Switching, swapping, and replay

Issues for an open semantics for a Java-like calculus

E. Abraham M. Bonsangue F.S.de Boer A. Griner M. Steffen

Christian-Albrechts University Kiel

AG Informatik, Logik, Mathematik

June 2005

introduction

swapping

introduction

Starting point

e question:

what's observable of an open class-based,
object-oriented, (multi-threaded) program

e ~~ compositional semantics

e component = “program fragment” = “open program”
e more details: later

clalu

AG, June 2005 Switching, swapping, and replay

introduction

Structure

introduction

classes and observable behavior
4 complications

results

variations

conclusion

AG, June 2005 Switching, swapping, and replay

introduction

Notion of observation

public class P { // component
public static void main(String[] arg) {

O x = new O();
x.m(42); // call to the instance of O

}
}
class O { /1 external observer
public void m(int x) {
<some code >; /1 body of m
System.out. println ("success”);
}
}

Switching, swapping, and replay

introduction

Notion of observation

e pretty simple observational notion: “may-testing”:

compose a program with a context/observer, let it
run and see, whether the observer may be
successful

e P1 Cmay P2: for all observers O: if P; + O may be
successful, then so may be P, + O.
e observational

o “black-box”

o fundamental distinction between
program/component/player vs.
environment/context/observer/opponent

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

classes and observable behavior

clalu

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Classes?

e open semantics (based on may testing): in principle: easy
and understood

= corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes? I

e 3issues:
1. interface separates observer and component classes
= instantiation requests as interface interaction
2. class = generators of object (via new)! = replay
3. abstraction of the heap topology

IClasses in Java or C* serve also as kind of types, and furthermore for —
inheritance. We ignore that mostly here.

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?

clalu

%no direct access to instance variables

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
o well, depends...

clalu

%no direct access to instance variables

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
e does “arbitrary trace” mean € Label™ ?

clalu

%no direct access to instance variables

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

What's hard for an open (f-a) semantics?

e “message passing” framework = in first approx.:
semantics = message interchange at the interface
e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary/chaotic?
e we know P + O is a program of the language

e well-formed
o well-typed
e class-structured

e exact representation
¢ = formalization of those restrictions

clalu

%no direct access to instance variables

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Open semantics

e operational description:
e assumption/commitment formulation

e Ass.+ C:Comm. 3 Ass. + C : Comm.
e interface: 3 orthogonal abstractions:

e static abstraction: type system

¢ dynamic abstraction of heap topology:

¢ abstraction of the stack structure of thread(s): enabledness
conditions

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Cross-border instantiation & heap abstraction

¢ classes as unit of code/exchange
e instantiation as interface interaction

e component instantiates observer class =

e instance: part of the observer
o reference to it: kept at the component

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Cross-border instantiation & heap abstraction

program environment
C2

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Open semantics and heap abstraction

e exact interface behavior
= abstraction of the heap topology necessary
e keep book about “whom it told what”:

NAEAFC:0Eg

e assumption context: Ex C A x (A + ©) = pairs of objects
e written 01 < 07 :
e worst case: equational theory implied by EA (on A):

EAFO]_’:rOZ

(for o, € ©: Ep F 01 =; < 0))

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques

e outgoing communication
e a= n<Ca.” 0receiver.|(\7)>!
N, EAFC:0;Eg LA’;E'AI—é:é;E@

° update: EA =Ea+ Oreceiver — v

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Dynamic heap abstraction

e partitioning of the heap: equivalence classes (“cliques”) of
objects
e transition: change of contexts
e dynamicity
e creation of new cliques
e merge of existing cliques

e incoming communication
e a= n<Ca.” 0receiver.|(\7)>?
N, EAFC:0;Eg LA’;E'AI—é:é;E@

e check:? Ea b Osender — V

3actually, it's E instead of Ea.

AG, June 2005 Switching, swapping, and replay

classes and observable behavior

Where are we?

e open semantics in the presence of classes =- abstraction
of heap topology
« features (Java/C7-inspired):

e objects and classes (you might have guessed)
e (multiple) threads

o references/heap/aliasing

e typed language

o formalized in some “object calculus”

Remember: observational /may-testing approach
approach:

AG, June 2005 Switching, swapping, and replay

4 complicat

4 complications

swapping

4 complicat

Two observers

o the observer is itself divided into cliques
e but: only one reports succcess
e consider P; on the left, interacting with two observers

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers

o the observer is itself divided into cliques
e but: only one reports succcess
e consider P; on the left, interacting with two observers

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers

the observer is itself divided into cliques

but: only one reports succcess

consider P; on the left, interacting with two observers
What does Py Ciay P2 imply for P>?

public class P1 { /1 component
public static void main(String[] arg) {
O x1 = new O();

x1.ml();
O x2 = new O();
x1.m2();
}
}
class O { /1 environment

public void mi() { }

public void m2() {
System.out. println ("success ");

}

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers

the observer is itself divided into cliques
but: only one reports succcess
consider Py on the left, interacting with two observers

e What does P Cyay P2 imply for P2?
© A

AG, June 2005 Switching, swapping, and replay

4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable

S) A

AG, June 2005 Switching, swapping, and replay

4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable

© A © A
¢ Tt
. I
b —_—
—_ //
ehe— - N
L 5
e o
//‘ i REES

AG, June 2005 Switching, swapping, and replay

4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable

© A © A © A
. Tt Tt
- e I B D=
- — N
-~ R T
—_ — -~ 4
_— L >\\
1 B LE
S e— i =
L e i

AG, June 2005 Switching, swapping, and replay

4 complicat

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable

© A © A © A
N L\\\‘ L\\\‘
% BB B I IR I
o T T~
T -
e — jaii
See— N >\\-‘\
ST P T
T = =
e — —

AG, June 2005 Switching, swapping, and replay

4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id

o for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

T st

AG, June 2005 Switching, swapping, and replay

4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id
o for the observer:
what can be observed once by one observer

clique, can be observed again (up-to identity) by a
second “instance” of the observer

© A
© A — ¢
ST st o gt

AG, June 2005 Switching, swapping, and replay

4 complicat

Classes as generators of objects

e two new instances of a class are identical up-to their id

o for the observer:
what can be observed once by one observer
clique, can be observed again (up-to identity) by a
second “instance” of the observer

S) A S) A

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

© A S) A
>\\ *\
N >\

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

e of course, another observer may test for the “first
interaction”

e does it mean: only “trace” per clique? (projection)

e reason(?): no information can be passed from the first to
the 2nd observer clique

AG, June 2005 Switching, swapping, and replay

4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

© A e A © A
— IR
e suce” | 4

AG, June 2005

Switching, swapping, and replay

4 complicat

Two observers, revisited

e observer cliques are independent
e consider again the first examples: 2 cliques

e an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer

AG, June 2005 Switching, swapping, and replay

results

swapping

Results

o full-abstraction for may-testing in some object-calculus
setting with classes
e calculus
strongly typed, nominal types
multi-threaded
name-generation
algebraic formulation (“object calculus”)
e semantics (formalizing the ideas sketched here):
e scope extrusion mechanism to deal with object identities
e acquaintance as (dynamic) equivalence relation between
objects
e equivalence relation on traces to capture independence of
order
¢ characterization of swapping, switching, and replay

clalu

AG, June 2005 Switching, swapping, and replay

Results

Definition (Cace)
=y I C1 Cuace Ca, if the following holds. For all g - C; = and

all environment cliques [o,] after t, there exists =g - C; =
such that

1. there exists an environment clique [0s] after s such that
=oFs l[os]xA t l[oa], and

2. 5pFtXas.

e =a: up-to swapping (and switching)
e =X A: Up-to swapping, replay, prefix (and switching)

AG, June 2005 Switching, swapping, and replay

variations

swapping

Multi-threading

¢ Note: (most) everything | told so far was not depending on
concurrency
e introduction of concurrency (=“multithreading”)

conceptually not complex

threads themselves “do not communicate”; all information
transfer “via objects”

introduction of names for threads + thread name into the
communication labels

definability/completeness proof requires “implementation”
of (distributed) “mutex”-algorithm

AG, June 2005 Switching, swapping, and replay

Determinism

single-threaded setting
not (!) uniformey a simplification
classes as generators of objects (“replay”)
e asingle (!) trace may be deterministic or non-deterministic
e characterization of deterministic traces required
deterministic:
same history ~~ same response

note:

¢ history per clique
e history up-to equivalences (swapping, switching etc)

AG, June 2005 Switching, swapping, and replay

Class variables

e discussion so far: instance variables, only

= different instances of the same class are identical up-to
identity: replay
e class-variables: 2 important consequences
¢ allows to distinguish different instances =
replay-phenomenon no longer relevant
e provide a communication channel between various

instances of the class = all instance of a class are
connected

AG, June 2005 Switching, swapping, and replay

Cloning

e creates a “identical copy” up-to identity
e new = “clone of the initial state”
e makes the branching structure visible

AG, June 2005 Switching, swapping, and replay

Cloning

AG, June 2005 Switching, swapping, and replay

Cloning

public class O { // component
public static void main(String[] arg) {
P1 x = new P1();
Pl y;
x.a();
y = (P1l)x.clone();
x.b();y.cQ);
System.out. println ("success”);

Switching, swappin replay

Cloning

class P1 implements Cloneable {
private int x = 0;
private java.util .Random gen = new java. util .Random();

public Object clone () {

try {return super.clone();} /1l use the native clone—method
catch(CloneNotSupportedException e) { // just catch it.
}
return new P2(); /1 unreachable
}
public void choose () { x=gen.nextint(2)+1;return;} /1 x in {1,2}

public void a() {return;}
public void b() {
this.choose ();
if (x==1) {return;} else {System.exit(0);};
}
public void c() {
this .choose ();
if (x==2) {return;} else {System.exit(0);}

AG, June 200! itchi i d replay

Thread classes

e classes = generator of state
e “thread class” = generator of activity
e cross-border thread spawning

AG, June 2005 Switching, swapping, and replay

Subclassing

e “opens up” a new interface
= new observations possible by subclassing

e most important: overriding makes “self-communication”
observable

AG, June 2005 Switching, swapping, and replay

Subclassing

class P1 {
void add () {...} /1 adds one
void add2 () {... } /1 adds two
}
class P2 {
void add () {...} /1 adds one
void add2 () {... self.add() ... } /1 adds two
}
class O extends P<x> {
add() { } /1 overriding
}

Switching, swappin d replay

conclusion

swapping

Conclusions

e are classes good composition units?
e on the agenda:

o (fully) compositional semantics (under work)
e trace logics
e delegation, subtyping (and subclassing), cloning, generics

e game semantics

AG, June 2005 Switching, swapping, and replay

References |

[1]

[2]

[3]

[4]

[5]

E. Abraham, M. M. Bonsangue, F. S. de Boer, and M. Steffen.

Object connectivity and full abstraction for a concurrent calculus of classes.

In Z. Li, editor, ICTAC'04, volume 3407 of Lecture Notes in Computer Science, pages 38-52. Springer-Verlag
July 2004

E. Abraham, M. M. Bonsangue, F. S. de Boer, and M. Steffen.

Object connectivity for a concurrent class calculus (extended abstract).

2004.

Submitted for publication. A preliminary and longer version appeared under the title “A Structural Operational
Semantics for a Concurrent Class Calculus” as Technical Report 0307, CAU, Institute of Computer Science
August 2003

E. Abraham, F. S. de Boer, M. M. Bonsangue, A. Griiner, and M. Steffen.

Observability, connectivity, and replay in a sequential calculus of classes.

In M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors, Proceedings of the Third International
Symposium on Formal Methods for Components and Objects (FMCO 2004), Lecture Notes in Computer
Science. submitted for publication, 2005

To appear.

E. Abraham, A. Griiner, and M. Steffen.

Dynamic heap-abstraction for open, object-oriented systems with thread classes.
May 2005

Submitted as conference contribution

E. Abraham, A. Griiner, and M. Steffen.

An open structural operational semantics for an object-oriented calculus with thread classes.

Technical Report 0505, Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitét zu
Kiel, May 2005

Switching, swapping replay

	introduction
	classes and observable behavior
	4 complications
	results
	variations
	conclusion

