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introduction

Starting point

e question:

what's observable of an open class-based,
object-oriented, (multi-threaded) program

e ~~ compositional semantics

e component = “program fragment” = “open program”
e more details: later
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introduction

Notion of observation

public class P { // component
public static void main(String[] arg) {

O x = new O();
x.m(42); // call to the instance of O

}
}
class O { /1 external observer
public void m(int x) {
<some code >; /1 body of m
System.out. println ("success”);
}
}
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introduction

Notion of observation

e pretty simple observational notion: “may-testing”:

compose a program with a context/observer, let it
run and see, whether the observer may be
successful

e P1 Cmay P2: for all observers O: if P; + O may be
successful, then so may be P, + O.
e observational

o “black-box”

o fundamental distinction between
program/component/player vs.
environment/context/observer/opponent
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classes and observable behavior

classes and observable behavior
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classes and observable behavior

Classes?

e open semantics (based on may testing): in principle: easy
and understood

= corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes? I

e 3issues:
1. interface separates observer and component classes
= instantiation requests as interface interaction
2. class = generators of object (via new)! = replay
3. abstraction of the heap topology

IClasses in Java or C* serve also as kind of types, and furthermore for —
inheritance. We ignore that mostly here.
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classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?

clalu

%no direct access to instance variables
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classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
o well, depends...
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classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
e does “arbitrary trace” mean € Label™ ?
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classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface
e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
e we know P + O is a program of the language

e well-formed
o well-typed
e class-structured

e exact representation
¢ = formalization of those restrictions

clalu
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classes and observable behavior

Open semantics

e operational description:
e assumption/commitment formulation

e Ass.+ C:Comm. 3 Ass. + C : Comm.
e interface: 3 orthogonal abstractions:

e static abstraction: type system

¢ dynamic abstraction of heap topology:

¢ abstraction of the stack structure of thread(s): enabledness
conditions
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classes and observable behavior

Cross-border instantiation & heap abstraction

¢ classes as unit of code/exchange
e instantiation as interface interaction

e component instantiates observer class =

e instance: part of the observer
o reference to it: kept at the component
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classes and observable behavior

Cross-border instantiation & heap abstraction

program environment
C2
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classes and observable behavior

Open semantics and heap abstraction

e exact interface behavior
= abstraction of the heap topology necessary
e keep book about “whom it told what”:

NAEAFC:0Eg

e assumption context: Ex C A x (A + ©) = pairs of objects
e written 01 < 07 :
e worst case: equational theory implied by EA (on A):

EAFO]_’:rOZ

(for o, € ©: Ep F 01 =; < 0))
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classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques
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classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques

e outgoing communication
e a= n<Ca.” 0receiver.|(\7)>!
N, EAFC:0;Eg LA’;E'AI—é:é;E@

° update: EA =Ea+ Oreceiver — v
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classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques

e incoming communication
e a= n<Ca.” 0receiver.|(\7)>?
N, EAFC:0;Eg LA’;E'AI—é:é;E@

e check:? Ea b Osender — V

3actually, it's E instead of Ea.
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classes and observable behavior

Where are we?

e open semantics in the presence of classes =- abstraction
of heap topology
« features (Java/C7-inspired):

e objects and classes (you might have guessed)
e (multiple) threads

o references/heap/aliasing

e typed language

o formalized in some “object calculus”

Remember: observational /may-testing approach
approach:
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4 complicat

Two observers

o the observer is itself divided into cliques
e but: only one reports succcess
e consider P; on the left, interacting with two observers
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4 complicat

Two observers

the observer is itself divided into cliques

but: only one reports succcess

consider P; on the left, interacting with two observers
What does Py Ciay P2 imply for P>?

public class P1 { /1 component
public static void main(String[] arg) {
O x1 = new O();

x1.ml();
O x2 = new O();
x1.m2();
}
}
class O { /1 environment

public void mi() { }

public void m2() {
System.out. println ("success ");

}
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4 complicat

Two observers

the observer is itself divided into cliques
but: only one reports succcess
consider Py on the left, interacting with two observers

e What does P Cyay P2 imply for P2?
© A
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4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable

S) A
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4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable
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4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable
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4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable
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4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id

o for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

T st
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4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id
o for the observer:
what can be observed once by one observer

clique, can be observed again (up-to identity) by a
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4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id

o for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

S) A S) A
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4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques
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4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

e of course, another observer may test for the “first
interaction”

e does it mean: only “trace” per clique? (projection)

e reason(?): no information can be passed from the first to
the 2nd observer clique
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4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques
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4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

e an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer
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Results

o full-abstraction for may-testing in some object-calculus
setting with classes
e calculus
strongly typed, nominal types
multi-threaded
name-generation
algebraic formulation (“object calculus”)
e semantics (formalizing the ideas sketched here):
e scope extrusion mechanism to deal with object identities
e acquaintance as (dynamic) equivalence relation between
objects
e equivalence relation on traces to capture independence of
order
¢ characterization of swapping, switching, and replay

clalu
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Results

Definition (Cace)
=y I C1 Cuace Ca, if the following holds. For all g - C; = and

all environment cliques [o,] after t, there exists =g - C; =
such that

1. there exists an environment clique [0s] after s such that
=oFs l[os]xA t l[oa], and

2. 5pFtXas.

e =a: up-to swapping (and switching)
e =X A: Up-to swapping, replay, prefix (and switching)
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Multi-threading

¢ Note: (most) everything | told so far was not depending on
concurrency
e introduction of concurrency (=“multithreading”)

conceptually not complex

threads themselves “do not communicate”; all information
transfer “via objects”

introduction of names for threads + thread name into the
communication labels

definability/completeness proof requires “implementation”
of (distributed) “mutex”-algorithm
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Determinism

single-threaded setting
not (!) uniformey a simplification
classes as generators of objects (“replay”)
e asingle (!) trace may be deterministic or non-deterministic
e characterization of deterministic traces required
deterministic:
same history ~~ same response

note:

¢ history per clique
e history up-to equivalences (swapping, switching etc)
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Class variables

e discussion so far: instance variables, only

= different instances of the same class are identical up-to
identity: replay
e class-variables: 2 important consequences
¢ allows to distinguish different instances =
replay-phenomenon no longer relevant
e provide a communication channel between various

instances of the class = all instance of a class are
connected
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Cloning

e creates a “identical copy” up-to identity
e new = “clone of the initial state”
e makes the branching structure visible
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Cloning
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Cloning

public class O { // component
public static void main(String[] arg) {
P1 x = new P1();
Pl y;
x.a();
y = (P1l)x.clone();
x.b();y.cQ);
System.out. println ("success”);
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Cloning

class P1 implements Cloneable {
private int x = 0;
private java.util .Random gen = new java. util .Random();

public Object clone () {

try {return super.clone();} /1l use the native clone—method
catch(CloneNotSupportedException e) { // just catch it.
}
return new P2(); /1 unreachable
}
public void choose () { x=gen.nextint(2)+1;return;} /1 x in {1,2}

public void a() {return;}
public void b() {
this.choose ();
if (x==1) {return;} else {System.exit(0);};
}
public void c() {
this .choose ();
if (x==2) {return;} else {System.exit(0);}
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Thread classes

e classes = generator of state
e “thread class” = generator of activity
e cross-border thread spawning
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Subclassing

e “opens up” a new interface
= new observations possible by subclassing

e most important: overriding makes “self-communication”
observable
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Subclassing

class P1 {
void add () {...} /1 adds one
void add2 () {... } /1 adds two
}
class P2 {
void add () {...} /1 adds one
void add2 () {... self.add() ... } /1 adds two
}
class O extends P<x> {
add() { .... } /1 overriding
}
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Conclusions

e are classes good composition units?
e on the agenda:

o (fully) compositional semantics (under work)
e trace logics
e delegation, subtyping (and subclassing), cloning, generics

e game semantics
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