Θ acquainted with o. Thus the equivalence ⇌ partitions Θ into equivalence
classes, and formally we could write [o]/EΘ

or [o]/⇌
for that equivalence class.

For simplicity, we often just write [o].

The definition of projection of an (augmented) trace onto a clique of environ-
ment objects is straightforward, one simply jettisons all actions not belonging to
that clique. One only has to be careful dealing with exchange of bound names,
i.e., scope extrusion, since names sent for the first time to a clique are to be
considered as locally fresh, even if the name may globally be known to other
environment cliques.

We can now define the order on traces as follows.

Definition 1. ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 : Θ; EΘ, if the following

holds. If ∆; E∆ ⊢ C1 : Θ; EΘ
sa

=⇒ ∆′; E′
∆ ⊢ C′

1 : Θ′; E′
Θ, then ∆; E∆ ⊢ C2 :

Θ; EΘ
t

=⇒ ∆′′; E′′
∆ ⊢ C′′

2 : Θ′′; E′′
Θ such that

– t ↓[o′′]= sa ↓[oa] for some clique [o′′] according to Θ′′; E′′
Θ and when [oa] is

the environment clique to which label a belongs, and

– for all cliques [o′′] according to ∆′′; E′′
∆, there exists a clique [o′] according

to ∆′; E′
∆ such that t ↓[o′′]4 sa ↓[o′].

9 For outgoing calls, the relevant environment clique is mentioned explicitly as the
receiver of the call. Concerning returns, the concerned environment clique is deter-
mined by the matching call.

4 Notion of observation

Full abstraction is a comparison between two semantics, where the reference
semantics to start from is traditionally contextually defined and based on a
some notion of observability.

As starting point we choose, as [7], a (standard) notion of semantic equiva-
lence or rather semantic implication —one program allows at least the observa-
tions of the other— based on a particular, simple form of contextual observation:
being put into a context, the component, together with the context, is able to
reach a defined point, which is counted as the successful observation. A context
C[] is a program “with a hole”. In our setting, the hole is filled with a program
fragment consisting of a component C in the syntactical sense, i.e., consisting of
the parallel composition of (named) classes, named objects, and named threads,
and the context is the rest of the programs such that C[C] gives a well-typed
closed program ∆; E∆ ⊢ C′ : Θ; EΘ, where closed means that it can be typed in
the empty contexts, i.e., ⊢ C′ : ().

To report success, we assume an external class with a particular success-
reporting method. So assume a class cb of type [(succ : () → none)], abbre-
viated as barb. A component C strongly barbs on cb, written C ↓cb

, if C ≡

ν(~n:~T , b:cb).C
′ ‖ n〈let x:none = b.succ() in t〉, i.e., the call to the success-method

of an instance of cb is enabled. Furthermore, C barbs on cb, written C ⇓cb
, if it

can reach a point which strongly barbs on cb, i.e., C =⇒ C′ ↓cb
. We can now

define may testing preorder [6] as in [7].

Definition 2 (May testing). Assume ∆; E∆ ⊢ C1 : Θ; EΘ and ∆; E∆ ⊢ C2 :
Θ; EΘ. Then ∆; E∆ ⊢ C1 ⊑may C2 : Θ; EΘ, if (C1 ‖ C) ⇓cb

implies (C2 ‖ C) ⇓cb

for all Θ, cb:barb; EΘ ⊢ C : ∆; E∆.

5 Full abstraction

The proof that may-testing coincides with order on traces given in Definition 1
has two directions: compared to ⊑may , the relation ⊑trace is neither too abstract
(soundness) nor too concrete (completeness).

For lack of space, we simply state the soundness result here. The proof is
rather similar to the one for the object-based case [7] and rests on the ability to
compose a component and an environment, performing complementary traces,
into one global program (plus the dual property of decomposition). We refer to
the full version [3] for details.

Proposition 1 (Soundness). If ∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 :
Θ; EΘ, then ∆; E∆ ⊢ C1 ⊑may C2 : Θ; EΘ.

Completeness asserts the reverse direction:

Proposition 2 (Completeness). If ∆; E∆ |= C1 ⊑may C2 : Θ; EΘ, then

∆; E∆ ⊢ C1 : Θ; EΘ ⊑trace ∆; E∆ ⊢ C2 : Θ; EΘ.

Concerning completeness, we sketch here one core aspect part of the argu-
ment. At the heart, completeness is a constructive argument: given a trace s,
construct a component Cs that exhibits the trace s and not simply realize the
trace, but realize it exactly, up-to unavoidable reordering and prefixing.

Legal traces To do so, we must first characterize which traces (the “legal” ones)
can occur at all, and again the crucial difference to the object-based case is to
take connectivity into account to exclude impossible combinations of transmitted
object names and threads.

The legal traces are specified by a system for judgments of the form ∆; E∆ ⊢
r ⊲ s : trace Θ; EΘ stipulating that under the type and relational assumptions
∆ and E∆ and with the commitments Θ and EΘ, the trace s is legal. Three ex-
emplary rules for legal traces are shown in Table 4; not shown are two dual rules
for outgoing calls and incoming returns, and furthermore two rules specifying
the situation for the initial calls, which are similar to L-CallI. For simplicity,
we omit premises dealing with static aspects of typing, as we did for the exter-
nal semantics. As in the operational semantics, the caller identity, even if not
part of the label, is guessed and remembered, here in the history r. The premise
∆ ⊢ r ⊲ a : Θ asserts that after r, the action a is enabled, and pop n r picks the
call matching the return in question. See [3] for details.

L-Empty

∆; E∆ ⊢ r ⊲ ǫ : trace Θ; EΘ

a = ν(∆′, Θ′). n〈call o2.l(~v)〉? ∆ ⊢ o1 : c1 ∆ ⊢ r ⊲ a : Θ

Θ́; ÉΘ = Θ; EΘ + (Θ′; n →֒ o2 →֒ ~v) ∆́; É∆ = ∆; E∆ + ∆′; o1 →֒ (∆′, Θ′) \n

∆́; É∆ ⊢ n⇌ o1 ⇌→֒ ~v, o2 : Θ́ ∆́; É∆ ⊢ r ao1
⊲ s : trace Θ́; ÉΘ

L-CallI

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

a = ν(Θ′, ∆′). n〈return(v)〉! pop n r = ν(∆′′, Θ′′). n〈[o1]call o2.l(~v)〉?

∆́; É∆ = ∆; E∆ + ∆′; n →֒ o1 →֒ v Θ́; ÉΘ = Θ; EΘ + Θ′; o2 →֒ (Θ′, ∆′) \n

Θ́; ÉΘ ⊢ o2 ⇌→֒ v : ∆́ ∆́; É∆ ⊢ r a ⊲ s : trace Θ́; ÉΘ

L-RetO

∆; E∆ ⊢ r ⊲ a s : trace Θ; EΘ

Table 4. Legal traces

6 Conclusion

Inspired by the work of [7], we presented an operational semantics of a class-
based, object-oriented calculus with multithreading. The seemingly innocent step
from an object-based setting as in [7] to a framework with classes requires quite
some extension in the operational semantics to characterize the possible behav-
ior of a component. In particular it is necessary to keep track of the potential

connectivity of objects of the environment to exclude impossible communication
labels. It is therefore instructive, to review the differences in this conclusion,
especially to try to understand how the calculus of [7] can be understood as a
special case of the framework explored here.

The fundamental dichotomy underlying the observational definition of equiv-
alence is the one between the inside and the outside: program or component vs.
environment or observer, or in game-theoretical terms, player vs. opponent. This
leads to the crucial difference between object-based languages, instantiating from
objects, and class-based language, instantiating from classes: In the class-based
setting, instantiation may cross the demarcation line between component and

environment, while in the object-based setting, this is not possible: the program
only instantiates program objects, and the environment only objects belonging
to the environment. All other complications follow from this difference, the most
visible being that it is necessary to represent the dynamic object structure into
the semantics, or rather an approximation of the connectivity of the environ-
ment objects. Another way to see it is, that in the setting of [7], there is only
one clique in the environment, i.e., in the worst case, which is the relevant one,
all environment objects are connected with each other. Since the component
cannot create environment objects (or vice versa), new isolated cliques are never
created. The object-based case can therefore be understood by invariantly (and
trivially) taking E∆ = ∆ × (∆ + Θ), while in our setting, E∆ may be more
specific.

Further related work [12] investigates the full abstraction problem in an ob-
ject calculus with subtyping. The setting is a bit different from the one as used
here as the paper does not compare a contextual semantics with a denotational
one, but a semantics by translation with a direct one. The paper considers neither
concurrency nor aliasing. [4] presents a full abstraction result for the π-calculus,
the standard process algebra for name passing and dynamically changing process
structures. The extensional semantics is given as a domain-theoretic, categori-
cal model, and using bisimulation equivalence as starting point, not may testing
resp. traces as here. [13] gives equational full abstraction for standard translation
of the polyadic π-calculus into the monadic one. Without additional information,
the translation is not fully abstract, and [13] introduces graph-types as an ex-
tension to the π-calculus sorting to achieve full abstraction. The graph types
abstract the dynamic behavior of processes. In capturing the dynamic behavior
of interaction, Yoshida’s graph types are rather different from the graph abstract-
ing the connectivity of objects presented here. Recently, Jeffrey and Rathke [8]
extended their work on trace-based semantics from an object-based setting to a
core of Java (called Java Jr.), including classes and subtyping. However, their
semantics avoids the issue of object connectivity by using a notion of package.

Acknowledgements We thank Andreas Grüner for careful reading, discussing,
helping to clarify and improving a number of half-baken previous versions of the
document. Likewise Karsten Stahl and Harald Fecher for “active listening” even

to the more Byzantine details and dead ends of all this. We are also indepted
to Ben Lukoschus for helping with some of the more arcane TEX-stunts and to
Willem-Paul de Roever for spotting a number of sloppy points. Finally, we thank
the reviewers for their insightful remarks.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural opera-
tional semantics for a concurrent class calculus. Technical Report 0307, Institut für
Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
Aug. 2003.

3. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. Preliminary technical
report, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-
Universität zu Kiel, Jan. 2005.

4. M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the π-calculus
(extended abstract). In Proceedings of LICS ’96, pages 43–54. IEEE, Computer
Society Press, July 1996.

5. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and
typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

6. M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
7. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent

objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
8. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java

language. 2005. Submitted for publication.
9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II.

Information and Computation, 100:1–77, Sept. 1992.
10. A. M. Pitts and D. B. Stark. Observable properties of higher-order functions that

dynamically create local names, or: What’s new. In A. M. Borzyszkowski and
S. Soko lowski, editors, Proceedings of MFCS ’93, volume 711 of Lecture Notes in

Computer Science, pages 122–141. Springer-Verlag, Sept. 1993.
11. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.
12. R. Viswanathan. Full abstraction for first-order objects with recursive types and

subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.
13. N. Yoshida. Graph types for monadic mobile processes. In V. Chandru and

V. Vinay, editors, Proceedings of FSTTCS ’96, volume 1180 of Lecture Notes in

Computer Science, pages 371–386. Springer-Verlag, 1996. Full version as Technical
Report ECS-LFCS-96-350, University of Edinburgh.

	Object Connectivity and Full Abstraction for a Concurrent Calculus of Classes [0.0em] --- Extended Abstract --- [-0.0em] December 6, 2004
	 Erika Ábrahám, Marcello M. Bonsangue, Frank S. de Boer, and Martin Steffen

