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Abstract. We present a fully abstract semantics for components. This semantics
is formalized in terms of a notion of trace for components, providing a descrip-
tion of the component externally observable behavior inspired by UML sequence
diagrams. Such a description abstracts from the actual implementation given by
UML state-machines. Our full abstraction result is based on a may testing se-
mantics which involves a composition of components in terms of cross-border
dynamic class instantiation through component interfaces.

1 Introduction

The Unified Modelling Language (UML)[18] is widely adopted as the de facto industry
standard for modelling object-oriented software systems. It consists of several graphical
notations providing different views of the system being modelled. There are two basic
types of diagrams: behavior diagrams and structure diagrams. These diagrams include
sequence diagrams, state machines, class diagrams and component diagrams.

We use UML for investigating features such as state encapsulation, and name-
passing in synchronous communication in combination with dynamic class instantia-
tion. Basically, in UML a component is a set of classes with explicit contextual depen-
dencies. Some instances of classes of a component are called ports. Components can
communicate only through their ports. Most importantly, a port of a component can
also instantiate new ports of another component. The explicit context dependencies of
a component guarantee that ports have enough structural information about the envi-
ronment. However the behavior of such an external environment is not under control
of the component itself. In other words, a component is an open program, with imple-
mentation code containing calls to operations and constructors of interfaces that are not
bound to any particular behavior specification.

From the point of view of a component, the ports of other components belong to the
environment, and are internally known only as typed identifiers. Although the behavior
of the environment is not fixed at priori, it has to obey to certain laws. For example,
because the state of a port is encapsulated, externalqaomnetalways communicate
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with each other. To illustrate this, consider a port of a componghat creates two

new portse; and e, of some component in the environment. The peitand ey are

both external, but unable to communicate with each other unless the internal ©bject

let one of them know the identity of the other. The above situation is characteristic of

a framework with dynamic scope: new clusters of objects that know each other can be
created as new external instances appear, and old clusters may merge as a consequence
of a communication.

1.1 Contribution of this paper

In this paper we select a subset of UML notations suitable as basis for modelling
component-based systems. Inspired by UML sequence diagrams, we give a denota-
tional semantics to UML components in terms of traces of their externally observable
events. A trace describes a sequence of interactions between the ports of a set of compo-
nents. Here a port is an instance of a class of a component realizing one of its interface,
and an interaction is a synchronization on an operation declared on one of the interface
of a component.

We define an observational equivalence for components based on may testing, and
show that ordinary traces are, in general, not fully abstract: two components can be ob-
servationally equivalent but their associated set of traces be different. Our main result is
the characterization of trace abstractions that takes into account the clustering structure
of objects dictated by their dynamic scope. These traces are full abstract with respect to
may testing observational equivalence.

1.2 Related work

There is an increasing interest to give a rigorous foundation to UML for addressing,
e.g., the needs for modelling safety critical applications. Some approaches are based
on translating UML subsets into existing formalisms, like thealculus [19], other

have proposed new meta-modelling language calculi as foundation for the semantics of
UML, e.g. [11]. In this paper we present a variant of the UML subset considered by
Damm et al. and formalized as a transition system [12]. The most significant departures
from this work are that we do not consider asynchronous inter-object communications
and do not distinguish among active, reactive and passive objects.

There are several full abstraction results for may-testing semantics for calculi of
processes interacting in dynamically changing communication topology [6, 14]. The
UML description of classes by state-machines combines mechanisms for dynamic pro-
cess creation similarly to object calculi [1, 10, 20, 16] with synchronization mechanisms
as in process calculi [9, 6, 14].

The closest work to our is Jeffrey and Rathke [16] fully abstract semantics of con-
current objects. While our components are open, programs in [16] are closed, in the
sense we explained above, since their creation of a new object involves the specifi-
cation of the behavior of the newly created object. Consequently, in their setting, the
environment can be basically viewed as a static and a priori given group of objects.
This contrasts with our setting, where the program itself creates dynamically its own



environment and imposes constraints on the communication topology of its environ-
ment.

Different from previous full abstraction results, the construction of a distinguishing
context in the full abstraction proof requires a novel technique for the definition of a
generic behavior capturing all instances of an external class. This we consider as one of
the main technical contribution of our paper, that helps in a better understanding of the
role of static class variables in class-based object-oriented languages like Java.

2 UML classes, state-machines and components

Next we describe the subset of UML we use in this paper. We use UML as an inspiration
source, and have no pretence of fully formalizing the numerous concepts used in the
UML diagrams. UML is an object-oriented modelling technique based on the concept
of class. Aclassis a named description of a set of objects. Its signature consists of a
finite set of attributes and a finite set of operations (one of them declared as constructor).
Attributes and operations are typed either by basic types (like integers and Boolean) or
by the identifier of a class or of an interface. Aterfaceis a named description of a

set of operations. Differently from a class signature, an interface does not declare any
attribute. We say that an interfacerealizedby a class (that for simplicity we assume
carrying the same name) if the set of operations of the interface is included in that of
the class realizing it.

An objectis an instance of a class. There are different kinds of inter-object com-
munications in UML. We consider only communication \@gnchronous operations
restricting to operations with two parameter only: one for passing the identity of the
caller of the operation, and another for passing a value (that we will often assume to
be the identity of another object). The execution of a synchronous operation involves a
synchronization on the execution of an operation call by the sender and a corresponding
trigger by the receiver. Such a synchronization results iassignmenof the value of
the actual parameters of the operation call to the instance variables of the receiver that
appear as formal parameters of the operation.

In contrast to a synchronous operatiomranitive operationis an operation acting
directly on the instance variables of the objects, without any synchronization. Therefore
the meaning of a primitive operation is defined in terms of a state transformation.

2.1 Abstract state-machines

In UML the behavior of an object is describe generically by means of an abstract state-
machine associated to the class of which it is an instancgtae-machings a kind

of structured transition system that records the dependencies between the states of an
object and its reaction to messages. More formally, a state machine associated to a class
¢ consists of transitions of the form

ll lg]t/a . l2

wherel; is the entry location and, is the exit location of the transition. Transitions
may beguardedby a boolean guarg and labelled by #@rigger ¢ and anaction a. The
evaluation of the boolean guagds assumed to be side-effect free.



A trigger t is of the form
op(z,y)

whereop is the name of an operation (possibly the constructor) declared in thecglass
while z, y are attributes ot used to store the identity of the caller and the value it pass
when calling the operation.

An actiona is either a primitive operation, a constructor call or a synchronous oper-
ation call. A constructor call is of the formnew (self , z), wherenew is the constructor
of the class (or interface), and the attributeelf store the identity of t the caller object.
The attributer is typed byc and it will store the identity of the newly created object. A
synchronous operation call is of the form

z.op(self,y)

whereop is an operation declared in the class (or interface) typing the attrihuteat

stores the identity of the callee of the operation. The attrilyuite also declared ir

and stores the value to be passed to the callee. We have not considered the more usual
synchronous operations that return by means of a rendez-vous mechanism because we
can encode this mechanism by means of an appropriate operation call and a respective
trigger.

2.2 Components

In this paper we consider @mponent as a part of a system consisting of a set of
classesB and a set of interfaces = P U R. Each class irB is associated with state-
machine. The operations of the interfaced iare typed only by other interfaces in the
same sef. Interfaces in/ can be either provided or required. Egumovided interface
p € P is realized by a class i, and hence with the same nameofA required
interfacer € R is an interface with a name different from that of any other clas3.in
It can be used by classesihfor typing their attributes. This way a component declares
its dependencies on another components with interfacgsais provided interfaces.

A class realizing a provided interface or depending on one or more required in-
terfaces is called #le, and its instances are callgarts [5]. An internal classis a
class of a component that is not a role. Attributes of an internal class are typed only by
primitive types or by classes within the same component, whereas attributes of a role
may be typed also by the required interfaces. This means that a component is an open
system, with its ports as the only points of interactions with environment: ports may be
triggered by other ports in the environment, and call operations declared in the required
interfaces, including the declared constructors. However, a class realizing a required
interface is external, i.e., it belong to a different component. Encapsulation of the com-
ponent internal implementation is ensured because instances of internal classes may
synchronize only on operations of other objects within the same component, thus pre-
venting a tight coupling between the component internal structure and the component
environment.

Components can be composed by connecting the required interfaces of a constituent
component with the provided interfaces (that for simplicity we assume to have the same
name) that belongs to other constituent components. For simplicity we define interface



connection as set inclusion of operations. More formallyClet= (B;, P; U Ry) and

Co = (Bg, P2 U Ry) be two components. TheompositionC; & C, is defined as the
component = (B, I) with B = B; U B, (that are assumed to be disjoint) and with

I = PUR obtained by taking® = P;UP; andR = (R;\ P2)U(R2\ P1). For example,

if one component provides all interfaces required by another one, then the component
resulting from their composition has no required interfaces, and remains open to the
environment only via its provided interfaces.

The above notion of component is inspired by that of UML as introduced in [18],
but it differs in a number of crucial points. In particular, for simplicity we do not allow
hierarchical composition of components (and hence we do not need delegation connec-
tors), and, contrary to UML 2.0 we do not consider components as unit of instantiation
but rather we consider a component as a static unit of abstraction with a dynamically
growing number of ports.

2.3 Operational semantics

Next we define the operational semantics of a component in terms of the abstract state
machines associated with each of its constituent classes.

Let Class be a set of class (and interface) identifiers, with typical elemeand
assume given, for each class naman infinite setObj(c) of names for the instances
of the class:. We denote byOb; the union ofObj(c) for all ¢ € Class. Further, letAtt
be a set of attributes (includingc and self) and Val be a set of values (including the
undefined valueil).

A object diagramo of a component = (B, 1) is a partial function inObj —

(Att — Val) assigning values to attributes of the existing instances of classBs in
The domain of an object diagramis denoted bydom (o), and the valuer(o)(z) of
the instance variable of the objecto is denoted by (0.z). For allo € dom(c) we
require thaw (o.self ) = o and thato € Obj(c) for some class in B.

Control information of each objeat in an object-diagram is given by(o.loc),
assuming for each class that the attriblsteis used only to refer to the current location
of the state machine of the class of whiels an instance. An object diagram is called
initial if the only attributes different fromil areself andloc.

The operational semantics of a componént (B, P U R) is defined in terms
of atransition relation— between object diagrams labelled by externally observable
communication eventsf the form

e.op(i,v) and i.op(e,v), (1)

wheree € Obj(r), for some required interfacec R, is the identity of arexternal port
andi € Obj(p), for some provided interface € P, is the identity of arinternal port
of C. The idea is that is an instance of the class@fealizing the interface, whereas:

is an instance of the classrealizing the interface in another component. We will use
this convention throughout this paper. The evenp (i, v) denotes the synchronization
of the porte with the porti on the operatiorp provided bye. Similarly, i.op(e, v)
denotes the synchronization of the pomvith the porte on an operatiorvp provided
by i. In both cases the synchronization involves the transmission of the value



We label therransition relation— also withcreation eventsf the form
new(o,u)

indicating the synchronization on the constructetv of the class: between the object
creatoro and the new instance of c¢. As usual, a transition labelled bydenotes an
internal activity, such as the execution of a primitive operation or an intra-component
synchronization.

The flow of control of each object is described according to the transitions of the
state machine associated to the class of which it is an instance. For each transition

ll lg]t/a 12

of an abstract state machine we assume a unique intermediate logatitmmodel
the interleaving point between the guard and trigger on the one hand, and the action on
the other hand. Further, we assume for each boaieand ¢ an evaluation functiog
such thatg(c, 0) denotes the boolean result of the evaluatiory dify the objecto in
the object diagrana; note that guard evaluation is free of side effects, i.e., it does not
affect the object diagram itself. Similarly, we assume for each primitive operatian
state transformer functioa such thata(o, o) denotes the object diagram that results
from the application ofz in the initial diagramo by the objecto. We consider only
state transformations that change only instance variables of the object executing it. We
do not allow, for example, that an object can assign values to instance variables of other
objects within the same component.

The transition relation— associated to a componeht= (B, P U R) is defined
by distinguishing the following cases:

Internal synchronization:Let o and « be instances of the classesd € B, respec-
tively, both inside the compone@t Assume the object is in a locations(o.loc) = I
while the objectu is in the intermediate location(u.loc) = I3 4, whereo(u.z) = o
ando(u.y) = w. If the guardg(clo.xz/u, 0.y/v], 0) evaluates to true then the syn-
chronization of the objects and u on the operationp is described by the following
rule

[9lop(z,y)/— —/z.op(self,y)
h —21 lg L——— 74

dls

)

CZQ

oo
whereo”’ is the resulting object diagram with (0.z) = w ando(o.y) = v. The flow
of control of the object® andw is described by their associated state machines and
their new locations are’(o.loc) = h 2, o'(u.loc) = I, respectively. Note that the
evaluation of the guard is in parallel with the execution of the trigger, meaning that
the guardy is evaluated in a state that take into account the new values of the actual
parameters of the trigger.

Class instantiation: Let o be an instance of a clagse B. Assumeo is in the inter-
mediate locatiorw (0.loc) = Iy 3 ready to execute a call to the constructeiw of the
classd € B, with d in the same component of If the guardg(o[u.z /0], u) evaluates



to true then class instantiation is specified by the following rule

l [9]new(z,y)/— —/d.new(self ,x) I
0 ——— —_—c 3

ah b

new(o,u)
— 0

wherel, is the initial location of the state machine associated with the elaasd the
domain ofo’ extends that of with the nameu € Obj(d) \ dom(o) of the newly

created object. The resulting object diagrafmmaps the new name to the instance
variableso.z, u.y andu.self, while the callero is assigned to the variablez. The

locations of the two objects andu are updated t¢ » andly, respectively. Finally, all
other instance variables afare set to the undefined valug.

Primitive operation: Let o be an object of a class € B of the component with
o(o.loc) = l; 2, and letop be a primitive operation. Then

—/op
h—=—=cbh
)

oo
wheres’ = op(a, 0)[lx/0.loc]. The execution of a primitive operatiam generates a
'silent’ transition transforming the object diagrasmaccording to the associated func-
tion op(o, 0) and updating the locatiotac of the objecto to k.

Synchronous operation call_et 7 be a port instance of a rolee B of the component
C, and letr € R be a required interface @f declaring the synchronous operation.
Assume that in the object diagramnthe port: is in an intermediate location(i.loc) =
l; » where it can call a synchronous operatignof the external por#(i.z) = e. Then

—/z.op(self,y)
h———. b

e.op(i,v
o p( )O_/

whereo (i.y) = v ando’ is aso, but for the locatiorioc of i that is assigned th. Note
that because typed by a required interface € R, there is no class i with that
name. Therefore is an object not indom (o).

Constructor call: A port i instance of a role € B of the componen€ can create a
new porte € Obj(r) of another component via a call of the construetew declared
in a required interface € R of C. This is described by the rule

I 7/T.new(self,z)c A

)

new(i,e)
— 0

whereo (i.loc) = b2, 0/ (i.loc) = lp ando’(i.z) = e, for somee € Obj(r). Note that
e & dom(o), because € R is a required interface @f.



Evaluation of a guard and a triggeriet i be a port instance of a role € B of the
component, and assume thaip is a synchronous operation declared by the provided
interfacec € P. If in the object diagranw the port: is in a locationo(i.loc) = 1,

and the guardy(o[i.z/e], i) evaluates to true, then its triggep can be executed as
consequence of the reception of the message, v) sent by an external poet This
inter-component synchronization is described by the rule

lglop(z,y)/—
h——— . b

1.op(e,v
o p( )O_/

whereg’(i.loc) = b 2, ando’(i.z) = e ando’(i.y) = v for some valuev and object
e € Obj(d)with d & B.

Port instantiation: A new instance of a rolec € B of a componen€ can be created
by an external port via a call to the constructorew declared in the provided interface
¢ € P.Ifthe guardg(o[i.z/e], i) evaluates to true, this is described by the rule

[glnew(z,y)/—
o —————:h

o new(e,i) o ?

wheree € Obj(d) with d ¢ B andi € Obj(c) \ dom(o) is the identity of the newly
created port. Herg is the initial location of the state machine associated, tands’
extendss by assigning.loc to {1, i.self andi.y to 4, andi.z to e (all other instance
variables ofi are mapped to the undefined valu#).

Definition 1. An executiorg of a component is a finite sequence
2 Ln
00—01"""0Opn—-1—0n
of labelled transitions starting from an initial object diagras.

From an execution sequence we can extract information about the order of creation
among the objects of the component. In fact, given an execygtioha component
C = (B, I), we define the creation relation. as the least binary transitive relation on
Obj such that
0 <¢ uif new(o, u) appears as a label §

with new the constructor of the class of whiehis an instance. Note that in general, the
above creation relation will form a forest rather than a tree, because an execution does
not record the creation of external ports by other external ports.

3 Testing semantics

In this section we define a may testing semantics for components. To define the notion of
testing semantics, ldSuccess be a distinguished interface consisting of the constructor
new and one distinguished operation,ccess, with a parameter of typéSucess. We



say that a componegtsucceedsdenoted by |, if and only if we may observe only a
single call to thesuccess operation by one of its port. More formalkg,. if and only if
there exists an executignof C' such that

(e.success(i, e))

appears as the only communication event,jiwheree is an external port and an
internal one. This implies that a component may succeed olyuifcess is one of its
required interface.

Definition 2. Two component§; and Cy with the same provided and required inter-
faces (not includingSuccess) are may-equivalent, denoted By ~ C,, if

(C@ )l ifand only if (C & Cy)!
for any other componerdt.

This is a natural adaptation to components of the original definition of may testing
semantics for concurrent processes [15]. Note that we allow only the tester component
C to require the interfac&Success and hence to call theuccess operation by one of
its port.

4 Trace Semantics

In the rest of this paper we look for another characterization of the may-equivalence be-
tween components that avoids a universal quantification on the tester components. Our
starting point are UML message sequence charts. They provide a visual representation
of the interactions among of a set of objects in terms of the messages they exchange.
Since component interfaces are intended to shield the details of a component imple-
mentation from the environment, a sensible semantics for components should abstract
from synchronization among objects within the component.

For a given componeitt, finite sequences of externally observable communication
events thus specify the interactions between instances of internal classes realizing the
provided interfaces and instances of external classes realizing the required interfaces.
Such sequences abstract both from the interactions between instances of classes in-
ternal to the components and the interactions between instances of classes external to
the component. However, these sequences can be ambiguous or describe information
that cannot be implemented by any component. Consider for example the following
sequence

e.opi(i,e) - e .opa(i,e') - i.ops(e” e,
wheree, ¢/, ande’” are assumed to be three distinct external ports. The first two events
indicate that bothke and e’ are known to the internal pott for example because they

have been both created byIn order to justify the last event which involves a call of
the operatiorvps of i by ¢, there are three possible scenarios:

1. ¢” has created;



2. ¢ has received its knowledge ofrom ¢; and
3. ¢ has received this knowledge from

These different scenarios are due to three valid assumptions on object creation outside
the component, nameb/’ can be an ancestor ofe can be an ancestor ef , or ¢’ can
be an ancestor af”.

This implicit non-determinism in a sequence of observable events thus allows dif-
ferent incompatible behaviors of the external objects. To resolve this non-determinism
we associate to each sequemnad observable events a creation tree.

Definition 3. Atracet is a finite sequence of communication events of the foom(u, v)
together with binary relation<; on Obj (called thetree of creatiopsuch that for each
nameu (but one, the root of the tree) occurring in the sequence there is a unique differ-
ent namev in the same sequence with<; .

In the sequel, we denote lty, the sub-trace of with events involving the object
o as either the caller or the callee of a synchronous operation. The associated tree of
creation is restricted to the names appearing in the restricted sequence (but the root).
Moreover, given a compone6@t= (B, I), we denote by (¢) the result of removing
from the tracet all its events that are not externally observable, that is, those commu-
nication events involving instances of classe®ias caller or callee of a synchronous
operation.

Definition 4. We define arace of a componert to be tracet consisting of a finite
sequence of observable events induced by an executibfi together with a creation
tree <, such that for each ports, v appearing int, if o <¢ u theno <; u.

It should be observed that the creation tree of a trace of a comp6rnein fact an
abstraction from the actual information on object creation since the latter may involve
instances of classes that are strictly internal (or external) tee., instances of classes
that do not realize any provided (or required, respectively) interface. Consequently,
the relation<, is more adequately described as the ancestor relation between ports
appearing int that areindirectly related because of a creation chain passing through
internal objects that do not appeartin

In general, a trace of a component may still contain impossible events. For example,
consider the following execution of a componént

. - ! . - 7
newl,e new(,e €.0 1,1 1.0 €,€e
o0 (’)01 (4, )02 p1(’)03 pa( )g4

inducing the trace
€.Op1(i, Z) : i'0p2(€7 6/)

with 7 <; e andi <; ¢’. The root of the creation tree ofs the internal port with both

the external portg ande’ as children. However, the last communication appearing in
t is not possible because the pertannot possibly know the poet. To exclude this
case, we introduce the following notion of knowledge.



Definition 5. Given a tracet, we define the sei(t, o) of objects that an objeat may
knowsby induction or:

(€, 0) ={o}U{0'|o <; o'}
k(t,0)U{0”,v} 0o = o’ andv € Obj
k(t-0.op(0”,v),0)=1 K(t,0)U{0"} o=o0"andv ¢ Obj
k(t, 0) otherwise

Intuitively, an objecto knows itself, all objects it created, and those objects it re-
ceived via some triggered operation. The above definition does not depend on a trace
to be generated by an execution of a component. Note however, that given & dface
a component if an external pore’ € k(t, e) then the external pod’ mayalso have
knowledge of the external poetbecause an implementation efand ¢/ may involve
the communication of the identity afto ¢’. More generally, we can argue in a simi-
lar manner that ife’ € (¢, ¢) then the external objectsand ¢’ may have the same
knowledge.

Definition 6. Given a tracet and a componerd, we define &lusterof external ports
possibly having the same knowledge as an equivalence class of the equivalence relation
~,, where~~, is the least equivalence relation such that

e~y e if e €kt e).

Because objects in a cluster may share their knowledge, we define their shared
knowledgex*(t, e), also callectluster knowledgeas

K*(t,e) = U{n(t, )l ex~; e},

We defined clusters only for external ports, because the flow of information of the inter-
nal ports is controlled by their respective implementation. For examplknibwse and
another external port’ then this in itself does not imply that may have knowledge
of ¢’. This knowledge can only be obtained by a chain of communications originating
from i.

A trace is called executable if external ports communicate only hames known by
some ports in the same cluster. Formally, we have the following definition.

Definition 7. Given a component, a trace ¢ is executablef for every prefixt’ -
i.op(e, v) of t we have that bothi and v (if it is an object) are ink*(¢', e). We de-
fine7 (C) to be the set of all executable traces of the compofient

Observe that executable traces are insensitive to the order in which ports are instan-
tiated. Also, because the creation tree of a trace refers only to names that appears in the
sequence of observable events (but possibly one, the root), executable traces concerns
only with objects that do play a role in an inter-components communication (and not
those objects that are created but never used in a communication).

The trace semantics defined above is compositional with respect to component com-
position.



Theorem 1. For any two components = C; @ C; we have
T(C)=0c(T(C1)NT(C2)).

The proof of this compositionality result involves a fairly straightforward general-
ization of the compositional trace semantics for CSP (see [9]) to our setting.

The next theorem shows the correctness of the above compositional trace semantics
with respect to the above may equivalence.

Theorem 2. For any components; andC, with the same provided and required inter-
faces (not includingSucess), if 7(C1) = 7(Cs) thenC; ~ C,.

The proof of this theorem follows from the compositionality result in Theorem 1 in
a fairly standard manner. In the next section we investigate the converse of the above
Theorem: are executable traces fully abstract with respect to may equivalence?

4.1 Trace definability

In order to show that executable traces can be implemented we introduce the notion
of extended traces, that is, traces augmented with events for synchronization between
external ports, so that they can be justified in terms of what external ports may know.

Definition 8. Anextended trace of an executable trac€ of a component is a trace
with the same creation tree @f and that extends the sequence of event§ efith
additional external communication events of the ferap(e’, v) (whereop may denote
a possible operation of an implementatioredfe., an operation that is not specified by
the required interface to which belongs).

In an extended trace the events themselves can be justified directly in terms of the
exact knowledge of the ports (i.e. the objects created or received via a triggered opera-
tion).

Definition 9. Anabstract implementationf an executable trace is an extended trace
of an executable trace of a componénsuch that for every prefix - o.0p(e, v) of ¢
both objects andwv are ink(t', ¢).

The following lemma can be proved in a straightforward manner by implementing
a protocol for broadcasting new knowledge to all external ports within a cluster.

Lemma 1. Every executable trace of a componérttas an abstract implementation.
We arrived at the following definability result.
Theorem 3. For every executable tradec 7 (C) of a componert there exists another

component’ with as provided interfaces those required ®yand sucht is also an
executable trace at’.



The sketch of the proof of the above theorem is as follows. Becaiisan exe-
cutable trace it has an abstract implementation by Theorem 1. Further, we can reduce
the latter trace to a sequencby prefixing it with creation events of the formrew (o, u)
for each pair of names andu with o <; u, andnew the constructor associated to the
class of whichu is an instance. This way, viewing the creation events above as a bind-
ing operator in the second argument, all names occurring in the sequaneédound
but for the root of the tree of creation.

Next, for every external pow in the new sequencewe define an implementation
S(e, s) corresponding with the subsequencef creation and communication events
of s involving e. This implementation uses the object names occurring &s in-
stance variablesf the objecte. Basically, it is constructed by transforming every event
o.op(e,v) into a corresponding operation callop(self, v), every evente.op(o, v)
into a corresponding triggesp(o, v), every creation eventew(e, o) into a corre-
sponding constructor call. new(self, o), with new the constructor of the class for
o € Obj(c), and, finally, the every creatiorew (o, e) into the triggemew (o, self).

As last step, for every required interfacef the component, we define the UML
state-machine specifying the generic behavior of the class realizing the provided in-
terfacer of C’ as thenon-deterministichoice of the implementation$(e, t), where
e ranges over all instances efappearing int. By construction we have thatis an
executable trace af’.

5 Trace abstractions

In this section we show that the reverse implication of Theorem 2 does not hold. There-
fore executable traces are not fully abstract: there exist may-equivalent components
with different sets of executable traces. Moreover, we define trace abstractions for ob-
taining a fully abstract semantics. We proceed by presenting three typical examples for
which full abstraction fails and illustrate the need for respective abstractions on traces.

As a first example, consider a componémith two required interfaces; andrs,
both declaring a constructarw. Further,r; declares an operatiar, with a parameter
of type 1, while r, declares an operatiosp, with a parameter of type;. Let ¢ be a
role of the component depending epandr,. The transitions of its associated state
machine are as follows:

l() /ri.new(self,z) ll /r2.new(self,y) lg /xz.op1(self,x) lg /y.op2(self,y) l4

Here z is an attribute of type; andy is an attribute of typew. Observe that the
transition of the above state machine are not guarded and there is no trigger. This state
machine generates traces of the form

e1.0p1(i, e1) - ex.opa(i, e2)

with i < e; andi < ey, i € Obj(c), e1 € Obj(ry) andey € Obj(r2). Consider now a
similar componen€’ different fromC in the state machine associated to the class

[eopi(sell ) [y ops(oell v) |

lO /r1.new(self ,x) ll /r2.new(self,y) l2

/y.op2(self,y) lgb /x.op1(self,z) l4b




This state machine generates the same traces as the previous one and additionally
also traces of the form

ea.0p2 (i, e2) - e1.0p1(i, e1)

with i < e; andi < eo, that differ with the previous ones only with respect to the
order of the synchronization on the operatieps and op,. However there is no com-
ponent that can distinguish these two kinds of traces because the external instances
e1 ande; cannot know each other and therefore cannot communicate or synchronize.
In other words, the order between these observable events cannot be imposed by the
environment because they belong to different clusters.

In general, the order between observable events involving external ports belonging
to different clusters cannot be observed in the may-testing semantics. We can abstract
from this information by the following closure condition on the traces of a given com-
ponent.

Definition 10. Given a componerd, a setT of executable traces is closed with re-
spect to the order between events which actively involve external objects belonging to
different clusters, if

t-r.op(s,v)-r.op'(sv')-t'eT

such that
e & r*(t-r.op(s,v),e),

fore € {r,s}ande’ € {r', s'}, implies
t-r.op'(s,v") - r.oop(s,v)-t' € T.

This means that we can only swap events which belong to different clusters of the
corresponding prefix of the trace, a phenomena typical of asynchronous processes [6].
In our case, however, this captures the dynamic evolution of clusters, which grow mono-
tonically.

As a second example we consider the following two different state machines as-
sociated to a role (with constructornew.) of a component depending on a required
interfacer. This interface declares the constructens, and an operatiomp with a
parameter typed by itself. The first state machine creates an unbounded number of ex-
ternal instances of the required interfacby iteratively calling the constructor method
new, and synchronizes with each of them on the operadian

lo new.(z,self)/ ll /r.new,(self,y) Z2 /y.op(self,z) ll.

Observe that the iteration is expressed by the fact that, after the call of the operation
op, the state machine return in the locatihn The second state machine implements
the above iteration via recursion: it recursively generates an unbounded number of port
of c. Each of these ports creates an external instance of the required interdexck
synchronize with it via the operatiomn:

lO new.(z,self)/r.new,(self ,y) L /y.op(self,y) I /c.newn(Se” ,2) l3.




In term of traces, the component with the first state machine associategrtaluces
traces of the form

e1.op(io, e1) - e2.0p (o, €2) - - - ex.op(%o, ex) ,

with e < ig andig < e, for n = 1,---, k. On the other hand, the component with the
second state machine associated woduces traces of the form

61~0p(i07 61) : 62-0}7(i17 62) te 6k~0p(7;k71» ek) )

with e < 4, 4,1 < 4, andi,_1 < e, forn = 1,---, k. Basically the two kinds

of traces differ on the identities of the internal ports that create new instances of the
required interface. This difference cannot be observed by another component because
each of the external ports,’s form a different cluster, and objects in different clusters
cannot share (and compare) their knowledge.

We can abstract from this difference by, roughly, a cluster-wise renaming of internal
instances. Formally, given a componéhtve define a relationt ~, ¢’ between the
executable tracesandt’ if ¢’ results from¢ by substituting (also in the creation tree)
an internal instance for every occurrence of an other internal instaricevith the
same provided interface, in every event which actively involves an external object of
a cluster oft. To preserve the dynamic cluster structure of the internal instances, we
additionally require that does not appear in those events which actively involve an
object of the cluster. For example, the first trace above can be obtained by the second
one by substituting, for i,,_1, withn =2,.-- k.

Definition 11. Given a componertt, a setT of executable traces is closed with respect
to cluster-wise renaming of internal instances, if

t € T andt ~, t' impliest’ € T

Finally, we abstract from some information about object creation in a tralcat
is too specific, because, after all, the only relevant information concerns the dynamic
cluster structure of the trace. Consider the following two traces of a component with a
provided interface containing the operatiep, and a required interface containing the
operationop,.:

e.opy(i,4) - i.op.(e',€) i.op.(e”, e")
one time with creation tree< e¢ < ¢’ < ¢”, and another time with creation tree< e,
e < ¢ ande < ¢”. They are two different traces that, however, generate the same
cluster structure. In general, the object creator of an instance can be replaced by any
other object already existing within the same cluster.

Given a component, we therefore introduce an equivalence relaton’ on exe-
cutable traces that holds if the tradeandt’ specify the same sequence of events with
the same dynamic cluster structure, iteandt’ have for every prefix the same cluster
structure. Formally, a prefik’ of a tracet consists of a prefix of its sequence of events
together with a creation tree obtained by restricting thattofthe objects appearing in
t”. So, we defing; = t, if for every two prefixest; of ¢; and¢, of # with the same
sequence of observable eveatsve haveo ~;, w if and only if o ~;, u, for every two
objectso, u appearing irv.



Definition 12. Given a componertt, a setT’ of executable traces is closed with respect
to to object creation if

t € Bandt¢ = ¢ impliest’ € B

We have arrived at the following definition of the fully abstract trace semaftics
for components.

Definition 13. Given a componerd@ we define the sef, (C) of its abstract traces as

the smallest set of executable traces contairii@) and being closed with respect

the order between events that actively involve external objects belonging to different
clusters, and, the cluster-wise renaming of internal instances.

Correctness is straightforward because the above closure conditions do not affect
may-equivalence.

Theorem 4. For any componentS; andCs, 7,(C1) = 7,(C2) impliesCy ~ Cs.

6 Full abstraction

In this section we sketch a proof of full abstraction for the above semantics of compo-
nents. Full abstraction is expressed by the following theorem.

Theorem 5. May equivalent components have the same set of abstract traces.

In the following we give a sketch of the proof that proceeds by contraposition. Sup-
poseC; andC, are two may-equivalent components with different sets of abstract traces.
Without loss of generality, let € 7, (C1) \ 7,(C2). Since abstract traces are executable,
by Theorem 1 there exists an abstract implementation ¢.

This means that’ contains some protocol for broadcasting new knowledge so that
the actual knowledge of external objects coincides with their possible knowledge (de-
tails are straightforward and omitted here).

Next we reduce the tracg to a sequence by prefixing it with creation events
of the form new(o, ) for each pair of names and u with o < u, andnew the
constructor associated to the class of whidls an instance.

We can enrich the sequenegewith additional communication events modelling a
protocol for fixing the order of execution among those events of the sequence involving
external instances that belong to the same cluster. This protocol can be described using
the mechanism of passing a baton between the external instances of the same cluster as
in a relay team. Basically we insert between two synchronization evemis, (1, v2)
andss.ops (72, v2) involving two external portg; andes in the same cluster as sender
or receiver of the operations, an external evenbaton (e, e;). Consequently, the ex-
ecution of events of instances that belong to the same cluster is sequentialized.

Finally, in order to obtain an observable difference in the may testing semantics, we
assume that each cluster of external objectswill create an instance of the provided
interfacelCluster and call after its last event the operatianster of o indicating the
successful termination of the cluster. As a consequence, there will be as many instances



of the classiCluster as actual clusters in the sequenrceWhen the last instance is
created, an instance of the required interf&&eccess is created and its operatisncc
is called.

On the basis of the above sequemcenve can construct a distinguishing compo-
nentsC with as provided interface those required by plus the interfaceCluster
and as required interfaces those providedayplus the interfacdSuccess. The two
interfaces/Success and ICluster will be used to indicate the successful termination of
all the clusters of external objects @f In the state machines associated to the classes
realizing the provided interfaces 6fwe will use a pseudo-code to describe guards and
primitive operations, in particular we will use test for equalities, assignments composed
by standard operators like sequential compositiand if-then-else.

Implementing abstract behaviorgzirst we discuss how to express in pseudo code the
abstract behavior of an external instarde o. Leto |, denote the projection ef onto

all the events actively involving the external instard@s sender, receiver, or creator).

Let R(o) = {o1,...,0r} be the name space of all the (internal and external) object
identities appearing im. For notational convenience, we use these object references
also as instance variables in the pseudo code. In order to check focéteonsistency

of the object references stored in the variables of an external instance we introduce for
each object referenaea unique fresh variable’ which will be used to store the actual
reference received when the object referendg expected. Leb = o’ abbreviate the
following pseudo code for for a guard checking the local consistency.

if o' = nil
then fail
else if o # nil
then if o # o’ then fall fi

else fori=1,...,kdo
if o' = o; then fall fi
od

fi
fi

Herefail is to denote the failure of the evaluation of the guard. This guard first
checks whethes’ is defined (ifo’ is undefined the statement aborts because the object
reference is expected). If so, we have two possibilities: either the varialiealready
initialized, in which case we simply check whetheequalso’, or o is not yet initial-
ized, e.g., not yet received, in which case we check whethiardifferent from all the
other stored object references.

We can now define a concrete state mactfing(o [.) describing the abstract be-
havior of e in ¢. For technical convenience we use prefixes pf as locations (withe
as initial location and | . as final one) and specify the transitions of the state machine



by induction on the length of|.:

/o.op(self,v)
o145 (

o’| o’ - o.0op(e,v))le

/c.new(self,0)
o

o'l o’ - new(e,0))[.

U/re [o=0’ a.nd'uiv’]op(o,'u)/ (
The state machindM (¢ [.) is thus obtained by a straightforward transformation
of the events ob [, into corresponding actions. The third clause describes the call of a
constructor methodew which involves the storage of the newly cerated instance in the
variableo, with o € Obj(c¢). In case of reception of an operation the guards additionally
involves a check that the received object references do agree with the corresponding
stored ones. Note that th#§// (o [.) checks only the local consistency of the name
space ofe. However the encoded protocol for broadcasting new knowledge to all the
(external) objects belonging to one cluster will ensure also the global consistency of
the name space of the cluster, i.e., any two external objeatsd ¢’ belonging to the
same cluster assign the same value to any (private) instance variablg (o). Note
however that we cannot ensure that this value is actually the expected object reference
o itself!

o' - e.op(o,v))le

Implementing the required interface§or every required interfaceof the given com-
ponentC; we can define its implementation as a non-deterministic choice between the
state machineSM (o[, ), wheree is an instance of appearing irr. However, for a full
abstraction result, we also need a mechanism which allows such an instance to select
its own 'predestined’ behavior. The only way we know to implement such a selection is
by means of a restricted use sthtic class variabledor each instance of a required
interfacer, we introduce a static class variable.

Static class variables are variables associated with a class and shared by all its in-
stances only. In languages like Java, static class variables introduce another form of
communication besides message passing. Here this means that we associate to each
classc a special object with identity containing the class variables of This means
that the state transformations associated with primitive operations are not allowed to
read and modify the instance variables of the object associated with the class of the
instance executing the primitive operation call. In general we want static variables to
have no influence on the knowledge of an object (so that two instances of the same
class need not necessarily to know each other). This can be enforced by requiring that
information stored in static class variables cannot be used in communications between
objects, but can only be written and read for private purposes by any instance of a class.
More syntactically, we can obtain this by allowing static class variables to appear only
in guards (recall that guard evaluation has no side effect) and as parameters of a trig-
ger (so to get assigned to a value). Static variables, however, cannot be communicated,
and hence cannot appear neither as parameters of operation calls nor used by a state
transformation associated by a primitive operation.

Let e1, ... ¢ be the instantiations of appearing irv in that order The following
state machine witl, as initial location allows each instanegto select the right lo-



cationo [, where to continue the behavior of thénstance of- by means of a guard
preceding the constructor triggeew,.:

[o1=07 andr.e,=nii and..- andr.el:nil]newr(ol,T.el)/ o

fex

< [o2=0} andr.e; #£nil andr.es=nit and... and'r.el:nil]newT(OQ,rAeg)/ o

s

lo

[oi=0] andr.el;énil and... andr.el,l;énil]newr(ol,r.el)/

ale

Note that static class variables are assigned to the identities of the instances of the
classr. Further they do not introduce shared variable concurrency because in the above
transitions guard evaluation and trigger (and hence the corresponding test and assign-
ment of static variables) are executed atomically.

May testing It still remain to implement the class realizing the provided interfaces
ICluster The following state machine is associated to the class realizing the interface
ICluster so to ensures that only the last instance Gfuster will create an instance
of the interfacelSuccess, thus indicating that all clusters of external objects have ter-
minated successfully. Again, we use static class variables for the instanb@sefer
to 'count’ how many instances have already been created (i.e. how many clusters have
successfully terminated).

Assuming that the initial tracé containsm clusters of external objects, let.cc;,
i=1,...,m — 1 bem — 1 static class variables diCluster (writing for simplicity
succ; instead oflCluster.succ;) in the following state machine associated to it;

[o1=07 andsuc@:nil and... andsucc,,u,lznil]new(ol7succl)/ l]

< [o2=0) andsuccl;énil andsucc;;:nil and... andsuccm_lznil]new(@,succQ)/ lg

lo

[om=o], andsucclsénil and... andsucc,,u,ﬁénil]/ISuccess.new(self,m)

b,

/x.success(self ,z) I
[t

lm end

By construction, an instance @fuccess will be created only after all events of each
cluster in the trace have occurred. Its identity is stored:inand the creator moves in
a location from where it calls the operatienccess of z. SincelSuccess is the only
required interface o’ & (s, the latter call will generate the only observable event
e.sucess(i, €), wheree € Obj(ISuccess) andi € Obj(ICluster).

Full abstraction: By construction it follows thatC @ C; ). Furthermore, by construc-
tion (C ® Co){ impliest € 7,(C,). The latter follows basically because the contéxt
forcesC, to behave as up-to the closure conditions.

7 Conclusion and future work

We have presented a semantics specification of the behavior of UML-based components
that is fully abstract with respect to may equivalence. To focus on the semantic issues in-
volved we have chosen for simplified version of UML class diagrams, object diagrams,



state machines and components. However the concepts used are first step towards a
semantic approach integrating the several diagrams present in UML. We have applied
similar techniques to an extension of the concurrent object calculus with classes [3] and
to a sequential object calculus with classes [4]. Both calculi do not consider class inher-
itance. In fact, and contrary to [16], we do not believe that our result can be applied to
an object calculus with inheritance because of the fragile base class problem [21].

Our full abstraction result relies on the static class variables for the construction of
the behavior to be associated with a class. The are the key mechanism that allows an
object to select its own predestined behavior among those of all instances of a class.
Without them we do not know how to construct the behavioral specification of a class
from the set of behavior of all its instances. One possibility that we have explored [4] in
the context of the object calculus with classes [2], is to restrict it to sequential objects.

The results introduced in this paper are robust enough to support an extension of
the state-machine with class nhame passing, allowing processes to create instances of
classes known only at run-time, a form of very late binding typical of component-based
systems [22]. Further work is needed for extensions of our result to support more ad-
vanced features like inheritance hierarchies, and dynamic class allocation. The first will
introduce another way to cross the component borderline, whereas dynamic allocation
of behavior to classes (e.g., as studied in [13]) will make this borderline dynamic.

Our fully abstractness result is relevant for and applicable to the generation of test
suites for systems of objects. It shows first of all which tests, as sequences of messages,
are in fact the same (so it is relevant for defining a effective test suite). Moreover, it
shows that to what extent we can abstract from the identities of the test objects. It is
future work to apply our result to the theory of testing systems of objects in class based
language.

Acknowledgement3hanks to the anonymous referees and Rocco De Nicola for their
comments and suggestions that have improved the paper. This work benefited from
discussion with Willem-Paul de Roever and other members of the NWO/DFG bilateral
project MobiJ.

References
1. M. Abadi and L. CardelliA Theory of ObjectsSpringer-Verlag, 1996.
2. E.AbrahAm, M.M. Bonsangue, F.S. de Boer, and M. Steffen. A Structural Operational

Semantics for a Concurrent Class Calculus. Tech. rep. 0307 of the Univ. of Kiel, 2003.

3. M. Steffen, EAbrah’am, M.M. Bonsangue, F.S. de Boer. Object Connectivity and Full
Abstraction for a Concurrent Calculus of Classe®iac. ICTAC 2004vol 3704 of LNCS,
pp. 38-52. Springer, 2005.

4. E. Abraham, M.M. Bonsangue, F.S. de Boer, A.{Ber, and M.Steffen. Observability,
connectivity, and replay in a sequential calculus of classesPréc. FMCO 2004 vol.

3657 of LNCS, Springer, 2005.

5. F.S. de Boer, M.M. Bonsangue, and J. Guillen-Scholten. Components: From object to
mobile channels. In H. Jifeng and Z. Liu (ed$fathematical Frameworks for Component
Software — Models for Analysis and Synthg&tse World Scientific, 2005.

6. M. Boreale, R. De Nicola, and R. Pugliese. Trace and Testing Equivalence on Asyn-
chronous Processemformation and Computatiqri72(2):139-164, 2002.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

. F.S. de Boer and M.M. Bonsangue. A compositional model for confluent dynamic data-

flow networks. InProc. MFCS vol. 1893 of LNCS, Springer 2000.

. M. Boreale and R. de Nicola. Testing equivalence for mobile procefsesmation and

Computation120:279-303, 1995.

. S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating sequential

processesJournal of the ACM31(3):560-599, 1984.

K. Bruce. Foundations of Object-Oriented Languages: Types and Semarifics MIT
Press, 2002.

T. Clark, A. Evans, and E. Kent. The metamodelling language calculus: foundation seman-
tics for UML. In Proc. FASE 2001vol.2029 of LNCS pp. 17-31, Springer 2001.

W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A formal seman-
tics of concurrency and communication in Real-Time UML Rroc. FMCO 2002 vol.

2582 of LNCS, Springer 2003.

S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and P. Giannini. More dynamic
object re-classification: Fickle IIACM ToPLa24(2):153-191, 2002.

M. Hennessy. A fully abstract denotational semantics forrtfoalculus. Theoretical
Computer Scienc®78(2):53-89, 2002.

M. Hennessy and R. de Nicola. Testing equivalence for proce$hesretical Computer
Science34:83-133, 1984,

A. Jeffrey and J. Rathke. A Fully Abstract May Testing Semantics for Concurrent Objects.
In Proc. of the 17th LICSop. 101-112. IEEE Computer Society Press, 2002.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processefrmation and
Computation100(1):1-77, 1992.

Object Management Group)ML 2.0 Superstructure (Final Adopted specificatioBoc-
ument — ptc/03-08-02, August 2004.

G.Overgaard Formal Specification of Object-Oriented Meta-ModellingPrivc. FASE
200Q vol. 1783 of LNCS, Springer 2000.

B. PierceTypes and Programming Languagd$e MIT Press, 2002.

A. Snyder. Encapsulation and inheritance in object-oriented programmiRgodnOOP-

SLA pp. 38-45, SIGPLAN Notices 21:11, 1986.

C. Szyperski, D. Gruntz and S. Mur@omponent Software: Beyond Object-Oriented Pro-
gramming Addison-Wesley, second edition, 2002.



