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Abstract

Besides the features of a class-based object-oriented language,Java integrates concurrency via
its thread classes, allowing for a multithreaded flow of control. The concurrency model includes
synchronous message passing, dynamic thread creation, shared-variable concurrency via instance
variables, and coordination via reentrant synchronization monitors.

To reason about safety properties of multithreadedJavaprograms, we introduce anassertional
proof methodfor a multithreaded sublanguage ofJava, covering the mentioned concurrency issues
as well as the object-based core ofJava. The verification method is formulated in terms of proof-
outlines, where the assertions are layered into local ones specifying the behavior of a single instance,
and global ones taking care of the connections between objects. We establish the soundness and
the relative completeness of the proof system. From an annotated program, a number of verification
conditions are generated and handed over to the interactive theorem proverPVS.
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1. Introduction

Besides the features of a class-based object-oriented language,Java integratesconcur-
rencyvia its thread classes.Java’s semantical foundations[25] have been thoroughly studied
ever since the language gained widespread popularity (e.g.[11,19,47]). The research con-
cerningJava’s proof theory mainly focussed onsequentialsub-languages (e.g.[28,43,52]).
This work presents a sound and relatively complete assertional proof system forJavasynch,
a subset ofJava, featuring dynamic object creation, object references with aliasing, method
invocation, and, specifically, concurrency andJava’s monitor discipline.

The behavior of aJavasynchprogram results from the concurrent execution of methods. To
support a clean interface between internal and external object behavior, the state of an object
can be accessed from the outside only via the object’s methods and not directly via qualified
referencese.x to instance variablesx. As a consequence, shared-variable concurrency is
caused by simultaneous execution within a single object, only. To mirror this modularity,
the assertional logic and the proof system are formulated at two levels, a local and a global
one.Thelocalassertion languagedescribes the internal object behavior.Theglobal behavior,
including the communication topology of the objects, is expressed in theglobal language.

The language and the proof system for partial correctness are presented incrementally
in three stages, starting with a sequential sublanguage, which is extended by concurrency
and monitor synchronization in next steps. The proof systems are formulated in terms of
proof outlines[38], i.e., of programsaugmentedby auxiliary variables andannotatedwith
Hoare-style assertions[24,27]. To obtain a complete proof system, i.e., which allows to
prove each invariant property of a program, it must be possible to express the strongest
invariant property, which is reachability and which, in general, depends not only on the
current values of variables, but also on other control information. Therefore, the standard
route to achieve completeness is to represent the missing control information in the states
in so-calledauxiliary variables.Of course, the incremental development shows, which in-
formation must be additionally represented at the different stages for completeness. For
method calls, already in the sequential case, we use auxiliary variables to identify commu-
nicating partners in method calls. Additionally, in the multithreaded case, we additionally
need auxiliary variables to identify threads, and to capture monitor synchronization at the
third stage.

The satisfaction of the program properties specified by the assertions is guaranteed by
the verification conditions of the proof system. The execution of a single method body
in isolation is captured by standardlocal correctnessconditions, using the local assertion
language. Interference between concurrentmethodexecutions is covered by theinterference
freedom test[38,36], formulated also in the local language. It has especially to accommodate
for reentrant codeand the specific synchronizationmechanism.Possibly affectingmore than
one instance, communication and object creation is treated in thecooperation test, using
the global language. The communication can take place within a single object or between
different objects. As these two cases cannot be distinguished syntactically, our cooperation
test combines elements from similar rules in[15] and in[36] for CSP.

Our proof method ismodular in the sense that it allows for separate interference free-
dom and cooperation tests (Fig.1). This modularity, which in practice simplifies cor-
rectness proofs considerably, is obtained by disallowing the assignment of the result of
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Fig. 2. The verification process.

communication and object creation to instance variables. Clearly, such assignments can
be avoided by additional assignments to fresh local variables and thus at the expense of
new interleaving points. This restriction could be released, without loosing the mentioned
modularity, but it would increase the complexity of the proof system.

For readability, the verification conditions in this paper are formulated as standard Hoare-
triples{�}stm{�}. The meaning of these partial correctness formulas is, that ifstmis exe-
cuted in a state satisfying�, and the execution terminates, then the resulting state satisfies
�. In [3] we reformulate these Hoare-triples to logical implications using substitutions.

Computer-support is givenby the toolVerger (VERification condition GEneratoR), taking
a proof outline as input and generating the verification conditions as output. We use the
interactive theorem prover PVS[39] to verify the conditions, for which we only need to
encode the semantics of the assertion language (cf. Fig.2). In the verification conditions
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we model assignments by substitutions, instead of more semantic approaches[2,29,43,52],
which use an explicit encoding of the semantics of assignments.

The remainder of the paper is structuredas follows.Westart inSection2with asequential,
class-based sublanguage ofJava and its proof system, featuring dynamic object creation
and method invocation. This level shows how to handle activities of a singlethreadof
execution. At the second stage we includeconcurrencyin Section3. The proof system is
extended to handle dynamic thread creation, interleaving, and shared variable concurrency.
Finally, we integrateJava’s monitor synchronizationmechanism in Section4. Soundness
and completeness are discussed in Section5. Section6 shows how we can prove deadlock
freedom, and Section7 discusses related and future work.

2. The sequential sublanguage

In this section, we start with a sequential language, ignoring concurrency issues ofJava,
which will be added in later sections. Furthermore—and throughout the paper—we con-
centrate on the object-based core ofJava, i.e., we disregardinheritanceand consequently
subtyping, overriding, and late-binding. For simplicity, we neither allow methodoverload-
ing, i.e., we require that each method name is assigned a unique list of formal parameter
types and a return type. In short, being concerned with the verification of the run-time
behavior, we assume a simplemonomorphictype discipline.

Programs, as inJava, are given by a collection of classes containing instance variable
and method declarations.Instancesof the classes, i.e.,objects, are created dynamically, and
communicate viamethod invocation,i.e., synchronous message passing.

The languages we consider are strongly typed. Besides class typesc, they support
booleansBool and integersInt as primitive types, furthermore pairst × t and listslist t

as composite types. Each domain is equipped with a standard set of operators. Without
inheritance and subtyping, the type system is rather straightforward. Throughout the paper,
we tacitly assume all constructs of the abstract syntax to be well-typed, without further
explicating the static semantics here. We thus work with a type-annotated abstract syntax
where we omit the explicit mentioning of types when no confusion can arise.

2.1. Syntax

The abstract syntax of the sequential languageJavaseq is summarized in Table1. Though
we use the abstract syntax for the theoretical part of this work, our tool supportsJava syntax.
For variables, we notationally distinguish betweeninstancevariablesx ∈ IVar and local
or temporaryvariablesu ∈ TVar. Instance variables hold the state of an object and exist
throughout the object’s lifetime. Local variables are stack-allocated; they play the role of
formal parameters and variables of method definitions and only exist during the execution
of the method to which they belong. We useVar = IVar ∪̇ TVar for the set of program
variables with typical elementy. The setIVarc of instance variables of a classc is given
implicitly by the instance variables occurring in the class; the set of local variables ofmethod
declarations is given similarly.
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Table 1
Javaseqabstract syntax

e ::= x | u | this | null | f(e, . . ., e)
eret ::= � | e
stm ::= x := e | u := e | u := newc | u := e.m(e, . . ., e) | e.m(e, . . ., e)

| � | stm; stm| ifethen stmelse stmfi | whileedo stmod . . .

meth ::= m(u, . . ., u){ stm; returneret}
methrun ::= run(){ stm; return }

class ::= c{meth. . .meth}
classmain ::= c{meth. . .meth methrun}

prog ::= 〈class. . .class classmain〉

Besides using instance and local variables,expressions e∈ Exp are built from the self-
referencethis, the empty referencenull, and from subexpressions using the given operators.
To support a clean interface between internal and external object behavior, we disallow
qualified references to instance variables.

As statements stm∈ Stm, we allow assignments, object creation, method invocation,
and standard control constructs like sequential composition, conditional statements, and
iteration.We write� for the empty statement.Amethoddefinition consists of a method name
m, a list of formal parametersu1, . . . , un, and a method body of the formstm; returneret,
i.e., we require that method bodies are terminated by a single return statement, giving back
the control and possibly a return value. The setMethc contains the methods of classc. We
denote the body of methodm of classc by bodym,c. A classis defined by its namec and
its methods, whose names are assumed to be distinct. Aprogram,finally, is a collection of
class definitions having different class names, whereclassmain defines by itsrun-method
the entry point of the program execution. We call the body of therun-method of the main
class themain statementof the program.2 Therun-method cannot be invoked.

Besides thementionedsimplificationson the typesystem,we impose for technical reasons
the following restrictions:We require that method invocation and object creation statements
contain only local variables, i.e., that none of the expressionse0, . . . , en in a method invo-
catione0.m(e1, . . . , en) contains instance variables. Furthermore, formal parameters must
not occur on the left-hand side of assignments. These restrictions imply that during the
execution of a method the values of the actual and formal parameters are not changed, and
thus we can use their equality to describe caller–callee dependencies when returning from
a method call. The above restrictions could be released by storing the identity of the callee
object and the values of the formal and actual parameters in additional built-in auxiliary
variables. However, the restrictions simplify the proof system and thus they make it eas-
ier to understand the basic ideas of this work. Finally, the result of an object creation or
method invocation statement may not be assigned to instance variables. This restriction
allows for a proof system with separated verification conditions for interference freedom

2 In Java, the entry point of a program is given by the staticmain-method of the main class. Relating the
abstract syntax to that ofJava, we assume that the main class is aThread -class whosemain-method just creates
an instance of the main class and starts its thread. The reason for this restriction is, thatJava’s main-method is
static, but our proof system does not support static methods and variables.
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and cooperation. It should be clear that it is possible to transform a program to adhere to this
restrictions at the expense of additional local variables and thus new interleaving points.
Also this restriction could be released, but it would increase the complexity of the proof
system.

2.2. Semantics

2.2.1. States and configurations
Let Valt be the disjoint domains of the various typest andVal = ⋃̇

t Valt , where∪̇ is
the disjoint union operator. For class namesc, the disjunct setsValc with typical elements
�, �, . . . denote infinite sets ofobject identifiers.The value of the empty referencenull
in type c is nullc /∈ Valc. In general, we will just writenull, whenc is clear from the
context. We defineValcnull asValc ∪̇ {nullc} and correspondingly for compound types, and
Valnull = ⋃̇

t Valtnull. Let Init : Var → Valnull be a function assigning an initial value
to each variabley ∈ Var, i.e., null, false, and 0 for class, boolean, and integer types,
respectively, and analogously for compound types, where sequences are initially empty. We
definethis /∈ Var, i.e., the self-reference is not in the domain ofInit . 3

A local state� ∈ �loc of typeTVar ⇀ Valnull is a partial function holding the values
of the local variables of a method. The initial local state�m,c

init of methodm of classc
assigns to each local variableu of m the valueInit(u). A local configuration(�, �, stm) of
a thread executing within an object� specifies, in addition to its local state�, its point of
execution represented by the statementstm. A thread configuration� is a stack of local
configurations(�0, �0, stm0) . . . (�n, �n, stmn), representing the call chain of the thread.We
write � ◦ (�, �, stm) for pushing a new local configuration onto the stack.

An object is characterized by itsinstance state	inst ∈ �inst, a partial function of type
IVar ∪̇ {this} ⇀ Valnull, which assigns values to the self-referencethis and to the instance
variables. The initial instance state	c,init

inst of instances of classc assigns a value fromValc

to this, and to each of its remaining instance variablesx the valueInit(x). A global state

	 ∈ � of type
(⋃̇

c Valc
)

⇀ �inst stores for each currentlyexistingobject, i.e., an object

belonging to the domaindom(	) of 	, its instance state. The set of existing objects of typec
in a state	 is given byValc(	), andValcnull(	) = Valc(	) ∪̇ {nullc}. For the remaining types,
Valt (	) andValtnull(	) are defined correspondingly,Val(	) = ⋃̇

t Valt (	), andValnull(	) =⋃̇
t Valtnull(	). A global configuration〈T , 	〉 describes the currently existing objects by

the global state	, where the setT contains the configuration of the executing thread. For
the concurrent languages of the later sections,T will be the set of configurations of all
currently executing threads. In the following, we write(�, �, stm) ∈ T if there exists a local
configuration(�, �, stm) within one of the execution stacks ofT.

We denote by�[u �→ v] the local state which assigns the valuev to u and agrees with�
on the values of all other variables;	inst[x �→ v] is defined analogously, where	[�.x �→ v]
results from	 by assigningv to the instance variablex of object�. We use these operators
analogously for vectors of variables. We use�[�y �→ �v] also for arbitrary variable sequences,
where instance variables are untouched;	inst[�y �→ �v] and	[�.�y �→ �v] are analogous. Finally

3 In Java, this is a “final” instance variable, which for instance implies, it cannot be assigned to.
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ASSinst〈T ∪̇ {� ◦ (�, �, x:=e; stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �, stm)}, 	[�.x �→[[e]]	(�),�
E ]〉

ASSloc〈T ∪̇ {� ◦ (�, �, u:=e; stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �[u �→[[e]]	(�),�
E ], stm)}, 	〉

� ∈ Valc\Val(	) 	inst = 	c,init
inst [this �→ �] 	′ = 	[� �→ 	inst]

NEW

〈T ∪̇ {� ◦ (�, �, u:=newc; stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �[u �→ �], stm)}, 	′〉

m(�u){ body} ∈ Methc

� = [[e0]]	(�),�
E ∈ Valc(	) �′ = �m,c

init [�u �→[[�e]]	(�),�
E ]

CALL

〈T ∪̇ {� ◦ (�, �, u := e0.m(�e); stm)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �, receive u; stm) ◦ (�, �′, body)}, 	〉

�′′ = �[uret �→[[eret]]	(�),�′
E ]

RETURN

〈T ∪̇ {� ◦ (�, �, receive uret; stm) ◦ (�, �′, returneret)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �′′, stm)}, 	〉

RETURNrun〈T ∪̇ {(�, �, return)}, 	〉 −→ 〈T ∪̇ {(�, �, �)}, 	〉

Fig. 3.Javaseqoperational semantics.

for global states,	[� �→ 	inst] equals	 except on�; note that in case� /∈ Val(	), the
operation extends the set of existing objects by�, which has its instance state initialized to
	inst.

2.2.2. Operational semantics
Expressions are evaluated with respect to aninstance localstate(	inst, �), where the

instance state gives meaning to the instance variables and the self-reference, whereas the
local state determines the values of the local variables. The main cases of the evaluation
function are[[x]]	inst,�

E = 	inst(x) and[[u]]	inst,�
E = �(u). Theoperational semantics ofJavaseq

is given inductively by the rules of Fig.3 as transitions between global configurations. The
rules are formulated such a way that we can re-use them for the concurrent languages of the
later sections. Note that for the sequential language, the setsT in the rules are empty, since
there is only one single thread in global configurations. We elide the rules for the remaining
sequential constructs—sequential composition, conditional statement, and iteration—as
they are standard.

Before having a closer look at the semantical rules for the transition relation−→, let us
startbydefiningthestartingpointofaprogram.Theinitialconfiguration〈T0, 	0〉 of a program
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satisfiesdom(	0) = {�}, 	0(�) = 	c,init
inst [this �→ �], andT0 = {(�, �run,c

init , bodyrun,c)},
wherec is the main class, and� ∈ Valc.

A configuration〈T , 	〉 of a program isreachableif there exists a computation〈T0, 	0〉
−→∗〈T , 	〉 where〈T0, 	0〉 is the initial configuration of the program and−→∗ the reflexive
transitive closure of−→. A local configuration(�, �, stm) ∈ T is enabledin 〈T , 	〉, if it
can be executed, i.e., if there is a computation step〈T , 	〉 → 〈T ′, 	′〉 executingstmin the
local state� and object�.

Assignments to instance or local variables update the corresponding state component (see
rules ASSinst and ASSloc). Object creation byu := newc, as shown in rule NEW, creates a
new object of typec with a fresh identity stored in the local variableu, and initializes its
instance variables. Invoking a method extends the call chain by a new local configuration
(cf. CALL ). After initializing the local state and passing the parameters, the thread begins
to execute the method body. When returning from a method call (cf. RETURN), the callee
evaluates its return expression and passes it to the caller which subsequently updates its
local state. The method body terminates its execution and the caller can continue. We have
similar rules not shown in the figure for the invocation of methods without return value.
The executing thread ends its lifespan by returning from therun-method of the initial object
(see RETURNrun).

2.3. The assertion language

The assertion logic consists of a local and a global sublanguage.Localassertionsp, q, . . .

are used to annotate methods in terms of their local variables and of the instance variables
of the class to which they belong.Global assertionsP, Q, . . . describe a whole system
of objects and their communication structure and will be used in the cooperation test.
In the assertion language we add the typeObject as the supertype of all classes, and we
introducelogical variables zdifferent from all program variables. Logical variables are used
for quantification and as free variables to represent local variables in the global assertion
language. Expressions and assertions are interpreted relative to a logical environment
,
assigning values to logical variables.

Assertions are boolean program expressions, extended by logical variables and
quantification.4 Global assertions may furthermore contain qualified references. Quantifi-
cation can be used for all types, also for reference types. However, the existence of objects
dynamically depends on theglobal state, something one cannot speak about at the local
level. Nevertheless, one can assert the existence of objects on the local level, provided one
is explicit about the domain of quantification. Thus quantification over objects in the local
assertion language is restricted to∀z ∈ e. p for objects and to∀z � e. p for lists of objects,
and correspondingly for existential quantification and for composite types. Unrestricted
quantification∀z. p can be used in the local language for boolean and integer domains
only. Global assertions are evaluated in the context of a global state. Thus, quantification is
allowed unrestricted for all types and ranges over the set ofexistingvalues.

4 In this paper, we use mathematical notation like∀z. p etc. for phrases in abstract syntax. The concrete syntax
used by theVerger tool is an adaptation ofJML.
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Table 2
Semantics of assertions

([[∃z. p]]
,	inst,�

L = true) iff ([[p]]
[z �→ v],	inst,�

L = true for somev ∈ Val)

([[∃z∈e. p]]
,	inst,�

L = true) iff ([[z∈e ∧ p]]
[z �→ v],	inst,�

L =true for somev ∈ Valnull)

[[E.x]]
,	
G = 	([[E]]
,	

G )(x)

([[∃z. P ]]
,	
G = true) iff ([[P ]]
[z �→ v],	

G = true for somev ∈ Valnull(	))

The evaluations of local and global assertions are given by[[p]]
,	inst,�
L and[[P ]]
,	

G . The

main cases are shown in Table2. We write
, 	inst, ��L p for [[p]]
,	inst,�
L = true, and�L p

if p holds in all contexts; we use analogously�G for global assertions.
To express a local propertyp in the global assertion language, we define thelifting

substitutionp[z/this] by simultaneously replacing inp all occurrences ofthis by z, and
transforming all occurrences of instance variablesx into qualified referencesz.x.Weassume
znot to occur inp. For notational convenience we view the local variables occurring in the
global assertionp[z/this] as logical variables. Formally, these local variables are replaced
by fresh logical variables. We will writeP(z) for p[z/this], and similarly for expressions.

2.4. The proof system

The proof system has to accommodate for dynamic object creation, aliasing, and method
invocation. Before describing the proof method we first show how to augment and annotate
programs resulting inproof outlinesor asserted programs.

2.4.1. Proof outlines
For a complete proof system it is necessary that the transition semantics ofJavaseqcan

be encoded in the assertion language.As the assertion language reasons about the local and
global states, we have toaugmentthe program with fresh auxiliary variables to represent
information about the control points and stack structures within the local and global states.
Invariant program properties are specified by theannotation.

An augmentationextends a program byobservations, which are atomically executed
multiple assignments�y := �e to auxiliary variables. Furthermore, the observations have to
be “attached” in an atomic manner to statements they observe. For object creation this is
syntactically represented by the augmentationu := newc〈�y := �e〉new which attaches the
observation to the object creation statement. Observations�y1 := �e1 of a method call and
observations�y4 := �e4 of the corresponding reception of a return value5 are denoted byu :=
e0.m(�e)〈�y1 := �e1〉!call 〈�y4 := �e4〉?ret . The augmentation〈�y2 := �e2〉?call stm; returneret〈�y3 :=
�e3〉!ret of method bodies specifies�y2 := �e2 as the observation of the reception of the method
call, and�y3 := �e3 as the observation attached to the return statement. Assignments can be

5 To exclude the possibility, that two multiple assignments get executed in a single computation step in the
same object, we require that caller observations in a self-communication may not change the values of instance
variables[4].
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observed using�y := �e〈�y′ := �e′〉ass. A stand-alone observation not attached to any statement
is written as〈�y := �e〉 ; it can be inserted at any point in the program.

The augmentation does not influence the control flow of the program but enforce a
particularschedulingpolicy. An assignment statement and its observation are executed
simultaneously. Object creation and its observation are executed in a single computation
step, in this order. For method calls, communication, sender, and receiver observations are
executed in a single computation step, in this order. Points between a statement and its
observation are nocontrol points, since the statement and its observation are executed in
a single computation step; we call themauxiliary points. We use the expressionmultiple
assignmentto refer generally to statements of the following forms: assignment statements
together with their observations, unobserved assignments, stand-alone observations, as well
as observations of communication and object creation.

Besides the auxiliary variables defined by the user, we have threebuilt-in auxiliary vari-
ables, described in the following. In order to express the transition semantics in the logic, we
identify each local configuration by a pair consisting of the object in which it executes and
a unique object-internal identifier. The latter is stored in a built-in auxiliary local variable
conf, and its uniqueness is assured by the auxiliary instance variablecounter, incremented
for each new local configuration in that object. The callee receives the “return address” as
auxiliary formal parametercaller of typeObject × Int, storing the identities of thecaller
object and the calling local configuration. The parametercaller of the initial invocation of
therun-method of the initial object gets the value(null, 0).

Syntactically, the built-in augmentation translates each method definitionm(�u){stm} into
m(�u, caller){〈conf, counter := counter, counter + 1〉?call stm}. Correspondingly, method
invocation statementsu := e0.m(�e) get extended tou := e0.m(�e, (this, conf)).

For readability, in the examples of the following sections we will not explicitly list the
built-in augmentation; they are meant to be automatically included.

To specify invariant properties of the system, the augmented programs areannotatedby
attaching local assertions to each control and auxiliary point. We use the triple notation
{p} stm{q} and writepre(stm) andpost(stm) to refer to the pre- and the post-condition of a
statement. For assertions at auxiliary points we use the following notation: The annotation

{p0} u := new c {p1}new 〈�y := �e〉new {p2}

of an object creation statement specifiesp0 andp2 as pre- and postconditions, wherep1
at the auxiliary point should hold directly after object creation but before the observation.
The annotation

{p0}u := e0.m(�e) {p1}!call 〈�y1 := �e1〉!call {p2}wait

{p3}?ret 〈�y4 := �e4〉?ret {p4}

assignsp0 andp4 as pre- and postconditions to the method invocation;p1 andp3 are
assumed to hold directly after method call and return, resp., but prior to their observations;
p2 describes thecontrol point of thecaller aftermethodcall andbefore return.Theannotation
of method bodiesstm; returne is as follows:

{p0}?call 〈�y2 := �e2〉?call {p1} stm; {p2} returne {p3}!ret 〈�y3 := �e3〉!ret {p4}
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Thecalleepostconditionof themethodcall isp1; thecalleepre- andpost-conditionsof return
arep2 andp4. The assertionsp0 resp.p3 specify the states of the callee between method call
resp. return and its observation. Note that method annotations do not syntactically specify
the state prior to call, i.e., there is no precondition of method invocations from the callee
side. Semantically, this precondition is the class invariant.

Besides pre- and postconditions, the annotation defines for each classca local assertionIc

calledclass invariant, specifying invariant properties of instancesofc in termsof its instance
variables. Finally, a global assertionGI called theglobal invariant specifies properties
of communication between objects. As such, it should be invariant under object-internal
computation. For that reason, we require that for all qualified referencesE.x in GI with
E of type c, all assignments tox in classc occur in the observations of communication
or object creation. We require that in the annotation no free logical variables occur. In the
following we will also use partial annotation. Assertions which are not explicitly specified
are by definition true.

2.4.2. Verification conditions
The proof system generates a number ofverification conditionswhich inductively ensure

that for each reachable configuration the local assertions attached to the current control
points in the thread configuration as well as the global and the class invariants hold. The
conditions are grouped, as usual, into initial conditions (which are not discussed in this
paper, see[4]), and for the inductive step into local correctness and tests for interference
freedom and cooperation.

Arguing about two different local configurations makes it necessary to distinguish be-
tween their local variables, since they may have the same names; in such cases we will
rename the local variables in one of the local states. We use primed assertionsp′ to denote
the given assertionp with every local variableu replaced by a fresh oneu′, and correspond-
ingly for expressions.

Local correctness:A proof outline islocally correct, if theproperties ofmethod instances,
as specified by the annotation, are invariant under the execution of the given method in-
stance. For example, the precondition of an assignment must imply its postcondition after
its execution. The following condition is required to hold for all multiple assignments being
an assignment statement with its observation, an unobserved assignment, or a stand-alone
observation:

Definition 2.1 (Local correctness: assignment). A proof outline islocally correct, if for
all multiple assignments{p1} �y := �e {p2} in classc, which is not the observation of object
creation or communication,

�L {p1} �y := �e {p2} . (1)

The conditions for loops and conditional statements are similar. Note that we have no
local verification conditions for observations of communication and object creation. The
postconditions of such statements expressassumptionsabout the communicated values.
These assumptions will be verified in thecooperation test.
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The interference freedom test: Invariance of local assertions under computation steps in
which they are not involved is assured by the proof obligations of theinterference freedom
test. Its definition covers also invariance of the class invariants. SinceJavaseq does not
support qualified references to instance variables, we only have to deal with invariance
under execution within thesameobject. Affecting only local variables, communication and
object creation do not change the instance states of the executing objects. Thus we only
have to cover invariance of assertions at control points over assignments in the same object,
including observations of communication and object creation. To distinguish local variables
of the different local configurations, we rename those of the assertion.

Letqbe an assertion at a control point and�y := �e a multiple assignment in the same class
c. In which cases doesq have to be invariant under the execution of the assignment? Since
the language is sequential, i.e.,q and�y := �e belong to thesamethread, the only assertions
endangered are those at control points waiting for return earlier in the current execution
stack. Invariance of a local configuration under its own execution, however, need not be
considered and is excludedby requiringconf �= conf′. Interferencewith thematchingreturn
statement in a self-communication need also not be considered, because communicating
partners execute simultaneously. Letcaller_obj be the first andcaller_conf the second
component ofcaller. We definewaits_for_ret(q, �y := �e) by
• conf′ �= conf, for assertions{q}wait attached to control points waiting for return, if�y := �e

is not the observation of return;
• conf′ �= conf∧(this �= caller_obj∨conf′ �= caller_conf), for assertions{q}wait , if �y := �e

observes return;
• false, otherwise.
The interference freedom test can now be formulated as follows:

Definition 2.2 (Interference freedom). A proof outline isinterference free, if for all classes
c and multiple assignments�y := �e with preconditionp in c,

�L {p ∧ Ic} �y := �e {Ic} . (2)

Furthermore, for all assertionsq at control points inc,

�L {p ∧ q ′ ∧ waits_for_ret(q, �y := �e)} �y := �e {q ′} . (3)

Remember thatq ′ stands for the assertionq with each local variable appropriately re-
named, e.g., the variableconf is replaced byconf′ etc. Note further that if we would allow
program expressions to contain qualified references to instance variables, we would have
to show interference freedom of all assertions under all assignments in programs, not only
for those occurring in the same class. For a program withn classes where each class con-
tainsk assignments andl assertions at control points, the number of interference freedom
conditions is in O(n·k·l), instead of O((n·k) · (n·l)) with qualified references.

Example 2.3. Let {p1} this.m(�e) {p2}!call 〈stm1〉!call {p3}wait {p4}?ret 〈stm2〉?ret {p5} be an anno-
tated method call statement in a methodm′ of a classc with an integer auxiliary instance
variablex, such that each assertion impliesconf = x. I.e., the identity of the executing local
configuration is stored in the instance variablex. The annotation expresses that no pairs of
control points inm′ of c can be simultaneously reached.
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The assertionsp2 andp4 need not be shown invariant, since they are attached to auxiliary
points. Interference freedom neither requires invariance of the assertionsp1 andp5, since
theyarenot at control pointswaiting for return, and thus theantecedentsof thecorresponding
conditions evaluate to false. Invariance ofp3 under the execution of the observationstm1
with preconditionp2 requires validity of�L{p2∧p′

3∧waits_for_ret(p3, stm1)} stm1 {p′
3}.

Theassertionp2∧p′
3∧waits_for_ret(p3, stm1) implies(conf = x)∧(conf′ = x)∧(conf′ �=

conf), which evaluates to false. Invariance ofp3 understm2 follows analogously.

Example 2.4.Assume a partially6 annotated method invocation statement of the form
{p1} this.m(�e) {conf = x ∧p2}wait {p3} in a classcwith an integer auxiliary instance variable
x, and assume that methodmof c has the annotated return statement{q1} return {caller =
(this, x)}!ret 〈stm〉!ret {q2} . The annotation expresses that the local configurations containing
the above statements are in caller–callee relationship. Thus upon return, the control point
of the caller moves from the point atconf = x ∧ p2 to that atp3, i.e.,conf = x ∧ p2 does
not have to be invariant under the observation of the return statement.

Again, the assertioncaller = (this, x) at an auxiliary point does not have to be shown
invariant. For the assertionsp1, p3, q1, andq2, which are not at a control point waiting for
return, the antecedent is false. Invariance ofconf = x ∧ p2 under the observationstmwith
preconditioncaller = (this, x) is covered by the interference freedom condition

�L { caller = (this, x) ∧ (conf′ = x ∧ p′
2)∧

waits_for_ret((conf = x ∧ p2), stm) } stm {conf′ = x ∧ p′
2} .

Thewaits_for_ret assertion impliescaller �= (this, conf′), which contradicts the assump-
tionscaller = (this, x) andconf′ = x; thus the antecedent of the condition is false.

Satisfaction ofconf = x∧p2 after the call, satisfaction ofcaller = (this, x) directly after
return, and satisfaction ofp3 andq2 after the observationstmis assured by the cooperation
test.

The cooperation test: Whereas the interference freedom test assures invariance of asser-
tions under steps in which they are not involved, thecooperation testdeals with inductivity
for communicating partners, assuring that the global invariant, and the preconditions and
the class invariants of the involved statements imply their postconditions after the joint step.
Additionally, the preconditions of the corresponding observations must hold immediately
after communication. The global invariant expresses global invariant properties using aux-
iliary instance variables which can be changed by observations of communication, only.
Consequently, the global invariant is automatically invariant under the execution of non-
communicating statements. For communication andobject creation, however, the invariance
must be shown as part of the cooperation test.

We start with the cooperation test for method invocation. The communication pattern of
method call and return and the involved local assertions are illustrated in Fig.4. Control
points are represented by•’s, and auxiliary points by◦’s.

Since different objects may be involved, the cooperation test is formulated in the global
assertion language. Local properties are expressed in the global language using the lifting

6As already mentioned, missing assertions are by definition true.
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Ic′◦ ?call �� q2◦ �y2:=�e2 ��

call

q3• body �� q4• !ret �� q5◦ �y3:=�e3 ��

return

q6◦

•
p1

!call �� ◦
p2

�y1:=�e1 �� •
p3

?ret �� ◦
p4

�y4:=�e4 �� •
p5

Fig. 4. Cooperation test: communication.

substitution. As already mentioned, we use the shortcutsP(z) for p[z/this], Q′(z′) for
q ′[z′/this], and similarly for expressions. To avoid name clashes between local variables of
the partners, we rename those of the callee. Remember that after communication, i.e., after
creating and initializing the callee local configuration and passing on the actual parameters,
first the caller, and then the callee execute their corresponding observations, all in a single
computation step. Correspondingly for return, after communicating the result value, first
the callee and then the caller observation gets executed.

Let z andz′ be logical variables representing the caller, respectively the callee object in
a method call. We assume the global invariant, the class invariants of the communicating
partners, and the preconditions of the communicating statements to hold prior to communi-
cation. For method invocation, the precondition of the callee is its class invariant. That the
two statements indeed represent communicating partners is captured in the assertioncomm,
which depends on the type of communication: For method invocatione0.m(�e), the asser-
tionE0(z) = z′ states, thatz′ is indeed the callee object. Remember that method invocation
hands over the “return address”, and that the values of formal parameters remain unchanged.
Furthermore, actual parameters may not contain instance variables, i.e., their interpretation
does not change during method execution. Therefore, the formal and actual parameters can
be used at returning from a method to identify partners being in caller–callee relationship,
using the built-in auxiliary variables. Thus for the return case,comm additionally states
�u′ = �E(z), where�u and �e are the formal and the actual parameters. Returning from the
run-method terminates the executing thread, which does not have communication effects.

As in the previous conditions, state changes are represented by assignments. For the
example of method invocation, communication is represented by the assignment�u′ :=
�E(z), where initialization of the remaining local variables�v is covered by�v′ := Init(�v). The
assignmentsz.�y1 := �E1(z) andz′.�y′

2 := �E′
2(z

′) stand for the caller and callee observations
�y1 := �e1 and�y2 := �e2, executed in the objectsz andz′, respectively. Note that we rename
all local variables of the callee to avoid name clashes.

Definition 2.5 (Cooperation test for communication). A proof outline satisfies thecooper-
ation test for communication, if

�G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z �= null ∧ z′ �= null}
fcomm

{P2(z) ∧ Q′
2(z

′)} (4)
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�G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z �= null ∧ z′ �= null}
fcomm; fobs1; fobs2

{GI ∧ P3(z) ∧ Q′
3(z

′)} (5)

hold for distinct fresh logical variableszof typec andz′ of typec′, in the following cases:
(1) CALL : For all statements{p1}uret := e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait (or those

without receiving a value) in classc with e0 of type c′, where methodm of c′ has
body{q2}?call 〈�y2 := �e2〉?call {q3} stm; returneret, formal parameters�u, and local variables
�v except the formal parameters. The callee class invariant isq1 = Ic′ . The assertion
comm is given byE0(z) = z′. Furthermore,fcomm is �u′, �v′ := �E(z), Init(�v), fobs1 is
z.�y1 := �E1(z), andfobs2 is z′.�y′

2 := �E′
2(z

′).
(2) RETURN: For all uret:=e0.m(�e)〈�y1 := �e1〉!call {p1}wait {p2}?ret 〈�y4 := �e4〉?ret {p3} (or those

without receiving a value) occurring inc with e0 of typec′, such that methodm of c′
has the return statement{q1} returneret{q2}!ret 〈�y3 := �e3〉!ret {q3} , and formal parameter
list �u, the above equations must hold withcomm given byE0(z) = z′ ∧ �u′ = �E(z), and
wherefcommis uret := E′

ret(z
′), fobs1 is z′.�y′

3 := �E′
3(z

′), andfobs2 is z.�y4 := �E4(z).
(3) RETURNrun: For the statement{q1} return {q2}!ret 〈�y3 := �e3〉!ret {q3} of the run-method of

the main class,p1 = p2 = p3 = true, comm = true, fobs1 is z′.�y′
3 := �E′

3(z
′), and

furthermorefcommandfobs2 are the empty statement.

Example 2.6. This example illustrates how one can prove properties of parameter passing.
Let {p} e0.m(v, �e), with p given byv > 0, be a (partially) annotated statement in a classc
with e0 of typec′, and letmethodm(u, �w) of c′ haveabody of the form{q} stm; returnwhere
q isu > 0. Inductivity of the proof outline requires that ifp is valid prior to the call (besides
validity of the global and class invariants), thenq is satisfied after the invocation. Omitting
irrelevant details, Condition5 of the cooperation test requires proving�G{P(z)} u′ :=
v {Q′(z′)}, which expands to�G{v > 0} u′ := v {u′ > 0}.

Example 2.7. The following example demonstrates how one can express dependencies
between instance states in the global invariant and use this information in the cooperation
test.

Let {p} e0.m(�e), with p given byx > 0 ∧ e0 = o, be an annotated statement in a classc
with e0 of typec′, x an integer instance variable, ando an instance variable of typec′, and
let methodm(�u) of c′ have the annotated body{q} stm; return whereq is y > 0 andy an
integer instance variable. Let furthermorez ∈ LVarc and let the global invariant be given by
∀z. (z �= null ∧ z.o �= null ∧ z.x > 0) → z.o.y > 0. Inductivity requires that ifp and the
global invariant are valid prior to the call, thenq is satisfied after the invocation (again, we
omit irrelevant details). The cooperation test Condition5, i.e.,�G{GI ∧P(z)∧comm∧z �=
null ∧ z′ �= null} �u′ := �E(z) {Q′(z′)} expands to

�G {(∀z. (z �= null ∧ z.o �= null ∧ z.x > 0) → z.o.y > 0)∧
(z.x > 0 ∧ E0(z) = z.o) ∧ E0(z) = z′ ∧ z �= null ∧ z′ �= null }

�u′ := �E(z)

{z′.y > 0} .
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Instantiating the quantification byz, the antecedent impliesz.o.y > 0 ∧ z′ = z.o, i.e.,
z′.y > 0. Invariance of the global invariant is straightforward.

Example 2.8. This example illustrates how the cooperation test handles observations of
communication. Let{¬b} this.m(�e){b}wait beanannotated statement in a classcwith boolean
auxiliary instance variableb and letm(�u) of c have a body of the form{¬b}?call 〈b :=
true〉?call {b} stm; return. Condition4 of the cooperation test assures inductivity for the pre-
condition of the observation. We have to show

�G{¬z.b ∧ comm}�u′ := �E(z){¬z′.b}

(again, we omit irrelevant details), i.e., since it is a self-call,

�G{¬z.b ∧ z = z′}�u′ := �E(z){¬z′.b} ,

which is trivially satisfied.Condition5of the cooperation test for the postconditions requires

�G{comm}�u′ := �E(z); z′.b := true{z.b ∧ z′.b}

which expands to

�G{z = z′}�u′ := �E(z); z′.b := true{z.b ∧ z′.b} ,

whose validity is easy to see.

Besides method calls and return, the cooperation test needs to handle object creation,
takingcareof thepreservationof theglobal invariant, thepostconditionof thenew-statement
and its observation, and thenewobject’s class invariant.Wecanassume that the precondition
of the object creation statement, the class invariant of the creator, and the global invariant
hold in theconfigurationprior to instantiation.Theextensionof theglobal statewitha freshly
created object is formulated in astrongest postconditionstyle, i.e., it is required to hold
immediatelyafterthe instantiation.Weuseexistential quantification to refer to the old value:
z′ of typelistObject represents the existing objects prior to the extension. Moreover, that the
created object’s identity stored inu is fresh and that the new instance is properly initialized
is expressed by the global assertionFresh(z′, u) defined asInitState(u) ∧ u �∈ z′ ∧ ∀v. v ∈
z′∨v = u, whereInitState(u) is theglobal assertionu �= null∧∧

x∈IVar\{this} u.x = Init(x),
expressing that the object denoted byu is in its initial instance state. In this assertion, the
syntactical operatorInit has the interpretationInit (cf. Section 2.2.1), andIVar is the set of
instance variables ofu. To express that an assertion refers to the set of existing objectsprior
to the extension of the global state, we need torestrictany existential quantification in the
assertion to range over objects fromz′, only. So letP be a global assertion andz′ of type
listObject a logical variable not occurring inP. ThenP ↓ z′ is the global assertionP with
all quantifications∃z. P ′ replaced by∃z. obj(z) ⊆ z′ ∧ P ′, whereobj(v) denotes the set of
objects occurring in the valuev. Thus a predicate(∃u. P ) ↓ z′, evaluated immediately after
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the instantiation, expresses thatP holds prior to the creation of the new object. This leads
to the following definition of the cooperation test for object creation:

Definition 2.9 (Cooperation test: instantiation). A proof outline satisfies thecooperation
test for object creation, if for all classesc′ and statements{p1}u := newc; {p2}new〈�y :=
�e〉new{p3} in c′:

�G z �=null ∧ z �=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′)
→ P2(z) ∧ Ic(u) (6)

�G {z �=null ∧ z �=u ∧ ∃z′.
(
Fresh(z′, u) ∧ (GI ∧ ∃u. P1(z)) ↓ z′)}

z.�y := �E(z)

{GI ∧ P3(z)} (7)

with zof typec′ andz′ of type listObject fresh.

Example 2.10.Assume a statementu := newc{u �= this} in a program, where the class
invariant ofc is x�0 for an integer instance variablex. Condition6 of the cooperation
test for object creation assures that the class invariant of the new object holds after its
creation. We have to show validity of�G(∃z′. Fresh(z′, u)) → u.x�0, i.e.,�G u.x = 0 →
u.x�0, which is trivial. Remember that integer variables have the initial value 0. For the
postcondition, Condition7 requires�G{z �= u} � {u �= z} with � the empty statement (no
observations are executed), which is true.

3. Multithreading

In this section, we extend the languageJavaseq to a concurrentlanguageJavaconc by
allowingdynamic thread creation. Again, we define syntax and semantics of the language,
before formalizing the proof system.

3.1. Syntax and semantics

Expressions, statements, andmethodscanbeconstructedas inJavaseq.Theabstract syntax
of the remaining constructs is summarized in Table3. As we focus on concurrency aspects,
all classes areThread classes in the sense ofJava: Each class contains the pre-defined
methodstart, which is identical for all classes and therefore syntactically not represented in
class definitions. Semantically, when invoked, thestart-method spawns a new thread, which
starts to execute the object’srun-method in parallel. Therun-methods cannot be invoked

Table 3
Javaconcabstract syntax

class ::= c{meth. . .meth methrun methstart}
classmain ::= class

prog ::= 〈class. . .class classmain〉
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� = [[e]]	(�),�
E ∈ Valc(	) ¬started(T ∪ {� ◦ (�, �, e.start(); stm)}, �)

CALL start〈T ∪̇ {� ◦ (�, �, e.start(); stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �, stm), (�, �run,cinit , bodyrun,c)}, 	〉

� = [[e]]	(�),�
E ∈ Val(	) started(T ∪ {� ◦ (�, �, e.start(); stm)}, �)

CALL
skip
start〈T ∪̇ {� ◦ (�, �, e.start(); stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �, stm)}, 	〉

Fig. 5.Javaconcoperational semantics.

directly. Remember that the syntax does not allow qualified references to instance variables.
As a consequence, shared-variable concurrency is caused by simultaneous execution within
a single object, only, but not across object boundaries.

The operational semantics ofJavaconcextends the semantics ofJavaseqby dynamic thread
creation. The additional rules are shown in Fig.5. The first invocation of astart-method
brings a new thread into being (CALL start). The new thread starts to execute the user-defined
run-method of the given object while the initiating thread continues its own execution.
Only the first invocation of thestart-method has this effect (CALL

skip
start).

7 This is captured
by the predicatestarted(T , �) which holds iff there is a stack(�0, �0, stm0) . . . (�n, �n,
stmn) ∈ T such that� = �0. A thread ends its lifespan by returning from arun-method
(RETURNrun of Figure3). 8

3.2. The proof system

In contrast to the sequential language, the proof system additionally has to accommodate
for dynamic thread creation and shared-variable concurrency. Before describing the proof
method, we show how to extend the built-in augmentation of the sequential language.

3.2.1. Proof outlines
As mentioned, an important point in achieving completeness of the proof system in the

sequential case is the identification of communicating partners. For the concurrent language
we additionally have to be able to identifythreads. We identify a thread by the object in
which it has begun its execution. This identification is unique, since an object’s thread can be
started only once. We use the typeThread thus as abbreviation for the typeObject. During
a method call, the callee thread receives its own identity as an auxiliary formal parameter
thread. Additionally, we extend the auxiliary formal parametercaller by the caller thread
identity, i.e., letcaller be of typeObject× Int× Thread, storing the identities of the caller
object, the calling local configuration, and the caller thread. Note that the thread identities
of caller and callee are the same in all cases but the invocation of astart-method. The

7 In Java an exception is thrown if the thread is already started but not yet terminated.
8 The worked-off local configuration(�, �, �) is kept in the global configuration to ensure that the thread of�

cannot be started twice.
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run-method of the initial object is executed with the values(�0, (null, 0, null)) assigned to
the parameters(thread, caller), where�0 is the initial object. The boolean instance variable
started, finally, remembers whether the object’sstart-method has already been invoked.

Syntactically, each formal parameter list�u in the original program gets extended to
(�u, thread, caller). Correspondingly for the caller, each actual parameter list�e in statements
invoking a method different fromstart gets extended to(�e, thread, (this, conf, thread)).
The invocation of the parameterlessstart-method of an objecte0 gets the actual parameter
list (e0, (this, conf, thread)). Finally, the callee observation at the beginning of therun-
method executesstarted := true. The variablesconf andcounter are updated as in the
previous section.

3.2.2. Verification conditions
Local correctness is not influenced by introducing concurrency. Note that local correct-

ness applies now to all concurrently executing threads.
The interference freedom test: An assertionq at a control point has to be invariant

under an assignment�y := �e in the same class only if the local configuration described
by the assertion is not active in the computation step executing the assignment. Note that
assertions at auxiliary points do not have to be shown invariant. Again, to distinguish local
variables of the different local configurations, we rename those of the assertion.

If q and �y := �e belong to thesamethread, i.e.,thread = thread′, then we have the
same antecedent as for the sequential language. If the assertion and the assignment be-
long todifferent threads, interference freedom must be shown in any case except for the
self-invocation of thestart-method: The precondition of such a method invocation cannot
interfere with the corresponding observation of the callee. To describe this setting, we define
self_start(q, �y := �e) by caller = (this, conf′, thread′) iff q is the precondition of a method
invocatione0.start(�e) and the assignment is the callee observation at the beginning of the
run-method, and byfalse otherwise.

Definition 3.1 (Interference freedom). A proof outline isinterference free,if the conditions
of Definition2.2hold withwaits_for_ret(q, �y := �e) replaced by

interleavable(q, �y := �e)
def= thread = thread′ → waits_for_ret(q, �y := �e) ∧

thread �= thread′ → ¬self_start(q, �y := �e) . (8)

Example 3.2.Assume an annotated assignment{p} stmin a method, and an assertionq at
a control point not waiting for return in the same method, such that bothp andq imply
thread = this. I.e., the method is executed only by the thread of the object to which it be-
longs. Clearly,pandqcannot be simultaneously reached by the same thread. For invariance
of qunder the assignmentstm, the antecedent of the interference freedom condition implies
p ∧ q ′ ∧ interleavable(q, stm). Fromp ∧ q ′ we concludethread = thread′, and thus by
the definition ofinterleavable(q, stm) the assertionq should be at a control point waiting
for return, which is not the case, and thus the antecedent of the condition evaluates to false.

The cooperation test: The cooperation test for object creation is not influenced by adding
concurrency, but we have to extend the cooperation test for communication by defining
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Table 4
Javasynchabstract syntax

modif ::= nsync | sync
meth ::= modifm(u, . . ., u){ stm; returneret}

methrun ::= nsync run(){ stm; return }
methwait ::= nsync wait(){ ?signal; returngetlock }

methnotify ::= nsync notify(){ !signal ; return }
methnotifyAll ::= nsync notifyAll(){ !signal_all; return }
methpredef ::= methstart methwait methnotify methnotifyAll

class ::= c{meth. . .meth methrun methpredef}
classmain ::= class

prog ::= 〈class. . .class classmain〉

additional conditions for thread creation. Invoking thestart-method of an object whose
thread is already started does not have communication effects. The same holds for returning
from arun-method, which is already included in the conditions for the sequential language
as for the termination of the only thread. Note that this condition applies now to all threads.

Definition 3.3 (Cooperation test: communication). A proof outline satisfies thecoopera-
tion test for communication, if the conditions of Definition2.5hold for the statements listed
there withm �= start, and additionally in the following cases:
(i) CALL start: Forall statements{p1} e0.start(�e) {p2}!call 〈�y1 := �e1〉!call {p3} in classcwithe0 of

typec′, comm is given byE0(z) = z′∧¬z′.started, where{q2}?call 〈�y2 := �e2〉?call {q3} stm
is the body of therun-method ofc′ having formal parameters�u and local variables
�v except the formal parameters. As in the CALL case,q1 = Ic′ , fcomm is �u′, �v′ :=
�E(z), Init(�v), fobs1 is z.�y1 := �E1(z), andfobs2 is z′.�y′

2 := �E′
2(z

′).
(ii) CALL

skip
start: For the above statements, the equations must additionally hold with the as-

sertioncomm given byE0(z) = z′ ∧ z′.started, q1 = Ic′ , q2 = q3 = true, fobs1 is
z.�y1 := �E1(z), andfcommandfobs2 are the empty statement.

4. The languageJavasynch

In this section, we extend the languageJavaconcwith monitor synchronization. Again, we
define syntax and semantics of the languageJavasynch, before formalizing the proof system.

4.1. Syntax and semantics

Expressions and statements can be constructed as in the previous languages. The abstract
syntax of the remaining constructs is summarized in the Table4. Formally, methods get
decorated by a modifiermodif distinguishing betweennon-synchronizedandsynchronized
methods.9 In the sequel we also refer to statements in the body of a synchronized method
as being synchronized. Furthermore, we consider the additional predefined methodswait,

9 Java does not have the non-synchronized modifier: methods are non-synchronized by default.
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m /∈ {start,wait,notify,notifyAll} modifm(�u){ body} ∈ Methc

� = [[e0]]	(�),�
E ∈ Valc(	) �′ = �m,c

init [�u �→[[�e]]	(�),�
E ] (modif = sync) → ¬owns(T , �)

Call
〈T ∪̇ {� ◦ (�, �, u := e0.m(�e); stm)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �, receive u; stm) ◦ (�, �′, body)}, 	〉

m ∈ {wait,notify,notifyAll}
� = [[e]]	(�),�

E ∈ Valc(	) owns(� ◦ (�, �, e.m(); stm), �)
Callmonitor

〈T ∪̇ {� ◦ (�, �, e.m(); stm)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �, receive; stm) ◦ (�, �m,c

init , bodym,c)}, 	〉

¬owns(T , �)
Returnwait

〈T ∪̇ {� ◦ (�, �, receive; stm) ◦ (�, �′, returngetlock)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �, stm)}, 	〉

Signal
〈T ∪̇ {� ◦ (�, �, !signal; stm)} ∪̇ {�′ ◦ (�, �′, ?signal; stm′)}, 	〉 −→
〈T ∪̇ {� ◦ (�, �, stm)} ∪̇ {�′ ◦ (�, �′, stm′)}, 	〉

wait(T , �) = ∅
Signalskip〈T ∪̇ {� ◦ (�, �, !signal; stm)}, 	〉 −→ 〈T ∪̇ {� ◦ (�, �, stm)}, 	〉

T ′ = signal(T , �)
SignalAll

〈T ∪̇ {� ◦ (�, �, !signal_all; stm)}, 	〉 −→ 〈T ′ ∪̇ {� ◦ (�, �, stm)}, 	〉

Fig. 6.Javasynchoperational semantics.

notify, andnotifyAll, whose definitions use the auxiliary statements!signal, !signal_all,
?signal, andreturngetlock. 10

The operational semantics extends the semantics ofJavaconcby the rules of Fig.6, where
the CALL rule is replaced. Each object has alockwhich can be owned by at most one thread.
Synchronized methods of an object can be invoked only by a thread which owns the lock of
that object (CALL ), as expressed by the predicateowns, defined below. If the thread does not
own the lock, it has to wait until the lock gets free. A thread owning the lock of an object
can recursively invoke several synchronized methods of that object, which corresponds to
the notion of reentrant monitors.

10 Java’s Thread class additionally support methods for suspending, resuming, and stopping a thread, but they
are deprecated and thus not considered here.
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The remaining rules handle the monitor methodswait, notify, andnotifyAll. In all three
cases the caller must own the lock of the callee object (CALL monitor). A thread can block
itself on an object whose lock it owns by invoking the object’swait-method, thereby re-
linquishing the lock and placing itself into the object’s wait set. Formally, the wait set
wait(T , �) of an object is given as the set of all stacks inT with a top element of the
form (�, �, ?signal; stm). After having put itself on ice, the thread awaits notification by
another thread which invokes thenotify-method of the object. The!signal-statement in
the notify-method thus reactivates a non-deterministically chosen single thread waiting
for notification on the given object (SIGNAL). Analogously to the wait set, the notified set
notified(T , �)of� is theset of all stacks inTwith topelement of the form(�, �, returngetlock),
i.e., threads which have been notified and trying to get hold of the lock again. According to
rule RETURNwait, the receiver can continue after notification in executingreturngetlock only
if the lock is free. Note that the notifier does not hand over the lock to the one being notified
but continues to own it. This behavior is known assignal-and-continuemonitor discipline
[14]. If no threads are waiting on the object, the!signal of the notifier is without effect
(SIGNALskip). ThenotifyAll-method generalizes notify in that all waiting threads are notified
via the!signal_all-broadcast (SIGNALALL). The effect of this statement is given by setting
signal(T , �) as(T \ wait(T , �)) ∪ {� ◦ (�, �, stm) | � ◦ (�, �, ?signal; stm) ∈ wait(T , �)}.

Using the wait and notified sets, we can now formalize theownspredicate: A thread�
owns the lock of� iff � executes some synchronized method of�, but not itswait-method.
Formally,owns(T , �) is true iff there exists a thread� ∈ T and a(�, �, stm) ∈ � with stm
synchronized and� /∈ wait(T , �) ∪ notified(T , �). The definition is used analogously for
single threads. An invariant of the semantics is that at most one thread can own the lock of
an object at a time.

4.2. The proof system

The proof system has additionally to accommodate for synchronization, reentrant mon-
itors, and thread coordination via the wait and notify constructs. First, we define how to
extend the augmentation ofJavaconc, before we describe the proof method.

4.2.1. Proof outlines
To capture mutual exclusion and the monitor discipline, the built-in auxiliary instance

variablelock of type Thread × Int stores the identity of the thread who owns the lock,
if any, together with the number of synchronized calls in the call chain. Its initial value
free = (null, 0) indicates that the lock is free. The instance variableswait andnotified of
typelist(Thread× Int) are the analogues of thewait- andnotified-sets of the semantics and
store the threads waiting at the monitor, respectively, those having been notified. Besides the
thread identity, the number of synchronized calls is stored. In other words, these variables
remember the old lock-value prior to suspension which is restored when the thread becomes
active again.All auxiliary variables are initialized as usual. For valuesthreadof typeThread
andwait of typelist(Thread×Int), we will also writethread∈ wait instead of(thread, n) ∈
wait for somen.

Syntactically, besides the augmentation of the previous section, the callee
observation at the beginning and at the end of each synchronized method body executes



E. Ábrahám et al. / Theoretical Computer Science 331 (2005) 251–290 273

lock := inc(lock) and lock := dec(lock), respectively. The semantics of incrementing
the lock [[inc(lock)]]	inst,�

E is (�(thread), n + 1) for 	inst(lock) = (�, n). Decrementing
dec(lock) is inverse.

Insteadof theauxiliary statements of the semantics, notification is represented in theproof
system by auxiliary assignments operating on thewait andnotified variables. If the order of
elements in sequences in not important, we use in the sequel also set notation. Entering the
wait-method gets the observationwait, lock := wait∪{lock}, free; returning from thewait-
methodobserveslock, notified := get(notified, thread), notified\{get(notified, thread)}.
For a thread�, theget function retrieves the value(�, n) from a wait or notified set. The se-
mantics assures uniqueness of the association. The!signal-statement of thenotify-method
is represented by the auxiliary assignmentwait, notified := notify(wait, notified), where
notify(wait, notified) is the pair of the given sets with one element, chosen nondeterminis-
tically, moved from the wait into the notified set; if the wait set is empty, it is the identity
function. Finally, the!signal_all-statement of thenotifyAll-method is represented by the
auxiliary assignmentnotified,wait := notified ∪ wait, ∅.

4.2.2. Verification conditions
Local correctness agrees with that forJavaconc. In case of notification, local correctness

covers also invariance for the notifying thread, as the effect of notification is captured by
an auxiliary assignment.

The interference freedom test: Synchronized methods of a single object can be executed
concurrently only if one of the corresponding local configurations is waiting for return: If
the executing threads are different, then one of the threads is in thewait or notifiedset of
the object; otherwise, both executing local configurations are in the same call chain. Thus
we assume that either not both the assignment and the assertion occur in a synchronized
method, or the assertion is at a control point waiting for return.

Definition 4.1 (Interference freedom). A proof outline isinterference free,if Definition 3.1
holds in all cases, such that if bothp andq occur in a synchronized method, thenq is at a
control point waiting for return.

For notification, we require also invariance of the assertions for the notified thread.
We do so, as notification is described by an auxiliary assignment executed by the no-
tifier. That means, both the waiting and the notified status of the executing thread are
represented by a single control point in thewait-method. The two statuses can be distin-
guished by the values of thewait andnotified variables. The invariance of the precondition
of the return statement in thewait-method under the assignment in thenotify-method
represents the notification process, whereas invariance of that assertion over assignments
changing the lock represents the synchronization mechanism. Information about the lock
value will be imported from the cooperation test as this information depends on the global
behavior.

Example 4.2. This example shows how the fact that at most one thread can own the lock of
an object can be used to show mutual exclusion. We use the assertionowns(thread, lock)
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for thread �= null ∧ thread(lock) = thread, wherethread(lock) is the first component of
the lock value. Letfree_for(thread, lock) bethread �= null∧(owns(thread, lock)∨lock =
free).

Let q, given byowns(thread, lock), be an assertion at a control point and let{p}?call

〈stm〉?call with p
def= free_for(thread, lock) be the callee observation at the beginning of a

synchronizedmethod in the sameclass.Note that theobservationstmchanges the lock value.
The interference freedom condition�L{p ∧ q ′ ∧ interleavable(q, stm)}stm{q ′} assures
invariance ofq under the observationstm. The assertionsp andq ′ imply thread = thread′.
The points atpandqcan be simultaneously reached by the same thread only ifqdescribes a
pointwaiting for return.This fact ismirroredby thedefinitionof theinterleavablepredicate:
If q is not at a control point waiting for return, then the antecedent of the condition evaluates
to false. Otherwise, after the execution of the built-in augmentationlock := inc(lock) in
stmwe haveowns(thread, lock), i.e.,owns(thread′, lock), which was to be shown.

The cooperation test: We extend the cooperation test forJavaconc with synchronization
and the invocation of the monitor methods. In the previous languages, the assertioncomm
expressed, that the given statements indeed represent communicating partners. In the current
language with monitor synchronization, communication is not always enabled. Thus the
assertioncomm has additionally to capture enabledness of the communication: In case of
a synchronized method invocation, the lock of the callee object has to be free or owned by
the caller. This is expressed byz′.lock = free ∨ thread(z′.lock) = thread, wherethread
is the caller-thread, and wherethread(z′.lock) is the first component of the lock value, i.e.,
the thread owning the lock ofz′. For the invocation of the monitor methods we require that
the executing thread is holding the lock. Returning from thewait-method assumes that the
thread has been notified and that the callee’s lock is free. Note that the global invariant is
not affected by the object-internal monitor signaling mechanism, which is represented by
auxiliary assignments.

Definition 4.3 (Cooperation test: communication). A proof outline satisfies thecoopera-
tion test for communication, if the conditions of Definition3.3hold for the statements listed
there with the exception of the CALL -case, and additionally in the following
cases:
(i) CALL : For all statements{p1}uret := e0.m(�e) {p2}!call 〈�y1 := �e1〉!call {p3}wait (or such

without receiving a value) in classcwith e0 of typec′, where methodm /∈ {start,wait,
notify, notifyAll} of c′ is synchronized with body{q2}?call 〈�y2 := �e2〉?call

{q3} stm, formal parameters�u, and local variables�v except the formal parameters.
The callee class invariant isq1 = Ic′ . The assertioncomm is given byE0(z) =
z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Furthermore,fcomm is �u′, �v′ :=
�E(z), Init(�v), fobs1 is given byz.�y1 := �E1(z), andfobs2 is z′.�y′

2 := �E′
2(z

′). If m is not
synchronized,z′.lock = free ∨ thread(z′.lock) = thread in comm is dropped.

(ii) CALL monitor: For m ∈ {wait, notify, notifyAll}, comm is given byE0(z) = z′ ∧
thread(z′.lock) = thread.

(iii) RETURNwait: For {q1} returngetlock{q2}!ret 〈�y3 := �e3〉!ret {q3} in await-method,comm is
E0(z) = z′ ∧ �u′ = �E(z) ∧ z′.lock = free ∧ thread′ ∈ z′.notified.
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Example 4.4.Assume the invocation of a synchronized methodmof a classc, wheremof c
has the body〈stm〉?call {thread(lock) = thread} stm′; return. Note that the built-in augmenta-
tion in stmsets the lock owner by the assignmentlock := inc(lock). Omitting irrelevant de-
tails again, the cooperation test requires�G{true}z′.lock := inc(z′.lock){thread(z′.lock) =
thread′}, which holds by the definition ofinc.

5. Soundness and relative completeness

This section contains soundness and relative completeness of the proof method of
Section4.2. The proofs can be found in[4]. Given a program together with its annota-
tion, the proof system stipulates a number of induction conditions for the various types
of assertions and program constructs.Soundnessfor the inductive method means that for
a proof outline satisfying the verification conditions, all configurations reachable in the
operational semantics satisfy the given assertions.Completenessconversely means that if
a program does satisfy an annotation, this fact is provable. For convenience, let us intro-
duce the following notations. Given a programprog, we will write �prog or just� for its
annotation, and writeprog��, if prog satisfies all requirements stated in the assertions,
andprog′��′, if prog′ with annotation�′ satisfies the verification conditions of the proof
system.

Definition 5.1. Given a programprogwith annotation�, thenprog�� iff for all reachable
configurations〈T , 	〉 of prog, for all � ∈ dom(	) with class invariantIc, for all (�, �, stm) ∈
T , for all logical environments
 referring only to values existing in	, and for all local
states�′:
(1) 
, 	�G GI ,

(2) 
, 	(�), �′�L Ic , and
(3) 
, 	(�), ��L pre(stm).
For proof outlines, we writeprog′��′ iff prog′ with annotation�′ satisfies the verification
conditions of the proof system.

5.1. Soundness

Soundness, as mentioned, means that all reachable configurations do satisfy their asser-
tions for an annotated program that has been verified using the proof conditions. Soundness
of the method is proved by a straightforward, albeit tedious, induction on the computation
steps.

Before embarking upon the soundness formulation and its proof, we need to clarify the
connection between the original program and proof outline, i.e., the one decorated with
assertions, and extended by auxiliary variables. The transformation is done for the sake of
verification, only, and as far as the un-augmented portion of the states and the configurations
is concerned, the behavior of the original and the transformed program are the same.

Tomake the connection betweenoriginal programand theproof outline precise,wedefine
a projection operation↓ prog, that jettisons all additions of the transformation. So letprog′
be a proof outline forprog, and〈T ′, 	′〉 a global configuration ofprog′. Then	′ ↓ prog is
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defined by removing all auxiliary instance variables from the instance state domains. For the
set of thread configurations,T ′ ↓ prog is given by restricting the domains of the local states
to non-auxiliary variables and removing all augmentations. Additionally, for local configu-
rations(�, �, returngetlock) ∈ T ′, if the executing thread is in the wait set, i.e.,�(thread) ∈
	′(�)(wait) then the statementreturngetlockgets replaced by ?signal; returngetlock. Further-
more, for local configurations(�, �, stm; return) with stm �= � an auxiliary assignment in
thenotify- or thenotifyAll-method, the auxiliary assignmentstmgets replaced by!signal
and!signal_all, respectively. The following lemma expresses that the transformation does
not change the behavior of programs:

Lemma 5.2. Let prog′ be a proof outline for a program prog. Then〈T , 	〉 is a reachable
configuration of prog iff there exists a reachable configuration〈T ′, 	′〉 of prog′ with 〈T ′ ↓
prog, 	′ ↓ prog〉 = 〈T , 	〉.

The augmentation introduced a number of specific auxiliary variables that reflect the
predicates used in the semantics. That the semantics is faithfully represented by the variables
is formulated in[4].

Let prog be a program with annotation�, andprog′ a corresponding proof outline with
annotation�′. Let GI ′ be the global invariant of�′, I ′

c denote its class invariants, and for
an assertionp of � let p′ denote the assertion of�′ associated with the same control point.
We write��′ → � iff �G GI ′ → GI, �L I ′

c → Ic for all classesc, and�L p′ → p, for
all assertionsp of � associated with some control point. To give meaning to the auxiliary
variables, the above implications are evaluated in the context of states of the augmented
program. The following theorem states the soundness of the proof method.

Theorem 5.3(Soundness). Given a proof outline prog′ with annotation�prog′ , then

if prog′��prog′ then prog′��prog′ .

Theorem5.3 is formulated for augmented programs. We get immediately with the help
of Lemma5.2.

Corollary 5.4. If prog′��prog′ and��prog′ → �prog, then prog��prog.

The soundness proof is basically an induction on the length of computations, simultane-
ously on all three parts from Definition5.1. After handling the initial case, the inductive
step assumes〈T0, 	0〉−→∗〈T̀ , 	̀〉 −→ 〈T́ , 	́〉 such that〈T̀ , 	̀〉 satisfies the conditions of
Definition 5.1, and
 a logical environment referring only to values existing in	́. In the
proof cases we distinguish between possible kinds of the computation step〈T̀ , 	̀〉 −→
〈T́ , 	́〉. We illustrate the soundness proof on the case for synchronized method invocation.

Case(CALL ): Let (�, �̀1, uret := e0.m(�e); 〈�y1 := �e1〉!call stm1) ∈ T̀ be the caller con-
figuration prior to method invocation, and let(�, �́1, stm1) ∈ T́ and (�, �́2, stm2) ∈ T́

be the local configurations of the caller and the callee after execution. Let furthermore
〈�y2 := �e2〉?call stm2 be the invoked method’s body,�u its formal parameters, and�v its lo-
cal variables except the formal parameters. Then� = [[e0]]	̀(�),�̀1

E �= null. Directly after
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communication the callee has the local state�̂2 = �init [�u �→[[�e]]	̀(�),�̀1
E ]; after the caller

observation, the global state is	̂ = 	̀[�.�y1 �→[[�e1]]	̀(�),�̀1
E ] and the caller’s local state is

updated tó�1 = �̀1[�y1 �→[[�e1]]	̀(�),�̀1
E ]. Finally, the callee observation updates its local state

to �́2 = �̂2[�y2 �→[[�e2]]	̂(�),�̂2
E ] and the global state tó	 = 	̂[�.�y2 �→[[�e2]]	̂(�),�̂2

E ].
Since the invoked method is synchronized, if� is the stack of the executing thread in

T̀ , then according to the transition rule¬owns(T̀ \{�}, �). Using the correctness of the
representation of the lock ownership and uniqueness of the identification mechanism by the
built-in auxiliary variables we get̀	(�)(lock) = free∨ thread(	̀(�)(lock)) = �̀1(thread)

and thus
̀, 	̀�G z′.lock = free ∨ thread(z′.lock) = thread with �v1 = dom(�̀1) and

where
̀ is given by
[z �→ �][z′ �→ �][�v1 �→ �̀1(�v1)]. Similarly, � = [[e0]]	̀(�),�̀1
E implies


̀, 	̀�G E0(z) = z′. Remember thatE0(z) is a shortcut fore0[z/this].
In the following letp1 = pre(uret := e0.m(�e)), p2 = pre(�y1 := �e1), p3 = post(�y1 :=

�e1), q1 = I , q2 = pre(�y2 := �e2), andq3 = post(�y2 := �e2), whereI is the class invariant of
the callee. Then we have by induction
̀, 	̀�G GI, 
̀, 	̀(�), �̀1�L I , and
̀, 	̀(�), �̀1�L p1.
The cooperation test for communication assures


̀, 	̀ �G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z �=null ∧ z′ �=null}
�u′, �v′ := �E(z), Init(�v); z.�y1 := �E1(z); z′.�y′

2 := �E′
2(z

′)
{GI ∧ P3(z) ∧ Q′

3(z
′)}

wherecomm is E0(z) = z′ ∧ (z′.lock = free ∨ thread(z′.lock) = thread). Note that the
above assignments represent exactly the state changes caused by communication and the
observations of caller and callee. Thus we have


́, 	́ �G GI ∧ P3(z) ∧ Q′
3(z

′)

with 
́givenby
̀[�u′ �→ [[�e]]	̀(�),�̀1
E ][�v′ �→ Init(�v)][�y1 �→[[�e1]]	̀(�),�̀1

E ][�y′
2 �→[[�e2]]	̂(�),�̂2

E ].Note
that in the annotation no free logical variables occur, and thus the values of assertions in
a proof outline do not depend on the logical environment. I.e.,
, 	́�G GI, and thus part
(1). Using correctness of the lifting substitution we get similarly
, 	́(�), �́1�L p3 and

, 	́(�), �́2�L q3.

Thus part (3) is satisfied for the local configurations involved in the last computation
step. All other configurations(�, �3, stm3) in T́ are also inT̀ . If � �= � and� �= �, then
	̀(�) = 	́(�), and thus
, 	́(�), �3�L pre(stm3) by induction.

Assume in the following that� is either the caller� or the callee�. We need to apply the
interference freedom test to show invariance of the corresponding assertions. To do so, we
use the cooperation test to show that the preconditions of the observations are satisfied in
the state in which they get executed. The cooperation test assures


̀, 	̀ �G {GI ∧ P1(z) ∧ Q′
1(z

′) ∧ comm ∧ z �=null ∧ z′ �=null}
�u′, �v′ := �E(z), Init(�v)

{P2(z) ∧ Q′
2(z

′)} .

As above, the precondition is satisfied, and we get that	̀(�), �̀1�L p2 and	̀(�), �̂2�L q2.
We distinguish three cases:� can be the caller object, the callee object, or both in case of

a self-call. Assume first� = � and� �= �, and let� be�̀1[�v′ �→ �3(�v)], where�v = dom(�3).
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The interference freedom test assures


, 	̀(�), � �L {p2 ∧ pre′(stm3) ∧ interleavable(pre(stm3), �y1 := �e1)}
�y1 := �e1

{pre′(stm3)} .

With the definition ofinterleavable this yields
, 	̂(�), �[�y1 �→[[�e1]]	̂(�),�
E ]�Lpre(stm3).

Due to the renaming mechanism, no local variables in�v′ occur in �y1. Renaming back
the variables leads to
, 	̂(�), �3�L pre(stm3). Now, since� �= �, the callee observa-
tion neither changes the caller’s instance state, and we have	̂(�) = 	́(�). Thus we get

, 	́(�), �3�L pre(stm3).

Thecase� = �and� �= � is similar.Communicationandcaller observationdonot change
the instance state of�, i.e.,	̀(�) = 	̂(�). The interference freedom test applied to the states
	̂(�) and� with � = �̂2[�v′ �→ �3(�v)] results
, 	́(�), �́�L pre′(stm3) with �́(�v′) = �3(�v),
and thus
, 	́(�), �3�L pre(stm3).

For the last case� = � = � note that, according to the restrictions on the augmentation,
the caller may not change the instance state. Thus the same arguments as for� = � and
� �= � apply. I.e., part (3) is satisfied.

Part (2) is analogous: LetI be the class invariant of�. The interference freedom test
implies
, 	́(�), �́1�L I . SinceI may contain instance variables only, its evaluation does
not depend on the local state. Similarly for the callee,
, 	́(�), �́2�L I . The state of other
objects is not changed in the last computation step, and we get the required property.

5.2. Relative completeness

Next, we conversely show that if a program satisfies the requirements asserted in its
proof outline, then this is indeed provable, i.e., then there exists a proof outline which can
be shown to hold and which implies the given one:

∀prog. prog��prog ⇒ ∃prog′. prog′��prog′ ∧ ��prog′ → �prog .

Given a program satisfying an annotationprog��prog, the consequent can be uniformly
shown, i.e., independently of the given assertional part�prog, by instantiating�prog′ to the
strongest annotation still provable, thereby discharging the last clause��prog′ → �prog.
Since the strongest annotation still satisfied by the program corresponds to reachability, the
key to (relative) completeness is to
(1) augment each program with enough information, to be able to
(2) express reachability in theannotation, i.e., annotate theprogramsuch thataconfiguration

satisfies its local and global assertions exactly if reachable (see Definition5.6below),
and finally

(3) to show that this augmentation indeed satisfies the verification conditions.
We begin with the augmentation, using the transformation of the previous sections as

starting point, where the programs are augmented with the specific auxiliary variables.
To facilitate reasoning, we introduce an additional auxiliary local variableloc, which

stores the current control point of the execution of a thread. Given a function which assigns
to all control points unique location labels, we extend each assignment with the update
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loc := l, wherel is the label of the control point after the given occurrence of the assignment.
Also unobserved statements are extended with the update. We writel ≡ stmif l represents
the control point in front ofstm.

The standard way for relative completeness augmentation is to add information into the
states about the way how it has been reached, i.e., thehistoryof the computation leading to
the configuration. This information is recorded using history variables.

The assertional language is split into a local and a global level, and likewise the proof
system is tailored to separate local proof obligations from global ones to obtain a modular
proof system. The history will be recorded in instance variables, and thus each instance can
keep track only of its own past. To mirror the split into a local and a global level in the
proof system, the history per instance is recorded separately forinternal behavior in the
local history, and forexternalbehavior in thecommunicationhistory.

The local history keeps track of the state updates due to local steps of threads, i.e.,
steps which does not communicate or create a new object. We store in the local history
the updated local and instance states of the executing local configuration and the object in
which the execution takes place. Note that the local history stores also the values of the
built-in auxiliary variables, and thus the identities of the executing thread and especially
the executing local configuration.

The communication history keeps information about the kind of communication, the
communicated values, and the identity of the communicating partners. For the kind of
communication, we distinguish as cases object creation, ingoing and outgoing method
calls, and likewise ingoing and outgoing communication for the return value. We use the set⋃

c {newc} ∪ ⋃
m {!m, ?m} ∪ {!return, ?return} of constants for this purpose. Notification

does not update the communication history, since it is object-internal computation. For
the same reason, we do not record self-communication inhcomm. Note in passing that the
information stored in the communication history matches exactly the information needed
to decorate the transitions in order to obtain a compositional variant of the operational
semantics in this paper. See[5] for such a compositional semantics.

Definition 5.5 (Augmentation with histories). Each class is further extended by two aux-
iliary instance variableshinst andhcomm, both initialized to the empty sequence. They are
updated as follows:
(1) Each assignment�y := �e in each classc that is not the observation of a method call or

of the reception of a return value is extended with

hinst := hinst ◦ ((�x, �v)[�e/�y]) ,

where�x are the instance variables of classc containing alsohcommbut withouthinst,
and �v are the local variables. Observations�y := �e of uret := e0.m(�e′) and of the
corresponding reception of the return value get extended with the assignment

hinst := if (e0 = this) then hinst else hinst ◦ ((�x, �v)[�e/�y]) fi ,

instead, ifm �= start. For e0.start(�e′)〈�y := �e〉!call we use the same update with the
conditione0 = this replaced bye0 = this ∧ ¬started.
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(2) Every communication and object creation gets observed by

hcomm:= if (partner = this) then hcommelse

hcomm◦ (sender, receiver, values) fi ,

where the expressionspartner, sender, receiver, andvalues are defined depending on
the kind of communication statements as follows:

Communication statementPartner Sender Receiver Values
u := newc null this null newc u, thread
uret := e0.m(�e) e0 this e0 !m(�e)

reception of return e0 e0 this ?return uret, thread
reception of callm(�u) caller_obj caller_obj this ?m(�u)

returneret caller_obj this caller_obj ! returneret, thread

wherecaller_obj is the first component of the variablecaller.

Note that the communication history records also the identities of the communicating
threads invalues. Next we introduce the annotation for the augmented program.

Definition 5.6 (Reachability annotation). We define
(1) 
, 	�G GI iff there exists a reachable〈T , 	′〉 such thatVal(	) = Val(	′), and for all

� ∈ Val(	), 	(�)(hcomm) = 	′(�)(hcomm).
(2) For each classc, let
, 	inst, ��L Ic iff there is a reachable〈T , 	〉 such that	(�) = 	inst,

where� = 	inst(this). For each classc and methodmof c, the pre- and postconditions
of mare given byIc.

(3) For assertions at control points,
, 	inst, ��L pre(stm) iff there is a reachable〈T , 	〉
with 	(�) = 	inst for � = 	inst(this), and such that(�, �, stm; stm′) ∈ T .

(4) For preconditionsp of observations of communication or object creation, let
, 	inst,
��L p iff there is a reachable〈T , 	〉 with 	(�) = 	inst for � = 	inst(this), and with
(�, �′,)
stm; stm′ ∈ T enabled to communicate resulting in the local state� directly after
communication, wherestmis the corresponding communication statement.

For observing the reception of a method call, instead of the existence of the enabled
(�, �′, stm; stm′) ∈ T , we require that a call of methodm of � is enabled with resulting
callee local state� directly after communication.

It can be shown that these assertions are expressible in the assertion language[50]. The
augmented program together with the above annotation build a proof outlineprog′.

What remains to be shown for completeness is that the proof outlineprog′ indeed satisfies
the verification conditions of the proof system. Initial and local correctness are straightfor-
ward. Completeness for the interference freedom test and the cooperation test are more
complex, since their verification conditions mention more than one local configuration in
their respective antecedents. Now, the reachability assertions ofprog′ guarantee that, when
satisfied by an instance local state, thereexistsa reachable global configuration responsible
for the satisfaction. So a crucial step in the completeness proof for interference freedom
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and the cooperation test is to show that individual reachability of two local configurations
implies that theyare reachable in acommoncomputation.This is also the keyproperty for the
history variables: they record enough information such that they allow to uniquely determine
the way a configuration has been reached; in the case of instance history, uniqueness of
course, only as far as the chosen instance is concerned. This property is stated formally in
the following local merging lemma.

Lemma 5.7(Local merging lemma). Assume two reachable global configurations〈T1, 	1〉
and〈T2, 	2〉 of prog′ and(�, �, stm) ∈ T1 with � ∈ Val(	1) ∩ Val(	2). Then	1(�)(hinst) =
	2(�)(hinst) implies(�, �, stm) ∈ T2.

For completeness of the cooperation test, connecting two possibly different instances,
we need an analogous property for the communication histories. Arguing on the global
level, the cooperation test can assume that two control points are individually reachable but
agreeing on the communication histories of the objects. This information must be enough
to ensure common reachability. Such a common computation can be constructed, since the
internal computations of different objects are independent from each other, i.e., in a global
computation, the local behavior of an object is interchangeable, as long as the external
behavior does not change. This leads to the following lemma:

Lemma 5.8(Global merging lemma). Assume two reachable global configurations〈T1, 	1〉
and 〈T2, 	2〉 of prog′ and � ∈ Val(	1) ∩ Val(	2) with the property	1(�)(hcomm) =
	2(�)(hcomm). Then there exists a reachable configuration〈T , 	〉 with Val(	) = Val(	2),
	(�) = 	1(�), and	(�) = 	2(�) for all � ∈ Val(	2)\{�}.

Note that both merging lemmas together imply that all local configurations in〈T1, 	1〉
executing in� and all local configurations in〈T2, 	2〉 executing in� �= � are contained in
the commonly reached configuration〈T , 	〉. This brings us to the last result of the paper:

Theorem 5.9(Completeness). For a program prog, the proof outline prog′ satisfies the
verification conditions of the proof system from Section4.2.

The completeness proof handles all cases for the different verification condition groups.
Here we illustrate the proof by the case of interference freedom:

Case(Interference freedom): Assume an arbitrary assignment�y := �e with precondition
p in classc, and an arbitrary assertionq at a control point in the same class. We show that
the proof outlineprog′ satisfies the conditions for interference freedom, i.e.,


, 	inst, ��L{p ∧ q ′ ∧ interleavable(q, �y := �e)} �y := �e {q ′}
for some logical environment
 together with some instance and local states	inst and
�, whereq ′ denotesq with all local variablesu replaced by some fresh local variables
u′. We do so by proving that
, 	inst, ��L p ∧ q ′ ∧ interleavable(q, �y := �e) implies

, 	inst[�y �→[[�e]]	inst,�

E ], �[�y �→[[�e]]	inst,�
E ]�L q ′.

Let � = 	inst(this). The first clause
, 	inst, ��L p implies that there exists a
computation reaching〈T̀p, 	̀p〉 with 	̀p(�) = 	inst, and an enabled configuration



282 E. Ábrahám et al. / Theoretical Computer Science 331 (2005) 251–290

(�, �p, stmp; stm′
p) ∈ T̀p, wherestmp is �y := �e if the assignment does not observe method

call or object creation, and the corresponding communication statement with its obser-
vation otherwise. The local state�p is � if stmp does not receive any values. Otherwise
�p = �[�u �→ �v], where�u are the variables storing the received values and�v some value
sequence, such that the local configuration is enabled to receive the values�(�u). If p is the
precondition of a method body, then additionally�p( �w) = Init( �w) for the sequence�w of
local variables inp that are not formal parameters.

From
, 	inst, ��L q ′ we get by renaming back the local variables that
, 	inst, �
′�L q

for �′(u) = �(u′) for all local variablesu in q. Assume thatq is the precondition of the
statementstmq . Note thatq is an assertion at a control point. Applying the annotation
definition we conclude that there is a reachable〈T̀q , 	̀q〉 with 	̀q(�) = 	inst = 	̀p(�) and
(�, �′, stmq; stm′

q) ∈ T̀q . The local merging Lemma5.7 implies that(�, �′, stmq; stm′
q) ∈

T̀p.
Let 〈T́p, 	́p〉 result from〈T̀p, 	̀p〉 by executingstmp in the enabled local configuration

(�, �p, stmp; stm′
p). If the local configuration is the caller part in a self-communication, then,

due to the restriction on the augmentation, the caller observation�y := �e does not change
the caller instance state. Thus, due to the renaming mechanism,
, 	inst[�y �→[[�e]]	inst,�

E ],
�[�y �→[[�e]]	inst,�

E ]�L q ′.
Otherwise, if(�, �p, stmp; stm′

p)doesnot represent thecallerpart inaself-communication,

then	́p(�) = 	inst[�y �→[[�e]]	inst,�
E ]. Note that in the case of self-communication, the caller

part does not change the instance state. Thus the only update of the instance state of� is
given by the effect of�y := �e. From the assumption
, 	inst, ��Linterleavable(q, �y := �e)

we get that(�, �′, stmq; stm′
q) cannot be the communication partner of(�, �p, stmp; stm′

p),

and thus(�, �′, stmq; stm′
q) ∈ T́p.

Using theannotation definitionweget
, 	inst[�y �→[[�e]]	inst,�
E ], �′�L q, andafter renaming

the local variables ofq also
, 	inst[�y �→[[�e]]	inst,�
E ], ��L q ′. Note that due to renaming, no

local variables ofq ′ occur in�y, and thus�(u′) = �[�y �→[[�e]]	inst,�
E ](u′) for all local variables

u in q. This implies the required property
, 	inst[�y �→[[�e]]	inst,�
E ], �[�y �→[[�e]]	inst,�

E ]�L q ′.
Validity of the verification condition2 for the class invariant is similar, where we addi-

tionally use the fact that the class invariant refers to instance variables only.

6. Proving deadlock freedom

The previous sections described a proof system which can be used to prove safety prop-
erties ofJavasynchprograms. In this section we show how to apply the proof system to show
deadlock freedom.

A system of processes is in a deadlocked configuration, if no one of them is enabled to
compute, but not yet all started processes are terminated. A typical deadlock situation can
occur, if two threadst1 andt2 both try to gather the locks of two objectsz1 andz2, but in
reverse order:t1 first applies for access to synchronized methods ofz1, and then for those
of z2, while t2 first collects the lock ofz2, and tries to become the lock owner ofz1. Now,
it can happen, thatt1 gets the lock ofz1, t2 gets the lock ofz2, and both are waiting for the
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other lock, which will never become free. Another typical source of deadlock situations are
threads which suspended themselves by callingwait and which will never get notified.

What kind of Javasynch-statements can be disabled and under which conditions? The
important cases, to which we restrict, are
• the invocation of synchronized methods, if the lock of the callee object is neither free

nor owned by the executing thread,
• if a thread tries to invoke a monitor method of an object whose lock it does not own, or
• if a thread tries to return from await-method, but either the lock is not free or the thread

is not yet notified.
To be exact, the semantics specifies method calls to be disabled also, if the callee object is
the empty reference. However, we would not deal with this case; it can be excluded in the
preconditions by stating that the callee object is notnull.

Assume a proof outline with global invariantGI. For a logical variablezof typeObject,
let I (z) = I [z/this] be the class invariant ofz expressed on the global level. Let the
assertionterminated(z) express that the thread ofz is already terminated. Formally, we
define terminated(z) = q[z/thread][z/this], whereq is the postcondition of therun-
method ofz. For assertionsp in z′ let furthermoreblocked(z, z′, p) express that the thread
of z is disabled in the objectz′ at control pointp. Formally, we defineblocked(z, z′, p) by
• ∃�v. p[z/thread][z′/this] ∧ e0.lock �= free ∧ thread(e0.lock) �= thread if p is the pre-

condition of a call invoking a synchronized method ofe0,
• ∃�v. p[z/thread][z′/this] ∧ thread(e0.lock) �= thread if p is the precondition of a call

invoking a monitor method ofe0,
• ∃�v. p[z/thread][z′/this] ∧ (z′.lock �= free∨ z /∈ z′.notified) if p is the precondition of

the return-statement in thewait-method, and
• false otherwise,
where�v is the vector of local variables in the given assertion withoutthread, andz andz′
fresh. Let finallyblocked(z, z′) express that the thread of objectz is blocked in the object
z′. Formally, it is defined by the assertion

∨
p∈Ass(z′) blocked(z, z′, p), whereAss(z′) is the

set of all assertions at control points inz′. Now we can formalize the verification condition
for deadlock freedom:

Definition 6.1. A proof outline satisfies the test fordeadlock freedom, if

�G (GI ∧ (9)

(∀z. z �= null → (I (z) ∧
(z.started → (terminated(z) ∨ (∃z′. z′ �= null ∧ blocked(z, z′)))))) ∧

(∃z. z �= null ∧ z.started ∧ (∃z′. z′ �= null ∧ blocked(z, z′))))
→ false .

The above condition states, that the assumptions that all started processes are terminated
or disabled, and that at least one thread is not yet terminated, i.e., that the program is in a
deadlocked configuration, lead to a contradiction. Soundness of the above condition, i.e.,
that the condition indeed assures absence of deadlock, is easy to show. Completeness results
directly from the completeness of the proof method.
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Example 6.2. The proof outline below defines two classes,Producer and Consumer,
whereProducer is the main class. The initial thread of the initialProducer-instance creates
aConsumer-instance and calls its synchronizedproduce method. This method starts the
consumer thread and enters a non-terminating loop, producing some results, notifying the
consumer, and suspending itself by callingwait. After the producer suspended itself, the
consumer thread calls the synchronizedconsume method, which consumes the result of
the producer, notifies, and callswait, again in a non-terminating loop.

The assertionowns is as in Example4.2,proj(v, i) denotes theith component of the tuple
v, andnot_owns(thread, lock) is thread �= null∧proj(lock, 1) �= thread.Again, the built-
in augmentation is not listed in the code. We additionally list instance and local variable
declarationstype name;, where〈type name;〉 declares auxiliary variables. We sometimes
skip return statements without giving back a value, and write explicitly∀(z : t).p for
quantification overt-typed values.

For readability, we only list a partial annotation and augmentation, which already implies
deadlock freedom. Invariance of the properties listed below has been shown inPVS using
an extended augmentation and annotation[3]. Also deadlock freedom has been proven in
PVS.

GI
def=
(∀(p : Producer).(p �= null ∧ ¬p.outside∧ p.consumer�= null) →

p.consumer.lock = (null, 0))∧
(∀(c : Consumer).(c �= null ∧ c.started) →

(c.producer �= null ∧ c.producer.started))∧
(∀(c1 : Consumer).(c1 �= null → (∀(c2 : Consumer).c2 �= null → c1 = c2))

IProducer
def= true

IConsumer
def= length(wait) ≤ 1∧

(lock = (null, 0) ∨ (owns(this, lock) ∧ started) ∨ owns(producer, lock))

c lass Producer {
〈 Consumer consumer ; 〉
〈 Bool ou ts ide ; 〉
nsync Void wa i t ( ) { {false} }

nsync Void run ( ) {
Consumer c ;
c : = newConsumer ; 〈consumer:= c〉new

{c = consumer∧ ¬outside∧ consumer�= null ∧ consumer�= this∧
thread= this}

c . produce ( ) 〈outside:= (if c = thisthenoutsideelse truefi)〉!call

{false}
}

}
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c lass Consumer {
I n t bu f f e r ;
〈 Producer producer ; 〉
nsync Void wa i t ( ) {

{started∧ not_owns(thread, lock) ∧ (thread= this∨ thread= producer)∧
(thread∈ wait ∨ thread∈ notified)}

}
sync Void produce ( ) {

I n t i ;

〈producer:= proj(caller, 1)〉?call

i := 0 ;
s t a r t ( ) ;
wh i le ( t r ue ) do

/ / produce i here
bu f f e r : = i ;
{owns(thread, lock)}
n o t i f y ( ) ;
{owns(thread, lock)}
wai t ( )

od
}

nsync Void run ( ) {
{not_owns(thread, lock) ∧ thread= this}
consume ( )
{false}

}

sync Void consume ( ) {
I n t i ;

wh i le ( t r ue ) do
i : = bu f f e r ;
/ / consume i here

{owns(thread, lock)}
n o t i f y ( ) ;
{owns(thread, lock)}
wai t ( )

od
}

}

Both run-methods havefalse as postcondition, stating that the corresponding threads
do not terminate. The preconditions of all monitor method invocations express that the
executing thread owns the lock, and thus execution cannot be enabled at these control points.
Thewait-method ofProducer-instances is not invoked; we definefalse as the precondition
of its return-statement, implying that disabledness is excluded also at this control point.
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The condition for deadlock freedom assumes that there is a thread which is started but
not yet terminated, and whose execution is disabled. This thread is either the thread of a
Producer-instance, or that of aConsumer-instance.

We discuss only the case that the disabled thread belongs to aProducer-instancezdiffer-
ent from null; the other case is similar. Note that the control of the thread ofzcannot stay in
the run-method of aConsumer-instance, since the corresponding local assertion implies
thread = this, which would contradict the type assumptions. Thus the thread can have its
control point prior to the method call in therun-method of aProducer-instance, or in the
wait-method of aConsumer-instance. In the first case, the corresponding local assertion
and the global invariant imply that the lock of the callee is free, i.e., that the execution
is enabled, which is a contradiction. In the second case, if the thread ofz executes in the
wait-method of aConsumer-instancez′, the local assertion inwait together with the type
assumptions impliesz′.started ∧ not_owns(z, z′.lock) ∧ z = z′.producer, and thatz is
either in the wait- or in the notified-set ofz′.

By the assumptions of the deadlock freedom condition, also the started thread ofz′ is
disabled or terminated; its control point cannot be in aProducer-instance, since that would
contradict to the type assumptions. Thus the control ofz′ stays in therun- or in thewait-
method of aConsumer-instance; the annotation implies that the instance isz′ itself.

If the control stays in therun-method, then the corresponding local assertion and the
class invariant imply that the lock is free, since neither the producer, nor the consumer owns
it, which leads to a contradiction, since in this case the execution of the thread ofz′ would
be enabled. Finally, if the control of the thread ofz′ stays in thewait-method ofz′, then
the annotation assures that the thread does not own the lock ofz′; again, using the class
invariant we get that the lock is free.

Now, both threads ofz andz′ have their control points in thewait-method ofz′, and
the lock ofz′ is free. Furthermore, both threads are disabled, and are in the wait- or in the
notified set. If one of them is in the notified set, then its execution is enabled, which is a
contradiction. If both threads are in the wait set, then fromz �= z′ we imply that the wait-set
of z′ has at least two elements, which contradicts the class invariant ofz′.

Thus the assumptions lead to a contradiction, which was to be shown.

7. Conclusion

Extending earlier work, this paper presents a sound and relatively complete assertional
proof method for a multithreaded sublanguage ofJava including its monitor discipline. We
also provide conditions for deadlock freedom.

In [7] we develop a proof system for a concurrentJava subset without reentrant lock syn-
chronization and without the wait and notify constructs. The proof system was extended in
[8] to deal with reentrant monitor synchronization. The wait and notify constructs are incor-
porated in[9]. The extension of the proof system to prove deadlock freedom can be found
in [10]. Currently we are working on the incorporation ofJava’s exception handling mech-
anism[6]. We formalize the semantics of our programming language in a compositional
manner in[5]. The underlying theory, the proof rules, their soundness and completeness,
and tool support for the automatic generation of verification conditions are presented in
detail in[3].
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Related work: As far as proof systems and verification support for object-oriented pro-
grams is concerned, research mostly concentrated onsequentiallanguages. Early examples
of Hoare-style proof systems for sequential object-oriented languages are[23] and[33,34].
AmericaanddeBoer[13] formulate for the first timeacooperation test for anobject-oriented
language with synchronous message passing.

With Java’s rise to prominence, research more concretely turned to (sublanguages of)
Java, as opposed to object-oriented language features in the abstract. In this direction,JML
[31,32] has emerged as common ground for assertingJava programs. Another trend is to
offer mechanized proof support. For instance, Poetzsch-Heffter and Müller[40–43]develop
a Hoare-style programming logic presented in sequent formulation for a sequential kernel
of Java, featuring interfaces, subtyping, and inheritance. Translating the operational and the
axiomatic semantics into the HOL theorem prover allows a computer-assisted soundness
proof. The work in the LOOP-project (cf. e.g.[30,49]) also concentrates on a sequential
subpart ofJava, translating the proof-theory intoPVS andIsabelle/HOL.

The work[46,45] use a modification of theobject constraint languageOCL as asser-
tional language to annotate UML class diagrams and to generate proof conditions forJava
programs. In[51] a large subset ofJavaCard, including exception handling, is formalized
in Isabelle/HOL, and its soundness and completeness is shown within the theorem prover.
The work in[2] presents a Hoare-style proof system for a sequential object-oriented cal-
culus[1]. Their language features heap-allocated objects (but no classes), side-effects and
aliasing, and its type system supports subtyping. Furthermore, their language allows nested
statically let-bound variables, which requires a more complex semantical treatment for
variables based on closures, and ultimately renders their proof-system incomplete. Their
assertion language is presented as an extension of the object calculus’ language of type and
analogously, the proof system extends the type derivation system. The close connection
of types and specifications in the presentation is exploited in[48] for the generation of
verification conditions.

Work on proof systems for parallel object-oriented languages or in particular the multi-
threading aspects ofJava is more scarce. de Boer[20] presents a sound and complete proof
systeminweakestprecondition formulation foraparallelobject-based language, i.e.,without
inheritance and subtyping, and also without reentrant method calls. Later work[44,22,21]
includes more features, especially catering for Hoare logic for inheritance and subtyping.

A survey aboutmonitorsin general, including proof-rules for various monitor semantics,
can be found in[18]. Besides deductive verification, there are several other research areas
for Java program analysis. For example, paper[16] presents a model checking algorithm
and its implementation inIsabelle/HOL to check type correctness of Java bytecode. See
[35,26] for an overview.

Future work: As to future work, we plan to extendJavasynchby further constructs, like
inheritance and subtyping. Dealing with subtyping on the logical level requires a notion of
behavioral subtyping[12].
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