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Abstract. Bounded model checking (BMC) is an automatic verification method
that is based on finitely unfolding the system’s transition relation. BMC has been
successfully applied, in particular, for discovering bugs in digital system design.
Its success is based on the effectiveness of satisfiability solvers that are used to
check for a finite unfolding whether a violating state is reachable. In this paper
we improve the BMC approach for linear hybrid systems. Our improvements are
tailored to lazy satisfiability solving and follow two complementary directions.
First, we optimize the formula representation of the finite unfoldings of the tran-
sition relations of linear hybrid systems, and second, we accelerate the satisfiabil-
ity checks by accumulating and generalizing data that is generated during earlier
satisfiability checks. Experimental results show that the presented techniques ac-
celerate the satisfiability checks significantly.

1 Introduction

Model checking is widely used for the verification of concurrent state systems, like
finite state systems [20, 12] and timed automata [3]. One main reason for the accep-
tance of model checking is its push-button appeal. A major obstacle to its universal
applicability, however, is the inherent size of many real-world systems. This obstacle is
often called the state space explosion problem. Bounded model checking (BMC) [10]
has attracted attention as an alternative to model checking. The bounded model check-
ing problem starts from a more modest question: Does there exist a counterexample of
length k ∈ N refuting a stipulated property P ? In particular, when P is a safety prop-
erty, a counterexample is simply a finite run leading to the violation. Whether P can be
violated in k steps is reduced to checking satisfiability of the formula

I(s0) ∧ T (s0, s1) ∧ . . . ∧ T (sk−1, sk) ∧ ¬P (sk) , (1)

where si are state variables, I is a unary predicate describing the initial states, and
T is a binary predicate describing the transition relation. The bound k is successively
increased until either a counterexample is found or some limit is reached (e.g., an upper
bound on k or resource limitations).
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BMC shares with model checking its push-button appeal. However, without fur-
ther extensions, BMC does not terminate for properties that are fulfilled by the system.
While this seems to be a step backwards, BMC has practical relevance. For finite state
systems, the formula (1) corresponds to a propositional satisfiability problem that en-
ables the use of state-of-the-art SAT-solvers. Empirical evidence, e.g., in [11] and [13],
shows that BMC is often superior to model checking, in particular when the focus is
on refuting a property. Extensions for using the BMC approach also for verification are
summarized in [9].

The BMC approach for finite state systems cleanly extends to many classes of infi-
nite state systems [16]. For infinite state systems, formula (1) is a Boolean combination
of domain-specific constraints depending on the class of the systems. Instead of a SAT-
solver we have to use a solver specific to that domain. For instance, BMC has been
extended and applied to timed automata in, e.g. [19, 22, 7, 25]. The BMC approach can
be further extended to the more general class of linear hybrid automata [2, 18]. For
linear hybrid automata, the domain-specific constraints are linear (in)equations, where
variables range over the reals. Prominent state-of-the-art solvers that can be used in the
BMC approach for linear hybrid systems are MathSAT [5], CVC Lite [8], and ICS [15].
All these solvers have in common that the satisfiability checks are done lazily. Roughly
speaking, this means that these solvers are based on a SAT-solver that calls on demand
solvers for conjunctions of the domain-specific constraints.

In this paper we improve the BMC approach for linear hybrid systems by acceler-
ating the satisfiability checks. Our improvements are motivated by a thorough inves-
tigation of checking satisfiability of formulas of the form (1), which describe in our
context finite runs of a fixed length k of a linear hybrid system. First, we optimize the
formula representation of finite runs. The optimized representation is tailored to lazy
satisfiability solving. Besides others, one point is to force alternation of the different
types of transitions of hybrid systems, namely discrete and time transitions. Second,
we accumulate the conflicts returned by the domain-specific solver during the lazy sat-
isfiability check of (1). We use these conflicts as follows. If (1) is unsatisfiable, i.e.,
there is no counterexample of size k, we generalize the returned conflicts and use these
generalized conflicts such that the domain-specific solver is not called again for similar
conflicts in forthcoming satisfiability checks. This means, we learn generalized domain-
specific conflicts in each satisfiability check. This learning technique also applies to the
BMC approach for other classes of infinite state systems.

Both kinds of optimization reduce the demand-driven calls to the domain-specific
solver for conjunctions of linear (in)equations. Furthermore, they are complementary in
the sense that the optimized encoding leads to fewer conflicts that are generalized and
learned. We extensively evaluated our techniques for a number of linear hybrid systems.
The outcome of our experiments is that the combination of both techniques increases
the bound k on the size of the runs by several orders of magnitudes for which state-of-
the-art solvers are able to perform the satisfiability checks in a reasonable amount of
time and space.

We proceed as follows. In §2 we review the definition of linear hybrid automata and
the BMC approach for linear hybrid automata using lazy satisfiability solvers. In §3 we
optimize the encoding of finite runs and in §4 we introduce our learning technique. We
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Fig. 1. Thermostat.

present experimental results in §5. In §6 we discuss related work and finally, in §7 we
draw conclusions.

2 Bounded Model Checking for Linear Hybrid Systems

Before presenting our work, we first introduce linear hybrid systems and describe a
straightforward encoding of finite runs as Boolean combinations of (in)equations. Fur-
thermore, we describe relevant details of state-of-the-art solvers for checking satisfia-
bility of Boolean combinations of linear (in)equations and pinpoint obstacles for using
these solvers in the BMC approach for linear hybrid automata.

2.1 Hybrid Systems Background

Hybrid automata [2, 18] have been introduced in control engineering and in computer
science as a formal model for systems with both discrete and continuous components.

Hybrid automata are often given graphically, like the one shown in Figure 1. This
automaton models a thermostat, which senses the temperature x of a room and turns a
heater on and off. In location off the heater is off and the temperature falls according
to the flow condition − 3

10 ≤ ẋ ≤ − 1
10 . The location’s invariant x ≥ 18 assures that

the heater turns on at latest when the temperature reaches 18 degrees. Analogously for
the location on , where the heater is on. Control may move from location off to on if
the temperature is below 19 degrees, and from on to off if the temperature is above 21
degrees. The temperature x does not change by jumping from off to on or from on to
off . Initially, the heater is off and the temperature is 20 degrees.

In the remainder of the paper we only consider the class of linear hybrid automata,
which can be described using first-order logic formulas over (R,+, <, 0, 1). Formally,
a linear hybrid automaton H is a tuple

(
L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
,

where L and V are finite nonempty sets, and (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L,
(init �)�∈L are families of first-order logic formulas over the structure (R,+, <, 0, 1):

– L = {�1, . . . , �m} is the set of locations.
– V = {v1, . . . , vn} is the set of continuous variables.
– (jump�,�′)�,�′∈L is an (L×L)-indexed family of formulas with free variables in V

and their primed versions. A formula jump�,�′(v1, . . . , vn, v
′
1, . . . , v

′
n) represents

the possible jumps from location � to location �′, where v1, . . . , vn are the values
of the continuous variables before the jump and v′1, . . . , v

′
n are the values of the

continuous variables after the jump.
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– (flow �)�∈L is an L-indexed family of formulas with free variables in V , their
primed versions, and t. A formula flow �(v1, . . . , vn, t, v

′
1, . . . , v

′
n) represents the

flow of duration t ≥ 0 in location �, where the values of the continuous variables
change from v1, . . . , vn to v′1, . . . , v′n.

– (inv �)�∈L is an L-indexed family of formulas with free variables in V . A formula
inv �(v1, . . . , vn) represents the invariant in location �. We require that all invariants
are convex sets.

– (init �)�∈L is an L-indexed family of formulas with free variables in V representing
the initial states of the system.

For instance, the flow in location on of the thermostat in Figure 1 can be described by
the formula flowon(x, t, x′) = 10x′ − 10x ≥ t ∧ 5x′ − 5x ≤ t. The other components
of the thermostat can be described analogously. Since (R,+, <, 0, 1) admits quantifier
elimination, we assume without loss of generality that the formulas occurring in the
description of a linear hybrid automaton are quantifier-free.

Hybrid systems often consist of several hybrid automata that run in parallel and
interact with each other. The parallel composition of hybrid automata requires an ad-
ditional event set for synchronization purposes. The parallel composition is standard
but technical and we omit it here. For simplicity and due to space limitations, in the
theoretical part of the paper we restrict ourselves to a single linear hybrid automaton.

Encoding Linear Hybrid Automata. In the remainder of this subsection, let H =(
L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
be a linear hybrid automa-

ton with L = {l1, . . . , lm} and V = {v1, . . . , vn}, for some m,n ∈ N. For readability,
we write tuples in boldface, i.e., v abbreviates (v1, . . . , vn), and we introduce state
variables s = (at ,v), where at ranges over the locations in L and v = (v1, . . . , vn).

A jump of the automaton H is described by the formula

J(s, s′) =
∨

�,�′∈L

(
at = � ∧ at ′ = �′ ∧ jump�,�′(v,v′) ∧ inv �′(v′)

)

and a flow of H is described by the formula

F (s, t, s′) =
∨

�∈L

(
at = � ∧ at ′ = � ∧ t ≥ 0 ∧ flow �(v, t,v

′) ∧ inv �(v′)
)
,

where s = (at ,v) and s′ = (at ′,v′) are state variables, and t is a real-valued variable
representing the duration of the flow. Note that we check the invariant of a location
after t time units have passed in F (s, t, s′) and when we enter the location of s′ in a
jump J(s, s′). Since we assume that invariants are convex sets, we do not have to check
at every time point between 0 and t of a flow whether the invariant in the location is
satisfied. For k ∈ N, we recursively define the formula πk by

π0(s0) =
∨

�∈L

(
at0 = � ∧ inv �(v0)

)

and for k > 0,

πk(s0, . . . , sk, t1, . . . , tk) =
πk−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧

(
J(sk−1, sk) ∨ F (sk−1, tk, sk)

)
,
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where s0, . . . , sk are state variables and t1, . . . , tk are real-valued variables. Intuitively,
πk describes the runs of length k of a linear hybrid automaton by glueing together k
jumps and flows. Moreover, we have to assure that the first state satisfies the location’s
invariant.

BMC for Linear Hybrid Automata. With the formulas πk at hand, it is straightfor-
ward to obtain a semi-decision procedure for checking whether a linear hybrid automa-
ton violates a state property given by the formula safe(s). For k ∈ N, we define

ϕk(s0, . . . , sk, t1, . . . , tk) =(∨
�∈L(at0 = � ∧ init �(v0))

) ∧ πk(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) .

Starting with k = 0 and iteratively increasing k ∈ N, we check whetherϕk is satisfiable.
The algorithm terminates if ϕk is satisfiable, i.e., an unsafe state is reachable from an
initial state in k steps.

The effectiveness of the algorithm depends on the effectiveness of checking whether
the ϕks are satisfiable. Experimental results show that the satisfiability checks of ϕk

often become impractical even for small ks and rather small linear hybrid systems,
like the railroad crossing example [4], which consists of three linear hybrid automata
running in parallel (two of them have 3 locations and one automaton has 4 locations).
For instance, the satisfiability check for ϕ10 takes 18 seconds with the state-of-the-art
solver ICS [16] and the satisfiability check for ϕ15 takes almost 4 minutes. In order to
pinpoint the reasons for the bad running times of the satisfiability checks, we first have
to give some ICS details.

2.2 Satisfiability Checking Details and Performance Issues

We first recall details of lazy theorem proving [16]. Lazy theorem proving is built on top
of a SAT-solver for propositional logic that lazily interacts with a solver for a specific
domain. In our context, the domain specific solver checks satisfiability of conjunctions
of linear (in)equations over the reals.

Assume that ϕ is a Boolean combination of the atomic formulas α1, . . . , αn. We
define the mapping abs(αi) = bi, where bi is a fresh Boolean variable. The mapping
abs is homomorphically extended to Boolean combinations of (in)equations. We call
abs(ϕ) the Boolean abstraction of the formula ϕ. The pseudo-code of the lazy theo-
rem proving algorithm from [16, 14] is shown in Figure 2. We start with the Boolean
abstraction β = abs(ϕ). In each loop, the SAT-solver suggests a candidate assignment
ν : {b1, . . . , bn} → {true, false} satisfying β. If the conjunctionψ =

∧
ν(bi)=true αi ∧∧

ν(bi)=false ¬αi is satisfiable, then ϕ is satisfiable. Otherwise, we extend β to β ∧
¬abs(explain(ψ)), where explain(ψ) is an unsatisfiable subformula of ψ, i.e., a con-
junction of some atomic formulas or their negations occurring in ψ that is responsible
for the unsatisfiability of ψ. We call the formula explain(ψ) an explanation. A simple
implementation of explain is the identity function, i.e., it returns ψ. Using this simple
implementation, there is one loop iteration for each satisfying assignment of abs(ϕ).
General techniques for reducing the number of iterations, and in particular more so-
phisticated implementations of the explain function are described in [16, 14].
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procedure sat(ϕ)
β ← abs(ϕ)
loop
ν ← SAT-Solver(β)
if ν = unsatisfiable then return unsatisfiable
ψ ← ∧

ν(bi)=true αi ∧
∧

ν(bi)=false ¬αi

if Solver(ψ) �= unsatisfiable then return satisfiable
β ← β ∧ ¬abs(explain(ψ))

end loop

Fig. 2. The lazy theorem proving algorithm for checking satisfiability of a Boolean combination
of linear (in)equations.

Less lazy variants of the lazy theorem proving algorithm, like in CVC Lite [8] and
ICS [16] consist of a tighter integration of a SAT-solver and the satisfiability checks of a
solver for conjunctions of linear (in)equations. In ICS, a truth assignment to a Boolean
variable by the SAT-solver adds the corresponding (in)equation to the conjunction of
(in)equations for which the corresponding Boolean variables are already assigned to
some truth value. A frequency parameter, for which the user can provide a thresh-
old, determines after how many truth assignments the SAT-solver checks whether the
conjunction of (in)equations is still satisfiable, i.e., the SAT-solver calls the solver for
conjunctions of (in)equations. An inconsistency triggers backtracking in the search for
Boolean variable assignments and is propagated to the SAT-solver by adding a clause
to the formula explaining the inconsistency using the explain function.

Performance Issues. The lazy theorem proving algorithm in Figure 2 scales poorly
for checking satisfiability of the formulas ϕk. The reason is the large number of loop
iterations: for most examples, the number of iterations grows exponentially in k. The
following examples illustrate this obstacle more clearly.

Example 1. Consider the following linear hybrid automaton:

�� ��

�� ��

�0
ẋ = 1
true

true→x:=x+1������
��

x=0 ��

Assume that we want to check whether we can reach in k steps a state with x < 0.
Clearly, a run with x having the initial value 0 and that increases x in each step cannot
reach a state with x having a negative value. However, when we only look at a finite
unfolding of the transition relation, we must be aware of all changes made on the value
of x in order to check that the value of x is not negative after k steps. Independently of
the implementation of the explain function, for checking unsatisfiability of ϕk with the
lazy theorem proving algorithm, the number of loop iterations is at least 2k.

The reason for the above exponential behavior can be explained as follows. For each
of the 2k possible sequences of k flows and jumps there is a corresponding satisfying
assignment of abs(ϕk) assigning true to the Boolean variable for xk < 0 and to the
Boolean variables whose (in)equations describe the initial state and the transitions in
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the sequence. Without loss of generality, the truth values of the other Boolean variables
abs(ϕk) need not to be considered. For a satisfying assignment of abs(ϕk) the explain
function has to return a conjunction containing at least the (in)equations in which xi

occurs and for which the Boolean variable is assigned to true. Since two such conjunc-
tions of (in)equations are distinct for assignments corresponding to different sequences
of k flows and jumps, we have to check at least 2k conjunctions of (in)equations.

The less lazy variant of the lazy theorem proving algorithm is faced with a similar
problem: the number of satisfiability checks for conjunctions of (in)equations corre-
sponding to partial truth assignments of the Boolean variables in the Boolean abstrac-
tion is often exponential in the bound k. For the railroad crossing example, we have
95 explanations in the satisfiability check for ϕ5, 1047 explanations for ϕ10, and 6462
explanations for ϕ15.

Experimental evaluations [16] have shown that the less lazy variant – as, e.g., imple-
mented in ICS – is superior to the lazy theorem proving algorithm in Figure 2. However,
in our experiments we observed that if the Boolean abstraction of a formula has few
satisfying assignments then the lazy theorem proving algorithm usually performs better
than the less lazy variant, since the solver for conjunctions of (in)equations is called
less often. In §4, we will exploit this observation by switching from the less lazy variant
to the lazy theorem proving algorithm whenever it is likely that the Boolean abstraction
has few satisfying assignments.

Before we present and evaluate the optimizations for the BMC approach for linear
hybrid systems we want to comment on the BMC approach for a larger class of hybrid
systems. For the BMC approach, it is, in principal, possible to allow first-order logic
formulas over (R,+, ·, <, 0, 1) instead of (R,+, <, 0, 1) in the definition of a hybrid
automaton in §2.1. By allowing formulas over (R,+, ·, <, 0, 1) we can describe a much
larger class of hybrid systems. Note that the first-order theory over (R,+, ·, <, 0, 1) is
decidable since it admits quantifier elimination [24]. The lazy theorem proving algo-
rithm can be easily modified to handle quantifier-free formulas over (R,+, ·, <, 0, 1).
However, for a non-linear flow, we have to check a location’s invariant in a run for
all time points of that flow. This introduces in the formula description of a flow step
an additional universally quantified variable, which has to be eliminated before we
apply the lazy theorem proving algorithm. The reason why we restrict ourselves to
(R,+, <, 0, 1) is that eliminating such a quantified variable can be expensive. Further-
more, the authors are not aware of a satisfiability checker for quantifier-free formulas
over (R,+, ·, <, 0, 1) that performs well in practice for large conjunctions of quantifier-
free formulas. However, the following optimizations will also be useful for this larger
class of hybrid systems, since they reduce the number of interactions of the SAT-checker
and the domain specific solver for the conjunctions.

3 Optimizing the Encoding

For improving the BMC approach for linear hybrid automata, we optimize the formula
encoding of finite runs. Our optimized encoding is tailored to the lazy theorem proving
algorithms. In order to give an impression of the impact of the different optimizations,
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Table 1. Experimental results for the railroad crossing example.

Formula encoding k = 5 k = 10 k = 15
with optimizations time (secs.) # expl. time (secs.) # expl. time (secs.) # expl.

ϕk 0.5 95 18.0 1047 234.5 6462

ϕk + §3.1 0.2 21 3.7 349 46.8 1922

ϕk + §3.1 + §3.2 0.2 24 2.8 242 35.5 1741

ψ2k+1 + §3.1 + §3.2 0.2 4 1.8 53 3.6 109

ψ1, . . . , ψ2k+1 + §3.1 + §3.2 0.7 14 5.1 144 14.0 396

ψtau
1,2k+1 + §3.1 + §3.2 0.4 14 0.9 21 6.8 169

we list in Table 1 the improvements for the railroad crossing example. We obtain similar
improvements for other examples of hybrid automata (further experiments are in §5).

Let H =
(
L, V, (jump�,�′)�,�′∈L, (flow �)�∈L, (inv �)�∈L, (init �)�∈L

)
be a linear

hybrid automaton with V = {v1, . . . , vn}.

3.1 Using Boolean Variables

The lazy theorem proving algorithm in Figure 2 and its variants can be easily extended
such that they also handle Boolean combinations of (in)equations and Boolean vari-
ables. Since the location set L is finite, we can use �lg |L|� Boolean variables for each
0 ≤ i ≤ k to encode the formulas at i = � with � ∈ L in ϕk . However, the algorithm
in Figure 2 replaces (in)equations by fresh Boolean variables; for each 0 ≤ i ≤ k, this
requires |L| Boolean variables for the atomic formulas at i = � with � ∈ L.

Encoding finite sets by Boolean variables is not new. However, we want to point
out the benefit of using Boolean variables for the lazy theorem proving algorithm. The
Boolean encoding of locations has two advantages over the encoding by equations of the
form at i = �: The first advantage is that we need exponentially less Boolean variables.
The more important advantage is the following. A satisfying assignment of abs(ϕk)
may assign the corresponding Boolean variables for the equations at i = � and at i = �′

with � 	= �′ both to true. Such a conflict is not discovered until we call the solver
for conjunctions of (in)equations. With Boolean location encoding such conflicts are
already discovered by the SAT-solver. This results in less interaction of the SAT-solver
and the solver for conjunctions of (in)equations. In particular, note that when using the
Boolean encoding of the locations, the assignments returned by the SAT-solver always
describe a path in the location graph of the hybrid automaton.

Analogously to the Boolean encoding of locations we can use Boolean variables for
all system variables with a finite domain. In order to keep formulas readable, we still
write formulas like at i = � as abbreviation for their Boolean encodings.

3.2 Excluding Bad and Initial State Loops

Another optimization is to require that we do not visit an initial state twice and only the
last state violates the specification. This means, we add to ϕk the two conjuncts

∧
0<i≤k

∧
�∈L ¬(

at i = � ∧ init �(vi)
)

and
∧

0≤i<k safe(si) .

This optimization has already been proposed in [21] for finite state systems.



404 Erika Ábrahám et al.

It is worth mentioning that the speed-up due to this optimization heavily depends on
the underlying linear hybrid automaton and the specification: For specifications contain-
ing Boolean variables (or Boolean encodings of locations), the number of assignments
for the Boolean abstraction can be reduced this way. On the other hand, if adding the
above conjuncts introduces (in)equations that do not occur in ϕk , then it is less likely
that this optimization improves the running times of the satisfiability checks. However,
it does not significantly slow them down in our examples.

3.3 Alternating Flows and Jumps

Since two successive flows of durations t and t′ can always be represented by a single
flow of duration t + t′, we can require that each flow is followed by a jump. This
restriction excludes irrelevant computations, and thus leads to a reduced number of
solutions for the Boolean abstractions of the formulas ϕk. Excluding successive flows
has already been proposed in [7].

Below we define a formula that describes computations with alternating flows and
jumps, thereby excluding successive time steps without any overhead. Note that we also
exclude runs with successive jumps. However, successive jumps can be expressed us-
ing flows of duration 0. Each computation can be rewritten to this form with alternating
flows and jumps. The advantage of alternating flows and jumps over excluding succes-
sive flows is discussed in Remark 1. For k ∈ N, we define ψk similar to ϕk where πk is
replaced by π′

k:

ψk(s0, . . . , sk, t1, . . . , tk) =( ∨
�∈L(at0 = � ∧ init �(v0))

) ∧ π′
k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

where π′
0(s0) = π0(s0), and for k > 0,

π′
k(s0, . . . , sk, t1, . . . , tk) =

π′
k−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧

{
J(sk−1, sk) if k is even,

F (sk−1, tk, sk) otherwise.

Using the above definition for searching iteratively for counterexamples, it suffices
to start with k = 1 and to increase k in each iteration by 2: We start with a run con-
sisting of a single flow. In each iteration we extend the runs under consideration with a
jump that is followed by a flow. Since flows may have the duration 0, there is a coun-
terexample containing k jumps iff ψ2k+1 is satisfiable.

Recall that ϕk is satisfiable iff there is a counterexample of length k. Now, if there
is a counterexample of length less than or equal to k then there is also a counterex-
ample containing at most k jumps. However, not all runs with at most k jumps can be
represented by a run of length less than or equal to k. Consequently, the unsatisfiability
of ψ1, ψ3, . . . , ψ2k+1 implies the unsatisfiability of ϕ0, ϕ1, . . . , ϕk. The converse is not
true.

The formula ψ2k has twice as many variables as ϕk but the number of distinct
(in)equations is approximately the same. Note that for the satisfiability check the num-
ber of distinct (in)equations is relevant and not the number of variables. That means,
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using ψ2k+1 instead of ϕk has the advantage that with no overhead the first k iterations
check all runs of length less than or equal to 2k+ 1 with at most k jumps in addition to
the runs of length less than or equal to k, as it is also done by ϕk.

Moreover, the satisfiability check for ψ2k+1 is in most cases faster than the sat-
isfiability check for ϕk (see Table 1 and the experiments in §5). The reason is that
the number of calls of the solver for conjunctions of (in)equations in the lazy theorem
proving algorithms often reduces significantly.

Remark 1. When excluding successive flows we still have the choice of doing a jump
or a flow after we have done a jump. This choice is eliminated when we alternate be-
tween flows and jumps. In practice, eliminating this choice pays off. For instance, for
the hybrid automaton in Example 1, for every k ≥ 0 there is exactly one satisfying as-
signment for the Boolean abstraction of ψ2k+1when flows and jumps alternate. There-
fore, we have to check only one conjunction of (in)equations. In contrast, by excluding
successive flows we would have to cope with exponentially many assignments.

Note that applying the optimization in §3.2 together with the encoding using alter-
nating flows and jumps, we have to allow that the first two states can be initial states,
since there are runs that can be described only with a first flow having the duration 0.
Similarly, we must allow the last two states to violate the specification.

3.4 Introducing τ -Transitions

The BMC approach analyzes in each iteration runs of a certain length. That means, in
order to show all runs of a length less than or equal to k to be safe, we must check
the satisfiability of k + 1 formulas. In this section we develop a method to search for
counterexamples reachable by runs of length less than or equal to k in a single satis-
fiability check. To do so, we introduce jumps that do nothing, so-called τ -transitions.
Recall that flows may have the duration 0. We require that after a τ -transition only fur-
ther τ -transitions or flows of duration 0 are possible. Formally, for k, k′ ∈ N we define
ψtau

k′,k similar to ψk, where π′
k is replaced by π′′

k′,k:

ψtau
k′,k(s0, . . . , sk, t1, . . . , tk) =( ∨

�∈L(at0 = � ∧ init �(v0))
) ∧ π′′

k′,k(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) ,

where π′′
k′,k describes computations of length k allowing τ -transitions to occur after the

first k′ steps only. We define π′′
k′,k = π′

k for k′ ≥ k, and for k′ < k we define

π′′
k′,k(s0, . . . , sk, t1, . . . , tk)= π′′

k′,k−1(s0, . . . , sk−1, t1, . . . , tk−1)∧{(
(¬tauk−2 ∧ J(sk−1, sk)) ∨ tauk

)
if k is even,

F (sk−1, tk, sk) ∧ (tauk−1 → tk = 0) otherwise

where tauk is a shortcut for false if k ≤ 0 and sk−1 = sk, otherwise.
Assume that we already know that there are no counterexamples of length less than

or equal to k′, and we want to check for some k > k′ whether we can reach a bad state
in at most k steps. Instead of checking satisfiability of the formulas ψ2k′+3, . . . , ψ2k+1

or ψtau
1,2k+1 it suffices to check satisfiability of ψtau

2k′+3,2k+1.
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The formula ψtau
k′,k allows us more flexibility in the BMC approach with hardly any

overhead by increasing the length of the runs. The main advantage of using ψtau
k′,k is that

we only have to call the solver once, and guide the solver not to do unnecessary work,
i.e., we force the solver not to look for counterexamples that end in a bad state in less
than k′ steps.

For the railroad crossing example, the last two rows of Table 1 compare the sums
of running times for ψ2k+1, where k ranges from 0–5, 0–10, and 0–15 with the running
times of ψtau

1,2k+1 for k ∈ {5, 10, 15}.

4 Learning Explanations

The bottleneck of the lazy theorem proving algorithm and its less lazy variants for the
satisfiability check of a Boolean combination ϕ of (in)equations is the large number of
calls to the solver for conjunctions of (in)equations. In the BMC approach, the num-
ber of calls usually grows exponentially with respect to the bound k. In this section we
present a simple but effective method for reducing the calls of the solver for conjunc-
tions of (in)equations.

The idea is that we make use of the knowledge of the unsatisfiability of the ex-
planations that were generated during the previous satisfiability checks of the BMC
algorithm. Assume that there is no counterexample of length less than k, i.e., the for-
mulas ψ1, . . . , ψ2k−1 are unsatisfiable. Moreover, assume that γ1, . . . , γn are the ex-
planations that are generated during the satisfiability checks for ψ1, . . . , ψ2k−1. Since
the γis are unsatisfiable conjunctions of (in)equations, we can check satisfiability of
ψ2k+1 ∧ ( ∧

1≤i≤n ¬γi

)
instead of ψ2k+1 in the next iteration of the BMC algorithm.

Intuitively, this means that we “learn” for the next iteration the unsatisfiability of the
explanations γ1, . . . , γn.

In practice it turned out that just adding explanations from the previous satisfiability
checks does not result in much speed-up. However, we can do better. In order to describe
our method of exploiting the knowledge of the unsatisfiability of the explanations, we
need the following definitions.

Definitions. Let γ =
∧

1≤i≤m αi and γ′ =
∧

1≤i≤m′ α′
i be explanations. The expla-

nation γ (syntactically) subsumes γ′ if for every 1 ≤ i ≤ m there is a 1 ≤ j ≤ m′

such that αi and α′
j are syntactically equal. The explanation γ is minimal if for ev-

ery 1 ≤ j ≤ m, the conjunction
∧

1≤i≤m and i�=j αi is satisfiable. For an integer s,
shift(γ, s) denotes the formula γ where each variable index i occurring in γ is replaced
by i + s. The motivation of shifting indices in explanations is that the lazy theorem
proving algorithm often checks similar conjunctions of (in)equations that only differ by
the indices of the variables. Note that shifting the indices does not change the satisfi-
ability of a formula. Let min(γ) be the smallest index occurring in γ and let max(γ)
be the largest index occurring in γ. Figure 3 illustrates the possible range of values for
shifting the indices in the explanation γ up to some bound k. The set of all variations of
γ due to index shifting such that all indices are between 0 and k is defined as

SHIFT (γ, k) =
{
shift(γ, s)

∣
∣ − min(γ) ≤ s ≤ k − max(γ) and s is even

}
.
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Fig. 3. Shifting an explanation γ.

Observe that we always shift indices by an even integer. An (in)equation in an explana-
tion γ describing a flow rarely describes also a jump. Since flows and jumps alternate
in the formula ψ2k−1, it is unlikely that for an odd s, the additional conjunct shift(γ, s)
prunes the search space in the satisfiability check of ψ2k+1 ∧ ¬shift(γ, s).

Learning Method. The learned explanations should not contain irrelevant (in)equa-
tions. Therefore we first minimize every explanation that is generated during a satisfia-
bility check. We do minimization greedily: We eliminate the first (in)equation α in an
explanation γ if γ without α is still unsatisfiable; otherwise we do not remove α. We
proceed successively with the other (in)equations in γ in the same way. After minimiz-
ing an explanation γ we delete all other explanations that are subsumed by γ. Finally,
using shifting, we generalize all the remaining explanations for the next BMC iteration.
In the kth BMC iteration we check satisfiability of the formula

ψlearning
2k+1 = ψ2k+1 ∧

( ∧
γ∈E

∧
γ′∈SHIFT (γ,2k+1) ¬γ′

)
,

whereE is the set of all minimized explanations that occurred in the first k−1 iterations
and that are not subsumed by other explanations.

We point out that with the additional conjunct
( ∧

γ∈E

∧
γ′∈SHIFT (γ,2k+1) ¬γ′

)
we

not only learn explanations that have been generated during earlier satisfiability checks,
but due to index shifting we also apply them to the whole length of computations. Our
case studies have shown that the same conflicts occur in different iterations with shifted
indices, i.e., at another part of the computation sequence.

Due to our learning method, the Boolean abstractions of the formulas ψlearning
2k+1

often have very few satisfying assignments. For such formulas, it is often more efficient
to use the lazy theorem proving algorithm than the less lazy variant of it, since the
solver for conjunctions of (in)equations has to be called less often. We pursue the policy
that if in the last two iterations there are less than a threshold number (we use 50) of
explanations then we assign a large value to the frequency parameter (see §2.2) of ICS,
i.e., ICS switches to a “very” lazy variant of the lazy theorem proving algorithm. The
running times heavily depend on this threshold.

5 Experimental Results

We carried out tests for evaluating the BMC approach for linear hybrid systems with
the different encodings and techniques described in §3 and §4. Our test suite1 consists

1 A detailed description of our test suite and all the experimental results is in [1].
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Table 2. Maximal number of BMC iterations k.

Example Last iteration below 200 secs. of CPU time
naive optimized optimized+learning

Thermostat 70 > 1500 > 1500

Water-level monitor 39 > 1500 > 1500

Railroad crossing 14 52 872

Extended railroad crossing 10 12 80

Fischer’s protocol (2 processes) 10 15 1254

Fischer’s protocol (3 processes) 9 14 31

Bakery protocol (2 processes) 10 45 742

Nuclear reactor 20 82 > 1500

Audio-control protocol 20 62 357

of standard examples, e.g., examples that come with the HyTech tool and the Bakery
protocol2. All experiments were performed on a SUN Blade 1000 with 8 Gbytes of main
memory and two 900 Mhz UltraSparc III+ processors; each one with an 8 Mbyte cache.
We used ICS (version 2.0b) [16] for checking satisfiability of the formulas in the BMC
approach. The reason for us to use ICS was that in most cases ICS behaves at least as
good as other state-of-the-art solvers [15]. We expect similar running times with other
state-of-the-art solvers, like e.g., CVC Lite [8], since they use similar techniques as
described in §2.2 for checking satisfiability of Boolean combinations of (in)equations.

We report on experimental results for the following three different encodings of
finite runs: (A) the naive encoding as described in §2.1; (B) the optimized encoding as
described in §3.1–§3.3; (C) the optimized encoding as in (B) with additional learning
of explanations as described in §4. Table 2 lists for each example the maximal number
of BMC iterations for which every satisfiability check could be performed within a time
limit of 200 seconds.

Additionally, we recorded the running times for each iteration and the numbers of
explanations that are generated during the satisfiability checks. In the following, we
describe the outcome of our experiments separately.

Running Times. Figure 4 shows the running times for the encodings (A), (B), and (C)
for some of our examples with k ranging from 0 to 200.

Checking satisfiability of the formulas ϕk becomes impractical even for small ks.
For example, the satisfiability check for the railroad crossing example with k = 15
needs more than 230 seconds of CPU time. Although the optimization of the represen-
tation with alternating flows and jumps leads to a reduction of the running times, check-
ing satisfiability of ψ2k+1 is also limited to rather small ks. For the railroad crossing
example each satisfiability check for k < 53 needs less than 200 seconds; for k = 53
the satisfiability check exceeds our time limit of 200 seconds. The technique of learn-
ing explanations reduces the running times significantly. More importantly, the running
times of satisfiability checks often scale much better for our examples. For instance, for

2 The Bakery protocol is not a hybrid system but a discrete infinite state system. Our techniques
can also be used for the BMC approach of such systems.
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Fig. 4. Running times for the satisfiability checks for the naive encoding, the optimized encoding,
and the optimized encoding with learning explanations.

the railroad crossing example each satisfiability check for k ≤ 200 is under 11 seconds.
The running times for computing the set of explanations that are added to the formula
are not included. For the railroad crossing example, the sum of CPU times that ICS
needs for the explanation minimization amounts to 15 seconds in the first 12 iterations;
there are no explanations generated in later iterations. The reason for not including the
times for minimizing explanations and the subsumption checks is twofold: First, we
are interested in the speed-up of the satisfiability check that is due to the learning of
explanations. Second, the implementation of the minimization and subsumption check
is currently rather naive. For instance, we call ICS for each minimization step.

Number of Explanations. Additionally to the running times, we also recorded the
numbers of explanations that are generated during the satisfiability checks. The run-
ning times strongly correlate with the numbers of explanations. A detailed statistics on
the number of explanations for the railroad crossing example is listed in Table 3. We
obtained similar numbers for the other examples.

The second and third column in Table 3 list the numbers of explanations generated
during the satisfiability checks of ϕk and of ψ2k+1 with the optimizations of §3.1–§3.2,
respectively, for some different ks. The optimizations significantly reduce the number
of generated explanations. Further reduction can be reached by learning explanations,
as illustrated in the fourth column. Only a few explanations (column 5) are left over af-
ter minimization and removing subsumed explanations. The sizes of the explanations,
i.e., the numbers of (in)equations in the explanations (column 6) are reduced by min-
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Table 3. Number of explanations that are generated during the satisfiability checks for the railroad
crossing example.

naive optimized optimized+learning
# expl. # expl. # expl. # expl. mean expl. size mean expl. size

k after subsumption check after minimization

0 1 1 1 1 3 2

3 31 3 1 1 25 18

6 179 12 0 0 0 0

9 651 40 27 6 19 8

12 2500 20 9 2 21 13

15 6462 109 0 0 0 0

imization. Column 7 shows the mean sizes of the minimized explanations that remain
after subsumption. These sizes are often moderate in comparison to the bound k. For
the railroad crossing example with optimization and learning explanations, ICS only
generates explanations for k ∈ {0, . . . , 12}.

6 Related Work

BMC has been extended to verify properties for finite state systems [21] by introducing
termination conditions that are again checked by a SAT-solver. A generalization and
extension of these methods to infinite state systems is presented in [17]. We have also
applied our presented optimizations for checking termination conditions. We obtained
similar improvements as for the satisfiability checks of the counterexample search3.

A complementary method of learning conflicts discovered in previous satisfiability
checks is described in [23]. The conflicts that are learned by the two methods originate
from different kinds of inconsistencies. The method in [23] learns conflicts that are
discovered by the SAT-solver and our method learns conflicts that are discovered by the
domain-specific solver.

Our work is in the line of the works by Audemard et. al. [7, 6] and by Sorea et. al.
[22, 16] on the BMC approach for timed systems using lazy satisfiability solvers for
Boolean combinations of (in)equations. The papers [7] and [22] extend the BMC ap-
proach to timed automata for properties written as LTL formulas. For simplicity, we
only considered state properties. The paper [7] proposes several optimizations for en-
coding finite runs of timed systems. For instance, Audemard et. al. avoid successive
flows and encode some form of symmetry reduction. The symmetry reduction only ap-
plies to certain timed systems, e.g., for systems consisting of identical components. As
explained in Remark 1 in §3.3, alternating between flows and jumps is superior to ex-
cluding successive flows. Alternating between flows and jumps also appears in [22] with
a different motivation. Sorea argues that alternation guarantees nonzenoness and often
leads to smaller completeness thresholds for timed automata. In contrast, our motiva-
tion is that alternating between flows and jumps accelerates lazy satisfiability solving.
We show that alternation significantly speeds up the satisfiability checks. The papers [6,
16] extend and generalize the work in [7, 22].

3 Due to space limitations we omit a description on checking termination conditions. Details
and the experimental results are in [1].
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In [19] bounded-length verification problems for timed automata are translated into
formulas in difference logic. Another approach of BMC for timed automata is presented
in [25]. In contrast to the work by Audemard et. al., Sorea et. al., and ours, the core of
their work is a reduction from the BMC problem for timed automata to a SAT problem
exploiting the region graph construction for timed automata.

7 Conclusion

In this paper we presented complementary optimizations for improving the BMC ap-
proach for linear hybrid automata and explained why these optimizations speed-up lazy
satisfiability solving. Experimental results substantiate the benefit of the optimizations.
The speed-up stems from reducing the interactions of the SAT-solver used as well as
the domain-specific solver. Our first optimization tunes the encodings of finite runs of
linear hybrid automata and the second optimization speeds up the satisfiability checks
by learning generalized conflicts. The learning technique can also be used in the BMC
approach for other classes of infinite state systems.

Other verification tools for linear hybrid systems, like the model checker HyTech,
are faster on some of our test examples. One reason is that, on small examples, the
reachable set computation terminates already after a few iterations. However, many
larger systems cannot be handled by model checkers due to state explosion. The BMC
approach for hybrid system verification is still in its infancy, but this paper shows, that
there is a large potential for further improvements to be successful also for larger ex-
amples.

Our future work includes developing a tighter integration of generalized conflict
learning and satisfiability solving. One task here is to develop methods that determine
the usefulness of conflicts in later satisfiability checks and data structures that efficiently
store generalized conflicts with fast look-ups. We also want to develop a more dynamic
adjustment of the “laziness” in the satisfiability checks. Moreover, minimizing expla-
nations is a crucial subtask in lazy satisfiability solving. At the moment, minimization
is done greedily. Other methods for explanation minimization have to be developed.
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