Optimizing Bounded Model Checking for Linear
Hybrid Systems*

September 5, 2004

ErikaAbraham, Bernd Becket, Felix Klaedtke 2, and Martin Steffeh

1 Albert-Ludwigs-Universitat Freiburg, Germany
2 ETH Zurich, Switzerland
3 Christian-Albrechts-Universitat zu Kiel, Germany

Abstract. Bounded model checking (BMC) is an automatic verificatiorirod
that is based on a finite unfolding of the system’s transitiglation. BMC has
been successfully applied, in particular, for discoverms in digital system
design. Its success is based on the effectiveness of dtite-art satisfiability
solvers that are used to check for a finite unfolding whetheipkating state is
reachable. In this paper we improve the BMC approach foatitgbrid systems
based on lazy satisfiability solving. Our improvementsdelltwo complemen-
tary directions. First, we optimize the formula represgateof finite unfoldings
of the transition relations of linear hybrid systems, antbsel, we accelerate the
satisfiability checks by cumulating and generalizing datd is generated during
earlier satisfiability checks. Experimental results shbat the presented tech-
nigues accelerate the satisfiability checks significantly.

1 Introduction

Model checking is widely used for the verification of conent state systems, like,
e.g., finite state systems [21, 13] and timed automata [2& @ain reason for the ac-
ceptance of model checking is its push-button appeal. A nudgstacle to its universal
applicability, however, is the inherent size of many reakd systems. This obstacle
is often called the state space explosion problBounded model checkifMC) [9]
has attracted attention as an alternative to model checkimgbounded model check-
ing problem starts from a more modest question: Does théseaxounterexample of
lengthk € N refuting a stipulated properti? In particular, wherP is a safety prop-
erty, a counterexample is simply a finite run leading to ttodation. Whethet” can be
violated ink steps is reduced to checking satisfiability of the formula

I(so) NT(s0,81) A ... AT (Sk—1,5k) NP (sk), 1)
wheres; are state variabled, is a unary predicate describing the initial states, and
T is a binary predicate describing the transition relatiome Doundk is successively

* This work was partly supported by the German Research Co{EG) as part of the Trans-
regional Collaborative Research Center “Automatic Veatiien and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS).

increased until either a counterexample is found or somi¢ismeached (e.g., an upper
bound onk or resource limitations).

BMC shares with model checking the push-button appeal. Mewysvithout fur-
ther extensions, BMC does not terminate for propertiesahafulfilled by the system.
While this seems to be a step back, BMC has practical relevdsuar finite state sys-
tems, formula (1) corresponds to a propositional satidiigiproblem that enables the
use of state-of-the-art SAT-solvers. Empirical eviderocg,, in [10] and [14], shows that
BMC is often superior to model checking, in particular whiee focus is on refuting a
property. Extensions for using the BMC approach also foifieation are summarized
in [8].

The BMC approach for finite state systems cleanly extendsatoyrolasses of infi-
nite state systems [17]. For infinite state systems, forifi)l&s a Boolean combination
of domain-specific constraints depending on the class afyheems. Instead of a SAT-
solver we have to use a solver specific to that domain. Foamest, BMC has been
extended and applied to timed automata as, e.g., in [20, 28]6The BMC approach
can be further extended to the more general clafinedr hybrid automatdl, 19]. For
linear hybrid automata, the domain-specific constrairgdiaear (in)equations, where
variables range over the reals. Prominent state-of-theshrers that can be used in the
BMC approach for linear hybrid systems are MathSAT [4], CM&[7], and ICS [16].
All these solvers have in common that the satisfiability &lsesre dondazily. Roughly
speaking, this means that these solvers are based on a 84&ftat calls on demand
solvers for conjunctions of the domain-specific constrint

In this paper we improve the BMC approach for linear hybridteyns by acceler-
ating the satisfiability checks. Our improvements are natéig by a thorough inves-
tigation of checking satisfiability of formulas of the forr)(which describe in our
context finite runs of linear hybrid systems. First, we ojtierthe formula representa-
tion of finite runs. The optimized representation is taitbte lazy satisfiability solving.
Besides others, one point is to force alternation of theedhffit types of transitions of
hybrid systems, namely discrete and time transitions. istage cumulate the conflicts
returned by the domain-specific solver during the lazy Sakisity check of (1). If (1)
is unsatisfiable, i.e., there is no counterexample of Bjage generalize the returned
conflicts and learn them such that the domain-specific sdlees not need to be called
again for similar conflicts in forthcoming satisfiability @tks. The technique of learn-
ing domain-specific conflicts is more general in that it agpto the BMC approach for
other classes of infinite state systems, too.

Both kinds of optimizations reduce the demand-driven dalthe domain-specific
solver for conjunctions of linear (in)equations. Furtherm they complement each
other in the sense that the optimized encoding leads to testiats that are general-
ized and learned. We extensively evaluated our technigquesrfumber of linear hybrid
systems. The outcome of our experiments is that the conmbmaf both techniques
increases the bouridon the size of the runs by several magnitudes for which sthte-
the-art solvers are able to perform the satisfiability ckeéoka reasonable amount of
time and space.

We proceed as follows. I§2 we recapitulate the definition of linear hybrid automata
and the BMC approach for linear hybrid automata using latigfizbility solvers. Ing3

r<19—z:=x

r>21—x:=x

Fig. 1. Thermostat.

we optimize the encoding of finite runs andsih we introduce our learning technique.
Our experimental results are presentef5nin §6 we discuss related work and finally,
in §7 we draw conclusions.

2 Bounded Model Checking for Linear Hybrid Systems

Before presenting our work, we first introduce linear hylsydtems and describe a
straightforward encoding of finite runs as Boolean comliamatof (in)equations. Fur-
thermore, we discuss some details of state-of-the-aresofor checking satisfiability
of Boolean combinations of linear (in)equations and pinpobstacles of these solvers
in the BMC approach for linear hybrid automata.

2.1 Hybrid Systems Background

Hybrid automata [1, 19] have been introduced in control eegiing and in computer
science as a formal model for systems with both discrete antintious components.

Hybrid automata are often given graphically like the onevalh@ Figure 1. This
automaton models a thermostat, which senses the temperadfia room and turns a
heater on and off. In locationff the heater is off and the temperature falls according
to the flow conditiomf—o <z < f%. The location’s invariant > 18 assures that
the heater turns on at latest when the temperature rea8hiegrees. Analogously for
the locationon, where the heater is on. Control may move from locatigihto on if
the temperature is below9 degrees, and froron to off if the temperature is abog
degrees. The temperatureloes not change by jumping froaff to on or from on to
off . Initially, the heater iff and the temperature %) degrees.

In the remainder of the paper we only consider the class eélithybrid automata,
which can be described using first-order logic formulas ¢#er-, <, 0,1). Formally,
alinear hybrid automatori is a tuple

(L, V, (jumpy g)e.eer, (flowy)eer, (inve)eer, (inite)eer) ,

whereL andV are finite nonempty sets, atighmp, ,/)e,ecr, (flowy)eer, (inve)ier,
(inite)ec 1, are families of first-order logic formulas over the struet(iR, +, <, 0, 1):

— L={ty,...,¢,} is the set ofocationsof the system.
— V ={v1,...,v,}is the set ofontinuous variablesf the system.

— (Jumpy ¢)eer isan(L x L)-indexed family of formulas with free variables
and their primed versions. A formulamp, (v, ..., vn, v}, ..., v,) represents
the possiblgumpsfrom location? to location?’, wherevy, ..., v, are the values
of the continuous variables before the jump and...,v; are the values of the
continuous variables after the jump.

— (flowy)eer is an L-indexed family of formulas with free variables i, their
primed versions, and A formula flow,(v1, ..., vn,t,v],...,v)) represents the
flow of durationt > 0 in location?, where the values of the continuous variables
change fromvy, ..., v, 00}, ... v,

— (inve)ecr is anL-indexed family of formulas with free variables in. A formula
inve(v1, ..., v,) represents thiavariantin location?. We require that all invariants
are convex sets.

— (inity)eer is anL-indexed family of formulas with free variablesinrepresenting

theinitial statesof the system.

For instance, the flow in locatiosw of the thermostat in Figure 1 can be described by
the formulafiow ,,,(x,t,2') = 102’ — 10z > t A 52’ — 5z < t. The other components
of the thermostat can be described analogously. SiRce-, <, 0, 1) admits quantifier
elimination, we assume without loss of generality that thiemfulas occurring in the
description of a linear hybrid automaton are quantifieefre

Hybrid systems often consist of several hybrid automata tilva in parallel and
interact with each other. The parallel composition of hglautomata requires an ad-
ditional event set for synchronization purposes. The perabmposition is standard
but technical and we omit it here. For simplicity and due tacgplimitations, in the
theoretical part of the paper we restrict ourselves to dsilimgear hybrid automaton.

Encoding Linear Hybrid Automata In the remainder of this subsection, Ikt =
(L, V, (jumpy p)eerer, (flowy)ecr, (inve)ecr, (inite)ecr) be alinear hybrid automa-
tonwith L = {0,...,m} andV = {v,...,v,}, for somem,n € N. For readability,
we write tuples in boldface, i.ey abbreviategvy,...,v,), and we introduce state
variabless = (at, v), whereat ranges over the locations ihandv = (v1, ..., vy,).

A jump of the automatoft{ is described by the formula

J(s,s") = \/M’EL(at =UNat' =0 A jumpy p(v,0") Ainve (v'))
and a flow ofH is described by the formula
F(s,t,s") = Vyep(at =CAat’ =LAt > 0N flowy(v,t,0') Ainve(v')),

wheres = (at,v) ands’ = (at’, v’) are state variables, ards a real-valued variable
representing the duration of the flow. Note that we check tivariant of a location
after time unitst have passed if'(s, ¢, s’) and when we enter the location gfin a
jump J(s, s’). Since we assume that invariants are convex sets, we dovetdaheck
at every time point betweehandt of a flow whether the invariant in the location is
satisfied. Fok € N, we recursively define the formutg, by

To(s0) = Vyer (ato = € A inve(vo))

Formula encoding k=5 k=10 k=15

with optimizations time (secsly expl][time (secs]¥ expl][time (secs]} expl;
Pk 0.5 95 18.0 1047 234.5 6462
Ok +§3.1 0.2 21 3.7 349 16.8 | 1922
on +§3.1+§3.2] 0.2 24 2.8 242 355 | 1741
Vb1 +§3.1+§3.2] 0.2 1 1.8 53 3.6 109
U, o1 +63.1 +83.2] 0.7 14 5.1 144 140 | 396
D +53.1 +§3.2] 04 14 0.9 21 6.8 169

Table 1. Experimental results for the railroad crossing example.

and fork > 0,
7Tk(80,... ,Sk,ﬁl,...,ﬁk) =
Th—1(805 - -+ s Sk—t1, 1,y thie1) A (J(Sp—1, 5%) V F(Sp—1,tk, sk)) ,
wheresy, ... , s, are state variables ang, . . . , ¢, are real-valued variables.

BMC for Linear Hybrid Automata With the formulasry at hand, it is straightforward
to obtain a semi-decision procedure for checking whethéneai hybrid automaton
violates a state property given by the formudgie(s). Fork € N, we define

ng(SQ,... ,Sk,tl,...,tk) =
(VéeL(a’tO =/(A mitg('vo))) ATE(S0s -+ Sk t1y ..oy ti) A Tsafe(sy) .

Starting withk = 0 and iteratively increasink € N, we check whethep, is satisfiable.
The algorithm terminates ip, is satisfiable, i.e., an unsafe state is reachable from an
initial state ink steps.

The effectiveness of the algorithm depends on the effentise of checking whether
the ;s are satisfiable. Experimental results show that the sddibfy checks ofp, of-
ten become impractical even for sma$l and rather small linear hybrid systems, like
the railroad crossing example [3], which consists of thieedr hybrid automata run-
ning in parallel (two of them hav&locations and one automaton hafcations). The
second row of Table 1 shows running times for different baundf the satisfiability
checks with the state-of-the-art solver ICS [17]. For inst the satisfiability check for
15 already takes almodtmins. In order to pinpoint reasons for the bad running times
of the satisfiability checks, we first have to give some ICSittet

2.2 Satisfiability Checking Details and Performance Issues

We first recall details ofazy theorem provingl7]. Lazy theorem proving is built on
top of a SAT-solver for propositional logic that lazily imgets with a solver for a spe-
cific domain. In our context the solver for the specific domaia solver that checks
satisfiability of conjunctions of linear (in)equations otlee reals.

Assume thaty is a Boolean combination of the atomic formulas . .., a,,. We
define the mappingbs(«;) = b;, whereb; is a fresh Boolean variable. The mapping
abs is homomorphically extended to Boolean combinations ofe@junations. We call

procedure sat{p)

B abs(p)

loop
v «— SAT-Solvei3)
if v = unsatisfiable then return unsatisfiable
P — /\V(bq;):true a; A /\V(bq;):false T
if Solvevy) # unsatisfiable then return satisfiable
B — B A —abs(explaint))

end loop

Fig. 2. The lazy theorem proving algorithm for checking satisfig@pibf a Boolean combination
of linear (in)equations.

abs(p) the Boolean abstractiorf the formulap. The pseudo-code of the lazy theo-
rem proving algorithm from [17,15] is shown in Figure 2. Warswith the Boolean
abstractiors = abs(y). In each loop, the SAT-solver suggests a candidate assignme
vi{by, ..., b} — {true, false} satisfyings. If the conjunction) = A\ ;) @ A
Ao (vi)=faise i is satisfiable, therp is satisfiable. Otherwise, we exteptto 5 A
—abs(explain (1)), whereexplain (i) is an unsatisfiable subformula gf i.e., a con-
junction of some atomic formulas or their negations ocawgyin « that is responsible
for the unsatisfiability of). We call the formulaezplain (i) anexplanation A simple
implementation oexplainis the identity function, i.e., it returng. Using this simple
implementation, there is one loop iteration for each sgtigf assignment ofibs(y).
General techniques for reducing the number of iterationd,ia particular more so-
phisticated implementations of tlegplainfunction are described in [17, 15].

Less lazy variants of the lazy theorem proving algorithike in CVC Lite [7] and
ICS [17] consist of a tighter integration of a SAT-solver dhd satisfiability checks of a
solver for conjunctions of linear (in)equations. In ICSyath assignment to a Boolean
variable by the SAT-solver adds the corresponding (in)égndo the conjunction of
(in)equations for which the corresponding Boolean vagaldre already assigned to
some truth value. Arequency parameterfor which the user can provide a thresh-
old, determines after how many truth assignments the SNesahecks whether the
conjunction of (in)equations is still satisfiable, i.e.etBAT-solver calls the solver for
conjunctions of (in)equations. An inconsistency triggeasktracking in the search for
Boolean variable assignments and is propagated to the &#&rsby adding a clause
to the formula explaining the inconsistency using thglain function.

Performance Issues The lazy theorem proving algorithm in Figure 2 scales poorly
for checking satisfiability of the formulas;,. The reason is the large number of loop
iterations: for most examples the number of iterations grexponentially ink. The
following examples illustrate this obstacle more clearly.

Example 1.Consider the following linear hybrid automaton:

true—x:=z+1

Assume that we want to check whether we can reach steps a state withk < 0.
Clearly, a run withe: having the initial valué) and that increasesin each step cannot
reach a state with: having a negative value. However, when we only look at a finite
unfolding of the transition relation, we must be aware otalinges made on the value
of z in order to check that the value ofis not negative aftet steps. Independently of
the implementation of thexplain function, for checking unsatisfiability af;, with the
lazy theorem proving algorithm, the number of loop itenasids at leas2”. The reason
for this is the following.

For each of th@” possible sequences bflows and jumps there is a corresponding
satisfying assignment afbs () assigningtrue to the Boolean variable far, < 0
and to the Boolean variables whose (in)equations desdrémitial state and the tran-
sitions in the sequence. Without loss of generality, théhtvalues of the other Boolean
variablesabs (o) need not to be considered. For a satisfying assignmeab«fyy,)
the explain function has to return a conjunction containing at least(thgequations
in which z; occurs and for which the Boolean variable is assignettte. Since two
such conjunctions of (in)equations are distinct for assignts corresponding to dif-
ferent sequences @f flows and jumps, we have to check at le2tconjunctions of
(in)equations.

The less lazy variant of the lazy theorem proving algoriterfaced with a similar
problem: the number of satisfiability checks for conjunetiof (in)equations corre-
sponding to partial truth assignments of the Boolean véefain the Boolean abstrac-
tion may grow exponentially with respect to the boundFor the railroad crossing
example, this exponential growth is illustrated by the selcoow of Table 1 that lists
the number of generated explanations for different bounds

Experimental evaluations [17] have shown that the less Varpnt—as, e.g., im-
plemented in ICS—is superior to the lazy theorem provingiigm in Figure 2. How-
ever, in our experiments we observed that if the Boolearrattin of a formula has
few satisfying assignments then the lazy theorem proviggréghm usually performs
better than the less lazy variant of it, since the solver @mjenctions of (in)equations
has to be called less often. §4, we will exploit this observation by switching from
the less lazy variant to the lazy theorem proving algorithinemever it is likely that the
Boolean abstraction has few satisfying assignments.

3 Optimizing the Encoding

For improving the BMC approach for linear hybrid automate,aptimize the formula
encoding of finite runs. Our optimized encoding is tailorethte lazy theorem proving
algorithms. In order to give an impression of the impact ef different optimizations,
we listin Table 1 the improvements for the railroad crosgirgmple. We obtain similar
improvements for other examples of hybrid automata (furéx@eriments are if5).

Let H = (L, V., (Jumpy o)eerer, (flow,)eer, (inve)eer, (im'tg)geL) be a linear
hybrid automaton with” = {vy,...,v,}.

3.1 Using Boolean Variables

The lazy theorem proving algorithm in Figure 2 and its vaisaran be easily extended
such that they also handle Boolean combinations of (in)éopsand Boolean vari-
ables. Since the location sktis finite, we can usélg |L|] Boolean variables for each
0 <i < k to encode the formulagt; = ¢ with £ € L in ¢. On the contrary, the algo-
rithm in Figure 2 replaces (in)equations by fresh Booleaiatées; for eacld < i < k,
this requiregL| Boolean variables for the atomic formulas = ¢ with ¢ € L.

The Boolean encoding of locations has two advantages ogartboding by equa-
tions of the format; = ¢: The first advantage is that we need exponentially less Boole
variables. The more important advantage is the followinga#fisfying assignment of
abs(py) may assign the corresponding Boolean variables for thetiemsait, = ¢ and
at; = ¢ with ¢ # ¢’ both to¢rue. Such a conflict is not discovered until we call the
solver for conjunctions of (in)equations. With Booleandton encoding such conflicts
are already discovered by the SAT-solver. This results$s lateraction of the SAT-
solver and the solver for conjunctions of (in)equationgarticular, note that when us-
ing the Boolean encoding of the locations, the assignmeiusired by the SAT-solver
always describe a path in the location graph of the hybridraaton.

Analogously to the Boolean encoding of locations we can usdEdan variables for
all system variables with a finite domain. In order to keeprfolas readable, we still
write formulas likeat; = ¢ as abbreviation for their Boolean encodings.

3.2 Excluding Bad and Initial State Loops

Another optimization is to require that we do not visit artialistate twice and only the
last state violates the specification. This means, we agg the two conjuncts

/\0<i§k Neer ﬁ(ati =/ A im'tg(vi)) and /\0§i<k safe(s;) .

This optimization has already been proposed in [22] fordistate systems.

Itis worth mentioning that the speed-up due to this optitiieheavily depends on
the underlying linear hybrid automaton and the specificafi@r specifications contain-
ing Boolean variables (or Boolean encodings of locatiati®) nhumber of assignments
for the Boolean abstraction can be reduced this way. On ther dtand, if adding the
above conjuncts introduces (in)equations that do not oiccuy,, then it is less likely
that this optimization improves the running times of thes$@ibility checks. However,
it does not remarkably slow them down in our examples.

3.3 Alternating Flows and Jumps

Since two successive flows of duratianandt’ can always be represented by a single
flow of durationt + ¢, we can require that each flow is followed by a jump. This
restriction excludes irrelevant computations, and thasldeto a reduced number of
solutions for the Boolean abstractions of the formylas Excluding successive flows
has already been proposed in [6].

Below we define a formula that describes computations wittriating flows and
jumps, thereby excluding successive time steps withoubaaghead. Note that we also

exclude runs with successive jumps. However, successmpgican be expressed us-
ing flows of duratiord. Each computation can be rewritten to this form with alténta
flows and jumps. The advantage of alternating flows and jurapsexcluding succes-
sive flows is discussed in Example 1. Foe N, we defineyy, similar to ¢, wherery,

is replaced byr,:

1/)k(50,...,8k,t1,...,tk) =
(Vyer(ato = € A initg(vo))) A @ (S0, 5 Skot1, ..., tk) A msafe(sy)

wherer((so) = mo(so), and fork > 0,

(S0, Sk b1, .o k) =
J(Sk-1, Sk) if k is even,

T 1 (805 ee s SE—1,t1, . tp_1) A i
k(50 bl k1) {F(skl,tk,sk) otherwise.

Using the above definition for searching iteratively for ntarexamples, it suffices
to start withk = 1 and to increasé in each iteration by: We start with a run con-
sisting of a single flow. In each iteration we extend the rumder consideration with a
jump that is followed by a flow. Since flows may have the duratipthere is a coun-
terexample containing jumps iff 1941 is satisfiable.

Recall thaty,, is satisfiable iff there is a counterexample of lengtiNow, if there
is a counterexample of length less than or equéltteen there is also a counterexample
containing at mosk jumps. However, not all runs with at mas{umps can be repre-
sented by a run of length less than or equat t@Consequently, the unsatisfiability of
1,93, ... ,Yak41 implies the unsatisfiability ofg, ¢1,. .. , pr. The converse is not
true.

The formulays, has twice as many variables ag but the number of distinct
(in)equations is approximately the same. Note that for #tisfsability check the num-
ber of distinct (in)equations is relevant and not the nundferariables. That means,
usingyqy+1 instead ofpy, has the advantage that with no overhead thefirstrations
check all runs of length less than or equalto+ 1 with at mostk jumps in addition to
the runs of length less than or equaktaas it is also done byy.

Moreover, the satisfiability check fapox1 is in most cases faster than the sat-
isfiability check fory; (see Table 1 and the experimentssh). The reason is that
the number of calls of the solver for conjunctions of (in)ations in the lazy theorem
proving algorithms often reduces significantly.

Remark 1.When excluding successive flows we still have the choice ofgia jump or

a flow after we have done a jump. This choice is eliminated wiealternate between
flows and jump. In practice, eliminating this choice paysBffr instance, for the hybrid
automaton in Example 1, for eveky> 0 there is exactly one satisfying assignment for
the Boolean abstraction gf,;. . when flows and jumps alternate. Therefore, we have to
check only one conjunction of (in)equations. In contragtekcluding successive flows
we would have to cope with exponentially many assignments.

Note that applying the optimization §8.2 together with the encoding using alter-
nating flows and jumps, we must allow not only the first statbeanitial but the first

10

two states, since there are runs which can be described dathiyavirst flow having the
duration0. Similarly, we must allow the last two states to violate tpedfication.

3.4 Introducing T-transitions

The BMC approach analyzes in each iteration runs of a celdaigth. That means, in
order to show all runs of a length less than or equat to be safe, we must check
the satisfiability ofk + 1 formulas. In this section we develop a method to search for
counterexamples reachable by runs of length less than @l &gk in a single satis-
fiability check. To do so, we introduce jumps that do nothismcalledr-transitions.
Recall that flows may have the durationwWe require that after a-transition only fur-
therr-transitions or flows of duratiof are possible. Formally, fdt, ¥’ € N we define
14, similar toyy,, wherer;, is replaced byry), , :

w};‘,ljlk(SO,...,Sk,tl,...,tk) =
(Vyep(ato = €A inity(vo))) A T (805 -+« Sky 1y ooy i) A safe(s)

wherery, , describes computations of lengttallowing 7-transitions to occur after the
first k' steps only. We defing;/, , = m for k' > k, and fork’ < k we define

77;91/_’]@(50, ey Skt tk)z W;cl’,kfl(sm ey Sk—15014- .- ,tk—l)/\
((ﬂtauk,g A J(Sk-1,8k)) V tauk) if kis even,
F(sg—1,tk,sk) A (taug—1 — tp =0) otherwise

wheretauy, is a shortcut forfalse if k¥ < 0 andsi_; = s;, otherwise.

Assume that we already know that there are no counterexaraplength less than
or equal tok’, and we want to check for sonte> k' whether we can reach a bad state
in at mostk steps. Instead of checking satisfiability of the formulag s, . . ., ¥ort1
or ¢{%; ., it suffices to check satisfiability af5¢", ; 5., ;-

The formulay ;¢4 allows us more flexibility in the BMC approach with hardly no
overhead by increasing the length of the runs. The main adgarof usingp,i‘%j;C is that
we only have to call the solver once, and guide the solveraxdbtunnecessary work,
i.e., we force the solver not to look for counterexamples teach a bad state in less
thank’ steps.

For the railroad crossing example, the last two rows of TAbdempare the sums
of running times for)ax11, Wherek ranges front-5, 0—10, and0—15 with the running
times ofy{%; . | for k € {5,10,15}.

4 Learning Explanations

The bottleneck of the lazy theorem proving algorithm andeiss lazy variants for the
satisfiability check of a Boolean combinatigrof (in)equations is the large number of

11

calls to the solver for conjunctions of (in)equations. I8 BMC approach, the num-
ber of calls usually grows exponentially with respect tolbeindk. In this section we

present a simple but effective method for reducing the adlthe solver for conjunc-

tions of (in)equations.

The idea is that we make use of the knowledge of the unsaiigijatf the ex-
planations that were generated during the previous sé#figffachecks of the BMC
algorithm. Assume that there is no counterexample of lefegth thark, i.e., the for-
mulasy, ..., 19,1 are unsatisfiable. Moreover, assume that .., v, are the ex-
planations that are generated during the satisfiabilitgk®i€or), .. ., o, _1. Since
the ;s are unsatisfiable conjunctions of (in)equations, we catlcisatisfiability of
Yor41 A (A1<j<n i) instead ofigy11 in the next iteration of the BMC algorithm.
Intuitively, this means that we “learn” for the next ite@tithe unsatisfiability of the
explanationsy, . . . , vx.

In practice it turned out that just adding explanations fribv@ previous satisfia-
bility checks does not result in a satisfying speed-up. Harewe can do better. In
order to describe our method of exploiting the knowledgehefunsatisfiability of the
explanations, we need the following definitions.

Definitions Lety = A;.,,, @ andy = A,_,.,. o be explanations. The expla-
nation~y (syntactically) subsumeg if for everyl < i < m thereisal < j < m/
such thato; and«’; are syntactically equal. The explanatigris minimalif for ev-
eryl < j < m, the conjunction\, ., ., andi; @i is satisfiable. For an integer
shift(y, s) denotes the formula where each variable indéxccurring invy is replaced
by i + s. Note that shifting the indices does not change whetherradtar is satisfiable
or not. Finally, the set of all variations af due to index shifting such that all indices
are betweef andk is defined as

SHIFT(v,k) = {shift(v,s)| —min(y) < s < k —maxy) ands is ever} ,

wheremin(v) denotes the smallest index occurringiandmaxy) denotes the largest
index occurring iny. Observe that we always shift indices by an even integer. An
(in)equation in an explanation describing a flow rarely describes also a jump. Since
flows and jumps alternate in the formula;_1, it is unlikely that for an odd, the
additional conjunctshift(vy, s) prunes the search space in the satisfiability check of
Yak+1 A shift(y, s).

Learning Method The learned explanations should not contain irrelevane@na-
tions. Therefore we first minimize every explanation thajeserated during a satisfia-
bility check. We do minimization greedily: We eliminate tfiest (in)equationy in an
explanationy if v without « is still unsatisfiable; otherwise we do not remaveWe
proceed successively with the other (in)equationg iim the same way. After minimiz-
ing an explanationy we delete all other explanations that are subsumegl. iymally,
using shifting we generalize all the remaining explanatifan the next BMC iteration.
In the kth BMC iteration we check satisfiability of the formula

¢learning _
2k+1

Yogy1 A (/\veE /\yesHIFT(%%H) _"Y/))

12

whereF is the set of all minimized explanations that occurred irfittsé i — 1 iterations
and that are not subsumed by other explanations.

We point out that with the additional conjunCch\ . s A\ e sarrr(y.26+1) ™Y') We
do not only learn explanations that have been generatedglearlier satisfiability
checks, but due to index shifting we also apply them to thelevlength of compu-
tations. Our case studies have shown that the same confimis ion different iterations
with shifted indices, i.e., at another part of the compotatequence. _

Due to our learning method, the Boolean abstractions of dhedlasyy,"/ ;"
often have very few satisfying assignments. For such foasnitllis often more efficient
to use the lazy theorem proving algorithm than the less laziant of it, since the solver
for conjunctions of (in)equations has to be called lessrofi¥e pursue the policy that
if in the last two iterations there are less than a threshoke | se50) of explanations
then we assign a large value to the frequency parameteggsggof ICS, i.e., ICS
switches to a “very” lazy variant of the lazy theorem provaigorithm. The running
times heavily depend on this threshold.

5 Experimental Results

We carried out tests for evaluating the BMC approach fodirgybrid systems with the
different encodings and techniques describef@rand§4. Our test suiteconsists of
standard examples, like, e.g., examples that come with yfie¢h tool and the Bakery
protocoP. All experiments were performed on a SUN Blad®0 with 8 Gbytes of main
memory and tw®00 Mhz UltraSparc ll1+ processors; each one withdavibyte cache.
We used ICS (version 2.0b) [17] for checking satisfiabilitgle formulas in the BMC
approach. The reason for us to use ICS was that in most caSelsdi@aves at least as
good as other state-of-the-art solvers [16]. We expectaiminning times with other
state-of-the-art solvers, like e.g., CVC Lite [7], sinceyhuse similar techniques as
described ir§2.2 for checking satisfiability of Boolean combinationsiofjéquations.

We report on experimental results for the following threffedent encodings of
finite runs: (A) thenaiveencoding as described §2.1; (B) theoptimizedencoding as
described irt3.1-53.3; (C) the optimized encoding as in (B) with additiokedrning
of explanations as described§d. Table 2 lists for each example the maximal number
of BMC iterations for which every satisfiability check coddd performed within a time
limit of 200 secs.

Additionally, we recorded the running times for each itemnatand the numbers of
explanations that are generated during the satisfiabitigcks. In the following, we
describe the outcome of our experiments separately.

Running Times Figure 3 shows the running times for the encodings (A), (BY €C)
for some of our examples with ranging from0 to 200.

4 A detailed description of our test suite and the experinersults is available atww.
informatik.uni-freiburg.de/"eab/hybridbmc-experimen ts.ps

5 The Bakery protocol is not a hybrid system but a discreteibefstate system. Our techniques
can also be used for the BMC approach of such systems.

13

Example Last iteration below200 secs. of CPU time
naiveloptimized| optimized+learning
Thermostat 70 | > 1500 > 1500
Water-level monitor 39 | > 1500 > 1500
Railroad crossing 14 52 872
Extended railroad crossing 10 12 80
Fischer’s protocolZ processeg) 10 15 1254
Fischer’s protocol processes) 9 14 31
Bakery protocol 2 processes)|| 10 45 742
Nuclear reactor 20 82 > 1500
Audio-control protocol 20 62 357

Table 2. Maximal number of BMC iterations.

Checking satisfiability of the formulas, becomes impractical even for smaH.
For example, the satisfiability check for the railroad crogexample withk = 15
needs more thad30 secs. of CPU time. Although the optimization of the représen
tion with alternating flows and jumps leads to a reductiorhefrtunning times, check-
ing satisfiability ofiyo11 is also limited to rather smalts. For the railroad crossing
example each satisfiability check fbr< 53 needs less tha200 secs.; fork = 53 the
satisfiability check exceeds our time limit 200 secs. The technique of learning ex-
planations reduces the running times significantly. Moneantantly, the running times
of satisfiability checks often scale much better for our eplm® For instance, for the
railroad crossing example each satisfiability checkifox 200 is underllsecs. The
running times for computing the set of explanations thataaiged to the formula are
not included. For the railroad crossing example, the sumRid @mes that ICS needs
for the explanation minimization amounts1b secs. in the first2 iterations; there are
no explanations generated in later iterations. The reasomadt including the times for
minimizing explanations and the subsumption checks isdlgof-irst, we are interested
in the speed-up of the satisfiability check that is due toeherling of explanations. Sec-
ond, the implementation of the minimization and subsurmptiveck is currently rather
naive. For instance, we call ICS for each minimization step.

Number of Explanations Additionally to the running times, we also recorded the
numbers of explanations that are generated during thdiahtity checks. The run-
ning times strongly correlate with the numbers of explamati A detailed statistics on
the number of explanations for the railroad crossing exanwglisted in Table 3. We
obtained similar numbers for the other examples.

The second and third column in Table 3 list the numbers ofamations generated
during the satisfiability checks af;, and of s, with the optimizations 0§3.1—
§3.2, resp., for some differeis. The optimizations significantly reduce the number of
generated explanations. Further reduction can be reaghkxdining explanations, as
illustrated in the fourth column. Only a few explanationslgenn5) are left over after
minimization and removing subsumed explanations. Thessif¢éhe explanations, i.e.,
the numbers of (in)equations in the explanations (colGjrere reduced by minimiza-
tion. Column7 shows the mean sizes of the minimized explanations thatireafigr

14

Railroad crossing Extended railroad crossing
200 T 200 —
naive naive
5 optimized 5 optimized
é 150 ¢ optimized=+learning § 150 optirized+learning
£ 100 g 100
2 2
o 50 | O 50 *
o Liddl T] E ‘ ‘]
0 50 100 150 200 100 150 200
k k
Fischer’s protocol (2 processes) Audio-control protocol
200 — 200 —
naive naive
5 ~_ optimized 5 ~_ optimized
§ 150 ¢ optimized+learning § 150 ¢ optimized+learnin|
g 100 g 10|
2 2
O 50 S5 50 ¢
0 E b A b 0 i - : bl
0 50 100 150 200 0 50 100 150 200
k k

Fig. 3. Running times for the satisfiability checks for the naiveagting, the optimized encoding,
and the optimized encoding with learning explanations.

subsumption. These sizes are often moderate in compadsbe bound:. For the rail-
road crossing example with optimization and learning exat@mns, ICS only generates
explanations fok € {0,...,12}.

6 Related Work

BMC has been extended to verify properties for finite stagtesys [22] by introducing
termination conditions that are again checked by a SATesol& generalization and
extension of these methods to infinite state systems is miexbén [18]. We have also
applied our presented optimizations for checking ternimatonditions. We obtained
similar improvements as for the satisfiability checks of¢banterexample searéh.

A complementary method of learning conflicts discoveredravipus satisfiability
checks is described in [24]. The conflicts that are learnethéywo methods originate
from different kinds of inconsistencies. The method in [B8rns conflicts that are
discovered by the SAT-solver and our method learns confhetsare discovered by the
domain-specific solver.

Ourwork s in the line of the works by Audemard et. al. [6, 5Hdoy Sorea et. al. [23,
17] onthe BMC approach for timed systems using lazy satigifiabolvers for Boolean
combinations of (in)equations. The papers [6] and [23] ratthe BMC approach to

5 Due to space limitations we omit a description on checkingnieation conditions. De-
tails and the experimental results arevatw.informatik.uni-freiburg.de/"eab/
hybridbmc-experiments.ps.

15

naive ||optimized optimized+learning
#expl|| #expl. |[#expl| # expl. mean expl. size mean expl. size
k after subsumption check after minimizatio
0 1 1 1 1 3 2
3| 31 3 1 1 25 18
6| 179 12 0 0 0 0
9 651 40 27 6 19 8
12| 2500 20 9 2 21 13
15| 6462 109 0 0 0 0

Table 3.Number of explanations that are generated during the sdtily checks for the railroad
crossing example.

timed automata for properties written as LTL formulas. Rongicity, we only consid-
ered state properties. The paper [6] proposes several iaptions for encoding finite
runs of timed systems. For instance, Audemard et. al. aumidessive flows and en-
code some form of symmetry reduction. The symmetry rednctidy applies to certain
timed systems, e.g., for systems consisting of identicalpanents. As explained in Re-
mark 1in§3.3, alternating between flows and jumps is superior to eketsuccessive
flows. Alternating between flows and jumps also appears ihj&8 a different moti-
vation. Sorea argues that alternation guarantees nonessand often leads to smaller
completeness thresholds for timed automata. In contrastnotivation is that alter-
nating between flows and jumps accelerates lazy satistiabiiving. We show that
alternation significantly speeds up the satisfiability &sedhe papers [5, 17] extend
and generalize the work in [6, 23].

In [20] bounded-length verification problems for timed au#ia are translated into
formulas in difference logic. Another approach of BMC fan&d automata is presented
in [25]. In contrast to the work by Audemard et. al., Sorealketand ours, the core of
their work is a reduction from the BMC problem for timed auttanto a SAT problem
exploiting the region graph construction for timed autcemat

7 Conclusion

In this paper we presented complementary optimizationfiproving the BMC ap-
proach for linear hybrid automata. Our experimental resshiow that these optimiza-
tions accelerate the satisfiability checking of a solveledasn lazy theorem proving.
The speed-up stems from reducing the interactions of thd 6#d-solver and the
domain-specific solver. Our first optimization tunes theaetiegs of finite runs of lin-
ear hybrid automata and the second optimization speedseugattsfiability checks by
learning generalized conflicts. The learning technique alao be used in the BMC
approach for other classes of infinite state systems.

It remains as future work to develop a tighter integratiorgeheralized conflict
learning and satisfiability solving. This includes the depenent of methods that de-
termine the usefulness of conflicts in later satisfiabilitycks and data-structures that
efficiently store generalized conflicts with fast look-ulgkareover, we want to develop
a more dynamic adjustment of the “laziness” in the satidftgihecks.

16

AcknowledgementsWe thank Christian Herde and Martin Franzle for the frditfis-
cussions, and Leonardo de Moura and Harald Ruel3 for angyauinnumerous ICS-
related questions.

References

1. R. Alur, C. Courcoubetis, T. Henzinger, P.-H. Ho, X. Nlggl A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systemBheor. Comput. Sgi.138:3-34,
1995.

2. R. Alur and D. Dill. A theory of timed automatdheor. Comput. Sgi126:183-235, 1994.

3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolicifieation of embedded systems.
IEEE Transactions on Software Engineeri2g:181-201, 1996.

4. G. Audemard, P. Bertoli, A. Cimatti, A. Kornitowicz, and Bebastiani. A SAT based ap-
proach for solving formulas over boolean and linear math@algropositions. In CADE’02
[11], pages 195-210.

5. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiantifag industrial hybrid sys-
tems with MathSAT. IrProc. of BMC’04 2004.

6. G. Audemard, A. Cimatti, A. Kornitowicz, and R. Sebastié®ounded model checking for
timed systems. liProc. of FORTE'02volume 2529 oL NCS pages 243-259, 2002.

7. C. Barrett and S. Berezin. CVC Lite: A new implementatidrttee cooperating validity
checker. In CAV’'04 [12], pages 515-518.

8. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. ZhuouBided model checkingAd-
vances in Computers8, 2003.

9. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic mod&lecking without BDDs. In
Proc. of TACAS'99volume 1579 oLNCS pages 193-207, 1999.

10. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safgroperties of a PowerPC!
microprocessor using symbolic model checking without BDIDdProc. of CAV'99 volume
1633 of LNCS pages 60-71, 1999.

11. Proc. of CADE’'02 volume 2392 of-NAl, 2002.

12. Proc. of CAV’'04 volume 3114 oLNCS 2004.

13. E. Clarke and E. Emerson. Design and synthesis of syniglatoon skeletons using branch-
ing time temporal logic specifications. Rroc. of the Workshop on Logic of Programs 1981
volume 131 ofLNCS pages 244-263, 1982.

14. F. Copty, L. Fix, R. Fraer, E. Guinchiglia, G. Kamhi, and Wardi. Benefits of bounded
model checking in an industrial setting. Broc. of CAV’01 volume 2102 oLNCS pages
436-453, 2001.

15. L. de Moura and H. RuelR. Lemmas on demand for satisfiabditers. InProc. of SAT’02
pages 244-251, 2002.

16. L. de Moura and H. Rue3. An experimental evaluation ofigdodecision procedures. In
CAV'04 [12], pages 162-174.

17. L. de Moura, H. RueR3, and M. Sorea. Lazy theorem provindgpdainded model checking
over infinite domains. In CADE’02 [11], pages 438-455.

18. L. de Moura, H. Ruel3, and M. Sorea. Bounded model cheekidgnduction: From refuta-
tion to verification. InProc. of CAV’03 volume 2725 oL NCS pages 14-26, 2003.

19. T. Henzinger. The theory of hybrid automataPhoc. of LICS'96 pages 278-292, 1996.

20. P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, &dJaler. Verification of timed
automata via satisfiability checking. Rroc. of FTRTFT'02volume 2469 oL NCS pages
225-244, 2002.

21

22.

23.

24.

25.

17

. J. Queille and J. Sifakis. Specification and verificatbbrroncurrent systems in CESAR.
In Proc. of the 5th International Symposium on Programmingl198lume 137 ofLNCS
pages 337-351, 1982.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safeferties using induction and a
SAT-solver. InProc. of FMCAD'0Q volume 1954 of NCS pages 108-125, 2000.

M. Sorea. Bounded model checking for timed autom&tectronic Notes in Theoretical
Computer Scien¢é8, 2002.

O. Strichman. Accelerating bounded model checking feftg@roperties. Formal Methods
in System Desigr24(1):5-24, 2004.

B. Wozna, A. Zbrzezny, and W. Penczek. Checking realityaproperties for timed au-
tomata via SAT Fundamenta Informatica&5(2):223-241, 2003.

