
Switching, swapping, and replay
Issues for an open semantics for a Java-like calculus

E. Ábrahám M. Bonsangue F. S. de Boer A. Grüner M. Steffen

Christian-Albrechts University Kiel

AG Informatik, Logik, Mathematik

June 2005

introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Starting point

• question:

what’s observable of an open class-based,
object-oriented, (multi-threaded) program

• compositional semantics

• component = “program fragment” = “open program”

• more details: later

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Structure

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Notion of observation

public class P { / / component
public s t a t i c vo id main (S t r i n g [] arg) {

O x = new O() ;
x .m(4 2) ; / / c a l l to the ins tance o f O

}
}

class O { / / e x te rn a l observer
public vo id m(i n t x) {

<some code > ; / / body o f m
System . out . p r i n t l n (” success ”) ;

}
}

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Notion of observation

• pretty simple observational notion: “may-testing”:

compose a program with a context/observer, let it
run and see, whether the observer may be
successful

• P1 ⊑may P2: for all observers O: if P1 + O may be
successful, then so may be P2 + O.

• observational
• “black-box”
• fundamental distinction between

program/component/player vs.
environment/context/observer/opponent

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Classes?

• open semantics (based on may testing): in principle: easy
and understood

⇒ corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes?

• 3 issues:
1. interface separates observer and component classes
⇒ instantiation requests as interface interaction
2. class = generators of object (via new)1 ⇒ replay
3. abstraction of the heap topology

1Classes in Java or C# serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

What’s hard for an open (f-a) semantics?

• “message passing”2 framework ⇒ in first approx.:
semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary/chaotic?

2no direct access to instance variables
AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

What’s hard for an open (f-a) semantics?

• “message passing”2 framework ⇒ in first approx.:
semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary/chaotic?

• well, depends . . .

2no direct access to instance variables
AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

What’s hard for an open (f-a) semantics?

• “message passing”2 framework ⇒ in first approx.:
semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary/chaotic?

• does “arbitrary trace” mean ∈ Label∗ ?

2no direct access to instance variables
AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

What’s hard for an open (f-a) semantics?

• “message passing”2 framework ⇒ in first approx.:
semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary/chaotic?
• we know P + O is a program of the language

• well-formed
• well-typed
• class-structured

• exact representation

• ⇒ formalization of those restrictions

2no direct access to instance variables
AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Open semantics

• operational description:

• assumption/commitment formulation

• Ass. ⊢ C : Comm.
a
−→ ´Ass. ⊢ Ć : ´Comm.

• interface: 3 orthogonal abstractions:
• static abstraction: type system
• dynamic abstraction of heap topology:
• abstraction of the stack structure of thread(s): enabledness

conditions

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Cross-border instantiation & heap abstraction

• classes as unit of code/exchange

• instantiation as interface interaction
• component instantiates observer class ⇒

• instance: part of the observer
• reference to it: kept at the component

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Cross-border instantiation & heap abstraction

c2

o1 o2

new

program environment

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Open semantics and heap abstraction

• exact interface behavior

⇒ abstraction of the heap topology necessary

• keep book about “whom it told what”:

∆; E∆ ⊢ C : Θ; EΘ

• assumption context: E∆ ⊆ ∆ × (∆ + Θ) = pairs of objects

• written o1 →֒ o2 :

• worst case: equational theory implied by E∆ (on ∆):

E∆ ⊢ o1 ⇌ o2

(for o2 ∈ Θ: E∆ ⊢ o1 ⇌; →֒ o2)

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Dynamic heap abstraction

• partitioning of the heap: equivalence classes (“cliques”) of
objects

• transition: change of contexts
• dynamicity

• creation of new cliques
• merge of existing cliques

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Dynamic heap abstraction

• partitioning of the heap: equivalence classes (“cliques”) of
objects

• transition: change of contexts
• dynamicity

• creation of new cliques
• merge of existing cliques

• outgoing communication
• a = n〈call oreceiver .l(~v)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• update: É∆ = E∆ + oreceiver →֒ ~v

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Dynamic heap abstraction

• partitioning of the heap: equivalence classes (“cliques”) of
objects

• transition: change of contexts
• dynamicity

• creation of new cliques
• merge of existing cliques

• incoming communication
• a = n〈call oreceiver .l(~v)〉?

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• check:3 E∆ ⊢ osender →֒ ~v

3actually, it’s É∆ instead of E∆.
AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Where are we?

• open semantics in the presence of classes ⇒ abstraction
of heap topology

• features (Java/C#-inspired):
• objects and classes (you might have guessed)
• (multiple) threads
• references/heap/aliasing
• typed language

• formalized in some “object calculus”

Remember: observational /may-testing approach
approach:

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers

• the observer is itself divided into cliques
• but: only one reports succcess
• consider P1 on the left, interacting with two observers
• What does P1 ⊑may P2 imply for P2?

∆Θ

succ

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers

• the observer is itself divided into cliques

• but: only one reports succcess

• consider P1 on the left, interacting with two observers

• What does P1 ⊑may P2 imply for P2?

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers

• the observer is itself divided into cliques
• but: only one reports succcess
• consider P1 on the left, interacting with two observers
• What does P1 ⊑may P2 imply for P2?

public class P1 { / / component
public s t a t i c vo id main (S t r i n g [] arg) {

O x1 = new O() ;
x1 .m1 () ;
O x2 = new O() ;
x1 .m2 () ;

}
}

class O { / / environment
public vo id m1 () { }
public vo id m2 () {

System . out . p r i n t l n (” success ”) ;
}

}

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers

• the observer is itself divided into cliques
• but: only one reports succcess
• consider P1 on the left, interacting with two observers
• What does P1 ⊑may P2 imply for P2?

∆Θ

succ

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Order of events

• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable

Θ ∆

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Order of events

• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable

Θ ∆ Θ ∆

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Order of events

• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable

Θ ∆ Θ ∆ Θ ∆

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Order of events

• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable

Θ ∆ Θ ∆ Θ ∆

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Classes as generators of objects

• two new instances of a class are identical up-to their id

• for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

Θ ∆

s t

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Classes as generators of objects

• two new instances of a class are identical up-to their id

• for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

Θ ∆

s t

Θ ∆

s′

s t

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Classes as generators of objects

• two new instances of a class are identical up-to their id

• for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

Θ ∆

s t

Θ ∆

s′

s t

Θ ∆

s′

s t

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers, revisited

• observer cliques are independent

• consider again the first examples: 2 cliques

∆Θ

succ

∆Θ

succ

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers, revisited

• observer cliques are independent

• consider again the first examples: 2 cliques

• of course, another observer may test for the “first
interaction”

• does it mean: only “trace” per clique? (projection)

• reason(?): no information can be passed from the first to
the 2nd observer clique

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers, revisited

• observer cliques are independent

• consider again the first examples: 2 cliques

∆Θ

succ

∆Θ

succ

∆Θ

⊥

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Two observers, revisited

• observer cliques are independent

• consider again the first examples: 2 cliques

• an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Results

• full-abstraction for may-testing in some object-calculus
setting with classes

• calculus
• strongly typed, nominal types
• multi-threaded
• name-generation
• algebraic formulation (“object calculus”)

• semantics (formalizing the ideas sketched here):
• scope extrusion mechanism to deal with object identities
• acquaintance as (dynamic) equivalence relation between

objects
• equivalence relation on traces to capture independence of

order
• characterization of swapping, switching, and replay

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Results

Definition (⊑trace)
Ξ0 ⊢ C1 ⊑trace C2, if the following holds. For all Ξ0 ⊢ C1

t
=⇒ and

all environment cliques [ot] after t , there exists Ξ0 ⊢ C2
s

=⇒
such that

1. there exists an environment clique [os] after s such that
Ξ0 ⊢ s ↓[os]≍∆ t ↓[oa], and

2. Ξ0 ⊢ t 42∆ s.

• ≍∆: up-to swapping (and switching)

• 42∆: up-to swapping, replay, prefix (and switching)

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Multi-threading

• Note: (most) everything I told so far was not depending on
concurrency

• introduction of concurrency (=“multithreading”)
• conceptually not complex
• threads themselves “do not communicate”: all information

transfer “via objects”
• introduction of names for threads + thread name into the

communication labels
• definability/completeness proof requires “implementation”

of (distributed) “mutex”-algorithm

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Determinism

• single-threaded setting

• not (!) uniformey a simplification
• classes as generators of objects (“replay”)

• a single (!) trace may be deterministic or non-deterministic
• characterization of deterministic traces required

• deterministic:
same history same response

• note:
• history per clique
• history up-to equivalences (swapping, switching etc)

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Class variables

• discussion so far: instance variables, only

⇒ different instances of the same class are identical up-to
identity: replay

• class-variables: 2 important consequences
• allows to distinguish different instances ⇒

replay-phenomenon no longer relevant
• provide a communication channel between various

instances of the class ⇒ all instance of a class are
connected

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Cloning

• creates a “identical copy” up-to identity

• new = “clone of the initial state”

• makes the branching structure visible

AG, June 2005 Switching, swapping, and replay

introduction classes and observable behavior 4 complications results variations conclusion

Cloning

P1

a
��

P2
a

@@

@@
@@

@
a

~~~~
~~

~~
~

•

b
}}||

||
||

||

c
!!

BB
BB

BB
BB

•

b
��

•

c
��

• • • •

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Cloning

public class O { / / component
public s t a t i c vo id main ( S t r i n g [ ] arg ) {

P1 x = new P1 ( ) ;
P1 y ;
x . a ( ) ;
y = ( P1 ) x . c lone ( ) ;
x . b ( ) ; y . c ( ) ;
System . out . p r i n t l n ( ” success ” ) ;

}
}

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Cloning

class P1 implements Cloneable {
p r i v a t e i n t x = 0 ;
p r i v a t e java . u t i l .Random gen = new java . u t i l .Random ( ) ;

public Object c lone ( ) {
t r y { r e t u r n super . c lone ( ) ; } / / use the n a t i ve clone−method
catch ( CloneNotSupportedExcept ion e ) { / / j u s t catch i t .
}
r e t u r n new P2 ( ) ; / / unreachable

}

public vo id choose ( ) { x=gen . n e x t I n t (2 )+1 ; r e t u r n ; } / / x i n {1 ,2}

public vo id a ( ) { r e t u r n ;}
public vo id b ( ) {

t h i s . choose ( ) ;
i f ( x ==1) { r e t u r n ; } else {System . e x i t ( 0 ) ; } ;

}
public vo id c ( ) {

t h i s . choose ( ) ;
i f ( x ==2) { r e t u r n ; } else {System . e x i t ( 0 ) ; }

}
}

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Thread classes

• classes = generator of state

• “thread class” = generator of activity

• cross-border thread spawning

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Subclassing

• “opens up” a new interface

⇒ new observations possible by subclassing

• most important: overriding makes “self-communication”
observable

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Subclassing

class P1 {
vo id add ( ) { . . . } / / adds one
void add2 ( ) { . . . } / / adds two
}

class P2 {
vo id add ( ) { . . . } / / adds one
void add2 ( ) { . . . s e l f . add ( ) . . . } / / adds two
}

class O extends P<x> {
add ( ) { . . . . } / / o v e r r i d i n g
. . .

}

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

introduction

classes and observable behavior

4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

Conclusions

• are classes good composition units?
• on the agenda:

• (fully) compositional semantics (under work)
• trace logics
• delegation, subtyping (and subclassing), cloning, generics

. . .

• game semantics

AG, June 2005 Switching, swapping, and replay



introduction classes and observable behavior 4 complications results variations conclusion

References I

[1] E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen.
Object connectivity and full abstraction for a concurrent calculus of classes.
In Z. Li, editor, ICTAC’04, volume 3407 of Lecture Notes in Computer Science, pages 38–52. Springer-Verlag,
July 2004.

[2] E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen.
Object connectivity for a concurrent class calculus (extended abstract).
2004.
Submitted for publication. A preliminary and longer version appeared under the title “A Structural Operational
Semantics for a Concurrent Class Calculus” as Technical Report 0307, CAU, Institute of Computer Science
August 2003.

[3] E. Ábrahám, F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen.
Observability, connectivity, and replay in a sequential calculus of classes.
In M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors, Proceedings of the Third International
Symposium on Formal Methods for Components and Objects (FMCO 2004), Lecture Notes in Computer
Science. submitted for publication, 2005.
To appear.

[4] E. Ábrahám, A. Grüner, and M. Steffen.
Dynamic heap-abstraction for open, object-oriented systems with thread classes.
May 2005.
Submitted as conference contribution.

[5] E. Ábrahám, A. Grüner, and M. Steffen.
An open structural operational semantics for an object-oriented calculus with thread classes.
Technical Report 0505, Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Universität zu
Kiel, May 2005.

AG, June 2005 Switching, swapping, and replay


	introduction
	classes and observable behavior
	4 complications
	results
	variations
	conclusion

