
Late Choice
Model Checking Asynchronous Systems with Queues

using Constraints

Claus Traulsen
ctr@informatik.uni-kiel.de
joint work with Martin Steffen

Department of Computer Science and Applied Mathematics
Christian-Albrechts University of Kiel

October 19, 2005

Claus Traulsen Late Choice

Outline

1 Motivation and Definitions

2 A semantics with constraints

3 Use constraints for model checking

4 Experimental results

5 Conclusion

Claus Traulsen Late Choice

Problem Setting

Enumerative Model Checking

enumerate the reachable states

show that a specification holds for all paths in the state-graph

main problem: state explosion

Queues

are often needed to model protocols and distributed systems

may lead to additional state explosion

Claus Traulsen Late Choice

State-Explosion caused by Queues

?ack
?reject!reject ack rej ackrej

A B

!ack

Claus Traulsen Late Choice

Late Choice

ack or rej

A B

?ack ?reject!ack

ack

!reject

the value is specified as soon as A or B uses it

pointers are hard to formalize
→ use constraints instead

Claus Traulsen Late Choice

Constraints

Definition: subset of Dom(x1)× · · · ×Dom(xn)

Sub-constraints: C ⊆U D, U ⊆ var(C) ∩ var(D)

Representation: set of equations and in-equations

set of variables is implicitly given
constraint is set of valuations
σ : Var 7→ Dom which solve this equations
and in-equations

Claus Traulsen Late Choice

Syntax

Parallel composition of LTS

Communication via bounded queues

Labels

Input: l
a?x−−→ l ′

Output: l
g.a!e−−−→ l ′

Assign: l
g.x :=e−−−−→ l ′

External Input: l
ext?[y,z]x−−−−−→ l ′

Skip: l
g−→ l ′

Claus Traulsen Late Choice

Defining the semantics: receiving data

StdInput:

~l
a?x−−→~l ′ len(aQ) > 0 v = head(aQ)

(~l , σ,Q) → (~l ′, σ[x 7→ v],Q[tail(a)/a])

ConInput:

~l
a?x−−→~l ′ len(aQ) > 0 y = head(aQ) new x ′

(~l ,C ,Q) → (~l ′,C [x ′/x] ∪ {x = y},Q[tail(a)/a])

Claus Traulsen Late Choice

Defining the semantics: external inputs

StdExtInput:

~l
ext?[y,z]x−−−−−→~l ′ [[y]]σ ≤ v ≤ [[z]]σ

(~l , σ,Q) → (~l ′, σ[x 7→ v],Q)

ConExtInput:

~l
ext?[y,z]x−−−−−→~l ′ C ∪ {y ≤ z} 6|= ⊥ new x ′

(~l ,C ,Q) → (~l ′,C [x ′/x] ∪ {y ≤ x , x ≤ z},Q)

Claus Traulsen Late Choice

How to deal with the new variables?

ConEquiv
C ≡VarP∪VarQ

D

(~l ,C ,Q) (~l ,D,Q)

ConSpecialize

x ∈ VarH u ∈ [[x]]C

(~l ,C ,Q) (~l ,C [u/x],Q)

When shall we specialize to an exact value?

Never → minimal number of states.

Always → minimal size for every state.

After receiving → might be a good compromise.

Claus Traulsen Late Choice

Equivalence

Soundness

Every state represented by a reachable state of the semantics with
constraints is reachable in the standard semantics.

Completeness

Every state reachable in the standard semantics is represented by a
reachable state of the semantics with constraints.

Claus Traulsen Late Choice

Checking Arbitrary LTL Formulae

How to decide whether states are equal

1 reduce to same variables

2 test for sub-constraints

Problem

We enumerate the right states, but add spurious transitions.

Solutions

we do not have false positives, that is enough

test for equality, not for sub-constraints

use bounded model checking

Claus Traulsen Late Choice

Comparison: Time

 0

 5000

 10000

 15000

 20000

 2 3 4 5

tim
e

in
 s

K(#possible elements in queue)

semantics with valuations
semantics with constraints

spin

Claus Traulsen Late Choice

Comparison: No. States

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 2 3 4 5

#s
ta

te
s

K(#possible elements in queue)

semantics with valuations
semantics with constraints

spin

Claus Traulsen Late Choice

Conclusion

Late choice helps to reduce the number of orderings in a queue

Constraints can be used to encode different states by one

Checking state properties works

Checking arbitrary LTL-formulae is not so easy

Claus Traulsen Late Choice

