Optimizing Bounded Model Checking for Linear
Hybrid Systems

Further experimental results

ErikaAbraham, Bernd Becket, Felix Klaedtke 2, and Martin Steffeh

1 Albert-Ludwigs-Universitat Freiburg, Germany
2 ETH Zurich, Switzerland
3 Christian-Albrechts-Universitat zu Kiel, Germany

In this document we describe our experimental results afiplication of bounded
model checking with optimization and explanation learniadinear hybrid systems.
Furthermore, we describe termination conditions and thgtimizations.

Section 1 contains short descriptions of the examples irtesirsuite. We report
on our experimental results in Section 2. The terminatiomdd®mns are described in
Section 3.

1 Thehybrid systems

1.1 Thermostat

This is a modified version of the thermostat example in [1].

The temperature of a room is controlled bsharmostatwhich continuously senses
the temperature and turns a heater on and off. When the heatirthe temperature,
denoted byz, decreases according to the functieft) < xz(0), wherez(0) is the
initial temperature and the time. With the heater off, the temperature increases, i.
x(t) > «(0). The initial temperature is™** degrees{™** > 0) and the heater is off
initially. The heater turns on at latest when the tempeeateaches a threshold value of
™" degrees{ < x™" < x2™%), Conversely the heater turns off at latest when the
temperature reache$™** degrees.

The temperature is to be kept betwegt™ andz™* degrees.

off
<0
T > x'mm

1.2 Water-level monitor

This is thewater-level monitoexample from [1]. The water level in a tank is controlled
by a monitor, which continuously senses the water level anasta pump on and off.

There is adelayof 2 seconds from the time the monitor signals a status chandeto t
time that the change becomes effective. The water levelggeas a piecewise-linear
function over time. When the pump is off, the water level, ated by the variable,
falls by 2 inches per second; when the pump is on, the water level rigésrch per
second. Suppose that initially the water level isch and the pump is turned on.

The monitor signals whenever the water level pagsasd 10 inches, resp. The
system had locations: in locationg, andi;, the pump is turned on; in locatiohsand
I3, the pump is off. The clock is used to specify the delays.

We show that the water level is always betwéeand12 inches.

r=2 r=2

1.3 Bakery protocol

The Bakery protocol is a protocol assuring mutual exclubietwveen two or more pro-
cesses. We analyze the protocol for two processes.

As you can see on the specification below, this example carfresented as a
discrete system, i.e., time does not play a role.

P z>0Ay>0 r:=y+1 y=0vz<y
1: JR—— >

z:=0
r>0Ay>0 y:=z+1 r=0Vy<z
Ps: sleep - 7 .
y:=0

The protocol works as follows: If a process will get into thigtical section, it takes
a number that is greater than the number of the other prondssaves fronsleep into
wait;. If the other process does not try to get into the criticatiseci.e., if the number
of the other process & the process may move on intat;. Otherwise the process that
took a number first may move into the critical section. Thesofirocess will wait until
the critical section gets free and moves on afterwardsirixihe critical section signs
that the critical section got free by setting the number efehkiting process to.

We prove thatt > 0 Ay > 0 A =(atp, = crity A atp, = critz) is an invariant
property.

1.4 Fischer’smutual exclusion protocol

Fischer’'s mutual exclusion protocol assures mutual eimtulsetween processes. We
apply the protocol for two processes. The correspondingitidystems are specified
as follows:

21> BAk#1

testy waity
k=0—x1:=0 k,x1:=1,0 x1>BAk=1

i<i<1 1<ii<1

If one of the processeswill get into its critical section, it waits untik gets0
indicating that the other process is not in the critical isecor in a locatiorwait;. Then
it moves from locatioridle; into test and may wait there some upper bounded time
intervall. Afterwards the process moves on into locatiaait;, setsk to its identitys,
and waits there some lower bounded time intervall. The patars4 and B with 8 B >
11A are chosen such a way that each process which is not idléslocation must
enterwait; before one of the competing processes enters its criticdioge Finally,
the process which was the last one settirigto its own identity may enter its critical
section. The other procegseturns into locationdle; and tries the loop again.

We prove mutual exclusion by showing invariance of the priype; > 0 A 2o >
0 A —(aty, = crity A aty, = Critg).

We deal also with Fischer’s protocol for three processes.tfiind process is similar
to the second one, where the indeis replaced everywhere 8y andk#2 with # €
{=,#,:=} is replaced bys#3. In the case of three processes all flows increment the
values of all clockse;, i = 1,2, 3 according tai; = 1 and we assumé < A < B.
The invariant property isn > 0 Azz = 0A a3 = 0A N, jepq 05y, 05 (0l =
crit; A aty; = crit;

1.5 Railroad crossing

This system has three components: a train, a gate, and atentf the train gets near
to the gate, the controller signals the gate to start to lomily some maximal delay

a < 49/5. After the train has passed, the gate begins to raise, agtirawnaximal
delaya.

We show that the gate is always fully closed when the trainiiBim 10 meters to
the gate.

Train:

x > 1000

i € [30,50]
z < 100

Gate:

closed
g=0
g=0

Controller:
(jpp /exntlme_o\ (\i’j(it
abou;to-lower lower idle exit time=0 aboytto_raise
time=1 time— 0 time=1
time< « app time=0 o raise time< «
app time=0

We also apply our method to an extended version of this examijth two trains,
see the HyTech homepage for the specification.

1.6 Nuclear reactor

The temperatur within a nuclear reactor is controlled by a controller and teds. If
no rods are in the reactor, the temperatur increasésdegrees per second. Whenever
the temperature reach&sdegrees, one of the rods gets put into the reactor to decrease
the temperature. The rod gets taken out when the temperaticbed. degrees. After
arod has been taken out, it is blocked Toseconds.

We show that whenever the temperature reaéheegrees, oneof the rods can be
putin.

removey — removes

1.7 Audio-control protocol

This example first appeared in [2]. The hybrid automaton rhisdescribed in [4]. See
also the HyTech homepage.

Example Last iteration below200 secs. of CPU time
naive|optimized] optimized+learning
Thermostat 70 | > 1500 > 1500
Water-level monitor 39 | > 1500 > 1500
Railroad crossing 14 52 872
Extended railroad crossing 10 12 80
Fischer’s protocolZ processeg) 10 15 1254
Fischer’s protocol processes) 9 14 31
Bakery protocol 2 processes)|| 10 45 742
Nuclear reactor 20 82 > 1500
Audio-control protocol 20 62 357

Table 1. Maximal number of BMC iterations.

2 Experimental results

We carried out tests for evaluating the BMC approach fordirteybrid systems with
the different encodings and techniques described in therpafl experiments were
performed on a SUN Blad&000 with 8 Gbytes of main memory and twa)0 Mhz
UltraSparc llI+ processors; each one with &Nbyte cache. We used ICS (version
2.0b) [3] for checking satisfiability of the formulas in th&/E approach.

As in the paper, we report on experimental results for thiediohg three different
encodings of finite runs: (A) theaiveencoding; (B) theoptimizedencoding; (C) the
optimized encoding as in (B) with additionakarningof explanations.

2.1 Runningtimes

Figures 1 and 2 show the running times for the encodings @), &nd (C) for our
examples withk ranging from0 to 200. Table 1 lists for each example the maximal
iteration depth with each satisfiability check requiringdéhar200 secs. CPU time.

Thermostat Water-level monitor
200 — 200 —
naive - naive -«
5 optimized 5 optimized
é 150 mized+learning § 150 optimized+learning
£ 100} £ 100}
2 2
1) 50 | o 50
0 0 b
0 50 100 150 200 0 50 100 150 200
k k
Bakery protocol (2 processes) Fischer’s protocol (2 processes)
200 — ; ; — 200 — . ! —
naive e naive -
G ~_ optimized G ~_ optimized
é 150 ¢ optimized+learning é 150 ¢ optimized+learning
g 100 £ 100
2 sl 2
o 50 i o
[WO v o |
O T ! 4
0 50 100 150 200
k k
Fischer’s protocol (3 processes) Railroad crossing
200 — i i — 200 — i y
naive - naiye i
G ~_ optimized " G optimized
é 150 ¢ optimized+learning é 150 ¢ optimized-+learning
£ 100} g 100 :
2 2
o 50 o 50
0 i . . . | 0 I L S A
0 50 100 150 200 0 50 100 150 200
k k

Fig. 1. Running times for the satisfiability checks for the naiveagting, the optimized encoding,
and the optimized encoding with learning explanations.

Extended railroad crossing Nuclear reactor
200

200 ; ; — - . . —
naive - naive -
5 : optimized 5 optimized
é 150 optimized+learning é 150 optimized+learning
g 100} g 100¢
2 s 2
o 50 ¢ o 50 ¢
oL s s s J 0 k= z ‘ 2
0 50 100 150 200 0 50 100 150 200
k k
Audio-control protocol
200 - i —
naive; i

G optimized

g 1507 optimized+learnin|

2

£ 100t

z

o 50

0 &5 : : -
0 50 100 150 200

k

Fig. 2. Running times for the satisfiability checks for the naiveaeting, the optimized encoding,
and the optimized encoding with learning explanations.

2.2 Number of explanations

The tables 2-10 list for the different examples the numbgexplanations generated in
each of the iteration&to 15 with the encodings (A), (B), and (C). Additionally, for (C)
we list the mean size of the explanations (i.e., the numbéndéquations an explana-
tion consists of), the number and mean size of the explamatifier minimization and

after removing subsumed explanations, and the CPU time.jsénat was needed by
ICS for the satisfiability checks for the minimization. Thgrs’'—’ means that the value
could not be computed because one of the previous iteratixceeded our time limit

of 200 secs. of CPU time.

naive (|optimized optimized+learning
#expl|| #expl. [[#expl]#expl. afterf mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization| minimization

0 2 1 1 1 3 3 0.1

1 3 1 1 1 7 4 0.3

2 6 1 2 2 6 4 0.5

3| 10 1 0 0 0 0 0.0

41 15 1 0 0 0 0 0.0

5| 16 1 0 0 0 0 0.0

6| 27 1 0 0 0 0 0.0

7 63 1 0 0 0 0 0.0

81| 78 1 0 0 0 0 0.0

9| 67 1 0 0 0 0 0.0

10| 220 1 0 0 0 0 0.0

11)| 111 1 0 0 0 0 0.0

12| 78 1 0 0 0 0 0.0

13|| 106 1 0 0 0 0 0.0

14| 296 1 0 0 0 0 0.0

15]| 100 1 0 0 0 0 0.0

Table 2. Number of explanations that are generated during the sdtikfy checks for the ther-
mostat example.

10

naive (|optimized optimized+learning
#expl]| #expl. [[#expl]#expl. afterf mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 2 2 2 2 3 3 0.2

1 6 2 3 2 4 3 0.3

2 12 2 2 2 4 3 0.4

3| 22 2 5 5 3 3 1.0

41 31 2 2 1 6 5 0.3

5] 49 2 3 3 5 4 0.9

6| 75 2 0 0 0 0 0.0

7 91 2 0 0 0 0 0.0

8| 120 2 0 0 0 0 0.0

9| 150 2 0 0 0 0 0.0

10|| 185 2 0 0 0 0 0.0

11] 225 2 0 0 0 0 0.0

12| 172 2 0 0 0 0 0.0

13|| 293 2 0 0 0 0 0.0

14| 326 2 0 0 0 0 0.0

15| 378 2 0 0 0 0 0.0

Table 3. Number of explanations that are generated during the sdtikty checks for the water-
level monitor example.

naive ||optimized optimized+learning
#expl|| #expl. [[#expl]#expl. aftef mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 1 2 2 2 3 3 0.3

1 16 4 4 4 5 4 1.1

2| 56 8 2 2 3 2 0.3

3| 156 8 0 0 0 0 0.0

41 332 18 19 8 7 4 2.4

5] 575 15 0 0 0 0 0.0

6 || 1081 28 0 0 0 0 0.0

71 1815 43 25 14 9 5 5.2

8| 3233 10 0 0 0 0 0.0

9| 5871 27 0 0 0 0 0.0

10{/11651 67 0 0 0 0 0.0

11{|15379 37 0 0 0 0 0.0

12| — 30 0 0 0 0 0.0

13| — 99 0 0 0 0 0.0

14| - 88 0 0 0 0 0.0

15| — 49 0 0 0 0 0.0

Table 4. Number of explanations that are generated during the sddify checks for the bakery
protocol for2 processes.

11

naive ||optimized optimized+learning
#expl]| #expl. [[#expl]#expl. afterf mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 1 2 2 2 4 4 04

1 14 4 4 3 6 4 1.0

2| 43 5 2 1 9 2 0.4

3| 106 9 0 0 0 0 0.0

4| 215 10 0 0 0 0 0.0

5 321 19 0 0 0 0 0.0

6| 572 29 6 4 16 6 4.5

71| 850 33 0 0 0 0 0.0

8| 1796 16 0 0 0 0 0.0

9| 2434 22 0 0 0 0 0.0

10| 3931 30 0 0 0 0 0.0

11| 8138 26 0 0 0 0 0.0

12| — 76 0 0 0 0 0.0

13| — 88 0 0 0 0 0.0

14| - 55 0 0 0 0 0.0

15| — 103 0 0 0 0 0.0

Table 5. Number of explanations that are generated during the sdtify checks for Fischer's
protocol for2 processes.

naive ||optimized optimized+learning
#expl]| #expl. |[#expl]#expl. aftef mean [mean expl. siZEEPU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 2 3 3 3 4 4 0.7

1) 27 7 7 4 7 4 1.6

2| 66 16 6 4 6 2 1.1

3| 179 20 0 0 0 0 0.0

41 423 34 0 0 0 0 0.0

5] 859 24 0 0 0 0 0.0

6| 1563 78 13 5 23 8 6.0

71 2920 142 0 0 0 0 0.0

8| 6217 128 12 1 28 10 2.0

9 |/10457 191 26 1 36 14 2.1

10(|17222 163 6 1 24 10 1.3

11y - 610 0 0 0 0 0.0

12| — 469 0 0 0 0 0.0

13| — 1002 36 2 41 13 9.9

14| - 615 0 0 0 0 0.0

15| — 2387 0 0 0 0 0.0

Table 6. Number of explanations that are generated during the sttty checks for Fischer’s
protocol for3 processes.

12

naive ||optimized optimized+learning
#expl]| #expl. [[#expl]#expl. afterf mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 1 1 1 1 3 2 0.1

1 6 1 1 1 15 8 0.7

2 16 2 2 1 14 5 0.4

3| 31 3 1 1 25 18 1.4

4| 63 3 4 3 9 6 1.7

51 95 4 0 0 0 0 0.0

6| 179 12 0 0 0 0 0.0

7| 294 16 0 0 0 0 0.0

81| 433 9 11 7 11 3 2.5

9|l 651 40 27 6 19 8 5.3

10|| 1047 53 0 0 0 0 0.0

11| 1703 12 0 0 0 0 0.0

12| 2500 20 9 2 21 13 2.5

13| 3518 80 0 0 0 0 0.0

14| 4402 31 0 0 0 0 0.0

15| 6462 109 0 0 0 0 0.0

Table 7. Number of explanations that are generated during the sdtily checks for the railroad
crossing example.

naive ||optimized optimized+learning
#expl]| #expl. |[#expl]#expl. aftef mean [mean expl. siZEEPU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 2 0 0 0 0 0 0.0

1 19 6 6 1 18 5 0.7

2| 54 21 23 8 27 5 8.4

3| 128 66 21 12 7 3 2.7

41 259 91 50 19 21 3 10.2

5| 646 74 32 9 20 6 4.7

6 || 1207 149 57 11 21 7 8.4

7| 1529 301 62 14 28 7 14.0

8 || 1808 291 32 7 31 8 6.9

9| 3768 584 26 7 36 12 14.0

10]| 7136 1526 148 36 28 3 20.8

11)| 9945 1096 72 21 53 14 73.1

12)| — 1342 27 7 81 15 23.5

13| — 4741 20 10 54 18 32.3

14| - — 0 0 0 0 0.0

15| — — 0 0 0 0 0.0

Table 8. Number of explanations that are generated during the sddiify checks for the ex-
tended railroad example.

13

naive (|optimized optimized+learning
#expl]| #expl. [[#expl]#expl. afterf mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 1 1 1 1 9 6 04

1 3 0 0 0 0 0 0.0

2 13 2 2 2 19 17 2.1

3| 18 0 0 0 0 0 0.0

41 31 4 4 2 23 16 2.4

5| 51 0 0 0 0 0 0.0

6| 79 4 31 2 36 11 2.7

71 129 4 0 0 0 0 0.0

8 185 8 21 7 36 8 11.3

9| 260 13 0 0 0 0 0.0

10|| 393 12 0 0 0 0 0.0

11| 640 7 0 0 0 0 0.0

12| 807 14 0 0 0 0 0.0

13]| 1131 2 0 0 0 0 0.0

14| 1423 17 0 0 0 0 0.0

15| 1767 14 0 0 0 0 0.0

Table 9. Number of explanations that are generated during the sttty checks for the nuclear
reactor example.

naive ||optimized optimized+learning
#expl|| #expl. [[#expl]#expl. aftef mean [mean expl. siZE€PU time (secs})

subsumptiofexpl. size after for

k check minimization | minimization

0 1 0 0 0 0 0 0.0

1 11 0 0 0 0 0 0.0

2| 33 0 0 0 0 0 0.0

3| 74 0 0 0 0 0 0.0

41 172 12 12 3 7 6 1.1

5| 561 14 17 10 8 5 4.0

6] 771 6 7 7 8 5 3.2

7| 840 14 0 0 0 0 0.0

8| 1778 16 0 0 0 0 0.0

9| 2333 29 0 0 0 0 0.0

10]| 2513 14 0 0 0 0 0.0

11]| 3536 12 0 0 0 0 0.0

12|| 4377 37 0 0 0 0 0.0

13| 3742 13 0 0 0 0 0.0

14]| 6062 37 0 0 0 0 0.0

15|| 4888 34 0 0 0 0 0.0

Table 10. Number of explanations that are generated during the sddiify checks for the audio-
control protocol.

14

3 Termination conditions

3.1 Formalization

The BMC approach can be extended not only to search for coergample but also
to verify state properties [5, 3]. The methods proposed Jrcgsh only be applied to
verify finite state systems. An extension of these methodisfituite state systems was
presented in [3]. The verification is based on thimduction scheme, for some> 0
by trying to show that a state property is invariant in the firstates of any execution.
If no counterexamples of lengthare detected but theinduction fails, we increaske
and repeat trying to show invariance of the state propertyo®tline of the verification
algorithm is as follows:

1. Setkto —1.

2. Repeat

3. Increasé: by 2.

4. Return counterexampleify, is satisfiable.

5. Until the formulay;, is unsatisfiable, where the formujg, is defined byy, =

T (805 - oy Sky 1y oo oy k) A Nocicry Safe(si) A nsafe(s).

This algorithm is essentially the BMC algorithm extendedaltgrmination condi-
tion, which corresponds to the induction’s step case. Nudé We increasé by 2 in
each iteration, since we assume that flows and jumps aleeimains. Furthermore, we
are interested only in runs with a single bad state; sincellee #lows of duration0,
such a bad state can be reached in one of the last two stepaidtksthat if the formula
Xk 1S unsatisfiable we know that the propesiyfe(s) is invariant. We can use the lazy
theorem proving algorithm or its variants to check unsaiisfity of ;.

Several other refinements have been proposed in [5] and [3tfengthening the
termination condition. For instance, we can use

Xk A /\O§i<j§k and; evenSi # 85 N /\O§i<j§k and; odd(tj =0Vs; #s5)

instead ofyy, in line 5 of the algorithm, since we do not need to consider runs con-
taining loops; note that we do not compare states prior aed #dws with duratioro.
Similarly, we can require that none of the states after tts jliimp satisfy the initial
condition, since in such cases there is a shorter computkgaling to the same bad
state. Moreover, we can usetransitions as introduced in the paper, such theén be
increased by an arbitrary even value larger thameach iteration of the algorithm.

3.2 Experimental resultsfor the termination conditions

Our optimizations also improve the running times for chagkie termination condi-
tion and decrement of the number of explanations. The exgatal results are sum-
marized in Table 11. The numbkis the number of iterations until the algorithm termi-
nates. A =’ means that the BMC method does not termination within auitlof 200
secs. per satisfiability check. The running times that apgvglin the table are the sums
of the running times of all satisfiability checks until termation. Similarly, the number

15

naive optimized optimized+learning
term.| time |#expl.| term.| time |[#expl||term.| time |#expl,

(secs. (secs. (secs.
Thermostat k=1 0.2 9 |k=1| 0.2 4 |lk=1| 0.2 4
Water-level monitor - — ||k=1| 0.2 12 (|k=1| 0.1 13
Bakery protocol (2 proc.) |k =7| 9.5 | 6022 ||k =7 3.3 | 455 ||k="7| 2.4 | 108
Fischer’s protocol (2 proc)) — — — ||k =5[12.89| 248 ||k =5| 4.01 | 91
Fischer’s protocol (3 proc — — ||[k=9| 744 | 642 ||k =9| 60.6 | 403
Railroad crossing — — — ||k=4| 2.2 | 107 |[k=4| 2.5 | 51
Extended railroad crossing — — — — — — — — —
Nuclear reactor - — |\k=7] 24 | 128 ||[k=T7| 2.7 66
Audio-control protocol — — — — — — — — —

Table 11. Experimental results for the termination condition.

of explanations is the sum of all generated explanationmdwal satisfiability checks
until termination.

For most of the examples the naive method does not termiflaggreason is that the
naive method allows successive flows such that there argragbiong computations
satisfying the termination condition. Successive flows exeluded in the optimized
versions. For many of our examples, the termination coonligads to termination of
the BMC algorithm and thus to the verification of the stateperties after a small
number of iterations.

16

References

1. R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. NicalliA. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systerkeoretical Computer Scienck38:3—
34, 1995. A preliminary version appeared in the proceedifigdth. International Conference
on Analysis and Optimization of Systems: Discrete Event&ys (LNCI 199).

2. D. Bosscher, I. Polak, and F. Vaandrager. Verificationrofiadio control protocol. IfPro-
ceedings of Formal Technigues in Real Time and Fault Tote8gstems Symposiua994.

3. L. de Moura, H. Ruel3, and M. Sorea. Lazy theorem provindhfamded model checking
over infinite domains. In A. Voronkov, editoGADE’'02 volume 2392 of_ecture Notes in
Artificial Intelligence pages 438-455. Springer-Verlag, 2002.

4. P.-H. Ho and H. Wong-Toi. Automated analysis of an audiatra protocol. InProceedings
of the Seventh Conference on Computer-Aided Verificatiages 381-394, Liege, Belgium,
1995. Springer-Verlag. Lecture Notes in Computer Scierd®e 9

5. M. Sheeran, S. Singh, and G. Stalmarck. Checking safefyepties using induction and a
SAT-solver. In W. A. J. Hunt and S. D. Johnson, editdtMCAD 200Q volume 1954 of
Lecture Notes in Computer Sciengages 108—125. Springer-Verlag, 2000.

