
Dynamic heap-abstraction for open

object-oriented systems with thread classes⋆

May 30, 2005

Erika Ábrahám1 and Andreas Grüner2 and Martin Steffen2

1 Albert-Ludwigs-University Freiburg, Germany
2 Christian-Albrechts-University Kiel, Germany

Abstract. From an observational point of view, considering classes as
part of a component makes instantiation a possible interaction between
component and environment or observer. For thread classes it means that
a component may create external activity, which influences what can be
observed. The fact that cross-border instantiation is possible requires
that the connectivity of the objects needs to be incorporated into the
semantics. We extend our prior work not only by adding thread classes,
but also in that thread names may be communicated, which means that
the semantics needs to account explicitly for the possible acquaintance
of objects with threads.
This paper formalizes an open semantics for a calculus featuring thread
classes, where the environment, consisting in particular of an overapprox-
imation of the heap topology, is abstractly represented. We show basic
soundness results of the abstraction.

Keywords: class-based oo languages, thread-based concurrency, open
systems, formal semantics, heap abstraction, observable behavior

1 Introduction

An open system is a program fragment or component interacting with its en-
vironment or context. In a message-passing setting, the behavior of the com-
ponent can be understood to consist of message traces at the interface, i.e., of
sequences of component-environment interaction. Even if the environment is ab-
sent, it must be assumed that the component together with the (abstracted)
environment gives a well-formed program adhering to the syntactical and the
context-sensitive restrictions of the language at hand. Technically, for an ex-
act representation of the interface behavior, the semantics of the open program
needs to be formulated under assumptions about the environment, capturing
those restrictions. The resulting assumption-commitment framework gives in-
sight to the semantical nature of the language. Furthermore, an independent

⋆ Part of this work has been financially supported by the NWO/DFG project Mobi-J
(RO 1122/9-4).

http://www.informatik.uni-kiel.de/protect unhbox voidb@x penalty @M {}mobij/

2

characterization of possible interface behavior with environment and component
abstracted can be seen as a trace logic under the most general assumptions,
namely conformance to the inherent restrictions of the very language and its
semantics.

With these goals in mind, this paper deals primarily with the following three
features, which correspond to those of modern class-based object-oriented lan-
guages like Java [10] or C# [8] and which are notoriously hard to capture:

– types and classes: the languages are statically typed, and only well-typed
programs are considered. For class-based languages, complications arise as
classes play the role of types and additionally act as generators of objects.

– concurrency: the mentioned languages feature concurrency based on threads
(as opposed to processes or active objects).

– references: each object carries a unique identity. New objects are dynamically
allocated on the heap as instances of classes.

We investigate the issues in a class-based, multi-threaded calculus with thread
classes. The interface behavior is phrased in an assumption-commitment frame-
work and based on three orthogonal abstractions:

– a static abstraction, i.e., the type system;
– an abstraction of the stacks of recursive method invocations, representing the

recursive and reentrant nature of method calls in a multi-threaded setting;
– finally an abstraction of the heap topology, approximating potential connec-

tivity of objects and threads. The heap topology is dynamic in that new ob-
jects may be created and tree structured in that previously separate groups
of objects may merge.

In [3,4] we showed that the last point, namely the need to represent the heap
topology, is a direct consequence of considering classes as a language concept.
Their foremost role in object-oriented languages is to act as “generators of state”.
With thread classes, there is also a mechanism for “generating new activity”, i.e.,
for creating new threads. This extension makes cross-border activity generation
a possible component-environment interaction, i.e., the component may create
threads in the environment and vice versa.

Thus, the technical contribution of this paper is threefold. We extend the
class-based calculus and its semantics of [3,4] to include thread classes and fur-
thermore allow the communication of thread names. This requires to consider
cross-border activity generation as well as to incorporate the connectivity of
objects and threads. Secondly, we characterize the potential traces of any com-
ponent in an assumption-commitment framework in a novel derivation system,
where the branching nature of the heap abstraction —connected groups of ob-
jects can merge by communication— is reflected in the branching structure of the
derivation system. Finally, we show the soundness of the mentioned abstractions.

Overview The paper is organized as follows. Section 2 contains syntax and
operational semantics of the calculus we use, formalizing the notion of thread

3

classes. Section 3 contains an independent characterization of the observable be-
havior of an open system and the soundness results of the abstractions. Section 4
concludes with related and future work. For a full account of the operational se-
mantics and the type system, we refer to the technical report [5].

2 A multi-threaded calculus with thread classes

Next we present the calculus, starting with the syntax. It is based on the multi-
threaded object calculus, similar to the one presented in [9] and in particular
[11]. Compared to our previous work for instance in [2], we added thread classes
as generators of activity.

2.1 Syntax

The abstract syntax is given in Table 1. A program is given by a collection of
classes where a class c[(O)] carries a name c and defines the implementation of its
methods and fields. Thread classes, written ct〈(ta)〉, are known under the name
ct and carry the code in ta. For names, we will generally use o and its syntactic
variants as names for objects, c for classes (in particular ct for thread classes),
and n when being unspecific, for instance in Table 1.

An object o[c, F] stores the current value of the fields or instance variables and
keeps a reference to the class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xk:Tk).t
provides the method body abstracted over the ς-bound “self” parameter and the
formal parameters of the method [1]. Besides named objects and classes, the dy-
namic configuration of a program contains threads n〈t〉 as active entities.

A thread is basically either a value or a sequence of expressions, notably
method calls (written v.l(~v)), the creation of new objects new c where c is a
class name, and thread instantiation written as spawn ct(~v).

Furthermore we will use f for instance variables or fields, we use f = v
for field variable declaration, field access is written as x.f , and field update as
x.f := v.

The available types include thread as the type of threads. Furthermore, ob-
jects are typed by the name of their class. As auxiliary types we have T1× . . .×
Tk → T as the type of methods as well as for thread classes (in which case the
result type T equals thread), and furthermore [l1:U1, . . . , lk:Uk] as the type or
interface of unnamed objects, and [(l1:U1, . . . , lk:Uk)] as the type for classes.

2.2 Operational semantics

For the operational semantics, we concentrate on the interface behavior. For want
of space, we omit the (straightforward) definitions of the component-internal
steps, for instance-internal method calls or internal thread creation. For the
definition of the semantics, we refer to [5].

The external steps define the interaction of the component with the envi-
ronment. In particular, the semantics is defined in reference to assumption and

4

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F] | n〈t〉 | n〈(ta)〉 program
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v field
ta ::= λ(x:T, . . . , x:T).t thread abstraction
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | v.l := v | currentthread
| new n | spawn n(v, . . . , v)

v ::= x | n values

Table 1. Abstract syntax

commitment contexts. The static part of the contexts corresponds to the static
type system (we again refer to [5] for the full definition) and takes care that,
e.g., only well-typed values are received from the environment. The contexts,
however, need to contain also a dynamic part dealing with the potential connec-
tivity of objects and thread names and which corresponds to an abstraction of
the heap of the program.

A component exchanges information with the environment via calls, returns,
and spawn actions. In the call and return labels, the mentioned n is the active
thread that issues the call or returns from the call. In the thread instantiation
label, n is the name of the new thread; the thread which spawned the new thread
is not part of the label.3 Furthermore note that there are no separate external
labels for object instantiation: Externally instantiated objects are created only
at the point when they are actually accessed for the first time, which we call
“lazy instantiation”. Given a label ν(Φ).γ′ where Φ is a name context, i.e., a
sequence of single ν(n:T) bindings and were γ′ does not contain any binders,
we call γ′ the core of the label. Given a label γ, we refer with ⌊γ⌋ to its core.
Analogously for send and receive labels.

γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | 〈spawn n of c(~v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send

2.2.1 Augmentation To formulate the external communication properly, we
need to introduce a few augmentations. We extend the syntax by two additional
expressions

o1 blocks for o2 and o2 returns to o1 v .

The first one denotes a method body in o1 waiting for a return from o2, and
dually the second expression returns v from o2 to o1.

3 Of course it might be mentioned in the arguments.

5

Furthermore, we augment the syntax of the method definitions accordingly,
such that each method call and each spawn step is preceded by an annotation of
the caller; i.e., instead of ς(self :c).λ(~x:~T).(. . . x.l(~y) . . . spawn ct(~z) . . .) we write

ς(self :c).λ(~x:~T).(. . . self x.l(~y) . . . self spawn ct(~z) . . .) .

Even if threads themselves cannot communicate, their names can be commu-
nicated via message passing. To obtain a faithful representation of the behavior,
the semantics must contain information to which clique of objects the thread
belongs to. Especially for new threads, the semantics needs a representation of
that clique. Note that a thread can be instantiated without connection to any
object/clique and indeed the initial thread starts with static code, i.e., without
reference to any object. As representation of the clique of objects, the thread n
starts in ⊙n. As said, ⊙n may not correspond to any existing object; we need
this representative just to maintain the connectivity of the thread in case there
is indeed no (visible) object.

We need to augment the threads such that every thread n carries at the
beginning the identity ⊙n of its initial clique. The program starts with one
single initial thread. If the thread starts within the component, the contexts
of the initial configuration ∆0 ⊢ C : Θ0 asserts Θ0 ⊢ ⊙. Otherwise, ∆0 ⊢ ⊙.
As in the augmentation for methods, the code in the thread classes must be
augmented in such a way, that for method calls the virtual clique of the thread
is mentioned in front of the call, i.e., after instantiation, the call looks as follows:
n〈. . .⊙n x.l(~v) . . .〉. The static code of each thread class is augmented into

ct〈(λ(~x:~T).(. . .⊙ x.l(~v) . . .))〉

for each mentioned call. When the thread is instantiated, ⊙ is replaced by ⊙n

where n is the identity of the new thread. Given the above thread class, we
denote by ct(~v) the replacement t[⊙n, ~v/⊙, ~x], when t is the body of the thread
class definition. The initial thread, which is not instantiated from a thread class
but given directly (in case the activity starts in the component) starts with ⊙n

as augmentation, if the initial thread is named n. If the component is renamed
by α-conversion, n and ⊙n are renamed simultaneously. The steps of the internal
semantics must be adapted accordingly. We also omit the typing rules for the
augmentation, as they are straightforward.

2.2.2 Connectivity contexts In the presence of cross-border instantiation,
the semantics must contain a representation of the connectivity, which can be
seen as an abstraction of the program’s heap. The external semantics is formal-
ized as labeled transitions between judgments of the form

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ , (1)

where ∆, Σ; E∆ are the assumptions about the environment of the component
C and Θ, Σ; EΘ the commitments . The assumptions consist of a part ∆, Σ

6

concerning the existence (plus static typing information) of named entities in
the environment. The semantics maintains as invariant that the assumption and
commitment contexts are disjoint concerning object and class names, whereas a
thread name occurs as assumption iff. it is mentioned in the commitments. By
convention, the contexts Σ (and their alphabetic variants) contain exactly all
bindings for thread names.

This means, as invariant we maintain for all judgments ∆, Σ; E∆ ⊢ C :
Θ, Σ; EΘ that ∆, Σ, and Θ are pairwise disjoint. A further invariant is that a
thread name n occurs in Σ, iff. ⊙n occurs in either ∆ or Θ. This means, besides
being relevant for connectivity information, ⊙n contains also the information
whether the thread started its life in the environment or in the component.

As mentioned, the ⊙n are needed in particular because new thread names
may be communicated between environment and component. If the thread has
been active at the interface in the past, the semantics contains enough informa-
tion such that the originating clique of objects is clear.

For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation of
objects from the assumption context ∆ amongst each other, and the knowledge
of objects from ∆ about thread names and names exported by the component,
i.e., those from Θ. In analogy to the name contexts ∆ and Θ, E∆ expresses
assumptions about the environment, and EΘ commitments of the component:

E∆ ⊆ ∆× (∆ + Σ + Θ) . (2)

and dually EΘ ⊆ Θ × (Θ + Σ + ∆). Since in the language we allow the sending
of thread names, we must include pairs from ∆ × Σ (resp. Θ × Σ) into the
connectivity. We write o →֒ n (“o may know n”) for pairs from the relations E∆,
resp. EΘ. Without full information about the complete system, the component
must make worst-case assumptions concerning the proliferation of knowledge,
which are represented as the reflexive, transitive, and symmetric closure of the
→֒-pairs of objects from ∆. Given ∆, Θ, and E∆, we write ⇌ for this closure,
i.e.,

⇌ , (→֒↓∆ ∪ ←֓↓∆)∗ ⊆ ∆×∆ . (3)

We also need the union ⇌ ∪ ⇌; →֒ ⊆ ∆ × (∆ + Σ + Θ), where the semicolon
denotes relational composition. We write ⇌→֒ for that union. As judgment, we
use ∆, Σ; E∆ ⊢ o1 ⇌ o2 : Θ, Σ, resp. ∆, Σ; E∆ ⊢ o ⇌→֒ n : Θ, Σ. For Θ, Σ,
EΘ, and ∆, Σ, the definitions are applied dually.

The relation ⇌ partitions the objects from ∆ (resp. Θ) into equivalence
classes. We call a set of object names from ∆ (or dually from Θ) such that for
all objects o1 and o2 from that set, ∆, Σ; E∆ ⊢ o1 ⇌ o2 : Θ, Σ, a clique, and if
we speak of the clique of an object we mean the equivalence class.

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: EΘ over-approximates the actual connectivity of the
component and is updated in incoming communication, while the assumption
context E∆ is consulted to exclude impossible combinations of incoming values.

7

Incoming new names, exchanged boundedly, however, update both commitments
and assumptions.

2.2.3 Use and change of contexts The operational semantics is formulated
as transitions between typed judgments

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ
a
−→ ∆́, Σ́; É∆ ⊢ Ć : Θ́, Σ́; ÉΘ .

The assumption context ∆, Σ; E∆ can be seen as an abstraction of the (not-
present) environment; more precisely, it represents the potential behavior of all
possible environments.

Notation 1 To facilitate the following definitions notationally, we will make
use of the following conventions. We abbreviate the triple of name contexts
∆, Σ, Θ as Φ, and the context ∆, Σ, Θ, E∆, EΘ combining assumptions and com-
mitments Ξ. Furthermore we understand ∆́, Σ́, Θ́ as Φ́, and Ξ́ as consisting of
∆́, Σ́, Θ́, É∆, ÉΘ, etc.

The check whether the current assumptions are met in an incoming commu-
nication step is given in Definition 1.

Definition 1 (Connectivity check). An incoming core label a with sender
os and receiver or is well-connected wrt. an assumption-commitment context Ξ́
(written Ξ́ ⊢ os

a
→ or :ok) if:

∆́, Σ́; É∆ ⊢ os ⇌→֒ fn(a) : Θ́, Σ́ . (4)

Note that in case of an incoming call label, fn(a) includes the receiver or and
the thread name.

Besides checking whether the connectivity assumptions are met before a tran-
sition, the contexts are updated by a step, reflecting the change of knowledge.

Definition 2 (Name context update: Φ+a). The update Φ́ of an assumption-
commitment context Φ wrt. an incoming label a = ν(Φ′)⌊a⌋ is defined as follows.

1. Θ́ = Θ + Θ′. In case of a spawn-label Θ́ = Θ + Θ′,⊙n, where n is the name
of the spawned thread.

2. ∆́ = ∆ + ⊙Σ′, ∆′. In case of a spawn label, ⊙Σ′ \n is used instead of ⊙Σ′,
where n is the name of the spawned thread.

3. Σ́ = Σ + Σ′.

We write Φ + a for the update. The update for outgoing communication is de-
fined dually in the sense that ⊙n of a spawn label is added to ∆ instead of Θ.
Likewise, the ⊙Σ′ (resp. ⊙Σ′ \n) are added to Θ, instead of ∆. (The notation
⊙Σ′ abbreviates ⊙n for all thread identities from Σ′).

8

Definition 3 (Connectivity context update). The update (É∆, ÉΘ) of an
assumption-commitment context (E∆, EΘ) wrt. an incoming label a = ν(Φ′)⌊a⌋?
with sender os and receiver or is defined as follows.

1. ÉΘ = EΘ + or →֒ fn(⌊a⌋).
2. É∆ = E∆ + os →֒ Φ′,⊙Σ′ . In case of a spawn label, ⊙Σ′ \n is used instead

of ⊙Σ′ , where n is the name of the spawned thread.

We write (E∆, EΘ) + os
a
→ or for the update.

Combining Definitions 2 and 3, we write Ξ + os
a
→ or when updating the name

and the connectivity at the same time.
Besides Definition 1, which checks whether the connectivity assumptions are

met for the label at hand, we must additionally check the static assumptions,
i.e., whether the transmitted values are of the correct types. In slight abuse of
notation, we write ∆, Σ, Θ ⊢ os

a
→ or : T for that check, where T is type of

the expression in the program that gives rise to the label. We omit the exact
definition here which can be found in [5]. We combine the connectivity check
of Definition 1 and the type check notationally into one single judgement Ξ ⊢
os

a
→ or : T .

2.2.4 Operational rules With all the ancillary definitions at hand, we can
define the operational rules of the semantics (cf. Table 2).

The three CallI-rules deal with incoming calls. For all three cases, the
contexts are updated to Ξ́ to include the information concerning new objects,
threads, and connectivity transmitted in that step. Furthermore, it is checked
whether the label statically type-checks and that the step is possible according
to the (updated) connectivity assumptions Ξ́. Remember that the update from
Ξ to Ξ́ includes guessing of connectivity, i.e., an element of non-determinism,
when the sender of the communication is unknown to the component.

The three rules for incoming calls deal with three different situations as to
when an incoming call may happen: A reentrant call4, a call of thread where the
thread name is already known in the component, and a call of a thread which is
new to the component.

To deal with component entities (threads and objects) that are being created
during the call C(Θ′, Σ′) stands for C(Θ′) ‖ C(Σ′), were C(Θ′) are the lazily
instantiated objects mentioned in Θ′. Furthermore, for each thread name n′ in
Σ′, a new component n′〈stop〉 is included, written as C(Σ′).

The treatment of the connectivity contexts is uniform in all three cases, only
the identity of the sender is different.

For reentrant method calls (cf. rule CallI1), the thread is blocked, i.e., it
has left the component previously via an outgoing call. The object that had been
the target of the call is remembered as part of the augmented block syntax. In
the rule it is referred to as os, as it represents the sender’s clique of the current
incoming call.

4 Reentrant on the level of the component, not on the level of a single object.

9

Rule CallI2 treats a non-reentrancy situation, where the thread name is
already known in the component nonetheless. As a consequence, the component
contains the entity n〈stop〉. Unlike in rule CallI1, the program code contains
no indication as to the origin of the call. Since the thread n must have crossed
the border before, the marker for its initial clique ⊙n must be contained in
either ∆ or in Θ. The premise ∆ ⊢ ⊙n assures that n had started its life on the
environment side. This bit of information is important as otherwise one could
mistake the code n〈stop〉 for the code of a (deadlocked) outgoing call. If ∆ ⊢ ⊙n

and n〈stop〉 is part of the component code, it is assured that the thread either
has never actively entered the component before (and does so right now) or has
left the component to the environment by some last outgoing return. In either
case, the incoming call is possible now, and in both cases we can use ⊙n as
representative of the caller’s identity.

The last call rule CallI3 deals with the situation, that the thread n enters
the component for the first time. This is assured by the premise Σ′ ⊢ n : thread .
As in CallI2, we do not have an indication from which clique the call originates,
since the corresponding thread is new. What is assured is that the new thread has
been created at some point before as instance of some environment thread class
—otherwise the cross-border instantiation would have been observed and the
thread name would not be fresh now— and by some environment clique. Indeed,
any existing environment clique is a candidate that might have created the
thread n. So the update to Ξ́ non-deterministically guesses to which environment
clique the thread’s origin⊙n belongs to. Note that ⊙Σ′ contains⊙n since Σ′ ⊢ n,
which means ∆́ ⊢ ⊙n after the call.

For incoming thread creation in rule SpawnI, we need again to know the
origin of the call, i.e., the spawning clique. The situation is similar to the one
for CallI3, in that the origin of the communication needs to be guessed. In
the case of CallI3, we use ⊙n as “virtual clique”, i.e., as representative for the
calling clique, covering the situation where no actual calling object may be the
source. Different from the situation of unknown caller is that here we obviously
can not use ⊙n; that identity is incorporated into the component after the call.
What is clear is that the spawner must be part of the environment prior to the
call, i.e., ∆ ⊢ os, where os might be some ⊙n′ , i.e., a virtual clique of objects
from which no actually existing objects have yet escaped to the component. Note
that if os = ⊙n′ , ∆ ⊢ os assures that n 6= n′. Note further that the name of
the spawned thread is treated specifically in the definition of context update (cf.
Definition 2 and 3) to cater for cross-border instantiation of the new thread. An
incoming spawn action without known external objects is possible only in the
very first step.

The remaining rules deal with outgoing communication and are simpler, as
the “check-part” is omitted: With the code of the program present, the checks
are guaranteed to be satisfied.

In addition to the external steps of Table 2, there are similar ones for com-
munication via returns, and rules dealing with initial steps. They are included
in the technical report [5].

10

dom(Φ′) ⊆ fn(⌊a⌋) Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or : T Θ́ ⊢ or

a = ν(Φ′). n〈call or .l(~v)〉? tblocked = let x′:T ′ = o blocks for os in t
CallI1

∆, Σ; E∆ ⊢ ν(Φ).(C ‖ n〈tblocked〉) : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ).(C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(~v) in or returns to os x; tblocked〉) : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(⌊a⌋) Ξ́ = Ξ + ⊙n

a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or : T Θ́ ⊢ or

a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ ⊙n

CallI2

∆, Σ; E∆ ⊢ C ‖ n〈stop〉 : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(~v) in or returns to ⊙n x; stop〉 : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(⌊a⌋) Ξ́ = Ξ + o
a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or : T Θ́ ⊢ or

a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ o Σ′ ⊢ n : thread
CallI3

∆, Σ; E∆ ⊢ C : Θ, Σ;EΘ

a
−→

∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈let x:T = or.l(~v) in or returns to ⊙n x; stop〉 : Θ́, Σ́; ÉΘ

dom(Φ′) ⊆ fn(⌊a⌋) Ξ́ = Ξ + os

a
→ ⊙n Ξ́ ⊢ os

⌊a⌋
→ ⊙n : thread

a = ν(Φ′).〈spawn n of ct(~v)〉? Θ́ ⊢ or ∆ ⊢ os Θ ⊢ ct Σ′ ⊢ n : thread
SpawnI

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ

a
−→ ∆́, Σ́; É∆ ⊢ C ‖ C(Θ′

, Σ
′ \n) ‖ n〈ct(~v)〉 : Θ́, Σ́; ÉΘ

a = ν(Φ′). n〈call or.l(~v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ ∆́ ⊢ or Ξ́ = Ξ + os

a
→ or

CallO

∆, Σ;E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = os or.l(~v) in t〉) : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = os blocks for or in t〉) : Θ́, Σ́; ÉΘ

a = ν(Φ′).〈spawn n′ of ct(~v)〉! Φ′ = (fn(⌊a⌋) \n′) ∩ Φ Φ́ = Φ \Φ′

∆ ⊢ ct Ξ́ = Ξ + os

a
→ ⊙

n′
SpawnO

∆, Σ; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = os spawn ct(~v) in t〉) : Θ, Σ;EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = n′ in t〉) : Θ́, Σ́; ÉΘ

Table 2. External steps

3 Legal traces

In this section we present a proof system which provides an independent charac-
terization of which traces are possible as interface behavior between component
and environment. We call those traces legal. “Half” of the work has been done
already by the careful design of the open semantics of Section 2.2.4, where the
absent environment is represented abstractly by the name and connectivity con-
texts. For characterizing the legal traces, we analogously abstract away from
the program code, which makes the system completely symmetric. Remember
that the assumption and commitment contexts in the operational semantics
where used asymmetrically insofar, as the commitment contexts where updated
as overapproximation of the actual component, but not used in checking whether

11

a = ν(Φ′). n〈call or .l(~v)〉? ⊢ r ⊲ os

a
→ or

Ξ́ =
L

Ξi + a Θi ⊢ or ǫ 6= ai = (a, or) ↓Θi
∆́, Σ́ ⊢ r a ⊲ s : trace Θ́, Σ́

L-CallI

∆1, Σ1 ⊢ r ⊲ a1 s : trace Θ1, Σ1 . . . ∆k, Σk ⊢ r ⊲ ak s : trace Θk, Σk

∆, Σ ⊢ ra ⊲ s : trace Θ, Σ a = γ? ⊢ r ⊲ os

a
→ or Θ 6⊢ or

L-SkipI

∆, Σ ⊢ r ⊲ s : trace Θ, Σ

Table 3. Legal traces, branching on Θ

a component step, i.e., an outgoing communication, is possible as next interac-
tion.

3.1 A branching derivation system characterizing legal traces

Unlike the treatment in the operational semantics, the connectivity of objects
is not explicitly represented by connectivity contexts; instead, the tree structure
of the derivation itself represents the connectivity and its change. There are two
variants of the derivation system, one from the perspective of the component,
and one from the perspective of the environment. Each derivation corresponds
to a forest, with each tree representing a component, respectively environment
clique at the end. The judgments are of the form

∆, Σ ⊢Θ r ⊲ s : trace Θ, Σ (5)

where r represents the history or past interaction, and s the future interaction.
We write ⊢Θ to indicate that legality is checked from the perspective of the com-
ponent. From that perspective, we maintain as invariant that on the commitment
side, the context Θ represents one single clique. Thus the connectivity among
objects of Θ needs no longer be remembered. What needs to be remembered
still are the thread names known by Θ and the cross-border object connectivity,
i.e., the acquaintance of the clique represented by Θ with objects of the environ-
ment. This information is kept in ∆ resp. Σ. Note that this corresponds to the
environmental objects mentioned in EΘ ⊆ Θ× (Θ + ∆ + Σ), projected onto the
component clique under consideration, in the linear system.

The connectivity of the environment is ignored which implies that the system
of Table 3 cannot assure that the environment behaves according to a possible
connectivity. On the other hand, dualising the rules checks whether the environ-
ment adheres to possible connectivity.

Now to the rules of Table 3. As before, rule L-CallI deals with incoming
calls. The call is possible only when the thread is input call enabled after the
current history. This is checked by the premise ⊢ r ⊲ os

a
→ or :ok , which

also determines caller and callee. We omit the definition of ⊢ r ⊲ os
a
→ or :ok ,

characterizing enabledness of a after trace r. The definition is the straightforward
extension of the one from [4] to a multi-threaded setting.

12

Since from the perspective of the component, the connectivity of the envi-
ronment is no longer represented as assumption, there are no premises checking
connectivity! An interesting part concerns the treatment of the commitment
context: Incoming communication may update the component connectivity, in
that new cliques may be created or existing cliques may merge. The merging of
component cliques is now represented by a branching of the proof system. Leaves
of the resulting tree (respectively forest) correspond to freshly created cliques.

In rule L-CallI, the context Θ in the premise corresponds to the merged
clique, the Θi below the line to the still split cliques before the merge. The
Θi’s form a partitioning of the component objects before the communication,
Θ is the disjoint combination of the Θi’s plus the lazily instantiated objects
from Θ′. For the cross-border connectivity, i.e., the environmental objects known
by the component cliques, the different component cliques Θi may of course
share acquaintance; thus, the parts ∆i and Σi are not merged disjointly, but
by ordinary “set” union. These restrictions are covered by the definition of the
(partial) operation

⊕
Ξi.

We omit the rules dealing with incoming returns and incoming spawn labels,
and furthermore those for outgoing communication.

The skip-rules stipulate that an action a which does not belong to the com-
ponent clique under consideration, is omitted from the component’s “future”
(interpreting the rule from bottom to top). The distinction is made according
to the sender resp. the receiver of the communication (cf. rule L-SkipO resp.
L-SkipI).

Definition 4 (Legal traces, branching system). We write ∆ ⊢Θ t : trace Θ,
if there exists a derivation forest using the rules of Table 3 with roots ∆i, Σi ⊢
t ⊲ ǫ : trace Θi, Σi and a leaf justified by one of the initial rules L-CallI0 or
L-CallO0. Using the dual rules, we write ⊢∆ instead of ⊢Θ.

We write ∆ ⊢∆∧Θ t : trace Θ, if there exits a pair of derivations in the ⊢∆-
and the ⊢Θ- system with a consistent pair of root judgments.

To accommodate for the simpler structure of the contexts, we adopt the
notational conventions (cf. Notation 1) appropriately.

a = ν(Φ′). n〈call or .l(~v)〉? ⊢ r ⊲ os

a
→ or ∆́, Σ́, Θ́ ⊢ ⌊a⌋ :ok

∆6 ⊢ static ∆́ ⊢ os Ξ́ = Ξ + a ∆́, Σ́ ⊢ r a ⊲ s : trace Θ́, Σ́
L-CallI

∆, Σ ⊢ r ⊲ a s : trace Θ, Σ

∆́ = ∆ 6⊢ os ∆, Σ ⊢ ra ⊲ s : trace Θ, Σ a = γ? ⊢ r ⊲ os

a
→ or

L-SkipI

∆, Σ ⊢ r ⊲ s : trace Θ, Σ

Table 4. Legal traces, branching on ∆

13

The way a communication step updates the name context can be defined as
simplification of the treatment in the operational semantics (cf. Definition 2).
As before we write Φ + a for the update.

3.2 Soundness of the abstractions

The section contains the basic soundness results of the abstractions,
With E∆ and EΘ as part of the judgment, we must still clarify what it

“means”, i.e., when does ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ hold? The relation EΘ asserts
about the component C that the connectivity of the objects from the component
is not larger than the connectivity entailed by EΘ. Given a component C and
two names o from Θ and n from Θ + ∆ + Σ, we write C ⊢ o →֒ n, if C ≡
ν(Φ).(C′ ‖ o[. . . , f = n, . . .]) where o and n are not bound by Φ, i.e., o contains
in one of its fields a reference to n. We can thus define:

Definition 5. The judgment ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ holds, if ∆, Σ ⊢ C :
Θ, Σ, and if C ⊢ n1 →֒ n2, then Θ, Σ; EΘ ⊢ n1 ⇌→֒ n2 : ∆, Σ.

We often simply write ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ to assert that the judgment is
satisfied. Note that references mentioned in threads do not “count” as acquain-
tance.

Lemma 1 (Subject reduction). ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ
s

=⇒ ∆́, Σ́; É∆ ⊢
Ć : Θ́, Σ́; ÉΘ, then ∆́, Σ́ ⊢ Ć : Θ́, Σ́. A fortiori: If ∆, Σ, Θ ⊢ n : T , then
∆́, Σ́, Θ́ ⊢ n : T .

Besides the static abstraction of the type system, also the assertions about the
heap topology (cf. Definition 5) preserved.

Lemma 2 (Soundness of the connectivity abstraction). ∆, Σ; E∆ ⊢ C :

Θ, Σ; EΘ
s

=⇒ ∆́, Σ́; É∆ ⊢ Ć : Θ́, Σ́; ÉΘ, then ∆́, Σ́; É∆ ⊢ Ć : Θ́, Σ́; ÉΘ.

An interesting invariant concerns the connectivity of names transmitted bound-
edly. Incoming communication, e.g., not only updates the commitment contexts
—something one would expect— but also the assumption contexts. The fact
that no new information is learnt about already known objects (“no surprise”)
in the assumptions can be phrased using the notion of conservative extension.

Definition 6 (Conservative extension). Given two pairs (Φ, E∆) and (Φ́, É∆)
of name context and connectivity context, i.e., E∆ ⊆ Φ×Φ (and analogously for
(Φ́, É∆)), we write (Φ, E∆) ⊢ (Φ́, É∆) if the following two conditions holds:

1. Φ́ ⊢ Φ and
2. Φ́ ⊢ n1 ⇌ n2 implies Φ ⊢ n1 ⇌ n2, for all n1, n2 with Φ ⊢ n1, n2.

Lemma 3 (No surprise). Let ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ
a
−→ ∆́, Σ́; É∆ ⊢ Ć :

Θ́, Σ́; ÉΘ for some incoming label a. Then ∆, Σ; E∆ ⊢ ∆́, Σ́; É∆ . For outgoing
steps, the situation is dual.

Lemma 4 (Soundness of legal trace system). If ∆0;⊢ C : Θ0; and ∆0;⊢

C : Θ0;
t

=⇒, then ∆0 ⊢ t : trace Θ0.

14

4 Conclusion

Related work [13] presents a fully abstract model for Object-Z, an object-
oriented extension of the Z specification language. It is based on a refinement of
the simple trace semantics called the complete-readiness model, which is related
to the readiness model of Olderog and Hoare. [14] investigates full abstraction in
an object calculus with subtyping. The setting is slightly different from the one
here, as the paper does not compare a contextual semantics with a denotational
one, but a semantics by translation with a direct one. The paper considers neither
concurrency nor aliasing. Recently, Jeffrey and Rathke [12] extended their work
[11] on trace-based semantics from an object-based setting to a core of Java,
called JavaJr, including classes and subtyping. However, their semantics avoids
the issue of object connectivity by using a notion of package. [7] tackles the
problem of full abstraction and observable component behavior and connectivity
in a UML-setting.

Future work We plan to extend the language with further features to make it
more resembling Java or C#. Concerning the concurrency model, objects should
be extended by lock-synchronization as provided by Java’s synchronized meth-
ods, and furthermore monitor synchronization via wait- and signal-methods.
Another interesting direction for extension concerns the type system, in partic-
ular to include subtyping and inheritance. This is challenging especially if the
component may inherit from environment classes and vice versa. For a first step
in this direction we will concentrate on subtyping alone, i.e., relax the type disci-
pline of the calculus to subtype polymorphism, but without inheritance. Another
direction is to extend the semantics to a compositional one; currently, the se-
mantics is open in that it is defined in the context of an environment. However,
general composition of open program fragments is not defined. Finally, we work
on adapting the full abstraction proof of [3] to the new setting, i.e., to deal with
thread classes. The results of Section 3.2 are covering the soundness-part of the
full-abstraction result.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. A structural opera-
tional semantics for a concurrent class calculus. Technical Report 0307, Institut für
Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu Kiel,
Aug. 2003.

3. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Z. Li, editor, ICTAC’04,
volume 3407 of Lecture Notes in Computer Science, pages 38–52. Springer-Verlag,
July 2004.

4. E. Ábrahám, F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Ob-
servability, connectivity, and replay in a sequential calculus of classes. In Bosangue
et al. [6]. To appear.

15

5. E. Ábrahám, A. Grüner, and M. Steffen. An open structural operational semantics
for an object-oriented calculus with thread classes. Technical Report 0505, Insti-
tut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel, May 2005.

6. M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors. Proceedings
of the Third International Symposium on Formal Methods for Components and
Objects (FMCO 2004), Lecture Notes in Computer Science. Springer-Verlag, 2005.
To appear.

7. F. S. de Boer, M. Bonsangue, M. Steffen, and E. Ábrahám. A fully abstract trace
semantics for UML components. In Bosangue et al. [6]. To appear.

8. ECMA International Standardizing Information and Communication Systems. C#

Language Specification, 2nd edition, Dec. 2002. Standard ECMA-334.
9. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and

typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

10. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, Second edition, 2000.

11. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

12. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of Lecture
Notes in Computer Science, pages 423–438. Springer-Verlag, 2005.

13. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

14. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

	Dynamic heap-abstraction for open object-oriented systems with thread classes [1em] May 30, 2005
	 Erika Ábrahám and Andreas Grüner and Martin Steffen
	Introduction
	A multi-threaded calculus with thread classes
	Syntax
	Operational semantics
	Augmentation
	Connectivity contexts
	Use and change of contexts
	Operational rules

	Legal traces
	A branching derivation system characterizing legal traces
	Soundness of the abstractions

	Conclusion
	References

