
Optimizing Bounded Model Checking for Linear
Hybrid Systems

Further experimental results

Erika Ábrahám1, Bernd Becker1, Felix Klaedtke1,2, and Martin Steffen3

1 Albert-Ludwigs-Universität Freiburg, Germany
2 ETH Zurich, Switzerland

3 Christian-Albrechts-Universität zu Kiel, Germany

In this document we describe our experimental results for the application of bounded
model checking with optimization and explanation learningto linear hybrid systems.
Furthermore, we describe termination conditions and theiroptimizations.

Section 1 contains short descriptions of the examples in ourtest suite. We report
on our experimental results in Section 2. The termination conditions are described in
Section 3.

1 The hybrid systems

1.1 Thermostat

This is a modified version of the thermostat example in [1].
The temperature of a room is controlled by athermostat,which continuously senses

the temperature and turns a heater on and off. When the heateris off, the temperature,
denoted byx, decreases according to the functionx(t) ≤ x(0), wherex(0) is the
initial temperature andt the time. With the heater off, the temperature increases, i.e.,
x(t) ≥ x(0). The initial temperature isxmax degrees (xmax > 0) and the heater is off
initially. The heater turns on at latest when the temperature reaches a threshold value of
xmin degrees (0 < xmin < xmax). Conversely the heater turns off at latest when the
temperature reachesxmax degrees.

The temperature is to be kept betweenxmin andxmax degrees.

GF ED

@A BC

off

ẋ ≤ 0
x ≥ xmin

//GF ED

@A BC

on

ẋ ≥ 0
x ≤ xmax

oo
x=xmax

//

1.2 Water-level monitor

This is thewater-level monitorexample from [1]. The water level in a tank is controlled
by a monitor, which continuously senses the water level and turns a pump on and off.

2

There is adelayof 2 seconds from the time the monitor signals a status change to the
time that the change becomes effective. The water level changes as a piecewise-linear
function over time. When the pump is off, the water level, denoted by the variabley,
falls by 2 inches per second; when the pump is on, the water level rises by 1 inch per
second. Suppose that initially the water level is1 inch and the pump is turned on.

The monitor signals whenever the water level passes5 and10 inches, resp. The
system has4 locations: in locationsl0 andl1, the pump is turned on; in locationsl2 and
l3, the pump is off. The clockx is used to specify the delays.

We show that the water level is always between1 and12 inches.

y=1 //

GF ED

@A BC

l0
ẋ = 1
ẏ = 1
y ≤ 10

y=10→x:=0 //GF ED

@A BC

l1
ẋ = 1
ẏ = 1
x ≤ 2

x=2

��
GF ED

@A BC

l3
ẋ = 1

ẏ = −2
x ≤ 2

x=2

OO

GF ED

@A BC

l2
ẋ = 1

ẏ = −2
y ≥ 5y=5→x:=0

oo

1.3 Bakery protocol

The Bakery protocol is a protocol assuring mutual exclusionbetween two or more pro-
cesses. We analyze the protocol for two processes.

As you can see on the specification below, this example can be represented as a
discrete system, i.e., time does not play a role.

P1:
x≥0∧y≥0 // ONMLHIJKsleep1

x:=y+1 // GFED@ABCwait1
y=0∨x<y // GFED@ABCcrit1

x:=0

kk

P2:
x≥0∧y≥0 // ONMLHIJKsleep2

y:=x+1 // GFED@ABCwait2
x=0∨y<x // GFED@ABCcrit2

y:=0

kk

The protocol works as follows: If a process will get into the critical section, it takes
a number that is greater than the number of the other process and moves fromsleepi into
waiti. If the other process does not try to get into the critical section, i.e., if the number
of the other process is0, the process may move on intocriti. Otherwise the process that
took a number first may move into the critical section. The other process will wait until
the critical section gets free and moves on afterwards. Exiting the critical section signs
that the critical section got free by setting the number of the exiting process to0.

3

We prove thatx ≥ 0 ∧ y ≥ 0 ∧ ¬(atP1
= crit1 ∧ atP2

= crit2) is an invariant
property.

1.4 Fischer’s mutual exclusion protocol

Fischer’s mutual exclusion protocol assures mutual exclusion between processes. We
apply the protocol for two processes. The corresponding hybrid systems are specified
as follows:

GF ED

@A BC

idle1

k=0→x1:=0 //
GF ED

@A BC

test1

4

5
≤ẋ1≤1

x1 ≤ A

k,x1:=1,0 //
GF ED

@A BC

wait1

4

5
≤ẋ1≤1

x1≥B∧k=1 //

x1≥B∧k 6=1

vv GF ED

@A BC

crit1

k:=0

ii

GF ED

@A BC

idle2

k=0→x2:=0 //
GF ED

@A BC

test2

1≤ẋ2≤
11

10

x2 ≤ A

k,x2:=2,0 //
GF ED

@A BC

wait2

1≤ẋ2≤
11

10

x2≥B∧k=2 //

x2≥B∧k 6=2

vv GF ED

@A BC

crit2

k:=0

ii

H1:
k=0 //

H2:
k=0 //

If one of the processesi will get into its critical section, it waits untilk gets0
indicating that the other process is not in the critical section or in a locationwaiti. Then
it moves from locationidlei into testi and may wait there some upper bounded time
intervall. Afterwards the process moves on into locationwaiti, setsk to its identityi,
and waits there some lower bounded time intervall. The parametersA andB with 8B >
11A are chosen such a way that each process which is not in itsidlei location must
enterwaiti before one of the competing processes enters its critical section. Finally,
the processi which was the last one settingk to its own identity may enter its critical
section. The other processj returns into locationidlej and tries the loop again.

We prove mutual exclusion by showing invariance of the property x1 ≥ 0 ∧ x2 ≥
0 ∧ ¬(atH1

= crit1 ∧ atH2
= crit2).

We deal also with Fischer’s protocol for three processes. The third process is similar
to the second one, where the index2 is replaced everywhere by3, andk#2 with # ∈
{=, 6=, :=} is replaced byk#3. In the case of three processes all flows increment the
values of all clocksxi, i = 1, 2, 3 according toẋi = 1 and we assume0 < A < B.
The invariant property isx1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧

∧
i,j∈{1,2,3}, i6=j ¬(atHi

=
criti ∧ atHj

= critj

1.5 Railroad crossing

This system has three components: a train, a gate, and a controller. If the train gets near
to the gate, the controller signals the gate to start to lowerwith some maximal delay

4

α < 49/5. After the train has passed, the gate begins to raise, again with a maximal
delayα.

We show that the gate is always fully closed when the train is within 10 meters to
the gate.

Train:

GF ED

@A BC

far
ẋ ∈ [−50,−40]

x ≥ 1000

app

x=1000
//

GF ED

@A BC

near
ẋ ∈ [−50,−30]

x ≤ 0

x=0

zzvv
v
v
v
v
v
v
v
v
v
v
v
v
v

GF ED

@A BC

past
ẋ ∈ [30, 50]

x ≤ 100

exit
x=100→x:=[200,∞)

OO

x≥2000 //

Gate:

GF ED

@A BC

up
ġ = 9
g ≤ 90

PWVUST
��

raise PWVUST
��

raise

PWQRST
AA

lower

PWQRST
AA

lower

lower
��

g=90 //

GF ED

@A BC

open
ġ = 0
g = 90

lower

tt

GF ED

@A BC

down
ġ = −9
g ≥ 0

g=0 //

raise

OO

GF ED

@A BC

closed
ġ = 0
g = 0

raise

[[

oo

5

Controller:

GF ED

@A BC

aboutto lower
˙time= 1

time≤ α

PWVUST
��

app
PWVUST

��

exit

lower //

exit time:=0

&&GF ED

@A BC

idle
˙time= 0

app time:=0
oo

exit time:=0 //

GF ED

@A BC

aboutto raise
˙time= 1

time≤ αraise
oo

app time:=0

ff

��

We also apply our method to an extended version of this example with two trains,
see the HyTech homepage for the specification.

1.6 Nuclear reactor

The temperaturx within a nuclear reactor is controlled by a controller and two rods. If
no rods are in the reactor, the temperatur increases by5 degrees per second. Whenever
the temperature reachesU degrees, one of the rods gets put into the reactor to decrease
the temperature. The rod gets taken out when the temperaturereachesL degrees. After
a rod has been taken out, it is blocked forT seconds.

We show that whenever the temperature reachesU degrees, oneof the rods can be
put in.

GF ED
@A BC

out1

ẏ1 = 1

y1≥T

add1

**GF ED
@A BC

in1

ẏ1 = 0y1:=0

remove1

jj

GF ED
@A BC

out2

ẏ2 = 1

y2≥T

add2

**GF ED
@A BC

in2

ẏ2 = 0y2:=0

remove2

jj
y1=T // y2=T //

GF ED
@A BC

rod1

ẋ = −5
x ≥ L

x=L

remove1

44

GF ED
@A BC
no rod

ẋ = 5
x ≤ U

x=U

add1
tt

x=U

add2
**GF ED
@A BC

rod2

ẋ = −9
x ≥ L

x=L

remove2

jj

x=L��

1.7 Audio-control protocol

This example first appeared in [2]. The hybrid automaton model is described in [4]. See
also the HyTech homepage.

6

Example Last iteration below200 secs. of CPU time
naive optimized optimized+learning

Thermostat 70 > 1500 > 1500

Water-level monitor 39 > 1500 > 1500

Railroad crossing 14 52 872

Extended railroad crossing 10 12 80

Fischer’s protocol (2 processes) 10 15 1254

Fischer’s protocol (3 processes) 9 14 31

Bakery protocol (2 processes) 10 45 742

Nuclear reactor 20 82 > 1500

Audio-control protocol 20 62 357

Table 1. Maximal number of BMC iterationsk.

2 Experimental results

We carried out tests for evaluating the BMC approach for linear hybrid systems with
the different encodings and techniques described in the paper. All experiments were
performed on a SUN Blade1000 with 8 Gbytes of main memory and two900 Mhz
UltraSparc III+ processors; each one with an8 Mbyte cache. We used ICS (version
2.0b) [3] for checking satisfiability of the formulas in the BMC approach.

As in the paper, we report on experimental results for the following three different
encodings of finite runs: (A) thenaiveencoding; (B) theoptimizedencoding; (C) the
optimized encoding as in (B) with additionallearningof explanations.

2.1 Running times

Figures 1 and 2 show the running times for the encodings (A), (B), and (C) for our
examples withk ranging from0 to 200. Table 1 lists for each example the maximal
iteration depth with each satisfiability check requiring less than200 secs. CPU time.

7

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Thermostat

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Water-level monitor

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Bakery protocol (2 processes)

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Fischer’s protocol (2 processes)

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Fischer’s protocol (3 processes)

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Railroad crossing

naive
optimized

optimized+learning

Fig. 1. Running times for the satisfiability checks for the naive encoding, the optimized encoding,
and the optimized encoding with learning explanations.

8

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Extended railroad crossing

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Nuclear reactor

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Audio-control protocol

naive
optimized

optimized+learning

Fig. 2. Running times for the satisfiability checks for the naive encoding, the optimized encoding,
and the optimized encoding with learning explanations.

9

2.2 Number of explanations

The tables 2-10 list for the different examples the numbers of explanations generated in
each of the iterations0 to 15 with the encodings (A), (B), and (C). Additionally, for (C)
we list the mean size of the explanations (i.e., the number of(in)equations an explana-
tion consists of), the number and mean size of the explanations after minimization and
after removing subsumed explanations, and the CPU time (secs.) that was needed by
ICS for the satisfiability checks for the minimization. The sign ’−’ means that the value
could not be computed because one of the previous iterationsexceeded our time limit
of 200 secs. of CPU time.

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 2 1 1 1 3 3 0.1

1 3 1 1 1 7 4 0.3

2 6 1 2 2 6 4 0.5

3 10 1 0 0 0 0 0.0

4 15 1 0 0 0 0 0.0

5 16 1 0 0 0 0 0.0

6 27 1 0 0 0 0 0.0

7 63 1 0 0 0 0 0.0

8 78 1 0 0 0 0 0.0

9 67 1 0 0 0 0 0.0

10 220 1 0 0 0 0 0.0

11 111 1 0 0 0 0 0.0

12 78 1 0 0 0 0 0.0

13 106 1 0 0 0 0 0.0

14 296 1 0 0 0 0 0.0

15 100 1 0 0 0 0 0.0

Table 2. Number of explanations that are generated during the satisfiability checks for the ther-
mostat example.

10

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 2 2 2 2 3 3 0.2

1 6 2 3 2 4 3 0.3

2 12 2 2 2 4 3 0.4

3 22 2 5 5 3 3 1.0

4 31 2 2 1 6 5 0.3

5 49 2 3 3 5 4 0.9

6 75 2 0 0 0 0 0.0

7 91 2 0 0 0 0 0.0

8 120 2 0 0 0 0 0.0

9 150 2 0 0 0 0 0.0

10 185 2 0 0 0 0 0.0

11 225 2 0 0 0 0 0.0

12 172 2 0 0 0 0 0.0

13 293 2 0 0 0 0 0.0

14 326 2 0 0 0 0 0.0

15 378 2 0 0 0 0 0.0

Table 3. Number of explanations that are generated during the satisfiability checks for the water-
level monitor example.

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 1 2 2 2 3 3 0.3

1 16 4 4 4 5 4 1.1

2 56 8 2 2 3 2 0.3

3 156 8 0 0 0 0 0.0

4 332 18 19 8 7 4 2.4

5 575 15 0 0 0 0 0.0

6 1081 28 0 0 0 0 0.0

7 1815 43 25 14 9 5 5.2

8 3233 10 0 0 0 0 0.0

9 5871 27 0 0 0 0 0.0

10 11651 67 0 0 0 0 0.0

11 15379 37 0 0 0 0 0.0

12 − 30 0 0 0 0 0.0

13 − 99 0 0 0 0 0.0

14 − 88 0 0 0 0 0.0

15 − 49 0 0 0 0 0.0

Table 4. Number of explanations that are generated during the satisfiability checks for the bakery
protocol for2 processes.

11

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 1 2 2 2 4 4 0.4

1 14 4 4 3 6 4 1.0

2 43 5 2 1 9 2 0.4

3 106 9 0 0 0 0 0.0

4 215 10 0 0 0 0 0.0

5 321 19 0 0 0 0 0.0

6 572 29 6 4 16 6 4.5

7 850 33 0 0 0 0 0.0

8 1796 16 0 0 0 0 0.0

9 2434 22 0 0 0 0 0.0

10 3931 30 0 0 0 0 0.0

11 8138 26 0 0 0 0 0.0

12 − 76 0 0 0 0 0.0

13 − 88 0 0 0 0 0.0

14 − 55 0 0 0 0 0.0

15 − 103 0 0 0 0 0.0

Table 5. Number of explanations that are generated during the satisfiability checks for Fischer’s
protocol for2 processes.

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 2 3 3 3 4 4 0.7

1 27 7 7 4 7 4 1.6

2 66 16 6 4 6 2 1.1

3 179 20 0 0 0 0 0.0

4 423 34 0 0 0 0 0.0

5 859 24 0 0 0 0 0.0

6 1563 78 13 5 23 8 6.0

7 2920 142 0 0 0 0 0.0

8 6217 128 12 1 28 10 2.0

9 10457 191 26 1 36 14 2.1

10 17222 163 6 1 24 10 1.3

11 − 610 0 0 0 0 0.0

12 − 469 0 0 0 0 0.0

13 − 1002 36 2 41 13 9.9

14 − 615 0 0 0 0 0.0

15 − 2387 0 0 0 0 0.0

Table 6. Number of explanations that are generated during the satisfiability checks for Fischer’s
protocol for3 processes.

12

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 1 1 1 1 3 2 0.1

1 6 1 1 1 15 8 0.7

2 16 2 2 1 14 5 0.4

3 31 3 1 1 25 18 1.4

4 63 3 4 3 9 6 1.7

5 95 4 0 0 0 0 0.0

6 179 12 0 0 0 0 0.0

7 294 16 0 0 0 0 0.0

8 433 9 11 7 11 3 2.5

9 651 40 27 6 19 8 5.3

10 1047 53 0 0 0 0 0.0

11 1703 12 0 0 0 0 0.0

12 2500 20 9 2 21 13 2.5

13 3518 80 0 0 0 0 0.0

14 4402 31 0 0 0 0 0.0

15 6462 109 0 0 0 0 0.0

Table 7. Number of explanations that are generated during the satisfiability checks for the railroad
crossing example.

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 2 0 0 0 0 0 0.0

1 19 6 6 1 18 5 0.7

2 54 21 23 8 27 5 8.4

3 128 66 21 12 7 3 2.7

4 259 91 50 19 21 3 10.2

5 646 74 32 9 20 6 4.7

6 1207 149 57 11 21 7 8.4

7 1529 301 62 14 28 7 14.0

8 1808 291 32 7 31 8 6.9

9 3768 584 26 7 36 12 14.0

10 7136 1526 148 36 28 3 20.8

11 9945 1096 72 21 53 14 73.1

12 − 1342 27 7 81 15 23.5

13 − 4741 20 10 54 18 32.3

14 − − 0 0 0 0 0.0

15 − − 0 0 0 0 0.0

Table 8. Number of explanations that are generated during the satisfiability checks for the ex-
tended railroad example.

13

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 1 1 1 1 9 6 0.4

1 3 0 0 0 0 0 0.0

2 13 2 2 2 19 17 2.1

3 18 0 0 0 0 0 0.0

4 31 4 4 2 23 16 2.4

5 51 0 0 0 0 0 0.0

6 79 4 31 2 36 11 2.7

7 129 4 0 0 0 0 0.0

8 185 8 21 7 36 8 11.3

9 260 13 0 0 0 0 0.0

10 393 12 0 0 0 0 0.0

11 640 7 0 0 0 0 0.0

12 807 14 0 0 0 0 0.0

13 1131 2 0 0 0 0 0.0

14 1423 17 0 0 0 0 0.0

15 1767 14 0 0 0 0 0.0

Table 9. Number of explanations that are generated during the satisfiability checks for the nuclear
reactor example.

naive optimized optimized+learning
expl. # expl. # expl. # expl. after mean mean expl. sizeCPU time (secs.)

subsumptionexpl. size after for
k check minimization minimization

0 1 0 0 0 0 0 0.0

1 11 0 0 0 0 0 0.0

2 33 0 0 0 0 0 0.0

3 74 0 0 0 0 0 0.0

4 172 12 12 3 7 6 1.1

5 561 14 17 10 8 5 4.0

6 771 6 7 7 8 5 3.2

7 840 14 0 0 0 0 0.0

8 1778 16 0 0 0 0 0.0

9 2333 29 0 0 0 0 0.0

10 2513 14 0 0 0 0 0.0

11 3536 12 0 0 0 0 0.0

12 4377 37 0 0 0 0 0.0

13 3742 13 0 0 0 0 0.0

14 6062 37 0 0 0 0 0.0

15 4888 34 0 0 0 0 0.0

Table 10. Number of explanations that are generated during the satisfiability checks for the audio-
control protocol.

14

3 Termination conditions

3.1 Formalization

The BMC approach can be extended not only to search for counter-example but also
to verify state properties [5, 3]. The methods proposed in [5] can only be applied to
verify finite state systems. An extension of these methods toinfinite state systems was
presented in [3]. The verification is based on thek-induction scheme, for somek ≥ 0
by trying to show that a state property is invariant in the first k states of any execution.
If no counterexamples of lengthk are detected but thek-induction fails, we increasek
and repeat trying to show invariance of the state property. An outline of the verification
algorithm is as follows:

1. Setk to−1.
2. Repeat
3. Increasek by 2.
4. Return counterexample ifψk is satisfiable.
5. Until the formulaχk is unsatisfiable, where the formulaχk is defined byχk =
π′

k(s0, . . . , sk, t1, . . . , tk) ∧
∧

0≤i<k−1 safe(si) ∧ ¬safe(sk).

This algorithm is essentially the BMC algorithm extended bya termination condi-
tion, which corresponds to the induction’s step case. Note that we increasek by 2 in
each iteration, since we assume that flows and jumps alternate in runs. Furthermore, we
are interested only in runs with a single bad state; since we allow flows of duration0,
such a bad state can be reached in one of the last two steps. Also note that if the formula
χk is unsatisfiable we know that the propertysafe(s) is invariant. We can use the lazy
theorem proving algorithm or its variants to check unsatisfiability of χk.

Several other refinements have been proposed in [5] and [3] for strengthening the
termination condition. For instance, we can use

χk ∧
∧

0≤i<j≤k andj evensi 6= sj ∧
∧

0≤i<j≤k andj odd(tj = 0 ∨ si 6= sj)

instead ofχk in line 5 of the algorithm, since we do not need to consider runs con-
taining loops; note that we do not compare states prior and after flows with duration0.
Similarly, we can require that none of the states after the first jump satisfy the initial
condition, since in such cases there is a shorter computation leading to the same bad
state. Moreover, we can useτ -transitions as introduced in the paper, such thatk can be
increased by an arbitrary even value larger than2 in each iteration of the algorithm.

3.2 Experimental results for the termination conditions

Our optimizations also improve the running times for checking the termination condi-
tion and decrement of the number of explanations. The experimental results are sum-
marized in Table 11. The numberk is the number of iterations until the algorithm termi-
nates. A ’−’ means that the BMC method does not termination within our limit of 200
secs. per satisfiability check. The running times that are shown in the table are the sums
of the running times of all satisfiability checks until termination. Similarly, the number

15

naive optimized optimized+learning
term. time # expl. term. time # expl. term. time # expl.

(secs.) (secs.) (secs.)

Thermostat k = 1 0.2 9 k = 1 0.2 4 k = 1 0.2 4

Water-level monitor − − − k = 1 0.2 12 k = 1 0.1 13

Bakery protocol (2 proc.) k = 7 9.5 6022 k = 7 3.3 455 k = 7 2.4 108

Fischer’s protocol (2 proc.) − − − k = 5 12.89 248 k = 5 4.01 91

Fischer’s protocol (3 proc.) − − − k = 9 74.4 642 k = 9 60.6 403

Railroad crossing − − − k = 4 2.2 107 k = 4 2.5 51

Extended railroad crossing − − − − − − − − −

Nuclear reactor − − − k = 7 2.4 128 k = 7 2.7 66

Audio-control protocol − − − − − − − − −

Table 11. Experimental results for the termination condition.

of explanations is the sum of all generated explanations during all satisfiability checks
until termination.

For most of the examples the naive method does not terminate.The reason is that the
naive method allows successive flows such that there are arbitrary long computations
satisfying the termination condition. Successive flows areexcluded in the optimized
versions. For many of our examples, the termination condition leads to termination of
the BMC algorithm and thus to the verification of the state properties after a small
number of iterations.

16

References

1. R. Alur, C. Courcoubetis, T. Henzinger, P. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.Theoretical Computer Science, 138:3–
34, 1995. A preliminary version appeared in the proceedingsof 11th. International Conference
on Analysis and Optimization of Systems: Discrete Event Systems (LNCI 199).

2. D. Bosscher, I. Polak, and F. Vaandrager. Verification of an audio control protocol. InPro-
ceedings of Formal Techniques in Real Time and Fault Tolerant Systems Symposium, 1994.

3. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving forbounded model checking
over infinite domains. In A. Voronkov, editor,CADE’02, volume 2392 ofLecture Notes in
Artificial Intelligence, pages 438–455. Springer-Verlag, 2002.

4. P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. InProceedings
of the Seventh Conference on Computer-Aided Verification, pages 381–394, Liege, Belgium,
1995. Springer-Verlag. Lecture Notes in Computer Science 939.

5. M. Sheeran, S. Singh, and G. Stalmårck. Checking safety properties using induction and a
SAT-solver. In W. A. J. Hunt and S. D. Johnson, editors,FMCAD 2000, volume 1954 of
Lecture Notes in Computer Science, pages 108–125. Springer-Verlag, 2000.

