
Optimizing Bounded Model Checking for Linear
Hybrid Systems⋆

September 5, 2004

Erika Ábrahám1, Bernd Becker1, Felix Klaedtke1,2, and Martin Steffen3

1 Albert-Ludwigs-Universität Freiburg, Germany
2 ETH Zurich, Switzerland

3 Christian-Albrechts-Universität zu Kiel, Germany

Abstract. Bounded model checking (BMC) is an automatic verification method
that is based on a finite unfolding of the system’s transitionrelation. BMC has
been successfully applied, in particular, for discoveringbugs in digital system
design. Its success is based on the effectiveness of state-of-the-art satisfiability
solvers that are used to check for a finite unfolding whether aviolating state is
reachable. In this paper we improve the BMC approach for linear hybrid systems
based on lazy satisfiability solving. Our improvements follow two complemen-
tary directions. First, we optimize the formula representation of finite unfoldings
of the transition relations of linear hybrid systems, and second, we accelerate the
satisfiability checks by cumulating and generalizing data that is generated during
earlier satisfiability checks. Experimental results show that the presented tech-
niques accelerate the satisfiability checks significantly.

1 Introduction

Model checking is widely used for the verification of concurrent state systems, like,
e.g., finite state systems [21, 13] and timed automata [2]. One main reason for the ac-
ceptance of model checking is its push-button appeal. A major obstacle to its universal
applicability, however, is the inherent size of many real-world systems. This obstacle
is often called the state space explosion problem.Bounded model checking(BMC) [9]
has attracted attention as an alternative to model checking. The bounded model check-
ing problem starts from a more modest question: Does there exist a counterexample of
lengthk ∈ N refuting a stipulated propertyP? In particular, whenP is a safety prop-
erty, a counterexample is simply a finite run leading to the violation. WhetherP can be
violated ink steps is reduced to checking satisfiability of the formula

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬P (sk) , (1)

wheresi are state variables,I is a unary predicate describing the initial states, and
T is a binary predicate describing the transition relation. The boundk is successively
⋆ This work was partly supported by the German Research Council (DFG) as part of the Trans-

regional Collaborative Research Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS).

2

increased until either a counterexample is found or some limit is reached (e.g., an upper
bound onk or resource limitations).

BMC shares with model checking the push-button appeal. However, without fur-
ther extensions, BMC does not terminate for properties thatare fulfilled by the system.
While this seems to be a step back, BMC has practical relevance. For finite state sys-
tems, formula (1) corresponds to a propositional satisfiability problem that enables the
use of state-of-the-art SAT-solvers. Empirical evidence,e.g., in [10] and [14], shows that
BMC is often superior to model checking, in particular when the focus is on refuting a
property. Extensions for using the BMC approach also for verification are summarized
in [8].

The BMC approach for finite state systems cleanly extends to many classes of infi-
nite state systems [17]. For infinite state systems, formula(1) is a Boolean combination
of domain-specific constraints depending on the class of thesystems. Instead of a SAT-
solver we have to use a solver specific to that domain. For instance, BMC has been
extended and applied to timed automata as, e.g., in [20, 23, 6, 25]. The BMC approach
can be further extended to the more general class oflinear hybrid automata[1, 19]. For
linear hybrid automata, the domain-specific constraints are linear (in)equations, where
variables range over the reals. Prominent state-of-the-art solvers that can be used in the
BMC approach for linear hybrid systems are MathSAT [4], CVC Lite [7], and ICS [16].
All these solvers have in common that the satisfiability checks are donelazily. Roughly
speaking, this means that these solvers are based on a SAT-solver that calls on demand
solvers for conjunctions of the domain-specific constraints.

In this paper we improve the BMC approach for linear hybrid systems by acceler-
ating the satisfiability checks. Our improvements are motivated by a thorough inves-
tigation of checking satisfiability of formulas of the form (1), which describe in our
context finite runs of linear hybrid systems. First, we optimize the formula representa-
tion of finite runs. The optimized representation is tailored to lazy satisfiability solving.
Besides others, one point is to force alternation of the different types of transitions of
hybrid systems, namely discrete and time transitions. Second, we cumulate the conflicts
returned by the domain-specific solver during the lazy satisfiability check of (1). If (1)
is unsatisfiable, i.e., there is no counterexample of sizek, we generalize the returned
conflicts and learn them such that the domain-specific solverdoes not need to be called
again for similar conflicts in forthcoming satisfiability checks. The technique of learn-
ing domain-specific conflicts is more general in that it applies to the BMC approach for
other classes of infinite state systems, too.

Both kinds of optimizations reduce the demand-driven callsto the domain-specific
solver for conjunctions of linear (in)equations. Furthermore, they complement each
other in the sense that the optimized encoding leads to less conflicts that are general-
ized and learned. We extensively evaluated our techniques for a number of linear hybrid
systems. The outcome of our experiments is that the combination of both techniques
increases the boundk on the size of the runs by several magnitudes for which state-of-
the-art solvers are able to perform the satisfiability checks in a reasonable amount of
time and space.

We proceed as follows. In§2 we recapitulate the definition of linear hybrid automata
and the BMC approach for linear hybrid automata using lazy satisfiability solvers. In§3

3

GF ED

@A BC

off

− 3
10
≤ ẋ ≤ − 1

10

x ≥ 18

x<19→x:=x
//

GF ED

@A BC

on

1
10
≤ ẋ ≤ 1

5

x ≤ 22x>21→x:=x

oo

x=20
//

Fig. 1.Thermostat.

we optimize the encoding of finite runs and in§4 we introduce our learning technique.
Our experimental results are presented in§5. In §6 we discuss related work and finally,
in §7 we draw conclusions.

2 Bounded Model Checking for Linear Hybrid Systems

Before presenting our work, we first introduce linear hybridsystems and describe a
straightforward encoding of finite runs as Boolean combinations of (in)equations. Fur-
thermore, we discuss some details of state-of-the-art solvers for checking satisfiability
of Boolean combinations of linear (in)equations and pinpoint obstacles of these solvers
in the BMC approach for linear hybrid automata.

2.1 Hybrid Systems Background

Hybrid automata [1, 19] have been introduced in control engineering and in computer
science as a formal model for systems with both discrete and continuous components.

Hybrid automata are often given graphically like the one shown in Figure 1. This
automaton models a thermostat, which senses the temperaturex of a room and turns a
heater on and off. In locationoff the heater is off and the temperature falls according
to the flow condition− 3

10 ≤ ẋ ≤ − 1
10 . The location’s invariantx ≥ 18 assures that

the heater turns on at latest when the temperature reaches18 degrees. Analogously for
the locationon , where the heater is on. Control may move from locationoff to on if
the temperature is below19 degrees, and fromon to off if the temperature is above21
degrees. The temperaturex does not change by jumping fromoff to on or fromon to
off . Initially, the heater isoff and the temperature is20 degrees.

In the remainder of the paper we only consider the class of linear hybrid automata,
which can be described using first-order logic formulas over(R,+, <, 0, 1). Formally,
a linear hybrid automatonH is a tuple

(

L, V, (jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L, (init ℓ)ℓ∈L

)

,

whereL andV are finite nonempty sets, and(jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L,
(init ℓ)ℓ∈L are families of first-order logic formulas over the structure (R,+, <, 0, 1):

– L = {ℓ1, . . . , ℓm} is the set oflocationsof the system.
– V = {v1, . . . , vn} is the set ofcontinuous variablesof the system.

4

– (jumpℓ,ℓ′)ℓ,ℓ′∈L is an(L×L)-indexed family of formulas with free variables inV
and their primed versions. A formulajumpℓ,ℓ′(v1, . . . , vn, v

′
1, . . . , v

′
n) represents

the possiblejumpsfrom locationℓ to locationℓ′, wherev1, . . . , vn are the values
of the continuous variables before the jump andv′1, . . . , v

′
n are the values of the

continuous variables after the jump.
– (flow ℓ)ℓ∈L is anL-indexed family of formulas with free variables inV , their

primed versions, andt. A formula flow ℓ(v1, . . . , vn, t, v
′
1, . . . , v

′
n) represents the

flow of durationt ≥ 0 in locationℓ, where the values of the continuous variables
change fromv1, . . . , vn to v′1, . . . , v

′
n.

– (inv ℓ)ℓ∈L is anL-indexed family of formulas with free variables inV . A formula
inv ℓ(v1, . . . , vn) represents theinvariant in locationℓ. We require that all invariants
are convex sets.

– (init ℓ)ℓ∈L is anL-indexed family of formulas with free variables inV representing
the initial statesof the system.

For instance, the flow in locationon of the thermostat in Figure 1 can be described by
the formulaflowon(x, t, x′) = 10x′ − 10x ≥ t ∧ 5x′ − 5x ≤ t. The other components
of the thermostat can be described analogously. Since(R,+, <, 0, 1) admits quantifier
elimination, we assume without loss of generality that the formulas occurring in the
description of a linear hybrid automaton are quantifier-free.

Hybrid systems often consist of several hybrid automata that run in parallel and
interact with each other. The parallel composition of hybrid automata requires an ad-
ditional event set for synchronization purposes. The parallel composition is standard
but technical and we omit it here. For simplicity and due to space limitations, in the
theoretical part of the paper we restrict ourselves to a single linear hybrid automaton.

Encoding Linear Hybrid Automata In the remainder of this subsection, letH =
(

L, V, (jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L, (init ℓ)ℓ∈L

)

be a linear hybrid automa-
ton withL = {0, . . . ,m} andV = {v1, . . . , vn}, for somem,n ∈ N. For readability,
we write tuples in boldface, i.e.,v abbreviates(v1, . . . , vn), and we introduce state
variabless = (at ,v), whereat ranges over the locations inL andv = (v1, . . . , vn).

A jump of the automatonH is described by the formula

J(s, s′) =
∨

ℓ,ℓ′∈L

(

at = ℓ ∧ at ′ = ℓ′ ∧ jumpℓ,ℓ′(v,v
′) ∧ inv ℓ′(v

′)
)

and a flow ofH is described by the formula

F (s, t, s′) =
∨

ℓ∈L

(

at = ℓ ∧ at ′ = ℓ ∧ t ≥ 0 ∧ flow ℓ(v, t,v
′) ∧ inv ℓ(v

′)
)

,

wheres = (at ,v) ands′ = (at ′,v′) are state variables, andt is a real-valued variable
representing the duration of the flow. Note that we check the invariant of a location
after time unitst have passed inF (s, t, s′) and when we enter the location ofs′ in a
jumpJ(s, s′). Since we assume that invariants are convex sets, we do not have to check
at every time point between0 andt of a flow whether the invariant in the location is
satisfied. Fork ∈ N, we recursively define the formulaπk by

π0(s0) =
∨

ℓ∈L

(

at0 = ℓ ∧ inv ℓ(v0)
)

5

Formula encoding k = 5 k = 10 k = 15
with optimizations time (secs.)# expl. time (secs.)# expl. time (secs.)# expl.

ϕk 0.5 95 18.0 1047 234.5 6462

ϕk + §3.1 0.2 21 3.7 349 46.8 1922

ϕk + §3.1 +§3.2 0.2 24 2.8 242 35.5 1741

ψ2k+1 + §3.1 +§3.2 0.2 4 1.8 53 3.6 109

ψ1, . . . , ψ2k+1 + §3.1 +§3.2 0.7 14 5.1 144 14.0 396

ψtau
1,2k+1 + §3.1 +§3.2 0.4 14 0.9 21 6.8 169

Table 1.Experimental results for the railroad crossing example.

and fork > 0,

πk(s0, . . . , sk, t1, . . . , tk) =

πk−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧
(

J(sk−1, sk) ∨ F (sk−1, tk, sk)
)

,

wheres0, . . . , sk are state variables andt1, . . . , tk are real-valued variables.

BMC for Linear Hybrid Automata With the formulasπk at hand, it is straightforward
to obtain a semi-decision procedure for checking whether a linear hybrid automaton
violates a state property given by the formulasafe(s). Fork ∈ N, we define

ϕk(s0, . . . , sk, t1, . . . , tk) =
(
∨

ℓ∈L(at0 = ℓ ∧ init ℓ(v0))
)

∧ πk(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) .

Starting withk = 0 and iteratively increasingk ∈ N, we check whetherϕk is satisfiable.
The algorithm terminates ifϕk is satisfiable, i.e., an unsafe state is reachable from an
initial state ink steps.

The effectiveness of the algorithm depends on the effectiveness of checking whether
theϕks are satisfiable. Experimental results show that the satisfiability checks ofϕk of-
ten become impractical even for smallks and rather small linear hybrid systems, like
the railroad crossing example [3], which consists of three linear hybrid automata run-
ning in parallel (two of them have3 locations and one automaton has4 locations). The
second row of Table 1 shows running times for different bounds k of the satisfiability
checks with the state-of-the-art solver ICS [17]. For instance, the satisfiability check for
ϕ15 already takes almost4 mins. In order to pinpoint reasons for the bad running times
of the satisfiability checks, we first have to give some ICS details.

2.2 Satisfiability Checking Details and Performance Issues

We first recall details oflazy theorem proving[17]. Lazy theorem proving is built on
top of a SAT-solver for propositional logic that lazily interacts with a solver for a spe-
cific domain. In our context the solver for the specific domainis a solver that checks
satisfiability of conjunctions of linear (in)equations over the reals.

Assume thatϕ is a Boolean combination of the atomic formulasα1, . . . , αn. We
define the mappingabs(αi) = bi, wherebi is a fresh Boolean variable. The mapping
abs is homomorphically extended to Boolean combinations of (in)equations. We call

6

proceduresat(ϕ)
β ← abs(ϕ)
loop
ν ← SAT-Solver(β)
if ν = unsatisfiable then return unsatisfiable

ψ ←
∧

ν(bi)=true
αi ∧

∧

ν(bi)=false
¬αi

if Solver(ψ) 6= unsatisfiable then return satisfiable

β ← β ∧ ¬abs(explain(ψ))
end loop

Fig. 2. The lazy theorem proving algorithm for checking satisfiability of a Boolean combination
of linear (in)equations.

abs(ϕ) the Boolean abstractionof the formulaϕ. The pseudo-code of the lazy theo-
rem proving algorithm from [17, 15] is shown in Figure 2. We start with the Boolean
abstractionβ = abs(ϕ). In each loop, the SAT-solver suggests a candidate assignment
ν : {b1, . . . , bn} → {true, false} satisfyingβ. If the conjunctionψ =

∧

ν(bi)=true αi ∧
∧

ν(bi)=false ¬αi is satisfiable, thenϕ is satisfiable. Otherwise, we extendβ to β ∧

¬abs(explain(ψ)), whereexplain(ψ) is an unsatisfiable subformula ofψ, i.e., a con-
junction of some atomic formulas or their negations occurring inψ that is responsible
for the unsatisfiability ofψ. We call the formulaexplain(ψ) anexplanation. A simple
implementation ofexplain is the identity function, i.e., it returnsψ. Using this simple
implementation, there is one loop iteration for each satisfying assignment ofabs(ϕ).
General techniques for reducing the number of iterations, and in particular more so-
phisticated implementations of theexplainfunction are described in [17, 15].

Less lazy variants of the lazy theorem proving algorithm, like in CVC Lite [7] and
ICS [17] consist of a tighter integration of a SAT-solver andthe satisfiability checks of a
solver for conjunctions of linear (in)equations. In ICS, a truth assignment to a Boolean
variable by the SAT-solver adds the corresponding (in)equation to the conjunction of
(in)equations for which the corresponding Boolean variables are already assigned to
some truth value. Afrequency parameter, for which the user can provide a thresh-
old, determines after how many truth assignments the SAT-solver checks whether the
conjunction of (in)equations is still satisfiable, i.e., the SAT-solver calls the solver for
conjunctions of (in)equations. An inconsistency triggersbacktracking in the search for
Boolean variable assignments and is propagated to the SAT-solver by adding a clause
to the formula explaining the inconsistency using theexplain function.

Performance Issues The lazy theorem proving algorithm in Figure 2 scales poorly
for checking satisfiability of the formulasϕk. The reason is the large number of loop
iterations: for most examples the number of iterations grows exponentially ink. The
following examples illustrate this obstacle more clearly.

Example 1.Consider the following linear hybrid automaton:

GF ED

@A BC

ℓ0
ẋ = 1
true

true→x:=x+1AFBECD
bb

x=0
//

7

Assume that we want to check whether we can reach ink steps a state withx < 0.
Clearly, a run withx having the initial value0 and that increasesx in each step cannot
reach a state withx having a negative value. However, when we only look at a finite
unfolding of the transition relation, we must be aware of allchanges made on the value
of x in order to check that the value ofx is not negative afterk steps. Independently of
the implementation of theexplain function, for checking unsatisfiability ofϕk with the
lazy theorem proving algorithm, the number of loop iterations is at least2k. The reason
for this is the following.

For each of the2k possible sequences ofk flows and jumps there is a corresponding
satisfying assignment ofabs(ϕk) assigningtrue to the Boolean variable forxk < 0
and to the Boolean variables whose (in)equations describe the initial state and the tran-
sitions in the sequence. Without loss of generality, the truth values of the other Boolean
variablesabs(ϕk) need not to be considered. For a satisfying assignment ofabs(ϕk)
the explain function has to return a conjunction containing at least the(in)equations
in whichxi occurs and for which the Boolean variable is assigned totrue. Since two
such conjunctions of (in)equations are distinct for assignments corresponding to dif-
ferent sequences ofk flows and jumps, we have to check at least2k conjunctions of
(in)equations.

The less lazy variant of the lazy theorem proving algorithm is faced with a similar
problem: the number of satisfiability checks for conjunctions of (in)equations corre-
sponding to partial truth assignments of the Boolean variables in the Boolean abstrac-
tion may grow exponentially with respect to the boundk. For the railroad crossing
example, this exponential growth is illustrated by the second row of Table 1 that lists
the number of generated explanations for different boundsk.

Experimental evaluations [17] have shown that the less lazyvariant—as, e.g., im-
plemented in ICS—is superior to the lazy theorem proving algorithm in Figure 2. How-
ever, in our experiments we observed that if the Boolean abstraction of a formula has
few satisfying assignments then the lazy theorem proving algorithm usually performs
better than the less lazy variant of it, since the solver for conjunctions of (in)equations
has to be called less often. In§4, we will exploit this observation by switching from
the less lazy variant to the lazy theorem proving algorithm whenever it is likely that the
Boolean abstraction has few satisfying assignments.

3 Optimizing the Encoding

For improving the BMC approach for linear hybrid automata, we optimize the formula
encoding of finite runs. Our optimized encoding is tailored to the lazy theorem proving
algorithms. In order to give an impression of the impact of the different optimizations,
we list in Table 1 the improvements for the railroad crossingexample. We obtain similar
improvements for other examples of hybrid automata (further experiments are in§5).

Let H =
(

L, V, (jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L, (init ℓ)ℓ∈L

)

be a linear
hybrid automaton withV = {v1, . . . , vn}.

8

3.1 Using Boolean Variables

The lazy theorem proving algorithm in Figure 2 and its variants can be easily extended
such that they also handle Boolean combinations of (in)equations and Boolean vari-
ables. Since the location setL is finite, we can use⌈lg |L|⌉ Boolean variables for each
0 ≤ i ≤ k to encode the formulasat i = ℓ with ℓ ∈ L in ϕk. On the contrary, the algo-
rithm in Figure 2 replaces (in)equations by fresh Boolean variables; for each0 ≤ i ≤ k,
this requires|L| Boolean variables for the atomic formulasat i = ℓ with ℓ ∈ L.

The Boolean encoding of locations has two advantages over the encoding by equa-
tions of the format i = ℓ: The first advantage is that we need exponentially less Boolean
variables. The more important advantage is the following. Asatisfying assignment of
abs(ϕk) may assign the corresponding Boolean variables for the equationsat i = ℓ and
at i = ℓ′ with ℓ 6= ℓ′ both totrue. Such a conflict is not discovered until we call the
solver for conjunctions of (in)equations. With Boolean location encoding such conflicts
are already discovered by the SAT-solver. This results in less interaction of the SAT-
solver and the solver for conjunctions of (in)equations. Inparticular, note that when us-
ing the Boolean encoding of the locations, the assignments returned by the SAT-solver
always describe a path in the location graph of the hybrid automaton.

Analogously to the Boolean encoding of locations we can use Boolean variables for
all system variables with a finite domain. In order to keep formulas readable, we still
write formulas likeat i = ℓ as abbreviation for their Boolean encodings.

3.2 Excluding Bad and Initial State Loops

Another optimization is to require that we do not visit an initial state twice and only the
last state violates the specification. This means, we add toϕk the two conjuncts

∧

0<i≤k

∧

ℓ∈L ¬
(

at i = ℓ ∧ init ℓ(vi)
)

and
∧

0≤i<k safe(si) .

This optimization has already been proposed in [22] for finite state systems.
It is worth mentioning that the speed-up due to this optimization heavily depends on

the underlying linear hybrid automaton and the specification: For specifications contain-
ing Boolean variables (or Boolean encodings of locations),the number of assignments
for the Boolean abstraction can be reduced this way. On the other hand, if adding the
above conjuncts introduces (in)equations that do not occurin ϕk, then it is less likely
that this optimization improves the running times of the satisfiability checks. However,
it does not remarkably slow them down in our examples.

3.3 Alternating Flows and Jumps

Since two successive flows of durationst andt′ can always be represented by a single
flow of durationt + t′, we can require that each flow is followed by a jump. This
restriction excludes irrelevant computations, and thus leads to a reduced number of
solutions for the Boolean abstractions of the formulasϕk. Excluding successive flows
has already been proposed in [6].

Below we define a formula that describes computations with alternating flows and
jumps, thereby excluding successive time steps without anyoverhead. Note that we also

9

exclude runs with successive jumps. However, successive jumps can be expressed us-
ing flows of duration0. Each computation can be rewritten to this form with alternating
flows and jumps. The advantage of alternating flows and jumps over excluding succes-
sive flows is discussed in Example 1. Fork ∈ N, we defineψk similar toϕk whereπk

is replaced byπ′
k:

ψk(s0, . . . , sk, t1, . . . , tk) =
(
∨

ℓ∈L(at0 = ℓ ∧ init ℓ(v0))
)

∧ π′
k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

whereπ′
0(s0) = π0(s0), and fork > 0,

π′
k(s0, . . . , sk, t1, . . . , tk) =

π′
k−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧

{

J(sk−1, sk) if k is even,

F (sk−1, tk, sk) otherwise.

Using the above definition for searching iteratively for counterexamples, it suffices
to start withk = 1 and to increasek in each iteration by2: We start with a run con-
sisting of a single flow. In each iteration we extend the runs under consideration with a
jump that is followed by a flow. Since flows may have the duration 0, there is a coun-
terexample containingk jumps iffψ2k+1 is satisfiable.

Recall thatϕk is satisfiable iff there is a counterexample of lengthk. Now, if there
is a counterexample of length less than or equal tok then there is also a counterexample
containing at mostk jumps. However, not all runs with at mostk jumps can be repre-
sented by a run of length less than or equal tok. Consequently, the unsatisfiability of
ψ1, ψ3, . . . , ψ2k+1 implies the unsatisfiability ofϕ0, ϕ1, . . . , ϕk. The converse is not
true.

The formulaψ2k has twice as many variables asϕk but the number of distinct
(in)equations is approximately the same. Note that for the satisfiability check the num-
ber of distinct (in)equations is relevant and not the numberof variables. That means,
usingψ2k+1 instead ofϕk has the advantage that with no overhead the firstk iterations
check all runs of length less than or equal to2k+ 1 with at mostk jumps in addition to
the runs of length less than or equal tok, as it is also done byϕk.

Moreover, the satisfiability check forψ2k+1 is in most cases faster than the sat-
isfiability check forϕk (see Table 1 and the experiments in§5). The reason is that
the number of calls of the solver for conjunctions of (in)equations in the lazy theorem
proving algorithms often reduces significantly.

Remark 1.When excluding successive flows we still have the choice of doing a jump or
a flow after we have done a jump. This choice is eliminated whenwe alternate between
flows and jump. In practice, eliminating this choice pays off. For instance, for the hybrid
automaton in Example 1, for everyk ≥ 0 there is exactly one satisfying assignment for
the Boolean abstraction ofψ2k+1when flows and jumps alternate. Therefore, we have to
check only one conjunction of (in)equations. In contrast, by excluding successive flows
we would have to cope with exponentially many assignments.

Note that applying the optimization in§3.2 together with the encoding using alter-
nating flows and jumps, we must allow not only the first state tobe initial but the first

10

two states, since there are runs which can be described only with a first flow having the
duration0. Similarly, we must allow the last two states to violate the specification.

3.4 Introducing τ -transitions

The BMC approach analyzes in each iteration runs of a certainlength. That means, in
order to show all runs of a length less than or equal tok to be safe, we must check
the satisfiability ofk + 1 formulas. In this section we develop a method to search for
counterexamples reachable by runs of length less than or equal to k in a single satis-
fiability check. To do so, we introduce jumps that do nothing,so-calledτ -transitions.
Recall that flows may have the duration0. We require that after aτ -transition only fur-
therτ -transitions or flows of duration0 are possible. Formally, fork, k′ ∈ N we define
ψtau

k′,k similar toψk, whereπ′
k is replaced byπ′′

k′,k:

ψtau
k′,k(s0, . . . , sk, t1, . . . , tk) =

(
∨

ℓ∈L(at0 = ℓ ∧ init ℓ(v0))
)

∧ π′′
k′,k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

whereπ′′
k′,k describes computations of lengthk allowingτ -transitions to occur after the

first k′ steps only. We defineπ′′
k′,k = π′

k for k′ ≥ k, and fork′ < k we define

π′′
k′,k(s0, . . . , sk, t1, . . . , tk)= π′′

k′,k−1(s0, . . . , sk−1, t1, . . . , tk−1)∧
{

(

(¬tauk−2 ∧ J(sk−1, sk)) ∨ tauk

)

if k is even,

F (sk−1, tk, sk) ∧ (tauk−1 → tk = 0) otherwise

wheretauk is a shortcut forfalse if k ≤ 0 andsk−1 = sk otherwise.
Assume that we already know that there are no counterexamples of length less than

or equal tok′, and we want to check for somek > k′ whether we can reach a bad state
in at mostk steps. Instead of checking satisfiability of the formulasψ2k′+3, . . . , ψ2k+1

orψtau
1,2k+1 it suffices to check satisfiability ofψtau

2k′+3,2k+1.
The formulaψtau

k′,k allows us more flexibility in the BMC approach with hardly no
overhead by increasing the length of the runs. The main advantage of usingψtau

k′,k is that
we only have to call the solver once, and guide the solver not to do unnecessary work,
i.e., we force the solver not to look for counterexamples that reach a bad state in less
thank′ steps.

For the railroad crossing example, the last two rows of Table1 compare the sums
of running times forψ2k+1, wherek ranges from0–5, 0–10, and0–15 with the running
times ofψtau

1,2k+1 for k ∈ {5, 10, 15}.

4 Learning Explanations

The bottleneck of the lazy theorem proving algorithm and itsless lazy variants for the
satisfiability check of a Boolean combinationϕ of (in)equations is the large number of

11

calls to the solver for conjunctions of (in)equations. In the BMC approach, the num-
ber of calls usually grows exponentially with respect to theboundk. In this section we
present a simple but effective method for reducing the callsof the solver for conjunc-
tions of (in)equations.

The idea is that we make use of the knowledge of the unsatisfiability of the ex-
planations that were generated during the previous satisfiability checks of the BMC
algorithm. Assume that there is no counterexample of lengthless thank, i.e., the for-
mulasψ1, . . . , ψ2k−1 are unsatisfiable. Moreover, assume thatγ1, . . . , γn are the ex-
planations that are generated during the satisfiability checks forψ1, . . . , ψ2k−1. Since
the γis are unsatisfiable conjunctions of (in)equations, we can check satisfiability of
ψ2k+1 ∧

(
∧

1≤i≤n ¬γi

)

instead ofψ2k+1 in the next iteration of the BMC algorithm.
Intuitively, this means that we “learn” for the next iteration the unsatisfiability of the
explanationsγ1, . . . , γn.

In practice it turned out that just adding explanations fromthe previous satisfia-
bility checks does not result in a satisfying speed-up. However, we can do better. In
order to describe our method of exploiting the knowledge of the unsatisfiability of the
explanations, we need the following definitions.

Definitions Let γ =
∧

1≤i≤m αi andγ′ =
∧

1≤i≤m′ α′
i be explanations. The expla-

nationγ (syntactically) subsumesγ′ if for every 1 ≤ i ≤ m there is a1 ≤ j ≤ m′

such thatαi andα′
j are syntactically equal. The explanationγ is minimal if for ev-

ery 1 ≤ j ≤ m, the conjunction
∧

1≤i≤m andi6=j αi is satisfiable. For an integers,
shift(γ, s) denotes the formulaγ where each variable indexi occurring inγ is replaced
by i+ s. Note that shifting the indices does not change whether a formula is satisfiable
or not. Finally, the set of all variations ofγ due to index shifting such that all indices
are between0 andk is defined as

SHIFT (γ, k) =
{

shift(γ, s)
∣

∣ − min(γ) ≤ s ≤ k − max(γ) ands is even
}

,

wheremin(γ) denotes the smallest index occurring inγ andmax(γ) denotes the largest
index occurring inγ. Observe that we always shift indices by an even integer. An
(in)equation in an explanationγ describing a flow rarely describes also a jump. Since
flows and jumps alternate in the formulaψ2k−1, it is unlikely that for an odds, the
additional conjunctshift(γ, s) prunes the search space in the satisfiability check of
ψ2k+1 ∧ ¬shift(γ, s).

Learning Method The learned explanations should not contain irrelevant (in)equa-
tions. Therefore we first minimize every explanation that isgenerated during a satisfia-
bility check. We do minimization greedily: We eliminate thefirst (in)equationα in an
explanationγ if γ withoutα is still unsatisfiable; otherwise we do not removeα. We
proceed successively with the other (in)equations inγ in the same way. After minimiz-
ing an explanationγ we delete all other explanations that are subsumed byγ. Finally,
using shifting we generalize all the remaining explanations for the next BMC iteration.
In thekth BMC iteration we check satisfiability of the formula

ψ
learning
2k+1 = ψ2k+1 ∧

(
∧

γ∈E

∧

γ′∈SHIFT (γ,2k+1) ¬γ
′
)

,

12

whereE is the set of all minimized explanations that occurred in thefirst k−1 iterations
and that are not subsumed by other explanations.

We point out that with the additional conjunct
(
∧

γ∈E

∧

γ′∈SHIFT (γ,2k+1) ¬γ
′
)

we
do not only learn explanations that have been generated during earlier satisfiability
checks, but due to index shifting we also apply them to the whole length of compu-
tations. Our case studies have shown that the same conflicts occur in different iterations
with shifted indices, i.e., at another part of the computation sequence.

Due to our learning method, the Boolean abstractions of the formulasψlearning
2k+1

often have very few satisfying assignments. For such formulas it is often more efficient
to use the lazy theorem proving algorithm than the less lazy variant of it, since the solver
for conjunctions of (in)equations has to be called less often. We pursue the policy that
if in the last two iterations there are less than a threshold (we use50) of explanations
then we assign a large value to the frequency parameter (see§2.2) of ICS, i.e., ICS
switches to a “very” lazy variant of the lazy theorem provingalgorithm. The running
times heavily depend on this threshold.

5 Experimental Results

We carried out tests for evaluating the BMC approach for linear hybrid systems with the
different encodings and techniques described in§3 and§4. Our test suite4 consists of
standard examples, like, e.g., examples that come with the HyTech tool and the Bakery
protocol5. All experiments were performed on a SUN Blade1000 with 8 Gbytes of main
memory and two900Mhz UltraSparc III+ processors; each one with an8 Mbyte cache.
We used ICS (version 2.0b) [17] for checking satisfiability of the formulas in the BMC
approach. The reason for us to use ICS was that in most cases ICS behaves at least as
good as other state-of-the-art solvers [16]. We expect similar running times with other
state-of-the-art solvers, like e.g., CVC Lite [7], since they use similar techniques as
described in§2.2 for checking satisfiability of Boolean combinations of (in)equations.

We report on experimental results for the following three different encodings of
finite runs: (A) thenaiveencoding as described in§2.1; (B) theoptimizedencoding as
described in§3.1–§3.3; (C) the optimized encoding as in (B) with additionallearning
of explanations as described in§4. Table 2 lists for each example the maximal number
of BMC iterations for which every satisfiability check couldbe performed within a time
limit of 200 secs.

Additionally, we recorded the running times for each iteration and the numbers of
explanations that are generated during the satisfiability checks. In the following, we
describe the outcome of our experiments separately.

Running Times Figure 3 shows the running times for the encodings (A), (B), and (C)
for some of our examples withk ranging from0 to 200.

4 A detailed description of our test suite and the experimental results is available atwww.
informatik.uni-freiburg.de/˜eab/hybridbmc-experimen ts.ps .

5 The Bakery protocol is not a hybrid system but a discrete infinite state system. Our techniques
can also be used for the BMC approach of such systems.

13

Example Last iteration below200 secs. of CPU time
naive optimized optimized+learning

Thermostat 70 > 1500 > 1500

Water-level monitor 39 > 1500 > 1500

Railroad crossing 14 52 872

Extended railroad crossing 10 12 80

Fischer’s protocol (2 processes) 10 15 1254

Fischer’s protocol (3 processes) 9 14 31

Bakery protocol (2 processes) 10 45 742

Nuclear reactor 20 82 > 1500

Audio-control protocol 20 62 357

Table 2.Maximal number of BMC iterationsk.

Checking satisfiability of the formulasϕk becomes impractical even for smallks.
For example, the satisfiability check for the railroad crossing example withk = 15
needs more than230 secs. of CPU time. Although the optimization of the representa-
tion with alternating flows and jumps leads to a reduction of the running times, check-
ing satisfiability ofψ2k+1 is also limited to rather smallks. For the railroad crossing
example each satisfiability check fork < 53 needs less than200 secs.; fork = 53 the
satisfiability check exceeds our time limit of200 secs. The technique of learning ex-
planations reduces the running times significantly. More importantly, the running times
of satisfiability checks often scale much better for our examples. For instance, for the
railroad crossing example each satisfiability check fork ≤ 200 is under11 secs. The
running times for computing the set of explanations that areadded to the formula are
not included. For the railroad crossing example, the sum of CPU times that ICS needs
for the explanation minimization amounts to15 secs. in the first12 iterations; there are
no explanations generated in later iterations. The reason for not including the times for
minimizing explanations and the subsumption checks is twofold: First, we are interested
in the speed-up of the satisfiability check that is due to the learning of explanations. Sec-
ond, the implementation of the minimization and subsumption check is currently rather
naive. For instance, we call ICS for each minimization step.

Number of Explanations Additionally to the running times, we also recorded the
numbers of explanations that are generated during the satisfiability checks. The run-
ning times strongly correlate with the numbers of explanations. A detailed statistics on
the number of explanations for the railroad crossing example is listed in Table 3. We
obtained similar numbers for the other examples.

The second and third column in Table 3 list the numbers of explanations generated
during the satisfiability checks ofϕk and ofψ2k+1 with the optimizations of§3.1–
§3.2, resp., for some differentks. The optimizations significantly reduce the number of
generated explanations. Further reduction can be reached by learning explanations, as
illustrated in the fourth column. Only a few explanations (column5) are left over after
minimization and removing subsumed explanations. The sizes of the explanations, i.e.,
the numbers of (in)equations in the explanations (column6) are reduced by minimiza-
tion. Column7 shows the mean sizes of the minimized explanations that remain after

14

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Railroad crossing

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Extended railroad crossing

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Fischer’s protocol (2 processes)

naive
optimized

optimized+learning

 0

 50

 100

 150

 200

 0 50 100 150 200

C
P

U
 ti

m
e

(s
ec

s.
)

k

Audio-control protocol

naive
optimized

optimized+learning

Fig. 3.Running times for the satisfiability checks for the naive encoding, the optimized encoding,
and the optimized encoding with learning explanations.

subsumption. These sizes are often moderate in comparison to the boundk. For the rail-
road crossing example with optimization and learning explanations, ICS only generates
explanations fork ∈ {0, . . . , 12}.

6 Related Work

BMC has been extended to verify properties for finite state systems [22] by introducing
termination conditions that are again checked by a SAT-solver. A generalization and
extension of these methods to infinite state systems is presented in [18]. We have also
applied our presented optimizations for checking termination conditions. We obtained
similar improvements as for the satisfiability checks of thecounterexample search.6

A complementary method of learning conflicts discovered in previous satisfiability
checks is described in [24]. The conflicts that are learned bythe two methods originate
from different kinds of inconsistencies. The method in [24]learns conflicts that are
discovered by the SAT-solver and our method learns conflictsthat are discovered by the
domain-specific solver.

Our work is in the line of the works by Audemard et. al. [6, 5] and by Sorea et. al. [23,
17] on the BMC approach for timed systems using lazy satisfiability solvers for Boolean
combinations of (in)equations. The papers [6] and [23] extend the BMC approach to

6 Due to space limitations we omit a description on checking termination conditions. De-
tails and the experimental results are atwww.informatik.uni-freiburg.de/˜eab/
hybridbmc-experiments.ps.

15

naive optimized optimized+learning
expl. # expl. # expl. # expl. mean expl. size mean expl. size

k after subsumption check after minimization

0 1 1 1 1 3 2

3 31 3 1 1 25 18

6 179 12 0 0 0 0

9 651 40 27 6 19 8

12 2500 20 9 2 21 13

15 6462 109 0 0 0 0

Table 3.Number of explanations that are generated during the satisfiability checks for the railroad
crossing example.

timed automata for properties written as LTL formulas. For simplicity, we only consid-
ered state properties. The paper [6] proposes several optimizations for encoding finite
runs of timed systems. For instance, Audemard et. al. avoid successive flows and en-
code some form of symmetry reduction. The symmetry reduction only applies to certain
timed systems, e.g., for systems consisting of identical components. As explained in Re-
mark 1 in§3.3, alternating between flows and jumps is superior to excluding successive
flows. Alternating between flows and jumps also appears in [23] with a different moti-
vation. Sorea argues that alternation guarantees nonzenoness and often leads to smaller
completeness thresholds for timed automata. In contrast, our motivation is that alter-
nating between flows and jumps accelerates lazy satisfiability solving. We show that
alternation significantly speeds up the satisfiability checks. The papers [5, 17] extend
and generalize the work in [6, 23].

In [20] bounded-length verification problems for timed automata are translated into
formulas in difference logic. Another approach of BMC for timed automata is presented
in [25]. In contrast to the work by Audemard et. al., Sorea et.al., and ours, the core of
their work is a reduction from the BMC problem for timed automata to a SAT problem
exploiting the region graph construction for timed automata.

7 Conclusion

In this paper we presented complementary optimizations forimproving the BMC ap-
proach for linear hybrid automata. Our experimental results show that these optimiza-
tions accelerate the satisfiability checking of a solver based on lazy theorem proving.
The speed-up stems from reducing the interactions of the used SAT-solver and the
domain-specific solver. Our first optimization tunes the encodings of finite runs of lin-
ear hybrid automata and the second optimization speeds up the satisfiability checks by
learning generalized conflicts. The learning technique canalso be used in the BMC
approach for other classes of infinite state systems.

It remains as future work to develop a tighter integration ofgeneralized conflict
learning and satisfiability solving. This includes the development of methods that de-
termine the usefulness of conflicts in later satisfiability checks and data-structures that
efficiently store generalized conflicts with fast look-ups.Moreover, we want to develop
a more dynamic adjustment of the “laziness” in the satisfiability checks.

16

AcknowledgementsWe thank Christian Herde and Martin Fränzle for the fruitful dis-
cussions, and Leonardo de Moura and Harald Rueß for answering our numerous ICS-
related questions.

References

1. R. Alur, C. Courcoubetis, T. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and
S. Yovine. The algorithmic analysis of hybrid systems.Theor. Comput. Sci., 138:3–34,
1995.

2. R. Alur and D. Dill. A theory of timed automata.Theor. Comput. Sci., 126:183–235, 1994.
3. R. Alur, T. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.

IEEE Transactions on Software Engineering, 22:181–201, 1996.
4. G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani. A SAT based ap-

proach for solving formulas over boolean and linear mathematical propositions. In CADE’02
[11], pages 195–210.

5. G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial hybrid sys-
tems with MathSAT. InProc. of BMC’04, 2004.

6. G. Audemard, A. Cimatti, A. Korniłowicz, and R. Sebastiani. Bounded model checking for
timed systems. InProc. of FORTE’02, volume 2529 ofLNCS, pages 243–259, 2002.

7. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating validity
checker. In CAV’04 [12], pages 515–518.

8. A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded model checking.Ad-
vances in Computers, 58, 2003.

9. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic modelchecking without BDDs. In
Proc. of TACAS’99, volume 1579 ofLNCS, pages 193–207, 1999.

10. A. Biere, E. Clarke, R. Raimi, and Y. Zhu. Verifying safety properties of a PowerPCTM

microprocessor using symbolic model checking without BDDs. In Proc. of CAV’99, volume
1633 ofLNCS, pages 60–71, 1999.

11. Proc. of CADE’02, volume 2392 ofLNAI, 2002.
12. Proc. of CAV’04, volume 3114 ofLNCS, 2004.
13. E. Clarke and E. Emerson. Design and synthesis of synchronisation skeletons using branch-

ing time temporal logic specifications. InProc. of the Workshop on Logic of Programs 1981,
volume 131 ofLNCS, pages 244–263, 1982.

14. F. Copty, L. Fix, R. Fraer, E. Guinchiglia, G. Kamhi, and M. Vardi. Benefits of bounded
model checking in an industrial setting. InProc. of CAV’01, volume 2102 ofLNCS, pages
436–453, 2001.

15. L. de Moura and H. Rueß. Lemmas on demand for satisfiability solvers. InProc. of SAT’02,
pages 244–251, 2002.

16. L. de Moura and H. Rueß. An experimental evaluation of ground decision procedures. In
CAV’04 [12], pages 162–174.

17. L. de Moura, H. Rueß, and M. Sorea. Lazy theorem proving for bounded model checking
over infinite domains. In CADE’02 [11], pages 438–455.

18. L. de Moura, H. Rueß, and M. Sorea. Bounded model checkingand induction: From refuta-
tion to verification. InProc. of CAV’03, volume 2725 ofLNCS, pages 14–26, 2003.

19. T. Henzinger. The theory of hybrid automata. InProc. of LICS’96, pages 278–292, 1996.
20. P. Niebert, M. Mahfoudh, E. Asarin, M. Bozga, N. Jain, andO. Maler. Verification of timed

automata via satisfiability checking. InProc. of FTRTFT’02, volume 2469 ofLNCS, pages
225–244, 2002.

17

21. J. Queille and J. Sifakis. Specification and verificationof concurrent systems in CESAR.
In Proc. of the 5th International Symposium on Programming 1981, volume 137 ofLNCS,
pages 337–351, 1982.

22. M. Sheeran, S. Singh, and G. Stalmårck. Checking safetyproperties using induction and a
SAT-solver. InProc. of FMCAD’00, volume 1954 ofLNCS, pages 108–125, 2000.

23. M. Sorea. Bounded model checking for timed automata.Electronic Notes in Theoretical
Computer Science, 68, 2002.

24. O. Strichman. Accelerating bounded model checking of safety properties.Formal Methods
in System Design, 24(1):5–24, 2004.

25. B. Woźna, A. Zbrzezny, and W. Penczek. Checking reachability properties for timed au-
tomata via SAT.Fundamenta Informaticae, 55(2):223–241, 2003.

