Available online at www.sciencedirect.com

scuENCE@DIRECT@ Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 331 (2005) 251-290

www.elsevier.com/locate/tcs

An assertion-based proof system for multithreaded
Java

Erika Abrahard*1, Frank S. de Bo&r Willem-Paul de Roevér
Martin Stefferd

aChristian-Albrechts-University Kiel, Germany
bcwi Amsterdam, The Netherlands

Abstract

Besides the features of a class-based object-oriented langisagantegrates concurrency via
its thread classes, allowing for a multithreaded flow of control. The concurrency model includes
synchronous message passing, dynamic thread creation, shared-variable concurrency via instance
variables, and coordination via reentrant synchronization monitors.

To reason about safety properties of multithreadada programs, we introduce aassertional
proof methodor a multithreaded sublanguage d#va covering the mentioned concurrency issues
as well as the object-based coreJaiva The verification method is formulated in terms of proof-
outlines, where the assertions are layered into local ones specifying the behavior of a single instance,
and global ones taking care of the connections between objects. We establish the soundness and
the relative completeness of the proof system. From an annotated program, a number of verification
conditions are generated and handed over to the interactive theorem Pxtiver
© 2004 Elsevier B.V. All rights reserved.

Keywords: JavaMultithreading; Monitors; Verification; Hoare-logic; Soundness and relative completeness

* Corresponding author.
E-mail addresseseab@informatik.uni-freiburg.déE. Abraham), F.S.de.Boer@cwi.nl(F.S. de Boer),
wpr@informatik.uni-kiel.d€W.-P. de Roeverms@informatik.uni-kiel.déM. Steffen).

1 Currently at University Freiburg.

0304-3975/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.09.019

http://www.elsevier.com/locate/tcs
mailto:eab@informatik.uni-freiburg.de
mailto:F.S.de.Boer@cwi.nl
mailto:wpr@informatik.uni-kiel.de
mailto:ms@informatik.uni-kiel.de

252 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290
1. Introduction

Besides the features of a class-based object-oriented langlaagéntegratesconcur-
rencyvia its thread classeva’s semantical foundatiorf25] have been thoroughly studied
ever since the language gained widespread popularity[(e.d.9,47). The research con-
cerningJava’'s proof theory mainly focussed @equentiabub-languages (e.[£8,43,52).

This work presents a sound and relatively complete assertional proof systémdghch
a subset ofava, featuring dynamic object creation, object references with aliasing, method
invocation, and, specifically, concurrency afasta’s monitor discipline.

The behavior of davagynchprogram results from the concurrent execution of methods. To
support a clean interface between internal and external object behavior, the state of an object
can be accessed from the outside only via the object’s methods and not directly via qualified
references.x to instance variables. As a consequence, shared-variable concurrency is
caused by simultaneous execution within a single object, only. To mirror this modularity,
the assertional logic and the proof system are formulated at two levels, a local and a global
one. Thdocalassertion language describes the internal object behavior. The global behavior,
including the communication topology of the objects, is expressed igltial language.

The language and the proof system for partial correctness are presented incrementally
in three stages, starting with a sequential sublanguage, which is extended by concurrency
and monitor synchronization in next steps. The proof systems are formulated in terms of
proof outlineq38], i.e., of programsugmentedby auxiliary variables andnnotatedwith
Hoare-style assertiorj24,27] To obtain a complete proof system, i.e., which allows to
prove each invariant property of a program, it must be possible to express the strongest
invariant property, which is reachability and which, in general, depends not only on the
current values of variables, but also on other control information. Therefore, the standard
route to achieve completeness is to represent the missing control information in the states
in so-calledauxiliary variables.Of course, the incremental development shows, which in-
formation must be additionally represented at the different stages for completeness. For
method calls, already in the sequential case, we use auxiliary variables to identify commu-
nicating partners in method calls. Additionally, in the multithreaded case, we additionally
need auxiliary variables to identify threads, and to capture monitor synchronization at the
third stage.

The satisfaction of the program properties specified by the assertions is guaranteed by
the verification conditions of the proof system. The execution of a single method body
in isolation is captured by standalatal correctnesgonditions, using the local assertion
language. Interference between concurrent method executions is coverethbgrfeesnce
freedom teq38,36], formulated also in the local language. It has especially to accommodate
for reentrant code and the specific synchronization mechanism. Possibly affecting more than
one instance, communication and object creation is treated iodthggeration testusing
the global language. The communication can take place within a single object or between
different objects. As these two cases cannot be distinguished syntactically, our cooperation
test combines elements from similar rulegis] and in[36] for CSP.

Our proof method isnodularin the sense that it allows for separate interference free-
dom and cooperation tests (Fifj). This modularity, which in practice simplifies cor-
rectness proofs considerably, is obtained by disallowing the assignment of the result of

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 253

sequential
correctness
Javasyncﬁ
correctness cooperation
test

interference
freedom

Fig. 1. Modularity of the proof system

Semantics of
assertions

Program
correctness
proof

. c

Java augmentatlon~ Proof Verger~ Verification %
program | T annotation | outline | tool | conditions m
o)

(o))

Syntax of 5
assertions Z
c

o]

(0]

2

PVS o
k=

c

Q

(]

0]

£

B

ko)

o

a

Fig. 2. The verification process.

communication and object creation to instance variables. Clearly, such assignments can
be avoided by additional assignments to fresh local variables and thus at the expense of
new interleaving points. This restriction could be released, without loosing the mentioned
modularity, but it would increase the complexity of the proof system.
For readability, the verification conditions in this paper are formulated as standard Hoare-
triples {p}stm{y/}. The meaning of these partial correctness formulas is, tlsanis exe-
cuted in a state satisfying, and the execution terminates, then the resulting state satisfies
Y. In [3] we reformulate these Hoare-triples to logical implications using substitutions.
Computer-supportis given by the todrger (VERIfication condition GEneratRaking
a proof outline as input and generating the verification conditions as output. We use the
interactive theorem prover PV[39] to verify the conditions, for which we only need to
encode the semantics of the assertion language (cf2Fig¢n the verification conditions

254 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

we model assignments by substitutions, instead of more semantic appr{fa2het3,52]
which use an explicit encoding of the semantics of assignments.

The remainder of the paper is structured as follows. We start in Sébiigh asequential,
class-based sublanguageJa¥a and its proof system, featuring dynamic object creation
and method invocation. This level shows how to handle activities of a sthggad of
execution. At the second stage we incluacurrencyin Section3. The proof system is
extended to handle dynamic thread creation, interleaving, and shared variable concurrency.
Finally, we integratd/ava’s monitor synchronizatiomechanism in Sectiod. Soundness
and completeness are discussed in Se&i@ectioné shows how we can prove deadlock
freedom, and Sectiondiscusses related and future work.

2. The sequential sublanguage

In this section, we start with a sequential language, ignoring concurrency issles,of
which will be added in later sections. Furthermore—and throughout the paper—we con-
centrate on the object-based corelafa, i.e., we disregaréthheritanceand consequently
subtyping, overriding, and late-binding. For simplicity, we neither allow methaatioad-
ing, i.e., we require that each method name is assigned a unique list of formal parameter
types and a return type. In short, being concerned with the verification of the run-time
behavior, we assume a simpt®nomorphidype discipline.

Programs, as idava, are given by a collection of classes containing instance variable
and method declarationsistance®f the classes, i.eobjects are created dynamically, and
communicate vianethod invocation,e., synchronous message passing.

The languages we consider are strongly typed. Besides class dyplesy support
booleansBool and integerdnt as primitive types, furthermore pairsx r and listslist ¢
as composite types. Each domain is equipped with a standard set of operators. Without
inheritance and subtyping, the type system is rather straightforward. Throughout the paper,
we tacitly assume all constructs of the abstract syntax to be well-typed, without further
explicating the static semantics here. We thus work with a type-annotated abstract syntax
where we omit the explicit mentioning of types when no confusion can arise.

2.1. Syntax

The abstract syntax of the sequential languBgygseqis summarized in Tablg Though
we use the abstract syntax for the theoretical part of this work, our tool sugperts/ntax.
For variables, we notationally distinguish betweestancevariablesx € IVar andlocal
or temporaryvariablesu € TVar. Instance variables hold the state of an object and exist
throughout the object’s lifetime. Local variables are stack-allocated; they play the role of
formal parameters and variables of method definitions and only exist during the execution
of the method to which they belong. We ugar = IVar U TVar for the set of program
variables with typical element The setiVar¢ of instance variables of a clasds given
implicitly by the instance variables occurring in the class; the set of local variables of method
declarations is given similarly.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 255

Table 1
Javaseqabstract syntax

e u= x|ulthis|null|fe ..., e

Eet = ¢ €
stmu= x:=e|lu:=¢€e|u:=new’ |u:=em(, ...,e |em(e,..., €
| ¢| stm stm] if ethen Stmelse stmfi | while edo Stmod. ..
meth ::= m(u, ..., u){ stm return eret}
meth,, ::= run(){ stm return }
class ::= c¢{meth..meth
classnain ::= c{meth..meth meth,}
prog ::= (class..class clasgain)

Besides using instance and local variabegqressions & Exp are built from the self-
referencehis, the empty referenaeull, and from subexpressions using the given operators.
To support a clean interface between internal and external object behavior, we disallow
qualified references to instance variables.

As statements stne Stm we allow assignments, object creation, method invocation,
and standard control constructs like sequential composition, conditional statements, and
iteration. We write; for the empty statement. iethoddefinition consists of a method name
m, a list of formal parametensy, . . ., u,, and a method body of the foratm return ey,

i.e., we require that method bodies are terminated by a single return statement, giving back
the control and possibly a return value. TheMeth. contains the methods of classwe

denote the body of methad of classc by body,, .. A classis defined by its name and

its methods, whose names are assumed to be distipebgkam,finally, is a collection of

class definitions having different class names, witaesn,in defines by itsun-method

the entry point of the program execution. We call the body ofrthemethod of the main

class themain statemenaf the program? Therun-method cannot be invoked.

Besides the mentioned simplifications on the type system, we impose for technical reasons
the following restrictions: We require that method invocation and object creation statements
contain only local variables, i.e., that none of the expressigns ., e, in a method invo-
cationeg.m(ey, . .., €,) contains instance variables. Furthermore, formal parameters must
not occur on the left-hand side of assignments. These restrictions imply that during the
execution of a method the values of the actual and formal parameters are not changed, and
thus we can use their equality to describe caller—callee dependencies when returning from
a method call. The above restrictions could be released by storing the identity of the callee
object and the values of the formal and actual parameters in additional built-in auxiliary
variables. However, the restrictions simplify the proof system and thus they make it eas-
ier to understand the basic ideas of this work. Finally, the result of an object creation or
method invocation statement may not be assigned to instance variables. This restriction
allows for a proof system with separated verification conditions for interference freedom

21n Java, the entry point of a program is given by the stati@in-method of the main class. Relating the
abstract syntax to that dfva, we assume that the main class iBtaead -class whosenain-method just creates
an instance of the main class and starts its thread. The reason for this restrictionfsydsatnain-method is
static, but our proof system does not support static methods and variables.

256 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

and cooperation. It should be clear that it is possible to transform a program to adhere to this
restrictions at the expense of additional local variables and thus new interleaving points.
Also this restriction could be released, but it would increase the complexity of the proof
system.

2.2. Semantics

2.2.1. States and configurations)

Let Val' be the disjoint domains of the various typeandVal = [J, Val', whereU is
the disjoint union operator. For class nansethe disjunct set¥al® with typical elements
o, B, ... denote infinite sets obbject identifiersThe value of the empty referenceill
in type c is null® ¢ Val®. In general, we will just writenull, whenc is clear from the

context. We defin&/al; , asVval U {null} and correspondingly for compound types, and

val,, = U, Vall . LetInit : Var — Val , be a function assigning an initial value
to each variabley € Var, i.e., null, falsg and 0 for class, boolean, and integer types,
respectively, and analogously for compound types, where sequences are initially empty. We
definethis ¢ Var, i.e., the self-reference is not in the domairimit. 3

A local statet € 2o of type TVar — Val,,, is a partial function holding the values
of the local variables of a method. The initial local stafe’ of methodm of classc
assigns to each local variahleof mthe valuelnit («). A local configuration(e, 7, stm) of
a thread executing within an objeztspecifies, in addition to its local stateits point of
execution represented by the statem&nt A thread configuratior? is a stack of local
configurationgog, to, Stmy) . . . (o, T4, StM),), representing the call chain of the thread. We
write ¢ o (a, 7, stm) for pushing a new local configuration onto the stack.

An object is characterized by itastance stater; o, € Zinst, a partial function of type
IVar U {this} — Val, ,;» which assigns values to the self-referettgie and to the instance

variables. The initial instance statfi' of instances of classassigns a value frondal®

to this, and to each of its remaining instance variabdéke valuelnit(x). A global state
g € X of type (Uc Val") — Jinst Stores for each currentlxistingobject, i.e., an object

belonging to the domaidom(o) of g, its instance state. The set of existing objects of type
in a stater is given byvVal® (o), andvaly, (o) = Val°(0) U {null¢}. For the remaining types,
\(al’(a) andval}, , (o) are defined correspondinglal(c) = Ul Val'(¢), andVal,, ; (¢) =
U, Val (o). A global configuration(T', ¢) describes the currently existing objects by
the global stater, where the seT contains the configuration of the executing thread. For
the concurrent languages of the later sectidnsiill be the set of configurations of all
currently executing threads. In the following, we wiite 7, stm) € T if there exists a local
configuration(«, 7, stm within one of the execution stacks of

We denote byt[u — v] the local state which assigns the valut u and agrees with
on the values of all other variables, [x — v] is defined analogously, wheega.x — v]
results fromo by assigning to the instance variabbeof objecta. We use these operators
analogously for vectors of variables. We u$g+— v] also for arbitrary variable sequences,
where instance variables are untouchegd;[y — v] andg[«.y — v] are analogous. Finally

31n Java, this is a “final” instance variable, which for instance implies, it cannot be assigned to.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 257

— — P AsSnst
(T U{&o (a,1,x:=€stm}, o) — (T U{o (x,1,stm}, a[oc.x»[[e]]g)]
T . e AsSoc
(T U{&o (a,1,u:=6€stm},) — (T U{Co(x,1[u r—>[leJ]g], stm}, o)
B € Val®\Val(0) Tinst = O—icn.isqn [this f] o' = 0lfr> oy
NEw

(T U {Eo (2, 7, u:=n€W; stm)}, 6) — (T U {E o (2, tT[u >], stm}, ¢’)

m(ii){ body} € Meth.

B=leoly™ eVal(e) 7 =il @)

CALL
(T U {Eo (o, T, u := €g.m(e); StM}, 6) —

(T U {¢o (a1, receive u; stm o (, 7/, body)}, o)

' = tluret = [oretll7]

RETURN
(T U {0 (2, 1, receive uret; stm o (B, 7/, return eet)}, o) —

(T U {Eo (o, T, stm)}, 5)

RETURNrun
(T U {(a, 7, return)}, ¢) — (T U {(«, 7, ¢)}, 0)

Fig. 3.Javaseqoperational semantics.

for global statesg(o— 0,] equalse except onu; note that in caser ¢ Val(o), the
operation extends the set of existing objectsipyhich has its instance state initialized to

Oinst:

2.2.2. Operational semantics

Expressions are evaluated with respect tdretance localstate (g,), Where the
instance state gives meaning to the instance variables and the self-reference, whereas the
local state determines the values of the local variables. The main cases of the evaluation
function arelx]2™"* = 6;,(x) andu] 2™ = (). The operational semantics/ivaseq
is given inductively by the rules of Fi@.as transitions between global configurations. The
rules are formulated such a way that we can re-use them for the concurrent languages of the
later sections. Note that for the sequential language, thd sethe rules are empty, since
there is only one single thread in global configurations. We elide the rules for the remaining
sequential constructs—sequential composition, conditional statement, and iteration—as
they are standard.

Before having a closer look at the semantical rules for the transition relatioriet us
startbydefiningthe starting pointofaprogram. Theinitial configuratignaeo) of a program

258 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290
satisfiesdom(ao) = {a}, go(0) = oo
wherec is the main class, and e Val“.

A configuration(T, ¢) of a program igeachableif there exists a computatiofTy, oo)
—*(T,) where(Ty, ag) is the initial configuration of the program ane>* the reflexive
transitive closure of—. A local configuration(z, t, stm € T is enabledin (T, o), if it
can be executed, i.e., if there is a computation ¢fep) — (7', ¢’) executingstmin the
local stater and objectx.

Assignments to instance or local variables update the corresponding state component (see
rules Assnst and Asgoc). Object creation by: := new®, as shown in rule B, creates a
new object of typec with a fresh identity stored in the local variahleand initializes its
instance variables. Invoking a method extends the call chain by a new local configuration
(cf. CaLL). After initializing the local state and passing the parameters, the thread begins
to execute the method body. When returning from a method call @fudR), the callee
evaluates its return expression and passes it to the caller which subsequently updates its
local state. The method body terminates its execution and the caller can continue. We have
similar rules not shown in the figure for the invocation of methods without return value.
The executing thread ends its lifespan by returning fromrdhemethod of the initial object
(see RTURNyp)-

run,c

[thisr> o], and To = {(&, Tjny" » DOAYyn)},

2.3. The assertion language

The assertion logic consists of a local and a global sublangluagelassertiong, ¢, . ..
are used to annotate methods in terms of their local variables and of the instance variables
of the class to which they belon@lobal assertionsP, Q, ... describe a whole system
of objects and their communication structure and will be used in the cooperation test.
In the assertion language we add the t@igect as the supertype of all classes, and we
introducdogical variables different from all program variables. Logical variables are used
for quantification and as free variables to represent local variables in the global assertion
language. Expressions and assertions are interpreted relative to a logical environment
assigning values to logical variables.

Assertions are boolean program expressions, extended by logical variables and
quantification? Global assertions may furthermore contain qualified references. Quantifi-
cation can be used for all types, also for reference types. However, the existence of objects
dynamically depends on ttglobal state, something one cannot speak about at the local
level. Nevertheless, one can assert the existence of objects on the local level, provided one
is explicit about the domain of quantification. Thus quantification over objects in the local
assertion language is restrictedvtpe e. p for objects and t&/z C e. p for lists of objects,
and correspondingly for existential quantification and for composite types. Unrestricted
guantificationvz. p can be used in the local language for boolean and integer domains
only. Global assertions are evaluated in the context of a global state. Thus, quantification is
allowed unrestricted for all types and ranges over the sexisfingvalues.

41n this paper, we use mathematical notation kikep etc. for phrases in abstract syntax. The concrete syntax
used by theVerger tool is an adaptation ofML.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 259

Table 2
Semantics of assertions
([[Elz.p]](za"‘s‘"I =true) iff ([[!7]](2[ZH Uhainst® _ ryefor somew e val)
([3zee. leZ’G"‘S"T =true) iff ([zeen p]](ZIZ w U]'Gins"r:truefor somev € Val,)
[ExIG” = o(ENG))

([3z. PJJE'(r =true) iff ([[PJ]‘&“H VL9 _ truefor somev e val (o))

,0,

The evaluations of local and global assertions are givefyidly- inst:* andl[P]]‘é””. The

main cases are shown in TaleNe writew, 6y, T p for [[p]]i’“i”s"r = true, and~, p
if p holds in all contexts; we use analogously for global assertions.

To express a local property in the global assertion language, we define lifiang
substitutionp[z/this] by simultaneously replacing ip all occurrences ofhis by z, and
transforming all occurrences of instance variallieso qualified referencesx. We assume
znot to occur inp. For notational convenience we view the local variables occurring in the
global assertiom[z/this] as logical variables. Formally, these local variables are replaced
by fresh logical variables. We will writ@ (z) for p[z/this], and similarly for expressions.

2.4. The proof system

The proof system has to accommodate for dynamic object creation, aliasing, and method
invocation. Before describing the proof method we first show how to augment and annotate
programs resulting iproof outlinesor asserted programs.

2.4.1. Proof outlines

For a complete proof system it is necessary that the transition semanfioggf, can
be encoded in the assertion language. As the assertion language reasons about the local and
global states, we have sugmenthe program with fresh auxiliary variables to represent
information about the control points and stack structures within the local and global states.
Invariant program properties are specified bydheotation

An augmentatiorextends a program bgbservationswhich are atomically executed
multiple assignment§ := ¢ to auxiliary variables. Furthermore, the observations have to
be “attached” in an atomic manner to statements they observe. For object creation this is
syntactically represented by the augmentatior= new’(y := ey which attaches the
observation to the object creation statement. Observafipns ¢; of a method call and
observationg, := ¢4 of the corresponding reception of a return valusre denoted by :=
ep.m(e)(y1 1= 1)@l (y4 := eq)?. The augmentationy, := e,)*a stm return get(y3 :=
e3)t of method bodies specifigs := ¢, as the observation of the reception of the method
call, andys := ¢é3 as the observation attached to the return statement. Assignments can be

5To exclude the possibility, that two multiple assignments get executed in a single computation step in the
same object, we require that caller observations in a self-communication may not change the values of instance
variableg4].

260 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

observed using := ()’ := ¢')#ss. A stand-alone observation not attached to any statement
is written as(y := ¢); it can be inserted at any point in the program.

The augmentation does not influence the control flow of the program but enforce a
particular schedulingpolicy. An assignment statement and its observation are executed
simultaneously. Object creation and its observation are executed in a single computation
step, in this order. For method calls, communication, sender, and receiver observations are
executed in a single computation step, in this order. Points between a statement and its
observation are noontrol points since the statement and its observation are executed in
a single computation step; we call thexuxiliary points We use the expressianultiple
assignmento refer generally to statements of the following forms: assignment statements
together with their observations, unobserved assignments, stand-alone observations, as well
as observations of communication and object creation.

Besides the auxiliary variables defined by the user, we have biittén auxiliary vari-
ables, described in the following. In order to express the transition semantics in the logic, we
identify each local configuration by a pair consisting of the object in which it executes and
a unique object-internal identifier. The latter is stored in a built-in auxiliary local variable
conf, and its uniqueness is assured by the auxiliary instance vatiabiger, incremented
for each new local configuration in that object. The callee receives the “return address” as
auxiliary formal parametecaller of type Object x Int, storing the identities of thaller
object and the calling local configuration. The parame#éer of the initial invocation of
therun-method of the initial object gets the valgaull, 0).

Syntactically, the built-in augmentation translates each method definiti@y{stm} into
m(ii, caller){(conf, counter := counter, counter + 1)@ stm}. Correspondingly, method
invocation statements := ey.m(¢) get extended ta := ey.m(e, (this, conf)).

For readability, in the examples of the following sections we will not explicitly list the
built-in augmentation; they are meant to be automatically included.

To specify invariant properties of the system, the augmented prograrasraotatecy
attaching local assertions to each control and auxiliary point. We use the triple notation
{pystmig} and writepre(stm) andpost(stm) to refer to the pre- and the post-condition of a
statement. For assertions at auxiliary points we use the following notation: The annotation

{po) U 1= new c (p1)"®" (y :=)"V (py)

of an object creation statement specifigsand p, as pre- and postconditions, where
at the auxiliary point should hold directly after object creation but before the observation.
The annotation

{po}u = a).m(z) {pl}!call <§1 = El)!call {pz}wait

(P31 (Ya 1= ea)™ (pa}
assignspo and p4 as pre- and postconditions to the method invocatignand p3 are
assumed to hold directly after method call and return, resp., but prior to their observations;

p2 describesthe control point of the caller after method call and before return. The annotation
of method bodiestm return eis as follows:

(poy®al (yp :=éx)%al (p1) Stm (p2) returne(pz)™ (y3:= €3)" (pa)

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 261

The callee postcondition of the method capis the callee pre- and post-conditions of return
arepz andp4. The assertiongg resp.ps specify the states of the callee between method call
resp. return and its observation. Note that method annotations do not syntactically specify
the state prior to call, i.e., there is no precondition of method invocations from the callee
side. Semantically, this precondition is the class invariant.

Besides pre- and postconditions, the annotation defines for each allssl assertiof.
calledclass invariantspecifying invariant properties of instances of terms of its instance
variables. Finally, a global assertigal called theglobal invariant specifies properties
of communication between objects. As such, it should be invariant under object-internal
computation. For that reason, we require that for all qualified referefcesn GI with
E of typec, all assignments ta in classc occur in the observations of communication
or object creation. We require that in the annotation no free logical variables occur. In the
following we will also use partial annotation. Assertions which are not explicitly specified
are by definition true.

2.4.2. Verification conditions

The proof system generates a numbaeragffication conditionsvhich inductively ensure
that for each reachable configuration the local assertions attached to the current control
points in the thread configuration as well as the global and the class invariants hold. The
conditions are grouped, as usual, into initial conditions (which are not discussed in this
paper, se@4]), and for the inductive step into local correctness and tests for interference
freedom and cooperation.

Arguing about two different local configurations makes it necessary to distinguish be-
tween their local variables, since they may have the same names; in such cases we will
rename the local variables in one of the local states. We use primed assgftiom¬e
the given assertiopwith every local variable replaced by a fresh ong, and correspond-
ingly for expressions.

Local correctnessA proof outline idocally correct if the properties of method instances,
as specified by the annotation, are invariant under the execution of the given method in-
stance. For example, the precondition of an assignment must imply its postcondition after
its execution. The following condition is required to hold for all multiple assignments being
an assignment statement with its observation, an unobserved assignment, or a stand-alone
observation:

Definition 2.1 (Local correctness: assignméntA proof outline islocally correct if for
all multiple assignmentgp1}) ¥ := € {p2} in classc, which is not the observation of object
creation or communication,

Feipl yi=¢ {p2}. (1)

The conditions for loops and conditional statements are similar. Note that we have no
local verification conditions for observations of communication and object creation. The
postconditions of such statements exprassumptiongbout the communicated values.
These assumptions will be verified in tbeoperation test

262 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

The interference freedom testvariance of local assertions under computation steps in
which they are not involved is assured by the proof obligations oiftiegference freedom
test. Its definition covers also invariance of the class invariants. Siaesseq does not
support qualified references to instance variables, we only have to deal with invariance
under execution within theameobject. Affecting only local variables, communication and
object creation do not change the instance states of the executing objects. Thus we only
have to cover invariance of assertions at control points over assignments in the same object,
including observations of communication and object creation. To distinguish local variables
of the different local configurations, we rename those of the assertion.

Letgbe an assertion at a control point and= ¢ a multiple assignment in the same class
c. In which cases doaghave to be invariant under the execution of the assignment? Since
the language is sequential, i.gandy := ¢ belong to thesamethread, the only assertions
endangered are those at control points waiting for return earlier in the current execution
stack. Invariance of a local configuration under its own execution, however, need not be
considered and is excluded by requirtemf # conf’. Interference with thenatchingreturn
statement in a self-communication need also not be considered, because communicating
partners execute simultaneously. loaller_obj be the first anctaller_conf the second
component otaller. We definewaits_for_ret(g, y := é) by
e conf # conf, for assertiongg}*at attached to control points waiting for returnyif= e

is not the observation of return;
e conf # confA (this # caller_objVconf # caller_conf), for assertiongg v, if y := ¢

observes return;
o false, otherwise.
The interference freedom test can now be formulated as follows:

Definition 2.2 (Interference freedojn A proof outline isinterference fregif for all classes
¢ and multiple assignmenfs:= ¢ with preconditionp in c,

Feip ALl 5" =e {I}. (2
Furthermore, for all assertiomgat control points irt,

Frip Aq' Awaits_for_ret(qg,y :=¢)} y:=e¢ {q'}. (3)

Remember thag’ stands for the assertianwith each local variable appropriately re-
named, e.g., the variabtenf is replaced byonf’ etc. Note further that if we would allow
program expressions to contain qualified references to instance variables, we would have
to show interference freedom of all assertions under all assignments in programs, not only
for those occurring in the same class. For a program wittasses where each class con-
tainsk assignments anldassertions at control points, the number of interference freedom
conditions is in Qn-k-1), instead of Q(n-k) - (n-1)) with qualified references.

Example 2.3. Let (py}this.m(e) (pa)ca (stmy)'cal { pajwait { pg)et (stnp) et (ps) be an anno-
tated method call statement in a methadof a classc with an integer auxiliary instance
variablex, such that each assertion impliesf = x. l.e., the identity of the executing local
configuration is stored in the instance variakl@he annotation expresses that no pairs of
control points i’ of ¢ can be simultaneously reached.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 263

The assertiong, andp4 need not be shown invariant, since they are attached to auxiliary
points. Interference freedom neither requires invariance of the assepti@ml ps, since
they are not at control points waiting for return, and thus the antecedents of the corresponding
conditions evaluate to false. Invariancegf under the execution of the observatisimy
with preconditionp, requires validity of= 2 { p2> A p5 Awaits_for_ret(p3, stmy)} stmy {p5}.
The assertiopo A p5 Awaits_for_ret(p3, stmy) implies(conf = x)A(conf’ = x)A(conf’ #
conf), which evaluates to false. Invarianceef understnp follows analogously.

Example 2.4. Assume a partiall§ annotated method invocation statement of the form
{p1)this.m(€) (conf = x A p2)¥ait(p3) in a clas with an integer auxiliary instance variable

X, and assume that methadof ¢ has the annotated return statemgnt return (caller =

(this, x))et (stm'et (gp} . The annotation expresses that the local configurations containing
the above statements are in caller—callee relationship. Thus upon return, the control point
of the caller moves from the point ebnf = x A p; to that atps, i.e.,conf = x A po does

not have to be invariant under the observation of the return statement.

Again, the assertionaller = (this, x) at an auxiliary point does not have to be shown
invariant. For the assertions, ps, g1, andg2, which are not at a control point waiting for
return, the antecedent is false. Invarianceaff = x A p» under the observatiostmwith
preconditioncaller = (this, x) is covered by the interference freedom condition

F { caller = (this, x) A (conf = x A p5)A
waits_for_ret((conf = x A po), stm) } stm{conf’ = x A p5} .

The waits_for_ret assertion impliesaller # (this, conf’), which contradicts the assump-
tionscaller = (this, x) andconf = x; thus the antecedent of the condition is false.

Satisfaction otonf = x A po after the call, satisfaction @bller = (this, x) directly after
return, and satisfaction @fs andg, after the observatiostmis assured by the cooperation
test.

The cooperation testWhereas the interference freedom test assures invariance of asser-
tions under steps in which they are not involved,¢heperation testleals with inductivity
for communicating partners, assuring that the global invariant, and the preconditions and
the class invariants of the involved statements imply their postconditions after the joint step.
Additionally, the preconditions of the corresponding observations must hold immediately
after communication. The global invariant expresses global invariant properties using aux-
iliary instance variables which can be changed by observations of communication, only.
Consequently, the global invariant is automatically invariant under the execution of non-
communicating statements. For communication and object creation, however, the invariance
must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. The communication pattern of
method call and return and the involved local assertions are illustrated id.Ripntrol
points are represented big, and auxiliary points by’s.

Since different objects may be involved, the cooperation test is formulated in the global
assertion language. Local properties are expressed in the global language using the lifting

6As already mentioned, missing assertions are by definition true.

264 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

Iy 2al q2 Yo=é2 g3 body qsa ret g5 y3=eé3_qs
o - o @ > g o 0
call o retumn
Icall)71:=é’1: o ret Va:=éq

[] o ® o)
p1 P2 P3 P4 pPs

Fig. 4. Cooperation test: communication.

substitution. As already mentioned, we use the short®ts for p[z/this], Q'(z’) for
q'[Z’ /this], and similarly for expressions. To avoid name clashes between local variables of
the partners, we rename those of the callee. Remember that after communication, i.e., after
creating and initializing the callee local configuration and passing on the actual parameters,
first the caller, and then the callee execute their corresponding observations, all in a single
computation step. Correspondingly for return, after communicating the result value, first
the callee and then the caller observation gets executed.
Letzandz’ be logical variables representing the caller, respectively the callee object in
a method call. We assume the global invariant, the class invariants of the communicating
partners, and the preconditions of the communicating statements to hold prior to communi-
cation. For method invocation, the precondition of the callee is its class invariant. That the
two statements indeed represent communicating partners is captured in the asserttign
which depends on the type of communication: For method invocatjam(e), the asser-
tion Eo(z) = 7’ states, that’ is indeed the callee object. Remember that method invocation
hands over the “return address”, and that the values of formal parameters remain unchanged.
Furthermore, actual parameters may not contain instance variables, i.e., their interpretation
does not change during method execution. Therefore, the formal and actual parameters can
be used at returning from a method to identify partners being in caller—callee relationship,
using the built-in auxiliary variables. Thus for the return casenm additionally states
i’ = E(z), whereii andé are the formal and the actual parameters. Returning from the
run-method terminates the executing thread, which does not have communication effects.
As in the previous conditions, state changes are represented by assignments. For the
example of method invocation, communication is represented by the assigiment
E (z), where initialization of the remaining local variabkéis covered by’ := Init(v). The
assignments.y; := E1(z) andz’.y, := Eé(z/) stand for the caller and callee observations
y1 := é1 andy, := é», executed in the objectsandz’, respectively. Note that we rename
all local variables of the callee to avoid name clashes.

Definition 2.5 (Cooperation test for communicatipnA proof outline satisfies theooper-
ation test for communicatiorif

Fg (Gl A P1(2) A Q1(z)) Acomm A z # null A Z' # null}

fcomm

{P2(2) A Q5(2)} (4)

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 265

Fg (Gl A P1(2) A Q1(z)) Acomm A z # null A 2/ # null}

Sfcommi fobsl§ fOng
{GI A P3(z) A Q3(2))} (5)

hold for distinct fresh logical variablesof typec andz’ of typec’, in the following cases:

(1) CaLL: For all statementsp}urt = €g.m(e) {p2)@ (y1 := eg)< (pgvat (or those
without receiving a value) in classwith ey of type ¢/, where methodn of ¢’ has
body{gz)*a! (¥, := e2)*all (g3} Stm return ey, formal parameters, and local variables
v except the formal parameters. The callee class invariag is I The assertion
comm is given byEqg(z) = z/. Furthermore fcommis ', V' := E(z), Init(¥), fobg iS
7.y1 1= El(z), and foby IS 2.5, == E’z(z/).

(2) Return: For all urer:=€p.m(€)(y1 := 1)@ (ppWait (po)?et (Y4 := e4)?{p3} (or those
without receiving a value) occurring mwith ey of type ¢/, such that methoch of ¢/
has the return statemegh} return eet{g2)™ (y3 := €3)" (g3}, and formal parameter
list , the above equations must hold wibmm given byEo(z) = 2/ i’ = Eﬁ(z), and
where fecommiS uret := Efet(z'), fobg IS Z/-fé = E5(z), and fopg IS 2.54 = E4(2).

(3) ReTURNyn: For the statementy) return (g2} (y3 := é3)'et (g3} of the run-method of
the main classpy = p2 = p3 = true, comm = true, fobg IS z'.y5 1= E5(Z'), and
furthermorefcommand fops, are the empty statement.

Example 2.6. This example illustrates how one can prove properties of parameter passing.
Let {p}eg.m(v,), with p given byv > 0, be a (partially) annotated statement in a class
with ey of typec’, and let methodh (1, w) of ¢’ have a body of the forng) stm return where

gisu > 0. Inductivity of the proof outline requires thatgis valid prior to the call (besides
validity of the global and class invariants), thers satisfied after the invocation. Omitting
irrelevant details, Conditio® of the cooperation test requires provikg{P(z)} u' :=

v {Q'(z))}, which expands t&g{v > 0} u’ := v {u’ > 0}.

Example 2.7. The following example demonstrates how one can express dependencies
between instance states in the global invariant and use this information in the cooperation
test.

Let (p)eg.m(é), with p given byx > 0 A ey = o, be an annotated statement in a class
with ey of typec’, x an integer instance variable, andn instance variable of typé, and
let methodm () of ¢’ have the annotated bodly; stm return whereqis y > 0 andy an
integer instance variable. Let furthermare LVar® and let the global invariant be given by
Vz.(z Znull A z.o # null A z.x > 0) — z.0.y > 0. Inductivity requires that ip and the
global invariant are valid prior to the call, thens satisfied after the invocation (again, we
omitirrelevant details). The cooperation test Condiipie.,Fg{GI A P(z) Acomm Az #
null A 7' # null} ' := E(z) {Q'(z')} expands to

Fg {Vz.(z #null Az.o #null Az.x > 0) = z.0o.y > O)A
(z.x >0A Ep(z) =z.0) AEg(z) =2 Az #null AZ # null }
i = E{)
{z.y > 0}.

266 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

Instantiating the quantification k¥ the antecedent implieso.y > 0A 7z = z.0, i.e.,
7'.y > 0. Invariance of the global invariant is straightforward.

Example 2.8. This example illustrates how the cooperation test handles observations of
communication. Let=b} this.m (¢é){b}*at be an annotated statementin a clawith boolean
auxiliary instance variablé and letm (i) of ¢ have a body of the form—by®al (h =
true)®al (by stm return. Condition4 of the cooperation test assures inductivity for the pre-
condition of the observation. We have to show

Eg{—z.b A comm}ii’ := E(z){—z .b}
(again, we omit irrelevant details), i.e., since it is a self-call,
Egl-zb Az =7} = E(2){~7 b},
which s trivially satisfied. ConditioB of the cooperation test for the postconditions requires
Eg{commlii’ := E(z): 7'.b := true{z.b A 7.}
which expands to
Fglz =7 = E(2): 7.b = true{z.b A 7B} ,
whose validity is easy to see.

Besides method calls and return, the cooperation test needs to handle object creation,
taking care of the preservation of the global invariant, the postcondition néthestatement
and its observation, and the new object’s class invariant. We can assume that the precondition
of the object creation statement, the class invariant of the creator, and the global invariant
hold in the configuration prior to instantiation. The extension of the global state with a freshly
created object is formulated instrongest postconditiostyle, i.e., it is required to hold
immediatelyafterthe instantiation. We use existential quantification to refer to the old value:
7/ of typelistObject represents the existing objects prior to the extension. Moreover, that the
created object’s identity stored inis fresh and that the new instance is properly initialized
is expressed by the global assertioash(z’, «) defined asnitState(u) Au ¢ 2 AVv. v €
z'Vv = u, wherenitState(u) is the global assertian # null A /\ ;¢ jar\ jtnis) #-X = Init(x),
expressing that the object denotedwig in its initial instance state. In this assertion, the
syntactical operatdnit has the interpretatiomit (cf. Section 2.2.1), anti/ar is the set of
instance variables af To express that an assertion refers to the set of existing olpjects
to the extension of the global state, we needesirict any existential quantification in the
assertion to range over objects framonly. So letP be a global assertion and of type
listObject a logical variable not occurring iR. ThenP | 7’ is the global assertioR with
all quantificationslz. P’ replaced byaz. obj(z) C 7z’ A P/, whereobj(v) denotes the set of
objects occurring in the value Thus a predicatéu. P) | 7/, evaluated immediately after

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 267

the instantiation, expresses tliaholds prior to the creation of the new object. This leads
to the following definition of the cooperation test for object creation:

Definition 2.9 (Cooperation test: instantiation A proof outline satisfies theooperation
test for object creatiopif for all classesc’ and statementgi}u := new¢; {po)neV(y =
&)"™W(p3} in ¢’

Fg z#null A zu A 37’ (Fresh(z, u) A (Gl A Ju. Pi(2)) | 2)

— P2(z) A I(u) (6)
Fg {z#null A z7u A 37 (Fresh(z', u) A (Gl A Ju. P1(2)) | Z')}
7.y = E’(z)
{Gl A P3(2)} (7)

with z of typec” andz’ of typelistObject fresh.

Example 2.10. Assume a statement:= new{u # this} in a program, where the class
invariant ofc is x >0 for an integer instance variabke Condition6 of the cooperation

test for object creation assures that the class invariant of the new object holds after its
creation. We have to show validity bt; (3z'. Fresh(z’, u)) - u.x>0,i.e.Fgu.x =0 —

u.x =0, which is trivial. Remember that integer variables have the initial value 0. For the
postcondition, Conditiof7 requires=g{z # u} ¢ {u # z} with ¢ the empty statement (no
observations are executed), which is true.

3. Multithreading

In this section, we extend the langua@i®aseq to a concurrentlanguageavaconc by
allowing dynamic thread creatiarAgain, we define syntax and semantics of the language,
before formalizing the proof system.

3.1. Syntax and semantics

Expressions, statements, and methods can be constructddwasgig The abstract syntax
of the remaining constructs is summarized in Tahlas we focus on concurrency aspects,
all classes ar@hread classes in the sense &fva: Each class contains the pre-defined
methodstart, which is identical for all classes and therefore syntactically not represented in
class definitions. Semantically, when invoked,dtet-method spawns a new thread, which
starts to execute the objectgn-method in parallel. Theun-methods cannot be invoked

Table 3
Javaconc abstract syntax

class ::
classnain :
prog ::

c{meth..meth meth, methy.}
class
(class. .class clasgain)

268 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

B=1lel3”" e Val(e) —startedT U (¢ o (2, 7. eStart(: stmy}, f)

. ; - CALL start
(T U {&o (a1, estart(): stm}. a) — (T U {£o (. 7. stm), (B. iyt body,,)}, o)

B=lel;”" eVal() startedT U (o (x. v, eStartOssml, f) g

L start

(T U {¢o (a1, estart(); stm}, 6) — (T U{o (a, 1, StM}, 7)

Fig. 5.Javaconc Operational semantics.

directly. Remember that the syntax does not allow qualified references to instance variables.
As a consequence, shared-variable concurrency is caused by simultaneous execution within
a single object, only, but not across object boundaries.

The operational semantics.bivaconcextends the semantics bfvaseqby dynamic thread
creation. The additional rules are shown in FsgThe first invocation of atart-method
brings a new thread into beingAC start). The new thread starts to execute the user-defined
run-method of the given object while the initiating thread continues its own execution.
Only the first invocation of thetart-method has this effect 0L 3KP).7 This is captured
by the predicatestarted 7',) which holds iff there is a stackug, 7o, Stny) ... (0, Tn,
stm,) € T such thatf = ap. A thread ends its lifespan by returning fromran-method
(RETURNyn Of Figure3).8

3.2. The proof system

In contrast to the sequential language, the proof system additionally has to accommodate
for dynamic thread creation and shared-variable concurrency. Before describing the proof
method, we show how to extend the built-in augmentation of the sequential language.

3.2.1. Proof outlines

As mentioned, an important point in achieving completeness of the proof system in the
sequential case is the identification of communicating partners. For the concurrent language
we additionally have to be able to identifigreads We identify a thread by the object in
which it has begun its execution. This identification is unique, since an object’s thread can be
started only once. We use the typleread thus as abbreviation for the ty@®bject. During
a method call, the callee thread receives its own identity as an auxiliary formal parameter
thread. Additionally, we extend the auxiliary formal parametatler by the caller thread
identity, i.e., letcaller be of typeObject x Int x Thread, storing the identities of the caller
object, the calling local configuration, and the caller thread. Note that the thread identities
of caller and callee are the same in all cases but the invocationstiframethod. The

7 In Java an exception is thrown if the thread is already started but not yet terminated.

8 The worked-off local configuratiot, t, €) is kept in the global configuration to ensure that the thread of
cannot be started twice.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 269

run-method of the initial object is executed with the valdeg (null, 0, null)) assigned to
the parameter@hread, caller), wherexg is the initial object. The boolean instance variable
started, finally, remembers whether the objecitart-method has already been invoked.

Syntactically, each formal parameter listin the original program gets extended to
(i, thread, caller). Correspondingly for the caller, each actual parameted iisstatements
invoking a method different fromatart gets extended tée, thread, (this, conf, thread)).
The invocation of the parameterlesart-method of an objedy gets the actual parameter
list (e, (this, conf, thread)). Finally, the callee observation at the beginning of the-
method executestarted := true. The variablegonf andcounter are updated as in the
previous section.

3.2.2. Verification conditions

Local correctness is not influenced by introducing concurrency. Note that local correct-
ness applies now to all concurrently executing threads.

The interference freedom tesfAn assertionq at a control point has to be invariant
under an assignmert := ¢ in the same class only if the local configuration described
by the assertion is not active in the computation step executing the assignment. Note that
assertions at auxiliary points do not have to be shown invariant. Again, to distinguish local
variables of the different local configurations, we rename those of the assertion.

If gandy := ¢ belong to thesamethread, i.e.thread = thread’, then we have the
same antecedent as for the sequential language. If the assertion and the assignment be-
long to differentthreads, interference freedom must be shown in any case except for the
self-invocation of thestart-method: The precondition of such a method invocation cannot
interfere with the corresponding observation of the callee. To describe this setting, we define
self_start(g, y := ¢) by caller = (this, conf, thread’) iff qis the precondition of a method
invocationep.start(¢) and the assignment is the callee observation at the beginning of the
run-method, and byalse otherwise.

Definition 3.1 (Interference freedojn A proof outline isinterference fredf the conditions
of Definition 2.2 hold with waits_for_ret(q, y := ¢) replaced by

. def .
interleavable(g, ¥ := &) = thread = thread’ — waits_for_ret(q, y := &) A
thread # thread’ — —self_start(q, y :=¢) . (8)

Example 3.2. Assume an annotated assignmgnistmin a method, and an assertiqrat

a control point not waiting for return in the same method, such that pathd g imply

thread = this. l.e., the method is executed only by the thread of the object to which it be-
longs. Clearlyp andq cannot be simultaneously reached by the same thread. For invariance
of qunder the assignmestm the antecedent of the interference freedom condition implies

p A q' Ainterleavable(q, stm). From p A ¢’ we concludethread = thread’, and thus by

the definition ofinterleavable(q, stm) the assertiog should be at a control point waiting

for return, which is not the case, and thus the antecedent of the condition evaluates to false.

The cooperation tesThe cooperation test for object creation is not influenced by adding
concurrency, but we have to extend the cooperation test for communication by defining

270 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

Table 4
Javagynchabstract syntax

modif ::= nsync | sync
meth ::= modifm(u, ..., u){ stm return eret}
meth,, ::= nsync run(){ stm return }
methy,ie = nsyncwait(){ ?signal; returngetiock }
methoiry, = nsyncnotity(){ signal; return }
methtiyan ::= nsync notifyAl(){ tsignal_all; return }
methyredef = Methiar Methyair Methonr, Methoriryan
class ::= c{meth..meth meth, methreder}
classnain ::= class
prog ::= (class..class clasgain)

additional conditions for thread creation. Invoking #tart-method of an object whose
thread is already started does not have communication effects. The same holds for returning
from arun-method, which is already included in the conditions for the sequential language
as for the termination of the only thread. Note that this condition applies now to all threads.

Definition 3.3 (Cooperation test: communicatipnA proof outline satisfies theoopera-
tion test for communicatiqrif the conditions of Definitior2.5hold for the statements listed
there withm # start, and additionally in the following cases:

(i) CALLgtart: Forall statements1} eg.start(é) {pa}'ca (y1 := 1)@l {p3} in classcwith g of
typec’,commis given byEq(z) = 7/ A—z'.started, wherejg)*a! (y, := ep)%al (g3) stm
is the body of therun-method ofc’ having formal parameterig and local variables
v except the formal parameters. As in thetCcase,q1_= I, feommis i,V :=
E(2), Init(V), fobg IS z.Y1 := E1(z), and fobs, is2'.35 1= E5(2).

(i) CaLLSKP: For the above statements, the equations must additionally hold with the as-
sertioncomm given by Eq(z) = 2’ A Z'.started, g1 = I/, g2 = g3 = true, fobg IS
7.y1 1= E“l(z), and feommand fopg, are the empty statement.

4. The languageJavasynch

In this section, we extend the langua@eaconcWith monitor synchronizatiorAgain, we
define syntax and semantics of the languagesynch before formalizing the proof system.

4.1. Syntax and semantics

Expressions and statements can be constructed as in the previous languages. The abstract
syntax of the remaining constructs is summarized in the Tébkormally, methods get
decorated by a modifienodif distinguishing betweenon-synchronizedndsynchronized
methods? In the sequel we also refer to statements in the body of a synchronized method
as being synchronized. Furthermore, we consider the additional predefined metinds

9 Java does not have the non-synchronized modifier: methods are non-synchronized by default.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 271

m ¢ {start, wait, notify, notifyAll} modifm (i1){ body} € Meth.

B=leolg” " eVal(o) 7 =tillar1212""] (modif = sync) — —owngT., §) cal
a

(T U {¢o (o, T, u = €9.m(e); stm},) —
(T U {Eo (a1, receive u; stm o (f, 7/, body}, o)

m € {wait, notify, notifyAll}
B=1lel3”" e Val(e) ownséo (a7, em(): stm, f)

Callmonitor
(T U {&o (a, T, em(); StM}, 6) —
(T U{&o (a1, receive: stm o (f. tjnif . body,)}, o)
—owngT, f)
Return,vait

(T U {&o (2,1, receive; stm o (f, 7, returngegock}. o) —
(T U (o (o, 1, 5tM}, 0)

Signal

(T U (o (o, 7, Isignal; stm} U (¢ o (o, 7/, ?signal; stm)},) —
(T U {Eo (o, 7, stm} U {& o (o, T, stm)}, 0)

wait(T, o) = ¢)
- B ; Signakyip
(T U{¢o (a1, signal; stm}, o) — (T U {&o (a, 7, StM}, 0)
T’ = signal(T, o)
SignalAll

(T U{¢o (a1, Isignal_all; stm}, o) — (T" U {0 (o, T, StM}, 0)

Fig. 6. Javasynchoperational semantics.

notify, andnotifyAll, whose definitions use the auxiliary statemelstgnal, !signal_all,
?signal, andreturngetiock 10

The operational semantics extends the semanti&s/adonc by the rules of Figé, where
the GuL rule is replaced. Each object hawekwhich can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread which owns the lock of
that object (@LL), as expressed by the predicatens defined below. If the thread does not
own the lock, it has to wait until the lock gets free. A thread owning the lock of an object
can recursively invoke several synchronized methods of that object, which corresponds to
the notion of reentrant monitors.

10 java's Thread class additionally support methods for suspending, resuming, and stopping a thread, but they
are deprecated and thus not considered here.

272 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

The remaining rules handle the monitor methadst, notify, andnotifyAll. In all three
cases the caller must own the lock of the callee objesti(Gonitor). A thread can block
itself on an object whose lock it owns by invoking the objeetsit-method, thereby re-
linquishing the lock and placing itself into the object’'s wait set. Formally, the wait set
wait(7, o) of an object is given as the set of all stacksTiwith a top element of the
form («, 7, 7signal; stm). After having put itself on ice, the thread awaits notification by
another thread which invokes tetify-method of the object. Thesignal-statement in
the notify-method thus reactivates a non-deterministically chosen single thread waiting
for notification on the given object (&vaL). Analogously to the wait set, the notified set
notified(T', «) of «is the set of all stacks iiwith top element of the fornt, 7, returngetiock),

i.e., threads which have been notified and trying to get hold of the lock again. According to
rule RETURNwait, the receiver can continue after notification in executitgrngetiock Only

if the lock is free. Note that the notifier does not hand over the lock to the one being notified
but continues to own it. This behavior is knownsagnal-and-continuenonitor discipline

[14]. If no threads are waiting on the object, theégnal of the notifier is without effect
(SieNALskip)- ThenotifyAll-method generalizes notify in that all waiting threads are notified
via thelsignal_all-broadcast (8NALALL). The effect of this statement is given by setting
signal T, o) as(T \ wait(T, o)) U {&o (f, 7, stm | £o (B, T, Psignal; stm) € wait(T, o)}.

Using the wait and notified sets, we can now formalizedhaspredicate: A thread
owns the lock off iff £ executes some synchronized method dbut not itswait-method.
Formally,owngT, f5) is true iff there exists a threafle T and a(f, t, stm) € & with stm
synchronized and ¢ wait(7, 5) U notified(T,). The definition is used analogously for
single threads. An invariant of the semantics is that at most one thread can own the lock of
an object at a time.

4.2. The proof system

The proof system has additionally to accommodate for synchronization, reentrant mon-
itors, and thread coordination via the wait and notify constructs. First, we define how to
extend the augmentation défvacone, before we describe the proof method.

4.2.1. Proof outlines

To capture mutual exclusion and the monitor discipline, the built-in auxiliary instance
variablelock of type Thread x Int stores the identity of the thread who owns the lock,
if any, together with the number of synchronized calls in the call chain. Its initial value
free = (null, 0) indicates that the lock is free. The instance varialle& andnotified of
typelist(Thread x Int) are the analogues of theait- andnotified-sets of the semantics and
store the threads waiting at the monitor, respectively, those having been notified. Besides the
thread identity, the number of synchronized calls is stored. In other words, these variables
remember the old lock-value prior to suspension which is restored when the thread becomes
active again. All auxiliary variables are initialized as usual. For valuesdof typeThread
andwait of typelist(Thread x Int), we will also writethread € wait instead ofthread n)
wait for somen.

Syntactically, besides the augmentation of the previous section, the callee
observation at the beginning and at the end of each synchronized method body executes

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 273

lock := inc(lock) andlock := dec(lock), respectively. The semantics of incrementing
the lock [inc(lock) 2™ is (z(thread), n + 1) for gj,g(lock) = (x, n). Decrementing
dec(lock) is inverse.

Instead of the auxiliary statements of the semantics, notification is represented in the proof
system by auxiliary assignments operating ontl& andnotified variables. If the order of
elements in sequences in not important, we use in the sequel also set notation. Entering the
wait-method gets the observatianit, lock := waitU{lock}, free; returning from thewvait-
method observdsck, notified := get(notified, thread), notified\{get(notified, thread)}.

For a thread,, thegetfunction retrieves the value, n) from a wait or notified set. The se-
mantics assures uniqueness of the association!sideal-statement of thaotify-method

is represented by the auxiliary assignmenit, notified := notify(wait, notified), where
notify(wait, notified) is the pair of the given sets with one element, chosen nondeterminis-
tically, moved from the wait into the notified set; if the wait set is empty, it is the identity
function. Finally, thelsignal_all-statement of theotifyAll-method is represented by the
auxiliary assignmentotified, wait := notified U wait, .

4.2.2. Verification conditions

Local correctness agrees with that favaconc In case of natification, local correctness
covers also invariance for the notifying thread, as the effect of notification is captured by
an auxiliary assignment.

The interference freedom te§ynchronized methods of a single object can be executed
concurrently only if one of the corresponding local configurations is waiting for return: If
the executing threads are different, then one of the threads is imat®r notified set of
the object; otherwise, both executing local configurations are in the same call chain. Thus
we assume that either not both the assignment and the assertion occur in a synchronized
method, or the assertion is at a control point waiting for return.

Definition 4.1 (Interference freedojn A proof outline isinterference freaf Definition 3.1
holds in all cases, such that if bgtreandq occur in a synchronized method, theis at a
control point waiting for return.

For notification, we require also invariance of the assertions for the notified thread.
We do so, as notification is described by an auxiliary assignment executed by the no-
tifier. That means, both the waiting and the notified status of the executing thread are
represented by a single control point in thait-method. The two statuses can be distin-
guished by the values of theait andnotified variables. The invariance of the precondition
of the return statement in theait-method under the assignment in thetify-method
represents the notification process, whereas invariance of that assertion over assignments
changing the lock represents the synchronization mechanism. Information about the lock
value will be imported from the cooperation test as this information depends on the global
behavior.

Example 4.2. This example shows how the fact that at most one thread can own the lock of
an object can be used to show mutual exclusion. We use the asse#tisiithread, lock)

274 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

for thread # null A thread(lock) = thread, wherethread(lock) is the first component of
the lock value. Letree_for(thread, lock) bethread # null A (owns(thread, lock) Vlock =
free).

Let g, given byowns(thread, lock), be an assertion at a control point and (et

(stm™al with p def free_for(thread, lock) be the callee observation at the beginning of a
synchronized method in the same class. Note that the obsersatiohanges the lock value.

The interference freedom conditidf-{p A g’ A interleavable(q, stm}stm{¢’} assures
invariance ofg under the observaticstm The assertiongandq’ imply thread = thread’.

The points ap andg can be simultaneously reached by the same thread cptjescribes a
pointwaiting for return. This factis mirrored by the definition of theerleavable predicate:

If gis not at a control point waiting for return, then the antecedent of the condition evaluates
to false. Otherwise, after the execution of the built-in augmentatick := inc(lock) in
stmwe haveowns(thread, lock), i.e.,owns(thread’, lock), which was to be shown.

The cooperation testVe extend the cooperation test flivaconc with synchronization
and the invocation of the monitor methods. In the previous languages, the asseition
expressed, that the given statements indeed represent communicating partners. In the current
language with monitor synchronization, communication is not always enabled. Thus the
assertiorcomm has additionally to capture enabledness of the communication: In case of
a synchronized method invocation, the lock of the callee object has to be free or owned by
the caller. This is expressed bylock = free Vv thread(z’.lock) = thread, wherethread
is the caller-thread, and whetteread(z’.lock) is the first component of the lock value, i.e.,
the thread owning the lock af. For the invocation of the monitor methods we require that
the executing thread is holding the lock. Returning fromhé-method assumes that the
thread has been notified and that the callee’s lock is free. Note that the global invariant is
not affected by the object-internal monitor signaling mechanism, which is represented by
auxiliary assignments.

Definition 4.3 (Cooperation test: communicatipnA proof outline satisfies theoopera-
tion test for communicatiqiif the conditions of Definitior8.3hold for the statements listed
there with the exception of the aG-case, and additionally in the following
cases:

(i) CaLL: For all statementspi}uret = €p.m(e) {p2ycd (y1 = eyl pzpvat (or such
without receiving a value) in clagswith ey of typec’, where methoe: ¢ {start, wait,
notify, notifyAll} of ¢’ is synchronized with bodyiga)®@ (yo = ép%al
g3y stm formal parameters, and local variable$ except the formal parameters.
The callee class invariant igg = I... The assertioromm is given by Eg(z) =
Z A (Z'lock = free Vv thread(z'.lock) = thread). Furthermore feommis u', v o=
E(2), Init(?), fobg IS given byz.y1 := E1(z), and fobg IS 2. 75 := E5(2'). If mis not
synchronizedz’.lock = free V thread(z’.lock) = thread in comm is dropped.

(i) CALLmonitor: For m € {wait, notify, notifyAll}, comm is given by Eg(z) = 7/ A
thread(z’.lock) = thread.

(iii) RETURNwait: FOr (g1} returngetiocdg2)™ (y3 = €3)"! (g3} in a wait-method,comm is
Eo(x) =7 A = E(z) A 7Z'.lock = free A thread’ € 7’.notified.

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 275

Example 4.4. Assume the invocation of a synchronized methmoaf a class, wheremofc
has the bodystm*a! ithread(lock) = thread) stni; return. Note that the built-in augmenta-
tion in stmsets the lock owner by the assignmirk := inc(lock). Omitting irrelevant de-
tails again, the cooperation test requireqtrue}z’.lock := inc(z’.lock){thread(z’.lock) =
thread’}, which holds by the definition dafic.

5. Soundness and relative completeness

This section contains soundness and relative completeness of the proof method of
Section4.2. The proofs can be found if#]. Given a program together with its annota-
tion, the proof system stipulates a number of induction conditions for the various types
of assertions and program constru@sundnesfor the inductive method means that for
a proof outline satisfying the verification conditions, all configurations reachable in the
operational semantics satisfy the given asserti@osnpletenessonversely means that if
a program does satisfy an annotation, this fact is provable. For convenience, let us intro-
duce the following notations. Given a progrgmmog, we will write ¢4 Or just ¢ for its
annotation, and writ@rog=e, if prog satisfies all requirements stated in the assertions,
andprogt¢’, if prog with annotationy’ satisfies the verification conditions of the proof
system.

Definition 5.1. Given a progranprogwith annotationp, thenprog-¢ iff for all reachable
configurationsT,) of prog, for all 2 € dom(g) with class invariant,, for all («, 7, stm) €
T, for all logical environmentsy referring only to values existing ia, and for all local
statesr’:

(1) w,oFg Gl ,

(2) w,0(),vF, I, and

(3) w, a(x), =, pre(stm).

For proof outlines, we writ@rog ¢’ iff prog with annotationy’ satisfies the verification
conditions of the proof system.

5.1. Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their asser-
tions for an annotated program that has been verified using the proof conditions. Soundness
of the method is proved by a straightforward, albeit tedious, induction on the computation
steps.

Before embarking upon the soundness formulation and its proof, we need to clarify the
connection between the original program and proof outline, i.e., the one decorated with
assertions, and extended by auxiliary variables. The transformation is done for the sake of
verification, only, and as far as the un-augmented portion of the states and the configurations
is concerned, the behavior of the original and the transformed program are the same.

To make the connection between original program and the proof outline precise, we define
a projection operatiof) prog, that jettisons all additions of the transformation. Selety
be a proof outline foprog, and(7’, ¢’) a global configuration gprog. Thens’ | progis

276 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

defined by removing all auxiliary instance variables from the instance state domains. For the
set of thread configurations, | progis given by restricting the domains of the local states

to non-auxiliary variables and removing all augmentations. Additionally, for local configu-
rations(a, 7, returngetiock) € 7, if the executing thread is in the wait set, i.g(thread)

o’ () (wait) then the statememnéturngetockgets replaced bys®nal; returngetiock. Further-

more, for local configurationg, 7, stm return) with stm # ¢ an auxiliary assignment in

the notify- or thenotifyAll-method, the auxiliary assignmestmgets replaced bysignal
and!signal_all, respectively. The following lemma expresses that the transformation does
not change the behavior of programs:

Lemma 5.2. Let prod be a proof outline for a program prod@hen(T, o) is a reachable
configuration of prog iff there exists a reachable configuratidh ¢’) of prog with (T’ |

prog, ¢’ | prog) = (T, o).

The augmentation introduced a number of specific auxiliary variables that reflect the
predicates used in the semantics. That the semantics is faithfully represented by the variables
is formulated in4].

Let prog be a program with annotatiap, andprog a corresponding proof outline with
annotationy’. Let Gl be the global invariant of/, I/ denote its class invariants, and for
an assertiop of ¢ let p’ denote the assertion @f associated with the same control point.

We writeF¢’ — ¢ iff Fg GI’ - GI, E, I — I, for all classes, andF, p’ — p, for

all assertiong of ¢ associated with some control point. To give meaning to the auxiliary
variables, the above implications are evaluated in the context of states of the augmented
program. The following theorem states the soundness of the proof method.

Theorem 5.3(Soundnegs Given a proof outline progwith annotationp, oy, then

if progtepoy then progEepygy -

Theorem5.3is formulated for augmented programs. We get immediately with the help
of Lemmab.2

Corollary 5.4. If prog't g aNdFE@pog = Pprog: then progr@p g

The soundness proof is basically an induction on the length of computations, simultane-
ously on all three parts from Definitiob.1 After handling the initial case, the inductive
step assume&ly, ag)— *(T', &) —> (T, 6) such that(T, &) satisfies the conditions of
Definition 5.1, andw a logical environment referring only to values existingsinin the
proof cases we distinguish between possible kinds of the computatioﬂﬁ,tép) —

(T,). We illustrate the soundness proof on the case for synchronized method invocation.

CasdCaLL): Let (o, T1, uret := €9.m(e); (y1 = ep'@lstm) e T be the caller con-
figuration prior to method invocation, and let, 71, stmy) € T and (B, T2, stmp) € T
be the local configurations of the caller and the callee after execution. Let furthermore
(y2 := éz™ st be the invoked method’s body, its formal parameters andlits lo-

cal variables except the formal parameters. TReg [eo]l g(“) T # null. Directly after

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 277

communication the callee has the local stage= 7, [u r—>[[é']]g(“)’%l]; after the caller

observation, the global state és = 6[a.§1r—>[[21]]g(“)’%1] and the caller’s local state is

updated tot; = 11[y1 r—>[[é’1]]g(“)’%l]. Finally, the callee observation updates its local state
t0 72 = 12[y2 |—>[[22]]g(ﬂ)’12] and the global state = &[f.y> n—>|[éz]]g(ﬁ)’12].

Since the invoked method is synchronized¢ ifs the stack of the executing thread in
T, then according to the transition ru+eown$T\{é}, p). Using the correctness of the
representation of the lock ownership and uniqueness of the identification mechanism by the
built-in auxiliary variables we get(f5)(lock) = free v thread(a(f)(lock)) = T1(thread)
and thusa, gFg z'.lock = free V thread(z'.lock) = thread with v1 = dom(t1) and
where® is given byw[z — a][z’ — Bl[v1+— T1(v1)]. Similarly, p = [[eg]]g“‘)’fl implies
o, oFg Eo(z) = 7. Remember thaEo(z) is a shortcut foeg[z/this].

In the following letp; = pre(uret := €9.m(e)), p2 = pre(yy := é1), p3 = posi(y; :=
€1), q1 = I, g2 = pre(yz2 := é2), andgz = post(y, := ¢&»), wherel is the class invariant of
the callee. Then we have by induction o=¢g Gl, @, 6(f), t1F I, andw, 6(a), T1F £ p1.
The cooperation test for communication assures

», 5 Eg {Gl A P1(2) A Q1(2) A comm A z#null A Z'#null}

=/ =/

i, v = E(z), Init@); z.51 1= E1(2); 7y = 5/2(2/)
{GI A P3(2) A Q3(2))}

wherecomm is Eq(z) = z’ A (Z'.lock = free Vv thread(z’.lock) = thread). Note that the
above assignments represent exactly the state changes caused by communication and the
observations of caller and callee. Thus we have
@, 6Eg Gl A P3(z) A Q5(2))
with & given bya[i’ > [E12™" ™[0’ - Init(@)][F1 > [er]2 ™ 1[5, - [[22]];(’”’72]. Note
that in the annotation no free logical variables occur, and thus the values of assertions in
a proof outline do not depend on the logical environment. degk¢ GI, and thus part
(). Using correctness of the lifting substitution we get similanlyg(«), 71F, p3 and
, 6(P), 12F ¢ q3.

Thus part (3) is satisfied for the local configurations involved in the last computation
step. All other configurationgy, 73, stng) in T are also inT. If y # oandy # B, then
a(y) = 6(y), and thusw, 6(y), t3F - pre(stng) by induction.

Assume in the following that is either the calles or the callees. We need to apply the
interference freedom test to show invariance of the corresponding assertions. To do so, we
use the cooperation test to show that the preconditions of the observations are satisfied in
the state in which they get executed. The cooperation test assures

, 0 Fg {Gl A P1(2) A Q1(2) A comm A z#null A Z'#null}

i, v = E(z), Init(D)
{P2(2) A Q5()} .
As above, the precondition is satisfied, and we getdlial, t1=, p2 anda (), 72F £ g2.
We distinguish three casescan be the caller object, the callee object, or both in case of
a self-call. Assume first = o ando # f8, and letr bet1[v — 13(¥)], wherev = dom(t3z).

278 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

The interference freedom test assures

, o(a), TFr {p2 A pre/(stmg) A interleavable(pre(stny), y1 1= e1)}
yii=é1
{pré/(stp)} .
6(00),T

With the definition ofinterleavable this yieldsw, 6(x), T[y1 r—>[[§1]]€ 1E . pre(stny).
Due to the renaming mechanism, no local variable$’imccur in y;. Renaming back
the variables leads tw, 6(x), t3F pre(stmg). Now, sincefS # «, the callee observa-
tion neither changes the caller’s instance state, and we h@je= 6(«). Thus we get
w, 6(a0), T3F £ pre(stmg).

Thecase = ffandx # fis similar. Communication and caller observation do not change
the instance state ¢ i.e.,a(f) = a(f). The interference freedom test applied to the states
&(f) andt with © = [V — t3(V)] resultsw, 6(f), tF £ pre/ (stmg) with 7(v') = 13(0),
and thusw, 6(f), t3F . pre(stim).

For the last casg = o = f note that, according to the restrictions on the augmentation,
the caller may not change the instance state. Thus the same arguments as foand
o # fapply. l.e., part (3) is satisfied.

Part (2) is analogous: Ldtbe the class invariant af. The interference freedom test
implies w, 6(«), T1F - I. Sincel may contain instance variables only, its evaluation does
not depend on the local state. Similarly for the calleed(f), 72F I. The state of other
objects is not changed in the last computation step, and we get the required property.

5.2. Relative completeness

Next, we conversely show that if a program satisfies the requirements asserted in its
proof outline, then this is indeed provable, i.e., then there exists a proof outline which can
be shown to hold and which implies the given one:

Vprog. prog’:(/)prog = 3prog. prog"@”prog A ':‘Pprog — Pprog -

Given a program satisfying an annotatiprog=¢,4, the consequent can be uniformly
shown, i.e., independently of the given assertional pgi, by instantiatingp,q to the
strongest annotation still provable, thereby discharging the last ckapisgy — ®prog-
Since the strongest annotation still satisfied by the program corresponds to reachability, the
key to (relative) completeness is to
(1) augment each program with enough information, to be able to
(2) expressreachabilityinthe annotation, i.e., annotate the program such thata configuration
satisfies its local and global assertions exactly if reachable (see DefibiGdelow),
and finally
(3) to show that this augmentation indeed satisfies the verification conditions.
We begin with the augmentation, using the transformation of the previous sections as
starting point, where the programs are augmented with the specific auxiliary variables.
To facilitate reasoning, we introduce an additional auxiliary local varigddewhich
stores the current control point of the execution of a thread. Given a function which assigns
to all control points unique location labels, we extend each assignment with the update

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 279

loc := [, wherd is the label of the control point after the given occurrence of the assignment.
Also unobserved statements are extended with the update. Wd weriggmif | represents
the control point in front ostm

The standard way for relative completeness augmentation is to add information into the
states about the way how it has been reached, i.ehist@ryof the computation leading to
the configuration. This information is recorded using history variables.

The assertional language is split into a local and a global level, and likewise the proof
system is tailored to separate local proof obligations from global ones to obtain a modular
proof system. The history will be recorded in instance variables, and thus each instance can
keep track only of its own past. To mirror the split into a local and a global level in the
proof system, the history per instance is recorded separatelgtéonal behavior in the
local history, and forexternalbehavior in thecommunicatiorhistory.

The local history keeps track of the state updates due to local steps of threads, i.e.,
steps which does not communicate or create a new object. We store in the local history
the updated local and instance states of the executing local configuration and the object in
which the execution takes place. Note that the local history stores also the values of the
built-in auxiliary variables, and thus the identities of the executing thread and especially
the executing local configuration.

The communication history keeps information about the kind of communication, the
communicated values, and the identity of the communicating partners. For the kind of
communication, we distinguish as cases object creation, ingoing and outgoing method
calls, and likewise ingoing and outgoing communication for the return value. We use the set
U, {new} U l,, {Im, ?m} U {Ireturn, ?return} of constants for this purpose. Notification
does not update the communication history, since it is object-internal computation. For
the same reason, we do not record self-communicatioRdfnm Note in passing that the
information stored in the communication history matches exactly the information needed
to decorate the transitions in order to obtain a compositional variant of the operational
semantics in this paper. SEg for such a compositional semantics.

Definition 5.5 (Augmentation with histori@s Each class is further extended by two aux-
iliary instance variablehjnst andheomm both initialized to the empty sequence. They are

updated as follows:
(1) Each assignment := ¢ in each class that is not the observation of a method call or

of the reception of a return value is extended with

hinst := hinst © ((2, 5)[2/§]) s
wherex are the instance variables of classontaining alsthcomm but withouthingt,

and v are the local variables. Observatiofis:= ¢ of uret := e9.m(¢’) and of the
corresponding reception of the return value get extended with the assignment

hinst := if (€ = this) then hinstelse hinst o (¥, B)[/71) fi,

instead, ifm # start. For ep.start(¢’)(y := &)@ we use the same update with the
conditioneyg = this replaced byey = this A —started.

280 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290
(2) Every communication and object creation gets observed by

hcomm:= if (partner = this) then h¢commelse
hcommo (sender, receiver, values) fi,

where the expressiompartner, sender, receiver, andvalues are defined depending on
the kind of communication statements as follows:

Communication statemefftartner |Sender |Receiver |Values

u = new® null this null new¢ u, thread
uret := €9.m(e) € this € Im(e)

reception of return =%} %) this ?return uret, thread
reception of calkn (i) caller_obj | caller_obj| this 2m(u)

return €ret caller_obj | this caller_obj | ! return €ret, thread

wherecaller_obj is the first component of the variahieller.

Note that the communication history records also the identities of the communicating
threads invalues. Next we introduce the annotation for the augmented program.

Definition 5.6 (Reachability annotation We define

(1) o, o=g Gl iff there exists a reachabld’, ¢’) such thatval(¢) = Val(¢’), and for all
a € Val(a), a(2) (hcomm = ¢’ (&) (hcomm-

(2) Foreachclass letw, gy, T 1. iffthere is areachablél’, o) suchthat (o) = oy,
whereo = o (this). For each class and methodn of c, the pre- and postconditions
of mare given byi,.

(3) For assertions at control points, o, t=, pre(stm iff there is a reachabléT’, o)
with a(2) = 0y, fOr & = ay,,(this), and such that, 7, stm stnf) e T.

(4) For preconditiong of observations of communication or object creationget,;;,
=, p iff there is a reachabléT, o) with 6(0) = 0y, for o = o, (this), and with
(a, 7))
stm st € T enabled to communicate resulting in the local statdirectly after
communication, wherstmis the corresponding communication statement.

For observing the reception of a method call, instead of the existence of the enabled

(o, 7/, stm stmf) € T, we require that a call of methad of « is enabled with resulting

callee local state directly after communication.

It can be shown that these assertions are expressible in the assertion |a5@]Labiee
augmented program together with the above annotation build a proof opittige

What remains to be shown for completeness is that the proof optiigindeed satisfies
the verification conditions of the proof system. Initial and local correctness are straightfor-
ward. Completeness for the interference freedom test and the cooperation test are more
complex, since their verification conditions mention more than one local configuration in
their respective antecedents. Now, the reachability assertigmeg@fguarantee that, when
satisfied by an instance local state, thexistsa reachable global configuration responsible
for the satisfaction. So a crucial step in the completeness proof for interference freedom

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 281

and the cooperation test is to show that individual reachability of two local configurations
implies thatthey are reachable in@mmorcomputation. Thisis also the key property for the
history variables: they record enough information such that they allow to uniquely determine
the way a configuration has been reached; in the case of instance history, uniqueness of
course, only as far as the chosen instance is concerned. This property is stated formally in
the following local merging lemma.

Lemma 5.7(Local merging lemm)a Assume two reachable global configurati@iis, 1)
and(T>, a2) of prod and(«, 7, stm) € T1 witha € Val(a1) NVal(a2). Theno1 (o) (hinst) =
a2(a) (hinst) implies(a, 7, stm € To.

For completeness of the cooperation test, connecting two possibly different instances,
we need an analogous property for the communication histories. Arguing on the global
level, the cooperation test can assume that two control points are individually reachable but
agreeing on the communication histories of the objects. This information must be enough
to ensure common reachability. Such a common computation can be constructed, since the
internal computations of different objects are independent from each other, i.e., in a global
computation, the local behavior of an object is interchangeable, as long as the external
behavior does not change. This leads to the following lemma:

Lemma 5.8(Global merging lemma Assume two reachable global configurati@fis, 1)
and (T», o2) of prog and o € Val(a1) N Val(op) with the propertyo(a)(hcomm =
a2(a) (hcomm- Then there exists a reachable configurati@h o) with Val(e) = Val(a2),
a(o) = o1(a), anda(f) = a2(p) for all f € Val(a2)\{a}.

Note that both merging lemmas together imply that all local configuratior®iino;)
executing inx and all local configurations i{i>, o) executing inf # o are contained in
the commonly reached configurati¢f, ¢). This brings us to the last result of the paper:

Theorem 5.9(Completenegs For a program prog the proof outline progsatisfies the
verification conditions of the proof system from Secti¢éh

The completeness proof handles all cases for the different verification condition groups.
Here we illustrate the proof by the case of interference freedom:

Casé€lInterference freedom): Assume an arbitrary assignriest ¢ with precondition
p in classc, and an arbitrary asserti@nat a control point in the same class. We show that
the proof outlingorog satisfies the conditions for interference freedom, i.e.,

O, Ginsts TEL{P A q' A interleavable(q,y :=¢€)} y:=¢ {q}

for some logical environmenb together with some instance and local statgs, and
7, whereq’ denotesq with all local variablesu replaced by some fresh local variables
u’. We do so by proving thab, ;.. T2 p A ¢’ A interleavable(q, y := ¢) implies
@, Gyl ¥ > [ENZ™ 1, T[5> [212™ 1F 2 ¢

Let « = o0;,4(this). The first clausew, o,,;, T2 p implies that there exists a
computation reaching7,, o,) with &,(2) = o0,,, and an enabled configuration

282 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

(o, Tp, Stm; stit) € T,, wherestm, is y := ¢ if the assignment does not observe method
call or object creation, and the corresponding communication statement with its obser-
vation otherwise. The local statg is 7 if stm, does not receive any values. Otherwise
7, = t[u+> V], whereu are the variables storing the received values asdme value
seqguence, such that the local configuration is enabled to receive the waluds p is the
precondition of a method body, then additionally(w) = Init(w) for the sequencé of
local variables irp that are not formal parameters.

Fromw, 6, TF ¢’ we get by renaming back the local variables that, ., T'F, g
for 7(u) = t(u’) for all local variablesu in gq. Assume thag is the precondition of the
statementstm,. Note thatq is an assertion at a control point. Applying the annotation

definition we conclude that there is a reachafilg &,) with &, (%) = ;. = () and

(o, T, stmy; stnjl) 1S Tq. The local merging Lemm&.7 implies that(e, 7/, stm; stnii) €
7,

Let (7,, é,) result from(T,, &,) by executingstm, in the enabled local configuration
(o, Tp, stmy,; strrd,). Ifthe local configuration is the caller partin a self-communication, then,
due to the restriction on the augmentation, the caller observatiene does notochange
the caller instance state. Thus, due to the renaming mechamsdrq},st[iH[Eﬂgi"St’r],

= =7 %nst> T ’
t[y=>lel™ 1Fc q'.

Otherwise, if(«, 7, stm,; stri,) does notrepresentthe caller partin a self-communication,
theng, (o) = UinstW r—>[[2]]?”5t’r]. Note that in the case of self-communication, the caller
part does not change the instance state. Thus the only update of the instancesiate of
given by the effect of := ¢. From the assumptiom, o,.,, TFcinterleavable(q, y := €)
we get thato, 7/, stmy; stnf,) cannot be the communication partneefz,,, stm,; stnt,),

and thus(e, 7', stmy; stnf) € 7.

Using the annotation definition we get gy, [y — [[E]]?”S"T], 7F ¢ ¢, and after renaming

the local variables of alsow, a;,,[y r—>[[E]]g‘”St’T], =y q/;I.NoTte that due to renaming, no
local variables of;” occur iny, and thug (u’) = [y ~[€] ;™" 1(u") for all local variables
uin g. This implies the required property, 6,,[y — [[E]]ZJ”S"T], [y +—>|IE]]?”S"T]|:£ q'.

Validity of the verification conditior? for the class invariant is similar, where we addi-
tionally use the fact that the class invariant refers to instance variables only.

6. Proving deadlock freedom

The previous sections described a proof system which can be used to prove safety prop-
erties ofJavasynchprograms. In this section we show how to apply the proof system to show
deadlock freedom

A system of processes is in a deadlocked configuration, if no one of them is enabled to
compute, but not yet all started processes are terminated. A typical deadlock situation can
occur, if two threads; andr, both try to gather the locks of two objects andzz, but in
reverse orderz; first applies for access to synchronized methodsg pénd then for those
of z2, while 1, first collects the lock of», and tries to become the lock ownerzaf Now,
it can happen, thag gets the lock ot1, #> gets the lock ot», and both are waiting for the

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 283

other lock, which will never become free. Another typical source of deadlock situations are
threads which suspended themselves by calliag and which will never get notified.
What kind of Javasyncirstatements can be disabled and under which conditions? The
important cases, to which we restrict, are
e the invocation of synchronized methods, if the lock of the callee object is neither free
nor owned by the executing thread,
e if athread tries to invoke a monitor method of an object whose lock it does not own, or
e if athread tries to return fromwait-method, but either the lock is not free or the thread
is not yet notified.
To be exact, the semantics specifies method calls to be disabled also, if the callee object is
the empty reference. However, we would not deal with this case; it can be excluded in the
preconditions by stating that the callee object ismdit.
Assume a proof outline with global invaria@l . For a logical variable of type Object,
let 7(z) = I[z/this] be the class invariant of expressed on the global level. Let the
assertionterminated(z) express that the thread ofis already terminated. Formally, we
defineterminated(z) = ¢[z/thread][z/this], whereq is the postcondition of theun-
method ofz. For assertionp in 7’ let furthermoreblocked(z, 7/, p) express that the thread
of zis disabled in the object at control poinfp. Formally, we defindlocked(z, 7/, p) by
e Jv. p[z/thread][z’/this] A eg.lock # free A thread(ep.lock) # thread if pis the pre-
condition of a call invoking a synchronized methodegf
e Jv. p[z/thread][z’/this] A thread(ep.lock) # thread if p is the precondition of a call
invoking a monitor method oy,
e Jv. p[z/thread][z'/this] A (Z'.lock # free V z ¢ 7'.notified) if pis the precondition of
the return-statement in thveait-method, and
e false otherwise,
whereu is the vector of local variables in the given assertion withtbetad, andz andz’
fresh. Let finallyblocked(z, z') express that the thread of objeds blocked in the object
Z'. Formally, it is defined by the assertigf, casq. blocked(z, 2/, p), whereAsgz') is the
set of all assertions at control pointszin Now we can formalize the verification condition
for deadlock freedom:

Definition 6.1. A proof outline satisfies the test fdeadlock freedomif

Fg (Gl A 9
Vz.z #null > (I(z) A
(z.started — (terminated(z) Vv (3z". 7" # null A blocked(z, 2')))))) A
(3z.z # null A z.started A (37’. 7' # null A blocked(z,))))
— false .

The above condition states, that the assumptions that all started processes are terminated
or disabled, and that at least one thread is not yet terminated, i.e., that the program is in a
deadlocked configuration, lead to a contradiction. Soundness of the above condition, i.e.,
that the condition indeed assures absence of deadlock, is easy to show. Completeness results
directly from the completeness of the proof method.

284 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

Example 6.2. The proof outline below defines two class@spducer and Consumer,
whereProducer is the main class. The initial thread of the inittabducer-instance creates
a Consumer-instance and calls its synchronizpcbduce method. This method starts the
consumer thread and enters a non-terminating loop, producing some results, notifying the
consumer, and suspending itself by callingit. After the producer suspended itself, the
consumer thread calls the synchronizeshsume method, which consumes the result of
the producer, notifies, and caliit, again in a non-terminating loop.

The assertiobwns is as in Exampld.2, proj(v, i) denotes théh component of the tuple
v, andnot_owns(thread, lock) isthread # null Aproj(lock, 1) # thread. Again, the built-
in augmentation is not listed in the code. We additionally list instance and local variable
declarationsype name;, where(type name;) declares auxiliary variables. We sometimes
skip return statements without giving back a value, and write expli®itly : r).p for
guantification ovet-typed values.

For readability, we only list a partial annotation and augmentation, which already implies
deadlock freedom. Invariance of the properties listed below has been sh@&¥s$insing
an extended augmentation and annotaf8jnAlso deadlock freedom has been proven in
PVS.

def
Gl E

(Y(p : Produce.(p # null A —p.outsiden p.consumer# null) —
p.consumetock = (null, 0)) A

(Y(c : Consumey.(c # null A c.started —
(c.producer# null A c.producerstarted) A

(V(c1: Consumey.(c1l # null — (V(c2: Consumey.c2 # null — ¢1 = ¢2))

def
Iproducer = true

def .
Iconsumer= lengthiwait) < 1A
(lock = (null, 0) v (owngthis, lock) A started v owngproducer, lock))

class Producer {
(Consumer consumer;)
(Bool outside;)

nsync Void wait() { (falsg }

nsync Void run(){
Consumer c;

¢ := newCONSUMEr . consumer= cymew

{c = consumern —outsideA consumer£ null A consumers thisa
thread = this

c.produce () (outside:= (if ¢ = thisthen outsideelse truefi))'ca!

{falsg

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 285

class Consumer {
Int buffer;
(Producer producer;)

nsync Void wait () {
(startedA not_owngthread, lock) A (thread = this v thread = producen
(thread € wait v thread € notified))

}
sync Void produce (){
Int i;

(producer:= proj(caller, 1))%al

i:=0;

start () ;

while (true) do
/I produce i here
buffer := i;
owngthread lock)}
notify () ;
{owngthread, lock)}
wait ()

od

}

nsync Void run(){
{not_owngthread lock) A thread = this;
consume ()
falsg

}

sync Void consume () {
Int i;

while (true) do
i := buffer;
//consume i here
{owngthread, lock)}
notify () ;
{owngthread, lock)}
wait ()

od

Both run-methods havéalse as postcondition, stating that the corresponding threads
do not terminate. The preconditions of all monitor method invocations express that the
executing thread owns the lock, and thus execution cannot be enabled at these control points.
Thewait-method ofProducer-instances is not invoked; we defifese as the precondition
of its return-statement, implying that disabledness is excluded also at this control point.

286 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

The condition for deadlock freedom assumes that there is a thread which is started but
not yet terminated, and whose execution is disabled. This thread is either the thread of a
Producer-instance, or that of Bonsumer-instance.

We discuss only the case that the disabled thread belong&telacer-instancez differ-
ent from null; the other case is similar. Note that the control of the threadarinot stay in
the run-method of aConsumer-instance, since the corresponding local assertion implies
thread = this, which would contradict the type assumptions. Thus the thread can have its
control point prior to the method call in then-method of éProducer-instance, or in the
wait-method of aConsumer-instance. In the first case, the corresponding local assertion
and the global invariant imply that the lock of the callee is free, i.e., that the execution
is enabled, which is a contradiction. In the second case, if the threadxafcutes in the
wait-method of aConsumer-instance’, the local assertion iwait together with the type
assumptions implies’.started A not_owns(z, z".lock) A z = z’.producer, and thatz is
either in the wait- or in the notified-set of

By the assumptions of the deadlock freedom condition, also the started threas of
disabled or terminated; its control point cannot be Rr@ducer-instance, since that would
contradict to the type assumptions. Thus the contral stays in therun- or in thewait-
method of aConsumer-instance; the annotation implies that the instancg itself.

If the control stays in theun-method, then the corresponding local assertion and the
class invariant imply that the lock is free, since neither the producer, nor the consumer owns
it, which leads to a contradiction, since in this case the execution of the threadofild
be enabled. Finally, if the control of the threadzofstays in thewait-method ofz’, then
the annotation assures that the thread does not own the lag¢kadain, using the class
invariant we get that the lock is free.

Now, both threads of andz’ have their control points in theait-method ofz’, and
the lock ofz’ is free. Furthermore, both threads are disabled, and are in the wait- or in the
notified set. If one of them is in the notified set, then its execution is enabled, which is a
contradiction. If both threads are in the wait set, then frogh z’ we imply that the wait-set
of 7/ has at least two elements, which contradicts the class invariaht of

Thus the assumptions lead to a contradiction, which was to be shown.

7. Conclusion

Extending earlier work, this paper presents a sound and relatively complete assertional
proof method for a multithreaded sublanguagéaoh including its monitor discipline. We
also provide conditions for deadlock freedom.

In [7] we develop a proof system for a concurrénta subset without reentrant lock syn-
chronization and without the wait and notify constructs. The proof system was extended in
[8] to deal with reentrant monitor synchronization. The wait and notify constructs are incor-
porated in9]. The extension of the proof system to prove deadlock freedom can be found
in [10]. Currently we are working on the incorporationfafa’s exception handling mech-
anism[6]. We formalize the semantics of our programming language in a compositional
manner in[5]. The underlying theory, the proof rules, their soundness and completeness,
and tool support for the automatic generation of verification conditions are presented in
detail in[3].

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 287

Related workAs far as proof systems and verification support for object-oriented pro-
grams is concerned, research mostly concentratsgéguentialanguages. Early examples
of Hoare-style proof systems for sequential object-oriented language3hend[33,34]
America and de Bodf 3] formulate for the first time a cooperation test for an object-oriented
language with synchronous message passing.

With Java’s rise to prominence, research more concretely turned to (sublanguages of)
Java, as opposed to object-oriented language features in the abstract. In this dir8diion,
[31,32] has emerged as common ground for assettitvg programs. Another trend is to
offer mechanized proof support. For instance, Poetzsch-Heffter and N¥le43]develop
a Hoare-style programming logic presented in sequent formulation for a sequential kernel
of Java, featuring interfaces, subtyping, and inheritance. Translating the operational and the
axiomatic semantics into the HOL theorem prover allows a computer-assisted soundness
proof. The work in the bor-project (cf. e.9[30,49) also concentrates on a sequential
subpart ofjava, translating the proof-theory intBVS andIsabelle/HOL.

The work[46,45] use a modification of thebject constraint languag®CL as asser-
tional language to annotate UML class diagrams and to generate proof conditidngafor
programs. If51] a large subset afavaCard, including exception handling, is formalized
in Isabelle/HOL, and its soundness and completeness is shown within the theorem prover.
The work in[2] presents a Hoare-style proof system for a sequential object-oriented cal-
culus[1]. Their language features heap-allocated objects (but no classes), side-effects and
aliasing, and its type system supports subtyping. Furthermore, their language allows nested
statically let-bound variables, which requires a more complex semantical treatment for
variables based on closures, and ultimately renders their proof-system incomplete. Their
assertion language is presented as an extension of the object calculus’ language of type and
analogously, the proof system extends the type derivation system. The close connection
of types and specifications in the presentation is exploitefd&h for the generation of
verification conditions.

Work on proof systems for parallel object-oriented languages or in particular the multi-
threading aspects dfiva is more scarce. de Bog20] presents a sound and complete proof
system inweakest precondition formulation for a parallel object-based language, i.e., without
inheritance and subtyping, and also without reentrant method calls. Latef4hgi2,21]
includes more features, especially catering for Hoare logic for inheritance and subtyping.

A survey aboutnonitorsin general, including proof-rules for various monitor semantics,
can be found if18]. Besides deductive verification, there are several other research areas
for Java program analysis. For example, pap&8] presents a model checking algorithm
and its implementation iisabelle’HOL to check type correctness of Java bytecode. See
[35,26]for an overview.

Future work As to future work, we plan to extenthvasynch by further constructs, like
inheritance and subtyping. Dealing with subtyping on the logical level requires a notion of
behavioral subtypinfl2].

Acknowledgements

We thank Cees Pierik for fruitful discussions and suggestions, and furthermore Tim
D’Avis for careful reading and commenting on an earlier version of this document.

288 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

References

[1] M. Abadi, L. Cardelli, A Theory of Objects Monographs in Computer Science, Springer, Berlin, 1996.

[2] M. Abadi, K.R.M. Leino, A logic of object-oriented programs, in: M. Bidoit, M. Dauchet (Eds.), Proc.
TAPSOFT '97, Lecture Notes in Computer Science, Vol. 1214, Springer, Lille, France, 1997, pp. 682-696.
An extended version of this paper appeared as SRC Research Report 161 (September, 1998).

[3] E. Abrah&m, An assertional proof system for multithreaded Java—theory and tool support, Ph.D. Thesis,
University of Leiden, to appear. A preliminary version can be found katp://www.
informatik.uni-freiburg.de/ ~eab/phd.ps , 2004.

[4] E. Abrahdm, F.S. de Boer, W.-P. de Roever, M. Steffen, A Hoare logic for monitors in Java,
Technical Report TR-ST-03-1, Lehrstuhl fir Software-Technologie, Institut fur Informatik und Praktische
Mathematik, Christian-Albrechts-Universitat zu Kiel, April, 2003, URttp://www.informatik.
uni-kiel.de/inf/deRoever/techreports/03/tr-st-03-1.pdf >.

[5] E. Abraham, F.S. de Boer, W.-P. de Roever, M. Steffen, A compositional operational semantics fpf Java
in: N. Derschowitz (Ed.), International Symposium on Verification (Theory and Practice), Lecture Notes
in Computer Science, Vol. 2772, Springer, Berlin, 2003, pp. 290-303. A preliminary version appeared as
Technical Report TR-ST-02-2, May 2002.

[6] E. Abrahdam, F.S. de Boer, W.-P. de Roever, M. Steffen, Inductive proof outlines for multithreaded
Java with exceptions, Technical Report 0313, Institut fur Informatik und Praktische Mathematik,
Christian-Albrechts-Universitat zu Kiel, December, 2003. URthttp://www.informatik.
uni-kiel.de/reports/2003/0313.html >.

[7] E. Abraham-Mumm, F.S. de Boer, Proof-outlines for threads in Java, in: C. Palamidessi (Ed.), Proc.
CONCUR'00, Lecture Notes in Computer Science, Vol. 1877, Springer-Berlin, 2000, pp. 229-242.

[8] E.Abraham-Mumm, F.S. de Boer, W.-P. de Roever, M. Steffen, Verification for Java’s reentrant multithreading
concept, in: M. Nielsen, U.H. Engberg (Eds.), Proc. FoSSaCS'02, Lecture Notes in Computer Science, \ol.
2303, Springer, Berlin, 2002, pp. 4-20. Alonger version, including the proofs for soundness and completeness,
appeared as Technical Report TR-ST-02-1, March 2002.

[9] E. Abrahdam, F.S. de Boer, W.-P. de Roever, M. Steffen, Inductive proof-outlines for monitors in Java,
in: E. Najm, U. Nestmann, P. Stevens (Eds.), Proc. 6th IFIP Internat. Conf. Formal Methods for Open
Object-Based Distributed Systems (FMOODS'03), Paris, Lecture Notes in Computer Science, Vol. 2884,
Springer, Berlin, 2003, pp. 155-169. A longer version appeared as technical report TR-ST-03-1, April 2003
<http://lwww.informatik.uni-kiel.de/inf/deRoever/techreports/03/tr-st-03- Lpdf

[10] E. Abraham-Mumm, F.S. de Boer, W.-P. de Roever, M. Steffen, A tool-supported proof system for monitors
in Java, in: M. Bonsangue, F.S. de Boer, W.-P. de Roever, S. Graf (Eds.), Proc. First Internat. Symp. Formal
Methods for Components and Objects (FMCO'02), Leiden, Lecture Notes in Computer Science, Vol. 2852,
Springer, Berlin, 2003, pp. 1-32.

[11] J. Alves-Foss (Ed.), Formal Syntax and Semantics of Java, Lecture Notes in Computer Science State-of-the-
Art-Survey, Vol. 1523, Springer, Berlin, 1999.

[12] P. America, A behavioural approach to subtyping in object-oriented programming languages, 443, Phillips
Research Laboratories, January/April 1989.

[13] P. America, F.S. de Boer, A sound and complete proof system for SPOOL, Technical Report 505, Philips
Research Laboratories, 1990.

[14] G.R. Andrews, Foundations of Multithreaded Parallel and Distributed Programming, Addison-Wesley,
Reading, MA, 2000.

[15] K.R. Apt, N. Francez, W.-P. deRoever, A proof system for communicating sequential processes, ACM Trans.
Programming Languages Systems 2 (1980) 359—-385.

[16] D. Basin, S. Friedrich, M. Gawkowski, Verified bytecode model checkers, in: V.A. Carrefio, C.A. Mufioz, S.
Tahar (Eds.), Proc. TPHOLs'02, Lecture Notes in Computer Science, Vol. 2410, Springer, Berlin, 2002, pp.
47-66.

[18] P.A. Buhr, M. Fortier, M.H. Coffin, Monitor classification, ACM Comput. Surveys 27 (1) (1995) 63-107.

[19] P. Cenciarelli, A. Knapp, B. Reus, M. Wirsing, An event-based structural operational semantics of multi-
threaded Java, in: J. Alves-Foss (Ed.), Formal Syntax and Semantics of Java, Lecture Notes in Computer
Science State-of-the-Art-Survey, Vol. 1523, Springer, Berlin, 1999, pp. 157-200.

http://www.informatik.uni-freiburg.de/eab/phd.ps
http://www.informatik.uni-freiburg.de/eab/phd.ps
http://www.informatik.uni-kiel.de/inf/deRoever/techreports/03/tr-st-03-1.pdf
http://www.informatik.uni-kiel.de/inf/deRoever/techreports/03/tr-st-03-1.pdf
http://www.informatik.uni-kiel.de/reports/2003/0313.html
http://www.informatik.uni-kiel.de/reports/2003/0313.html
http://www.informatik.uni-kiel.de/inf/deRoever/techreports/03/tr-st-03-1.pdf

E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290 289

[20] F.S. de Boer, A WP-calculus for OO, in: W. Thomas (Ed.), Proc. FoSSaCS'99, Lecture Notes in Computer
Science, Vol. 1578, Springer, Berlin, 1999, pp. 135-156.

[21] F.S. de Boer, C. Pierik, Computer-aided specification and verification of annotated object-oriented programs,
in: B. Jacobs, A. Rensink (Eds.), Proc. FMOODS'02, \Vol. 209, Kluwer, Dordrecht, 2002, pp. 163-177.

[22] F.S. de Boer, C. Pierik, Towards an environment for the verification of annotated object-oriented programs,
Technical report UU-CS-2003-002, Institute of Information and Computing Sciences, University of Utrecht,
January 2003.

[23] C.C. de Figueiredo, A proof system for a sequential object-oriented language, Technical Report UMCS-95-
1-1, University of Manchester, 1995.

[24] R.W. Floyd, Assigning meanings to programs, in: J.T. Schwartz (Ed.), Proc. Symp. Appl. Math. \ol. 19, 1967,
pp. 19-32.

[25] J. Gosling, B. Joy, G.L. Steele, The Java Language Specification, Addison-Wesley, Reading, MA, 1996.

[26] P.H. Hartel, L. Moreau, Formalizing the safety of Java, the Java virtual machine and Java Card, ACM Comput.
Surveys 33 (4) (2001) 517-558.

[27] C.A.R. Hoare, An axiomatic basis for computer programming, Comm. ACM 12 (1969) 576-580.

[28] M. Huisman, Java program verification in higher-order logic with PVS and Isabelle, Ph.D. Thesis, University
of Nijmegen, 2001.

[29] B. Jacobs, J. Kiniry, M. Warnier, Java program verification challenges, in: M. Bonsangue, F.S. de Boer,
W.-P. de Roever, S. Graf (Eds.), Proc. First Internat. Symp. Formal Methods for Components and Objects
(FMCQ'02), Leiden, Lecture Notes in Computer Science, Vol. 2852, Springer, Berlin, 2003, pp. 202-220.

[30] B. Jacobs, J. van den Berg, M. Huisman, M. van Barkum, U. Hensel, H. Tews, Reasoning about classes in
Java (preliminary report), in: Proc. OOPSLA98, ACM, 1998, pp. 329-340 (in SIGPLAN Not. 30(10)).

[31] G.T. Leavens, A.L. Baker, C. Ruby, Preliminary design of JML: a behavioral interface specification language
for Java, Technical Report TR #98-06f, lowa State University. Revised version from July 1999, 2000.

[32] G.T. Leavens, Y. Cheon, C. Clifton, C. Ruby, D.R. Cok, How the design of JML accommodates both runtime
assertion, checking and formal verification, in: M. Bonsangue, F.S. de Boer, W.-P. de Roever, S. Graf (Eds.),
Proc. First Internat. Symp. Formal Methods for Components and Objects (FMCQO'02), Leiden, Lecture Notes
in Computer Science, Vol. 2852, Springer, Berlin, 2003, pp. 262—-284.

[33] G.T. Leavens, W.E. Wheil, Reasoning about object-oriented programs that use subtypes, in: Proc.
OOPSLA90, ACM, 1990, pp. 212-223, extended abstract.

[34] G.T. Leavens, W.E. Wheil, Specification and verification of object-oriented programs using supertype
abstraction, Acta Inform. 32 (8) (1995) 705-778. An expanded version appeared as lowa State University
Report, 92-28d.

[35] X. Leroy, Java bytecode verification: an overview, in: G. Berry, H. Comon, A. Finkel (Eds.), Proc. CAV'01,
Lecture Notes in Computer Science, Vol. 2102, Springer, Berlin, 2001, pp. 265-285.

[36] G. Levin, D. Gries, A proof technique for communicating sequential processes, Acta Inform. 15 (3) (1981)
281-302.

[38] S. Owicki, D. Gries, An axiomatic proof technique for parallel programs, Acta Inform. 6 (4) (1976)
319-340.

[39] S. Owre, J.M. Rushby, N. Shankar, PVS: a prototype verification system, in: D. Kapur (Ed.), Automated
Deduction (CADE-11), Lecture Notes in Computer Science, Vol. 607, Springer, Berlin, 1992, pp. 748-752.

[40] A. Poetzsch-Heffter, Specification and verification of object-oriented programs, Technische Universitat
Miinchen, Habilitationsschrift, 1997.

[41] A. Poetzsch-Heffter, A logic for the verification of object-oriented programs, in: R. Berghammer, F. Simon
(Eds.), Proc. Programming Languages and Fundamentals of Programming, Bericht Nr. 9717, Institut fur
Informatik und Praktische Mathematik, Christian-Albrechts-Universitat zu Kiel, 1997, pp. 31-42.

[42] A. Poetzsch-Heffter, P. Mller, Logical foundations for typed object-oriented languages, in: D. Gries, W.-P. de
Roever (Eds.), Proc. PROCOMET '98, International Federation for Information Processing (IFIP), Chapman
& Hall, London, 1998, pp. 404-423.

[43] A. Poetzsch-Heffter, P. Mller, A programming logic for sequential Java, in: S. Swierstra (Ed.), Proc. ESOP'99,
Lecture Notes in Computer Science, Vol. 1576, Springer, Berlin, 1999, pp. 162-176.

[44] C. Pierik, F.S. de Boer, A syntax-directed Hoare logic for object-oriented programming concepts, in: E.
Najm, U. Nestmann, P. Stevens (Eds.), Proc. 6th IFIP Internat. Conf. Formal Methods for Open Object-Based
Distributed Systems (FMOODS'03), Paris, Lecture Notes in Computer Science, Vol. 2884, Springer, Berlin,
2003, pp. 64—78. An extended version appeared as University of Utrecht Technical Report UU-CS-2003-010.

290 E. Abraham et al. / Theoretical Computer Science 331 (2005) 251—290

[45] B. Reus, R. Hennicker, M. Wirsing, A Hoare calculus for verifying Java realizations of OCL-constrained
design models, in: H. Hussmann (Ed.), Fundamental Approaches to Software Engineering, Lecture Notes in
Computer Science, Vol. 2029, Springer, Berlin, 2001, pp. 300-316.

[46] B. Reus, M. Wirsing, A Hoare-logic for object-oriented programs, Technical report, LMU Miinchen, 2000.

[47] R. Stark, J. Schmid, E. Borger, Java and the Java Virtual Machine: Definition, Verification, Validation, Springer,
Berlin, 2001.

[48] F. Tang, M. Hofmann, Generation of verification conditions for Abadi and Leino’s logic of objects (extended
abstract), in: Proc. FOOL02, 2002, A longer version is available as LFCS Technical Report.

[49] The LOOP project: formal methods for object-oriented systems, 20&http://www.
cs.kun.nl/ bart/LOOP/ >.

[50] J.V. Tucker, J.I. Zucker, Program Correctness over Abstract Data Types, with Error-State Semantics, CWI
Monograph Series, Vol. 6, North-Holland, Amsterdam, 1988.

[51] D. von Oheimb, Hoare logic for Java in Isabelle/HOL, Concurrency Comput.: Practice Experience 13 (13)
(2001) 1173-1214.

[52] D. von Oheimb, T. Nipkow, Hoare logic for NanoJava: auxiliary variables, side effects and virtual methods
revisited, in: L.-H. Eriksson, P. A. Lindsay (Eds.), Proc. FME'02, Lecture Notes in Computer Science, Vol.
2391, Springer, Berlin, 2002, pp. 89-105.

http://www.cs.kun.nl/~bart/LOOP/
http://www.cs.kun.nl/~bart/LOOP/

	An assertion-based proof system for multithreaded Java
	Introduction
	The sequential sublanguage
	Syntax
	Semantics
	States and configurations
	Operational semantics

	The assertion language
	The proof system
	Proof outlines
	Verification conditions

	Multithreading
	Syntax and semantics
	The proof system
	Proof outlines
	Verification conditions

	The language Javasynch
	Syntax and semantics
	The proof system
	Proof outlines
	Verification conditions

	Soundness and relative completeness
	Soundness
	Relative completeness

	Proving deadlock freedom
	Conclusion
	Acknowledgements
	References

