Synchronous Closing and Flow Analysis for
Model Checking Timed Systems

March 15, 2004

Natalia Ioustinova!, Natalia SidorovaZ?, and Martin Steffen®

! Department of Software Engineering, CWI
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
Natalia.Ioustinova@cwi.nl
2 Department of Mathematics and Computer Science
Eindhoven University of Technology
Den Dolech 2, P.O. Box 513,
5612 MB Eindhoven, The Netherlands
n.sidorova@tue.nl
3 Institute of Computer Science and Applied Mathematics
Christian- Albrechts-Universitéat
Hermann-Rodewaldstr. 3,

24118 Kiel, Germany

ms@informatik.uni-kiel.de

Abstract. Formal methods, in particular model checking, are increas-
ingly accepted as integral part of system development. With large soft-
ware systems beyond the range of fully automatic verification, however,
a combination of decomposition and abstraction techniques is needed. To
model check components of a system, a standard approach is to close the
component with an abstraction of its environment, as standard model
checkers often do not handle open reactive systems directly. To make
it useful in practice, the closing of the component should be automatic,
both for data and for control abstraction. Specifically for model checking
asynchronous open systems, external input queues should be removed,
as they are a potential source of a combinatorial state explosion.

In this paper we investigate a class of environmental processes for which
the asynchronous communication scheme can safely be replaced by a
synchronous one. Such a replacement is possible only if the environment
is constructed under rather a severe restriction on the behavior, which
can be partially softened via the use of a discrete-time semantics. We
employ data-flow analysis to detect instances of variables and timers
influenced by the data passing between the system and the environment.

Keywords: formal methods, software model checking, abstraction, flow
analysis, asynchronous communication, open components, program trans-
formation

1 Introduction

Model checking [8] is well-accepted for the verification of reactive systems. To
alleviate the notorious state-space explosion problem, a host of techniques has
been invented, including partial-order reduction [12,32] and abstraction [23,8,10].

As standard model checkers, e.g., Spin [16], cannot handle open systems, one
has to construct a closed model, and a problem of practical importance is how
to close open systems. This is commonly done by adding an environment pro-
cess that must exhibit at least all the behavior of the real environment. In the
framework of the assume-guarantee paradigm, the environment should model the
behavior corresponding to the verified properties of the components forming the
environment. However, the way of closing should be well-considered to counter
the state-space explosion problem. This is especially true in the context of model
checking programs with an asynchronous message-passing communication model
—- sending arbitrary message streams to the unbounded input queues would im-
mediately lead to an infinite state space, unless some assumptions restricting the
environment behavior are incorporated in the closing process. Even so, adding
an environment process may result in a combinatorial explosion caused by all
combinations of messages in the input queues.

A desirable solution would be to construct an environment that communi-
cates to the system synchronously. In [29] such an approach is considered for
the simplest safe abstraction of the environment, the chaotically behaving en-
vironment: the outside chaos is embedded into the system’s processes, which
corresponds to the synchronous communication scheme. Though useful at a first
verification phase, the chaotic environment may be too general. Here, we inves-
tigate for what kind of processes, apart from the chaotic one, the asynchronous
communication can be safely replaced with the synchronous one. To make such
a replacement possible, the system should be not reactive — it should either
only send or only receive messages. However, when we restrict our attention to
systems with the discrete-time semantics like the ones of [15,3], this requirement
can be softened in that the restrictions are imposed on time slices instead of
whole runs: In every time slice, the environmental process can either only re-
ceive messages, or it can both send and receive messages under condition that
inputs do not change the state of the environment process.

Another problem the closing must address is that the data carried with the
messages are usually drawn from some infinite data domains. For data abstrac-
tion, we combine the approaches from [29] and [17]. The main idea is to condense
data exchanged with the environment into a single abstract value T to deal with
the infinity of environmental data. We employ data-flow analysis to detect in-
stances of chaotically influenced variables and timers and remove them. Based
on the result of the data flow analysis, the system S is transformed into a closed
system S* which shows more behavior in terms of traces than the original one.
For formulas of next-free LTL [26,22], we thus get the desired property preser-
vation: if S* = ¢ then S |= .

The main target application are protocols specified in SDL (Specification and
Description Language) [28]. As verification tool, we use the well-known SPIN

model checker. Our method is implemented as transformations of PROMELA-
programs, SPIN’s input language. With this tool we show experiments on a real-
life protocol to estimate the effect of removing queues on the state space.

The rest of the paper is organized as follows. In Section 2 we fix syntax
and semantics of the language. In Section 3 we describe under which condi-
tion the asynchronous communication with the environment can be replaced by
synchronous one. In Section 4 we abstract from the data exchanged with the
environment and give a data-flow algorithm to optimize the system for model
checking. In Section 5 we show some experimental results and in Section 6 we
discuss related and future work.

2 Semantics

In this section we fix syntax and operational semantics we work with. Our model
is based on asynchronously communicating state machines with top-level con-
currency. The communication is done via channels and we assume a fixed set
Chan of channel names for each program, with ¢, c/,... as typical elements. The
set of channel names is partitioned into input channels Chan; and output chan-
nels Chan,, and we write ¢;,c,,... to denote membership of a channel to one
of these classes. A program Prog is given as the parallel composition 17> ; P; of
a finite number of processes.

A process P is described by a tuple (in, out, Var, Loc, Edg, oinit), where in
and out are finite sets of input resp. output channel names of the process, Var
denotes a finite set of variables, Loc denotes a finite set of locations or control
states, and o0, is the initial state. We assume the sets of variables Var; of
processes P; in a program Prog = I, P; to be disjoint. An edge of the state
machine describes a change of state by performing an action from a set Act; the
set Edg C Loc x Act x Loc denotes the set of edges. For an edge (I, a, Z) € FEdg
of P, we write more suggestively | — l.

A mapping from variables to values is called a valuation; we denote the set
of valuations by Val = Var — D. We assume standard data domains such as
N, Bool, etc., where we write D when leaving the data domain unspecified, and
we silently assume all expressions to be well-typed. A location together with
a valuation of process variables define a state of a process. The set of process
states is defined as X' = Loc x Val, and each process has one designated initial
state Oinit = (Linit, Ninit)-

Processes communicate by exchanging signals (carrying values) over chan-
nels. Signals coming from the environment form the set of external signals Sig ...
Signals that participate in the communication within the system belong to the
set Sig,;,, of internal signals. Note that both signal sets are not necessarily dis-
joint.

As untimed actions, we distinguish (1) input over a channel ¢ of a signal s
containing a value to be assigned to a local variable, (2) sending over a channel ¢
a signal s together with a value described by an expression, and (3) assignments.
We assume the inputs to be unguarded, while output and assignment are guarded

I —crs(a) [€ Edg I —crs(a) l€e Bdg=s #s

— INPUT DISCARD
(l777) ¢ ?(s,v) (l777[x'_’1’]) (1777) ei?(s,v) (l,?’])
l Ns.e [€ Ed = true el, =v
g cl(s,e) g [l - el OUTPUT
(l777) eo!(s,v) (1777)
| —gp zi=e = Edyg [gln = true le], =v
- ASSIGN
(l777) —r (l/l][x»—»v])
l —gp set t:=e | € Edg lgln = true [e]ln =
= SET
(L,m) =+ (L, M1t — on(o)])
| — g reset ¢ L € Ed = true blocked
9 L — J Lol RESET L(U) TICKp
(,n) =+ (I, Nt of]) T —tick Olt—(t—1)]
| —g, 5 reser ¢ L € Edg [t]» = on(0)
— TIMEOUT
(1,n) == (L, mit— of1)
(I — o | € Edg = o # gs 1> reset t) [t]s = on(0)
TDISCARD

(I,n) =+ (LNt o))

Table 1. Step semantics for one process

by a boolean expression g, its guard. The three classes of actions are written as
c?s(x), gr>cls(e), and g > x := e, respectively, and we use a, o’ ... when leaving
an action unspecified.

Time aspects of a system behavior are specified by actions dealing with
timers. Each process has a finite set of timer variables (with typical elements
t,t),...), where each timer variable consists of a boolean flag indicating whether
the timer is active or not, together with a natural number value denoting its ex-
piration time. A timer can be either set to a value, i.e., activated to run for the
designated period, or reset, i.e., deactivated. Setting and resetting are expressed
by guarded actions of the form g > set t := e and g > reset t. If a timer expires,
i.e., the value of a timer becomes zero, it can cause a timeout, upon which the
timer is reset. The timeout action is denoted by g; > reset t, where the timer
guard g; expresses the fact that the action can only be taken upon expiration.

The behavior of a single process is then given by sequences of states o, =
09 —) 01 —) ... starting from the initial one. The step semantics is given as a
labelled transition relation — C X' x Lab x X between states. The set of labels
Lab is formed by 7-labels for internal steps, tick-labels for time progression and
communication labels. Communication label, either input or output are of the
form ¢?(s,v) resp. ¢!(s,v). Depending on the location, the valuation, and the
potential next actions, the possible successor states are given by the rules of
Table 1.

Inputting a signal with a value via a channel means reading a value belonging
to a matching signal from the channel and updating the local valuation accord-
ingly (cf. rule INPUT), where 7[z— +] stands for the valuation equaling 7 for all
y € Var except for x € Var, where n[z—v](z) = v holds instead. A specific
feature commonly used for communicating finite state machines (e.g. in SDL-
92 [27]) is captured by rule DISCARD: If the input value cannot be reacted upon
at the current control state, i.e., if there is no input action originating from the
location treating this signal, then the message is just discarded, leaving control
state and valuation unchanged. The automaton is therefore input-enabled: it
cannot refuse to accept a message; it may throw it away, though.

Unlike inputs, outputs are guarded, so sending a message involves evaluat-
ing the guard and the expression according to the current valuation (cf. rule
OuTPUT). Assignment in ASSIGN works analogously, except that the step is in-
ternal. We assume for the non-timer guards, that at least one of them evaluates
to true in each state. At the SDL source language, this assumption corresponds
to the natural requirement that each conditional construct must cover all cases,
for instance by having at least a default branch. The system should not block
because of a non-covered alternative in a decision-construct [25].

Concerning the temporal behavior, timers are treated in valuations as vari-
ables, distinguishing active and deactivated timer. We use off to represent in-
active timers. The value of an active timer shows the delay left until timer
expiration. The set-command activates a timer, setting its value to the specified
period until timer expiration, and reset deactivates the timer. Both actions are
guarded (cf. rules SET and RESET). A timeout may occur, if an active timer has
expired, i.e., reached zero (cf. rule TIMEOUT).

Time elapses by counting down active timers till zero, which happens in case
no untimed actions are possible. In rule TICK p, this is expressed by the predicate
blocked on states: blocked (o) holds if no move is possible except either a tick-
step or a reception of a message, i.e., if ¢ — for some label A\, then \ = tick or
A = ¢?(s,v). In other words, the time-elapsing steps are those with least priority.
The counting down of the timers is written 7[t—(¢t—1)], by which we mean, all
currently active timers are decreased by one, i.e., on(n + 1) — 1 = on(n), non-
active timers are not affected. Note that the operation is undefined for on(0),
which is justified later by Lemma 1.

In SDL, timeouts are often considered as specific timeout messages kept in
a queue like any other message, and timer-expiration consequently is seen as
adding a timeout-message to the queue. We use an equivalent presentation of
this semantics, where timeouts are not put into the input queue, but are modelled
more directly by guards. The equivalence of timeouts-by-guards and timeouts-as-
messages in the presence of SDL’s asynchronous communication model is argued
for in [3]. The time semantics for SDL chosen here is not the only one conceivable
(see e.g. [6] for a broader discussion of the use of timers in SDL). The semantics
we use is the one described in [15,3], and is also implemented in DTSPIN [2,11],
a discrete time extension of the SPIN model checker.

In the asynchronous communication model, a process receives messages via
channels modelled as queues. We write € for the empty queue; (s,v) :: ¢ denotes
a queue with message (s,v) at the head of the queue, i.e., (s,v) is the message
to be input next; likewise the queue ¢::(s,v) contains (s,v) most recently en-
tered;) denotes the set of possible queues. We model the queues implementing
asynchronous channels explicitly as separate entities of the form (¢, g), consist-
ing of the channel name together with its queue content. We sometimes refer to
the channel process (¢, q) just by its name c¢. We require for the input and the
output channel names of channel ¢ to be in(c) = ¢, and out(c) = ¢; resp. The
operational rules for queues are shown in Table 2.

IN blocked(c, q)

. TiCcKq
(67 Q) co?(s,v) (qu--(37v)) (Cv q) —tick (C7 q)

Outr

(07 (37 U) o q) eil(s,v) (Cv q)

Table 2. Step semantics for a channel ¢

In analogy to the tick-steps for processes, a queue can perform a tick-step iff
the only steps possible are input or tick-steps, as captured again by the blocked-
predicate (cf. rule TICK). Note that a queue is blocked and can therefore tick
only if it is empty, and that a queue does not contain any timers. Hence, the
counting down operation [¢t—(t—1)] has no effect and is therefore omitted in the
rule TICKqg of Table 2.

A global semantics of a system S is given by a parallel composition of labelled
transition systems modelling processes and channels of the specification. The
semantics of the parallel composition S = S; || ... || S, is given by the rules of
Table 3, where ext(.S) is used to denote the set of external channel names. Since
we assumed the variable sets of the components to be disjoint, the combined
state is defined as the product. We write [z], for the value [z],, for one state
o; being part of o; analogously, we use the notation [e], for the value of e in
o. The initial state of a parallel composition is given by the array of initial
process states together with (c,¢) for channels in Chan. We call a sequence
Oinit = 09 —) 01 — ... starting from an initial state a run.

Communication between two processes is done by exchanging a common
signal and a value over a channel. According to the syntactic restriction on
the use of communication labels, only synchronisation between a process and a
channel may happen. Sending of a signal over the channel means synchronising
an output step of the process with an input step of the queue, i.e. a ¢,!(s, v) step
of the process is synchronised with a ¢,?(s,v) step of the channel c¢. Receiving
is accomplished by synchronising an output step, which removes first element
from the channel queue, with an input step of the process. As defined by the

Oi —cl(s,w) Ti Oj —c?(s,w) O3 7 75 J

- - CoMM
(4“,0'1',.“,0']',..4)—%— (4“,0'1',4“,0']',.“

A~/ ~/
01 —tick 01 -+.0n —tick On
TICK

(01,...,0n) —tick (61,...,0n)

Oi —¢2(s,v) 0 XS 6$t(S)
INTERLEAVE;,

(,O’i,...)*)c'](s’v) (,(3'2',...)

Oi —cl(s,v) Oi c € ext(S)
INTERLEAVE oyt

(70'1'7"4)_)0!(5,1)) (,5'1',...)

oi —r 03
INTERLEAVE

(coryoiyes) =2 (o y0ay)

Table 3. Parallel composition

rule CoMM of Table 3, systems perform common steps synchronously. The result
of communication is relabelled to .

Communication steps of two partners may synchronize, if they use the same
channel name. Communication steps may be interleaved as in rules INTERLEAVE;,
and INTERLEAVE,,; provided the channel name belongs to the set of external
channel names ext(S) of the system. As far as 7 steps are concerned, each system
can act on its own according to rule INTERLEAVE;.

Lemma 1. Let S be a system and o € X one of its states.

1. If 0 —>er 0, then [t], # on(0), for all timers t.
2. If 0 =k, 0/, then for all channel states (c,q), ¢ = €.

Proof. For part (1), if [t], = on(0) for a timer ¢ in a process P, then a 7-step is
allowed due to either TIMEOUT or TDISCARD of Table 1. Hence, the system is
not blocked and therefore cannot do a tick-step.

Part (2) follows from the fact that a channel can only perform a tick-step
exactly when it is empty. a

The following lemma expresses, that the blocked predicate is compositional
in the sense that the parallel composition of processes is blocked iff each process
is blocked (T1CK of Table 3).

Lemma 2. For a stateo = (01, ... ,0p) of a system S, blocked (o) iff blocked(o;)
for all ;.

Proof. If o is not blocked, it can perform a 7-step or an output-step. The output
step must originate from a process, which thus is not blocked. The 7-step is
either caused by a single process or by a synchronizing action of a sender and

a receiver; in both cases at least one process is not blocked. For the reverse
direction, a 7-step of a single process being thus not blocked, entails that o is
not blocked. An output step of a single process causes ¢ either to do the same
output step or, in case of internal communication, to do a 7-step. In both cases,
o is not blocked. a

3 Replacing asynchronous with synchronous
communication

In a system with asynchronous communication, introducing an environment pro-
cess can lead to a combinatorial explosion caused by all combinations of messages
in the queues modelling channels. An ideal solution would be to construct an
environment process that communicates with the system synchronously. In this
section, we specify under which conditions we can safely replace the asynchronous
communication with an outside environment process, say FE, by synchronous
communication.

A general condition an asynchronously communicating process satisfies is
that the process is always willing to accept messages, since the queues are un-
bounded. Hence, the environment process must be at least input enabled: it must
always be able to receive messages, lest the synchronous composition will lead to
more blockings. Thanks to the DisSCARD-rule of Table 1, SDL-processes are in-
put enabled, i.e., at least input-discard steps are possible, which throw away the
message and do not change the state of the process. Another effect of an input
queue is that the queue introduces an arbitrary delay between the reception of a
message and the future reaction of the receiving process to this message. For an
output, the effect is converse. This implies that the asynchronous process can be
replaced by the analogous synchronous process as long as there are either only
input actions or else only output actions, so the process is not reactive.* This is
related to the so-called Brock-Ackerman anomaly, characterizing the difference
between buffered and unbuffered communication [7].

Disallowing reactive behavior is clearly a severe restriction and only mod-
erately generalizes completely chaotic behavior. One feature of the timed se-
mantics, though, allows to loosen this restriction. Time progresses by tick-steps
when the system is blocked. This especially means that when a tick happens, all
queues of a system are empty (cf. Lemma 1). This implies that the restrictions
need to apply only per time slice, i.e., to the steps between two ticks,® and not
to the overall process behavior. Additionally we require that there are no infinite
sequences of steps without a tick, i.e., there are no runs with zero-time cycles.
This leads to the following definition.

4 A more general definition would require that the process actions satisfy a confluence
condition as far as the input and output actions are concerned, i.e., doing an input
action does not invalidate the possibility of an output action, and vice versa. Also
in this case, the process is not reactive, since there is no feed-back from input to
output actions.

5 A time slice of a run is a maximal subsequence of the run without tick-steps.

V1 —¢;7(s,v) ﬁ/l V2 eol(s,v) ’?2

(’717 ')/2) T (;)/17 '3/2)

COMMayne

Table 4. Synchronous communication over rendezvous channel ¢

Definition 3. A sequence of steps is tick-separated iff it contains no zero-time
cycle, and for every time slice of the sequence one of the following two conditions

holds:

1. the time slice contains no output action;
2. the time slice contains no output over two different channels, and all locations
in the time slice are input-discarding wrt. all inputs of that time slice.

We call a process tick-separated if all its runs are tick-separated.

Further we consider a synchronous version Ps; and an asynchronous version
P, of a process P, where P; is the process P together with a set of rendezvous
channels, and P, is formed by the process P together with a set of channels with
the same names as for P; but which are queues. Synchronous communication
over a rendezvous channel c is defined by rule COMMgyy. of Table 4.

In the following, we call a configuration the combined state of a process
together with the state of its channels. So given Ps and P, and two correspond-
ing states 75 = o5 and v, = (04, (i, @), (ct,q1), ..., (ck, qr)), we define > as
Yo B> s, if 05 = 0,. Comparing the observable behavior of an asynchronous and
a synchronous process, we must take into account that the asynchronous one
performs more internal steps when exchanging messages with its queues. Hence
the comparison is based on a weak notion of equivalence, ignoring the 7-steps:
so we define a weak step = as —=F—x—F when A # 7, and as —} else. Cor-
respondingly, =5 denotes a sequence of weak steps with labels from a sequence

A

Lemma 4. Assume a synchronous and an asynchronous version Py and P, of
a process P and corresponding states vs and vy, with v4 &> 75, where the queues
of va are all empty. If va =5 v, by a tick-separated sequence, where X does not
contain a tick-label, and where the queues of !, are empty, then there exists a
sequence Ys =5 Yo with v, > ;.

Proof. We are given a sequence v, = 7§ —x, YW .- —x,_y YL = 7, with the
queues of 4§ and v2 empty. According to the definition of tick-separation, we
distinguish the following two cases:

Case 1: N\ & {tick,cl(s,v)}, foralll1 <i<mn-—1

To get a matching reduction sequence of the synchronous system starting at ~3,
we apply the following renaming scheme. Input actions v, —c2(s,0) Y into the
queue are just omitted (which means, they are postponed for the synchronous

10

process). T-steps v, —+ Y,, inputting a value from the queue into the process,
i.e., T-steps justified by rule ComM where the process does a step 0 —7(5.4) 0’
by rule INPUT and the queue the corresponding output step by rule OUT, are
replaced by a direct input steps 75 —c7(sv) V5. Process internal 7-steps of the
asynchronous system are identically taken by the synchronous system, as well.
T-steps caused by output actions from the process into a queue need not be dealt
with, since the sequence from ~§ to v2 does not contain external output from the
queues, and the queues are empty at the beginning and the end of the sequence.

It is straightforward to see that the sequence of steps obtained by this trans-
formation is indeed a legal sequence of the synchronous system. Moreover, the
last configurations have the same state component and, due to the non-lossiness
and the Fifo-behavior of the input queue, both sequences coincide modulo 7-
steps.

Case 2: mno output over two different channels, input discarding locations (and
no tick-steps)

Similar to the previous case, the synchronous system can mimic the behavior of
the asynchronous one adhering to the following scheme: 7-steps v, — 7., feed-
ing a value from the process into the queue, i.e., T-steps justified by rule OuTpPUT
where the process does a step 0 —i(s,) 0" and the queue the corresponding in-
put step by rule IN, are replaced by a direct output step vs —i(s,») V- Input
actions v, —c72(s,0) 7., into the queue are mimicked by a discard-step. Output
steps from the queue of the asynchronous system are omitted, and so are 7-steps
caused by internal communication from the input-queue to the process. All other
internal steps are identically taken in both systems. The rest of the argument is
analogous to the previous case. O

Note that 7/, > +. means that . is blocked whenever 7/, is blocked.

We write [P]wtrace to denote the set of all weak traces of process P. To prove
that for tick-separated processes [Ps]wtrace = [Pa]wtrace, we introduce a notion
of tick-simulation that captures the ability to simulate any sequence of steps up
to a tick step, i.e. the chosen granularity level are time slices and only the states
immediately before and after tick are of importance there. (Remember that we
assume the absence of zero-time cycles.)

Definition 5. A binary relation R C Iy X I on two sets of states is called a
tick-simulation, when the following conditions hold:

1 If 1 Reyz and 71 —ick 71, then y2 =ik Y5 and 71 R7s.
2. If nRy2 and v =5 71 for some vy with blocked(~]) where X does not
contain tick, then vo =5 vy for some vy with blocked(vyy) and viRs.

We write 1 =¢cr V2 if there exists a tick simulation R with v1Ry2, and similarly
for processes, Py =y Po if their initial states are in that relation.

Theorem 6. If a process P is tick-separated, then [Ps]wtrace = [Pa]wtrace-

11

Proof. There are two directions to show. [Ps]wtrace € [Pa]wtrace 18 immediate:
each communication step of the synchronous process Ps; can be mimicked by
the buffered P, with adding an internal 7-step for the communication with the
buffer.

For the reverse direction [Py]wtrace € [Ps]wtrace we show that P, is simulated
by P, according to the definition of tick-simulation, which considers as basic steps
only tick-steps or else the sequence of steps within one time slice.

We define the relation R C I, x I's as (04, ((c0,90);--- 5 (€m, qm)))Ros iff
0, = 05 and q; = € for all queues modelling the channels. To show that R is
indeed a tick-simulation, assume v, = (04, ((co,€),...,(cm,€))) and v5 = o5
with v,R~s. There are two cases to consider.

Case: Ya —tick V4

where v/, = ¥4 [t —(t—1)]. By the definition of the tick-step, blocked (v,) must hold,
i.e., there are no steps enabled except input from the outside or tick-steps. Since
immediately blocked (vs), also vs —tick Vslt —(t—1)], which concludes the case.

Case: Yo =5 V4
where blocked (7)) and X does not contain a tick-label. The case follows directly
from Lemma 4 and the fact that ! > ~% where 7/, is blocked implies that also
% is blocked.

Since clearly the initial states are in relation R as defined above, this gives
P, =4er Ps. Since P, <. Ps and each tick-step of P, can be mimicked by the
tick step of Py and each weak step = of P, can also be mimicked by Ps. That
implies [P.]wtrace C [Ps]wtrace, as required. O

4 Abstracting data

Originating from an unknown or underspecified environment, signals from out-
side can carry any value, which renders the system infinite state. Assuming
nothing about the data means one can conceptually abstract values from out-
side into one abstract “chaotic” value, which basically means to ignore these
data and focus on the control structure. Data not coming from outside is left
untouched, though chaotic data from the environment influence internal data
of the system. In this section, we present a straightforward dataflow analysis
marking variable and timer instances that may be influenced by the environ-
ment, namely we establish for each process- and timer-variable in each location
whether

1. the variable is guaranteed to be non-chaotic, or
2. the variable is guaranteed to be influenced by the outside, or
3. whether its status depends on the actual run.

The analysis is a combination of the ones from [29] and [17].

12

4.1 Dataflow analysis

The analysis works on a simple flow graph representation of the system, where
each process is represented by a single flow graph, whose nodes n € nodes are
associated with the process’ actions and the flow relation captures the intra-
process data dependencies. Since the structure of the language we consider is
rather simple, the flow-graph can be easily obtained by standard techniques.

We use an abstract representation of the data values, where T is interpreted
as value chaotically influenced by the environment and | stands for a non-chaotic
value. We write n®, ng, ... for abstract valuations, i.e., for typical elements from
Val® = Var — {T, L}. The abstract values are ordered L. < T, and the order is
lifted pointwise to valuations. With this ordering, the set of valuations forms a
complete lattice, where we write 1, for the least element, given as i, (z) = L for
all z € Var, and we denote the least upper bound of nf,... ,n% by \/1_; n¢ (or
by n¥ V 1§ in the binary case). By slight abuse of notation, we will use the same
symbol n* for the valuation per node, i.e., for functions of type node — Val®.

Depending on whether we are interested in an answer to point (1) or point
(2) from above, T is interpreted as a variable potentially influenced from outside,
and, dually for the second case, T stands for variables guaranteed to be influenced
from outside. Here we present may and must analysis for the first and the second
case respectively.

May analysis First we consider may analysis that marks variables potentially
influenced by data from outside. Each node n of the flow graph has associated
an abstract transfer function f,, : Val® — Val®, describing the change of the
abstract valuations depending on the kind of action at the node. The functions
are given in Table 5. The equations are mostly straightforward; the only case de-
serving mention is the one for ¢?s(x), whose equation captures the inter-process
data-flow from a sending to a receiving action. It is easy to see that the transfer
functions are monotone.

N o n%e—T 5 € Sig
F(ets(@)n® = { Nl VALl ln' =g cls(e)}] § & Sigoy
flgrcls(e))n™ =n*
flg>z:=e)n® = 0%z —lel,a)
flgp sett:=e)n™ = no‘[m on([el o)
f(gr> reset t)n® = n®t off]
f(ge > reset t)n™ = Nt off]

Table 5. May analysis: transfer functions/abstract effect for process P

Upon start of the analysis, at each node the variables’ values are assumed to
be defined, i.e., the initial valuation is the least one: %, (n) = .. This choice

13

rests on the assumption that all local variables of each process are properly
initialized. We are interested in the least solution to the data-flow problem given
by the following constraint set:

ngost(n) 2 f"(n;re (TL))
Npre (1) > \/{ng‘ost(n’) | (n',n) in flow relation}

(1)

For each node n of the flow graph, the data-flow problem is specified by two
inequations or constraints. The first one relates the abstract valuation ny; . before
entering the node with the valuation ny, , afterwards via the abstract effects of
Table 5. The least fixpoint of the constraint set can be found iteratively in a fairly
standard way by a worklist algorithm (see e.g., [19,14,24]), where the worklist
steers the iterative loop until the least fixpoint is reached (cf. Figure 1).

input : the flow—graph of the program
OUtput: ngre7ngast;

n*(n) = Ninis(n) ;
WL ={n| a, =?s(z),s € Sig..,};

repeat
pick ne WL;
if n=g>cls(e) then
let S ={n'|n" =c?s(z) and [e],om) £ []yo (@}
in
for all n' €S : n*(n') = f(n®(n));
let S={n" € succ(n)| fu(n®(n)) £ n*(n")}
in
for all n’ € S: n*(n") = fu(n™(n));
WL:= WIN{n}USUS’;
until WL=0;

ngre (n) = Wa (n) 5
Myost (1) = fn(n*(n))

Fig. 1. May analysis: worklist algorithm

The worklist data-structure WL used in the algorithm is a set of elements,
more specifically a set of nodes from the flow-graph, where we denote by succ(n)
the set of successor nodes of n in the flow graph in forward direction. It supports
as operation to randomly pick one element from the set (without removing it),
and we write WL\{n} for the worklist without the node n and U for set-union on
the elements of the worklist. The algorithm starts with the least valuation on all

14

nodes and an initial worklist containing nodes with input from the environment.
It enlarges the valuation within the given lattice step by step until it stabilizes,
i.e., until the worklist is empty. If adding the abstract effect of one node to the
current state enlarges the valuation, i.e., the set S is non-empty, those successor
nodes from S are (re-)entered into the list of unfinished one. Since the set of
variables in the system is finite, and thus the lattice of abstract valuations, the
termination of the algorithm is immediate.

With the worklist as a set-like data structure, the algorithm is free to work off
the list in any order. In praxis, more deterministic data-structures and traversal
strategies are appropriate, for instance traversing the graph in a breadth-first
manner (see [24] for a broader discussion or various traversal strategies).

After termination the algorithm yields two mappings ny,., 7y, @ Node —
Val®. On a location I, the result of the analysis is given by n*(I) = \/{n5,s(7) |

i =1 —4 1}, also written as 7.

Lemma 7 (Correctness (may)). Upon termination, the algorithm gives back
the least solution to the constraint set as given by the equations (1), resp. Table 5.

Must analysis The must analysis is almost dual to may analysis. A transfer
function that describes the change of the abstract valuation depending on the
action at the node is defined in Table 6. The abstract valuation [e],» for an
expression e equals L iff all variables in e are evaluated to L, [e],« is T iff the
abstract valuation of at least one of the variables in e is T. For inputs, c¢?s(z) in
process P assigns | to x if the signal is sent to P with reliable data, only. This
means the values after reception correspond to the greatest lower bound over all
expressions which can occur in a matching send-action.

a .
f(C?S(ﬁf) ,r]a: {Wa[xHT] , 8€S7/gznt
N% e~ AMlelyaln'=g> cls(e)}] s € 519,

flgrcls(e))n™ = n®

f(g>reset t
f(ge>reset t

Table 6. Must analysis: transfer functions/abstract effect for process P

As that is done for may analysis, the data-flow problem is specified for each
node n of the flow graph by two inequations (2) (see Table 6). Analogously,
the greatest fixpoint of the constraint set can be found iteratively by a worklist
algorithm (cf. Figure 2).

15

ngost (n) S fN(ngre (TL))
Npre(n) < /\{ng‘ost(n’) | (n’,n) in flow relation}

input: the flow—graph of the program
OUtput: ngre7ngast;

n*(n) = N (n) ;
WL={n|a,=gb>z:=ec};

repeat
pick ne WL;
if n=gp>cls(e) then
let S ={n"|n =c?s(z) and [€e],am) £ [@]ye @}

for all n’ €S : g (n’) = ’((”/))§
'let S ={n" € succ(n) | fa(n®(n)) 2 n*(n")
for all n” €S: n*(n") = f.(n*(n));

WL := WI\{n} USUS’;
until WL=0;

ngre (n) = Wa (n) 5
Myost (1) = fn(n*(n))

Fig. 2. Must analysis: worklist algorithm

Like the may-analysis case, the termination of the algorithm follows from the
finiteness of the set of variables.

Lemma 8 (Correctness (must)). Upon termination, the algorithm from Fig-
ure 2 gives back the greatest solution to the constraint set as given by equa-
tions (2) resp. Table 6.

4.2 Program transformation

Based on the result of the analysis, we transform the given system S = P || P
into an optimized one, denoted by S¥, where the communication of P with its
environment P is done synchronously, all the data exchanged is abstracted, and
which is in a simulation relation with the original system.

The intention is to use the information collected in the analyses about the
influence of the environment to reduce the state space. Depending on whether one

16

relies on the may-analysis alone (which variable occurrences may be influenced
from the outside) or takes into account the results of both analyses (additional
information which variable occurrences are definitely chaotic) the precision of
the abstraction varies. Using only the may-information overapproximates the
system (further) but in general leads to a smaller state space.

The second option, on the other hand, gives a more precise abstraction and
thus less false negatives. Indeed, it does not, apart from the abstraction caused
by introducing chaotic values, abstract the system further as far as the behavior
is concerned. It is nevertheless profitable as it allows to remove any unnecessary
instances of variables or expressions which are detected to be T constantly. It
furthermore can make further optimizations of the system more effective. For
instance, live analysis and the optimization as described in [4] can be effective
for more variable instances and thus yield better further reduction when applied
after replacing variable instances which are constantly T.

In either case we must ensure that the abstraction of timer values is treated
adequately (see below). Here we describe the transformation for the combination
of may and must analysis, only, since the alternative is simpler.

Overloading the symbols T and L we mean for the rest of the paper: the value
of T for a variable at a location refers to the result of the must analysis, i.e., the
definite knowledge that the data is chaotic for all runs. Dually, | stands for the
definite knowledge of the may analysis, i.e., for data which is never influenced
from outside. Additionally, we write T in case neither analysis gave a definite
answer.

We extend the data domains each by an additional value T, representing
unknown, chaotic, data, i.e., we assume now domains such as NT = N U {T},
Bool " = Bool U {T}, ..., where we do not distinguish notationally the various
types of chaotic values. These values T are considered as the largest values, i.e.,
we introduce < as the smallest reflexive relation with v < T for all elements v
(separately for each domain). The strict lifting of a valuation 7T to expressions
is denoted by [.],T.

The transformation is straightforward: guards influenced by the environment
are taken non-deterministically, i.e., a guard g at a location [is replaced by true,
if [[9]]771" = T. A guard g whose value at a location [is T is treated dynamically on
the extended data domain. For assignments, we distinguish between the variables
that carry the value T in at least one location and the rest. Assignments of T to
variables that take T at no location are omitted. Assignments of concrete values
are left untouched and the assignments to the variables that are marked by T
in at least one location are performed on the extended data domain.

The interpretation of timer variables on the extended domain requires special
attention. Chaos can influence timers only via the set-operation by setting it to a
chaotic value in the on-state. Therefore, the domain of timer values contains the
additional chaotic value on(T). Since we need the transformed system to show
at least the behavior of the original one, we must provide proper treatment of the
rules involving on(T), i.e., the TIMEOUT-, the TDISCARD-, and the TICK-rule.
As on(T) stands for any value of active timers, it must cover the cases where

17

| —eosw L€ Bdg x¢g Varr [a]ye =T

— T-INPUT ¢zt
| — sy | € Edg*

| — 0 ase | € Ed elye =T
9> cl(s:e) i lel T-OuTPUT

L —gts s, [€ Edg*
| —gom—el€Edg a¢Varr [alpe=T

= ; T-ASSIGN;
l— gt o ship | € Edg
[— z::eieEd x € Var elye =T
2 J - = ; lel; T-ASSIGNo
l T gt =T le Edg

l —g D> set t:=e lAE Edg [[e]]nl“ =T T-SET

l T gt > set t:=T lA € E1dgﬁ

Table 7. Transformation

timeouts and timer-discards are enabled (because of the concrete value on(0))
as well as disabled (because of on(n) with n > 1). The second one is necessary,
since the enabledness of the tick steps depends on the disabledness of timeouts
and timer discards via the blocked-condition.

To distinguish the two cases, we introduce a refined abstract value on(T ™)
for chaotic timers, representing all on-settings larger than or equal to 1. The
order on the domain of timer values is given as smallest reflexive order relation
such that on(0) < on(T) and on(n) < on(T+) < on(T), for all n > 1. To treat
the case where the abstract timer value on(T) denotes absence of immediate
timeout, we add edges of the form

; T-NoTIMEOUT

l ——on(T)p set =T+ | € Edg
which set back the timer value to T representing a non-zero delay.

The decreasing operation needed in the T1CK-rule is defined in extension to
the definition on values from on(N) on T by on(T™) — 1 = on(T). Note that
the operation is left undefined on T, which is justified by a property analogous
to Lemma 1:

Lemma 9. Let (I,n",q") be a state of S*. If (1,07, q") —vick , then [t], ¢
{on(T), on(0)}, for all timers t.

Proof. By definition of the blocked-predicate and inspection of the TIMEOUT-
and TDiscArD-rule (for on(0) as for Lemma 1) and the behavior of the abstract
value on(T) (T-NoTIMEOUT-rule). O

As the transformation only adds non-determinism, the transformed system S*
simulates S (cf. [29]). Together with Theorem 6, this guarantees preservation of

18

LTL-properties as long as variables influenced by P are not mentioned. Since we
abstracted external data into a single value, not being able to specify properties
depending on externally influenced data is not much of an additional loss of
precision.

Theorem 10. Let S, and S be the variant of a system communicating to the
environment asynchronously resp. synchronously, and S be given as the parallel
composition S, || S, where S is the environment of the system. Furthermore, let
St = St || S be defined as before, and ¢ a next-free LTL-formula mentioning
only variables from {x | =3l € Loc. [z],e = T}. Then S* |= ¢ implies S |= .

5 Case study: a wireless ATM medium-access protocol

The goal of our experiments was to estimate the state space reduction due to re-
placing asynchronous communication with the environment by the synchronous
one. Primarily interested in the effect of removing queues, we use here the most
trivial environment: the chaotic one.

We applied the methods in a series of experiments to the industrial protocol
Mascara [33]. Located between the ATM-layer and the physical medium, Mas-
cara is a medium-access layer or, in the context of the ISDN reference model,
a transmission convergence sub-layer for wireless ATM communication in local
area networks. A crucial feature of Mascara is the support of mobility. A mobile
terminal (MT) located inside the area cell of an access point (AP) is capable
of communicating with it. When a mobile terminal moves outside the current
cell, it has to perform a so-called handover to another access point covering the
cell the terminal has moved into. The handover must be managed transparently
with respect to the ATM layer, maintaining the agreed quality of service for the
current connections. So the protocol has to detect the need for a handover, select
a candidate AP to switch to, and redirect the traffic with minimal interruption.

This protocol was the main case study in the Vires project; the results of
its verification can be found e.g. in [3,13,30]. The SDL-specification of the pro-
tocol was automatically translated into the input language of DTSPIN [2,11], a
discrete-time extension of the well-known SPIN model-checker [16]. For the trans-
lation, we used SDL2IF [5] and IF2PML-translators [3]. Our prototype implemen-
tation, the PML2PML-translator, post-processes the output from the automatic
translation of the SDL-specification into DTPROMELA.

Here, we are not interested in Mascara itself and the verification of its prop-
erties, but as real-life example for the comparison of the state spaces of parts
of the protocol when closed with the environment as an asynchronous chaotic
process and the state space of the same entity closed with embedded chaos. For
the comparison we chose a model of the Mascara control entity (MCL) at the
mobile terminal side In our experiments we used DTSPIN version 0.1.1, an ex-
tension of SPIN3.3.10, with the partial-order reduction and compression options
on. All the experiments were run on a Silicon Graphics Origin 2000 server on a
single R10000/250MHz CPU with 8GB of main memory.

19

The implementation currently covers the may analysis and the corresponding
transformation. We do not model the chaotic environment as a separate process
communicating with the system via rendezvous channels but transform an open
DTPROMELA model into a closed one by embedding the timed chaotic environ-
ment into the system as described in [29], which allows us to use the process
fairness mechanism provided by SPIN, which works only for systems with asyn-
chronous communication. The translator does not require any user interaction,
except that the user is requested to give the list of external signals. The exten-
sion is implemented in Java and requires JDK-1.2 or later. The package can be
downloaded from http://www.cwi.nl/~ustin/EH.html.

|bs|| states |transiti0ns| mem. | time || states |transitions| mem.| time|

2|| 9.73e4+05| 3.64e+06 | 40.842| 15:57|| 300062| 1.06e+06 | 9.071| 1:13
3|| 5.24e4-06| 2.02e+07 | 398.933| 22:28|| 396333| 1.85e+06 | 11.939| 1:37
4]| 2.69e4-07| 1.05e+08 | 944.440| 1:59:40(| 467555| 2.30e+06 | 14.499| 2:13

Table 8. Model checking MCL with chaos as a process and embedded chaos

Table 5 gives the results for the model checking of MCL with chaos as external
process on the left and embedded on the right. The first column gives the buffer
size for process queues. The other columns give the number of states, transitions,
memory and time consumption, respectively. As one can see, the state space
as well as the time and the memory consumption are significantly larger for
the model with the environment as a process, and they grow with the buffer
size much faster than for the model with embedded chaos. The model with the
embedded environment has a relatively stable state-space size.

6 Conclusion

In this paper, we integrated earlier work from [29,18,31,17] into a general frame-
work describing how to close an open, asynchronous system by a timed environ-
ment while avoiding the combinatorial state-explosion in the external buffers.
The generalization presented here goes a step beyond complete arbitrary envi-
ronmental behavior, using the timed semantics of the language. We facilitate the
model checking of the system by using the information obtained with may and
must analyses: We substitute the chaotic value T for expressions influenced by
chaotic data from outside and then optimize the system by removing variables
and actions that became redundant.

In the context of software-testing, [9] describes an a dataflow algorithm to
close program fragments given in the C-language with the most general envi-
ronment. The algorithm is incorporated into the VeriSoft tool. As in our paper,
the assume an asynchronous communicating model and abstract away external

20

data, but do not consider timed systems and their abstraction. As for model-
checking and analyzing SDL-programs, much work has been done, for instance
in the context of the Vires-project, leading to the IF-toolset [5]

A fundamental approach to model checking open systems is known as module
checking [21][20]. Instead of transforming the system into a closed one, the un-
derlying computational model is generalized to distinguish between transitions
under control of the module and those driven by the environment. MOCHA [1]
is a model checker for reactive modules, which uses alternating-time temporal
logic as specification language.

For practical applications, we are currently extending the larger case study
[30] using the chaotic closure to this more general setting. We proceed in the fol-
lowing way: after splitting an SDL system into subsystems following the system
structure, properties of the subsystems are verified being closed with an embed-
ded chaotic environment. Afterwards, the verified properties are encoded into
an SDL process, for which a tick-separated closure is constructed. This closure
is used as environment for other parts of the system. As the closure gives a safe
abstraction of the desired environment behavior, the verification results can be
transferred to the original system.

References

1. R. Alur, T. A. Henzinger, F. Mang, S. Qadeer, S. K. Rajamani, and S. Tasiran.
Mocha: Modularity in model checking. In A. J. Hu and M. Y. Vardi, editors,
Proceedings of CAV 798, volume 1427 of Lecture Notes in Computer Science, pages
521-525. Springer-Verlag, 1998.

2. D. Bosnacki and D. Dams. Integrating real time into Spin: A prototype imple-
mentation. In S. Budkowski, A. Cavalli, and E. Najm, editors, Proceedings of
Formal Description Techniques and Protocol Specification, Testing, and Verifica-
tion (FORTE/PSTV’98). Kluwer Academic Publishers, 1998.

3. D. Bosnacki, D. Dams, L. Holenderski, and N. Sidorova. Verifying SDL in Spin.
In S. Graf and M. Schwartzbach, editors, TACAS 2000, volume 1785 of Lecture
Notes in Computer Science. Springer-Verlag, 2000.

4. M. Bozga, J. C. Fernandez, and L. Ghirvu. State space reduction based on Live.
In A. Cortesi and G. Filé, editors, Proceedings of SAS 99, volume 1694 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

5. M. Bozga, J.-C. Fernandez, L. Ghirvu, S. Graf, J.-P. Krimm, and L. Mounier. IF:
An intermediate representation and validation environment for timed asynchronous
systems. In J. Wing, J. Woodcock, and J. Davies, editors, Proceedings of Sympo-
stum on Formal Methods (FM 99), volume 1708 of Lecture Notes in Computer
Science. Springer-Verlag, Sept. 1999.

6. M. Bozga, S. Graf, A. Kerbrat, L. Mounier, I. Ober, and D. Vincent. SDL for
real-time: What is missing? In Y. Lahav, S. Graf, and C. Jard, editors, FElectronic
Proceedings of SAM’00, 2000.

7. J. Brock and W. Ackerman. An anomaly in the specifications of nondeterministic
packet systems. Technical Report Computation Structures Group Note CSG-33,
MIT Lab. for Computer Science, Nov. 1977.

10.

11.
12.

13.

14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

21

E. Clarke, O. Grumberg, and D. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512-1542, 1994. A
preliminary version appeared in the Proceedings of POPL 92.

C. Colby, P. Godefroid, and L. J. Jagadeesan. Automatically closing of open reac-
tive systems. In Proceedings of 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM Press, 1998.

D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive sys-
tems: Abstraction preserving VCTL*,3CTL*, and CTL". In E.-R. Olderog, editor,
Proceedings of PROCOMET °94. IFIP, North-Holland, June 1994.

Discrete-time Spin. http://www.win.tue.nl/~dragan/DTSpin.html, 2000.

P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke and R. P. Kurshan, editors, Computer Aided Verification 1990,
volume 531 of Lecture Notes in Computer Science, pages 176—449. Springer-Verlag,
1991. an extended Version appeared in ACM/AMS DIMACS Series, volume 3,
pages 321-340, 1991.

J. Guoping and S. Graf. Verification experiments on the Mascara protocol. In M. B.
Dwyer, editor, Model Checking Software, Proceedings of the 8th International SPIN
Workshop (SPIN 2001), Toronto, Canada, Lecture Notes in Computer Science,
pages 123-142. Springer-Verlag, 2001.

M. S. Hecht. Flow Analysis of Programs. North-Holland, 1977.

G. Holzmann and J. Patti. Validating SDL specifications: an experiment. In
E. Brinksma, editor, International Workshop on Protocol Specification, Testing
and Verification IX (Twente, The Netherlands), pages 317-326. North-Holland,
1989. IFIP TC-6 International Workshop.

G. J. Holzmann. The Spin Model Checker. Addison-Wesley, 2003.

N. Ioustinova, N. Sidorova, and M. Steffen. Abstraction and flow analysis for
model checking open asynchronous systems. In Proceedings of the 9th Asia-Pacific
Software Engineering Conference (APSEC 2002, 4.—6. December 2002, Gold Coast,
Queensland, Australia, pages 227-235. IEEE Computer Society, Dec. 2002.

N. Ioustinova, N. Sidorova, and M. Steffen. Closing open SDL-systems for model
checking with DT Spin. In L.-H. Eriksson and P. A. Lindsay, editors, Proceedings
of Formal Methods Europe (FME’02), volume 2391 of Lecture Notes in Computer
Science, pages 531-548. Springer-Verlag, 2002.

G. Kildall. A unified approach to global program optimization. In Proceedings of
POPL 73, pages 194-206. ACM, January 1973.

O. Kupferman and M. Y. Vardi. Module checking revisited. In O. Grumberg, edi-
tor, CAV ’97, Proceedings of the 9th International Conference on Computer-Aided
Verification, Haifa. Israel, volume 1254 of Lecture Notes in Computer Science.
Springer, June 1997.

O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. In R. Alur, editor,
Proceedings of CAV ’96, volume 1102 of Lecture Notes in Computer Science, pages
75-86, 1996.

O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Twelfth Annual Symposium on Principles of
Programming Languages (POPL) (New Orleans, LA), pages 97-107. ACM, Jan-
uary 1985.

D. Long. Model Checking, Abstraction and Compositional Verification. PhD thesis,
Carnegie Mellon University, 1993.

F. Nielson, H.-R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

22

25

26.

27.
28.

29.

30.

31.

32.

33.

A. Olsen, O. Feergemand, B. Mgller-Pedersen, R. Reed, and J. R. W. Smith. System
Engineering Using SDL-92. Elsevier Science, 1997.

A. Pnueli. The temporal logic of programs. In Proceeding of the 18th Annual
Symposium on Foundations of Computer Science, pages 45-57, 1977.
Specification and Description Language SDL. CCITT, 1993.

Specification and Description Language SDL, blue book. CCITT Recommendation
7.100, 1992.

N. Sidorova and M. Steffen. Embedding chaos. In P. Cousot, editor, Proceedings
of SAS’01, volume 2126 of Lecture Notes in Computer Science, pages 319-334.
Springer-Verlag, 2001.

N. Sidorova and M. Steffen. Verifying large SDL-specifications using model check-
ing. In R. Reed and J. Reed, editors, Proceedings of the 10th International SDL
Forum SDL 2001: Meeting UML, volume 2078 of Lecture Notes in Computer Sci-
ence, pages 403—416. Springer-Verlag, Feb. 2001.

N. Sidorova and M. Steffen. Synchronous closing of timed SDL systems for model
checking. In A. Cortesi, editor, Proceedings of the Third International Workshop on
Verification, Model Checking, and Abstract Interpretation (VMCAI) 2002, volume
2294 of Lecture Notes in Computer Science, pages 79-93. Springer-Verlag, 2002.
A. Valmari. A stubborn attack on state explosion. Formal Methods in System De-
sign, 1992. Earlier version in the proceeding of CAV ’90 Lecture Notes in Computer
Science 531, Springer-Verlag 1991, pp. 156-165 and in Computer-Aided Verification
’90, DIMACS Series in Discrete Mathematics and Theoretical Computer Science
Vol. 3, AMS & ACM 1991, pp. 25-41.

A wireless ATM network demonstrator (WAND), ACTS project ACO085.
http://www.tik.ee.ethz.ch/~wand/, 1998.

