Late Choice

Model Checking Asynchronous Systems with Queues using Constraints

Claus Traulsen
ctr@informatik.uni-kiel.de
joint work with Martin Steffen

Department of Computer Science and Applied Mathematics Christian-Albrechts University of Kiel

October 19, 2005

Outline

- Motivation and Definitions
- A semantics with constraints
- Use constraints for model checking
- Experimental results
- Conclusion

Problem Setting

Enumerative Model Checking

- enumerate the reachable states
- show that a specification holds for all paths in the state-graph
- main problem: state explosion

Queues

- are often needed to model protocols and distributed systems
- may lead to additional state explosion

State-Explosion caused by Queues

Late Choice

- the value is specified as soon as A or B uses it
- pointers are hard to formalize
 - \rightarrow use constraints instead

Constraints

```
Definition: subset of Dom(x_1) \times \cdots \times Dom(x_n)
```

Sub-constraints:
$$C \subseteq_U D$$
, $U \subseteq var(C) \cap var(D)$

Representation: set of equations and in-equations

- set of variables is implicitly given
- constraint is set of valuations
 - $\sigma: \textit{Var} \mapsto \textit{Dom}$ which solve this equations and in-equations

Syntax

- Parallel composition of LTS
- Communication via bounded queues

Labels

Input:
$$I \xrightarrow{a?x} I'$$

Output: $I \xrightarrow{g \triangleright a!e} I'$

Assign: $I \xrightarrow{g \triangleright x:=e} I'$

External Input: $I \xrightarrow{ext?_{[y,z]}x} I'$

Skip: $I \xrightarrow{g} I'$

Defining the semantics: receiving data

StdInput:

$$\frac{\vec{l} \xrightarrow{a?x} \vec{l}' \quad \textit{len}(a_Q) > 0 \quad \textit{v} = \textit{head}(a_Q)}{(\vec{l}, \sigma, Q) \rightarrow (\vec{l}', \sigma[x \mapsto \textit{v}], \textit{Q[tail(a)/a]})}$$

ConInput:

$$\frac{\vec{l} \xrightarrow{a?x} \vec{l}' \quad len(a_Q) > 0 \quad y = head(a_Q) \quad \text{new } x'}{(\vec{l}, C, Q) \rightarrow (\vec{l}', C[x'/x] \cup \{x = y\}, Q[tail(a)/a])}$$

Defining the semantics: external inputs

• StdExtInput:

$$\frac{\vec{l} \xrightarrow{\text{ext?}_{[y,z]} \times} \vec{l}' \quad [\![y]\!]_{\sigma} \leq v \leq [\![z]\!]_{\sigma}}{(\vec{l}, \sigma, Q) \rightarrow (\vec{l}', \sigma[x \mapsto v], Q)}$$

ConExtInput:

$$\frac{\vec{l} \xrightarrow{\text{ext?}_{[y,z]}X} \vec{l}' \qquad C \cup \{y \le z\} \not\models \bot \qquad \text{new } x'}{(\vec{l},C,Q) \to (\vec{l}',C[x'/x] \cup \{y \le x,x \le z\},Q)}$$

How to deal with the new variables?

ConEquiv

$$\frac{C \equiv_{Var_P \cup Var_Q} D}{(\vec{l}, C, Q) \leadsto (\vec{l}, D, Q)}$$

ConSpecialize

$$\frac{x \in \mathit{Var}_{H} \quad u \in [\![x]\!]_{C}}{(\vec{l}, C, Q) \leadsto (\vec{l}, C[u/x], Q)}$$

When shall we specialize to an exact value?

- Never → minimal number of states.
- Always → minimal size for every state.
- After receiving → might be a good compromise.

Equivalence

Soundness

Every state represented by a reachable state of the semantics with constraints is reachable in the standard semantics.

Completeness

Every state reachable in the standard semantics is represented by a reachable state of the semantics with constraints.

Checking Arbitrary LTL Formulae

How to decide whether states are equal

- reduce to same variables
- test for sub-constraints

Problem

We enumerate the right states, but add spurious transitions.

Solutions

- we do not have false positives, that is enough
- test for equality, not for sub-constraints
- use bounded model checking

Comparison: Time

Comparison: No. States

Conclusion

- Late choice helps to reduce the number of orderings in a queue
- Constraints can be used to encode different states by one
- Checking state properties works
- Checking arbitrary LTL-formulae is not so easy