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1 Christian-Albrechts-University Kiel, Germany
2 Albert-Ludwigs-University Freiburg, Germany

Abstract. In this report we present a multithreaded class-calculus fea-
turing thread classes.
From an observational point of view, considering classes as part of a
component makes instantiation a possible interaction between compo-
nent and environment or observer. For thread classes it means that a
component may create external activity, which influences what can be
observed. The fact that cross-border instantiation is possible requires
that the connectivity of the objects needs to be incorporated into the
semantics. We extend our prior work not only by adding thread classes,
but also in that thread names may be communicated, which means that
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vational aspects of thread classes.
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1 Introduction

The foremost role of classes in an object-oriented language is that they are “gen-
erators of state”. In an observational framework, and distinguishing between the
component under observation and an observing environment, this makes object
instantiation a possible component-environment interaction. As a consequence,
a faithful representation of the observational behavior of class-structured com-
ponents requires to represent the connectivity among objects in the semantics,
which can be seen as a worst-case approximation of the heap’s reference structure
[3] [4].

In languages like Java [9] and C# [7], objects are passive entities; the active
part of the program is represented by threads. Indeed, in a multi-threaded set-
ting, there is also a mechanism for “generating new activity”, i.e., for creating
new threads. In this paper we extend our previous work by thread instantia-
tion from classes. In [4], we concentrated on a single-threaded fragment, while
[3] was multi-threaded, but without thread classes, i.e., new activities could be
dynamically spawned but not from “templates”. This extension makes cross-
border activity generation a possible component-environment interaction, i.e.,
the component may create threads in the environment and vice versa. Without
thread classes (but ordinary classes), only cross-border generation of objects was
possible.

This generalization makes the semantics account more resembling the situ-
ation as for instance in Java, it complicates the semantics, however, since now
also the connectivity of threads has to be taken into account.
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Overview The paper is organized as follows. Section 2 contains syntax and
operational semantics of the calculus we use, formalizing the notion of thread
classes. Section 3 concludes with related and future work.

2 A multithreaded calculus with thread classes

Next we present the calculus, and we start with the syntax. It is based on
the multithreaded object calculus, similar to the one presented in [8] and in
particular [10]. Compared to our previous work for instance in [2], we added
thread classes as generators of activity.

2.1 Syntax

The abstract syntax is given in Table 1. A program is given by a collection of
classes where a class c[(O)] carries a name c and defines the implementation of
its methods and fields. Thread classes, written ct〈(ta)〉, is known under the name
ct and carries the code in ta. For names, we will generally use o and its syntactic
variants as names for objects, c for classes (in particular ct for thread classes),
and n when being unspecific, for instance in Table 1.

An object o[c, F ] stores the current value of the fields or instance variables and
keeps a reference to the class it instantiates. A method ς(n:c).λ(x1:T1, . . . , xk:Tk).t
provides the method body abstracted over the ς-bound “self” parameter and the
formal parameters of the method [1]. Besides named objects and classes, the dy-
namic configuration of a program contains threads n〈t〉 as active entities.

A thread basically is either a value or a sequence of expressions, notably
method calls (written v.l(~v)), the creation of new objects new c where c is a
class name, and thread instantiation written as spawn ct(~v).

Furthermore we will use f for instance variables or fields, we use f = v for
field variable declaration, field access is written as x.f , and field update3 as
x.f := v.

The available types are given in the following grammar:

T ::= B | thread | n
U ::= T × . . .× T → T
V ::= T | U | [l:U, . . . , l:U ] | [(l:U, . . . , l:U)] | none

Besides base types B if wished, the type thread denotes the type of thread
names, and none represents the absence of a return value. The name n of a
class serves as the type for the named instances of the class. Finally we need
for the type system, i.e., as auxiliary type construction, the type or interface
of unnamed objects, written [l1:U1, . . . , lk:Uk] and the type for classes, written
[(l1:U1, . . . , lk:Uk)].

3 We don’t use general method update as in the object-based calculus.
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C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F ] | n〈t〉 | n〈(ta)〉 program
O ::= F, M object
M ::= l = m, . . . , l = m method suite
F ::= l = f, . . . , l = f fields
m ::= ς(n:T ).λ(x:T, . . . , x:T ).t method
f ::= ς(n:T ).λ().v field
ta ::= λ(x:T, . . . , x:T ).t thread abstraction
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e expr.

| v.l(v, . . . , v) | v.l := v | currentthread
| new n | spawn n(v, . . . , v)

v ::= x | n values

Table 1. Abstract syntax

2.2 Type system

The type system or static semantics presented next characterizes the well-typed
programs. The derivation rules are shown in Tables 2 and 3.

Table 2 defines the typing on the level of global configurations, i.e., on “sets”
of objects and classes, all named, together with the threads. On this level, the
typing judgments are of the form

∆ ⊢ C : Θ ,

where ∆ and Θ are finite mappings from names to types. In the judgment, ∆
plays the role of the typing assumptions about the environment, and Θ the
commitments of the configuration, i.e., the names offered to the environment.
Sometimes, the words required and provided interface are used to describe the
dual roles. ∆ must contain at least all external names referenced by C and dually
Θ mentions at most the names offered by C. For a pair ∆ and Θ of assumption
and commitment context to be well-formed we furthermore require that the
domains of ∆ and Θ are disjoint except for thread names.

The empty configuration is denoted by 0; it is well-typed in any context and
exports no names (cf. rule T-Empty). Two configurations in parallel can refer
mutually to each other’s commitments, and together offer the union of their
names (cf. rule T-Par). It will be an invariant of the operational semantics
that the identities of parallel entities are disjoint. Therefore, Θ1 and Θ2 in the
rule for parallel composition are merged disjointly, which is indicated by writing
Θ1 + Θ2. For the assumption contexts, ∆, Θ1 respectively ∆, Θ2 is meant to
denote disjoint union except thread names.

Remark 1 (Thread names and parallel composition). Note that T-Par does not
allow a thread name to occur on both sides of the parallel composition. The
typing excludes terms of the form n〈t1〉 ‖ n〈t2〉 as part of the component. Indeed,
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the operational semantics will not need to consider the behavior of the parallel
composition of a thread with itself. ⊓⊔

The ν-binder hides the bound name inside the component (cf. the rules
T-Nui and T-Nue). All names can be hidden, i.e., class names, in particular
names of thread classes, as well as object and thread references. For class names,
which are never transmitted, the ν-binder acts statically, i.e., a class name under
a binder remains permanently hidden.

The two variants of the rule distinguish basically the situation of hiding for
lazy instantiation from all other forms of hiding. Since the instance of a class
always belongs to the part of the system, where its class resides, the new name is
added in case of lazy instantiation (cf. rule T-Nue) to the environment context;
otherwise the new name is added to the commitment context. Note that there is
no special treatment of cross-border thread instantiation, for instance in a rule
similar to T-Nue. The reason is that threads are not instantiated lazily. To put it
differently: there are no terms of the form ν(n:ct).C where ct is a thread class of
the environment. When instantiating a thread class of the environment, the scope
is immediately opened. Possible are only components of the form ν(n:thread).C,
which results from internal thread creation.

For both T-Nu-rules, the ν-construct does not only introduce a local scope
for its bound name but asserts something stronger, namely the existence of a
likewise named entity. This highlights one difference of let-bindings for variables
and the introduction of names via the ν-operator: the language construct to
introduce names is the new -operator, which opens a new local scope and a
named component “running in parallel”. We call the fact that object references
of external objects can be introduced and instantiated only later when first used,
lazy instantiation; see Section 2.3 for the operational behavior.

Let-bound variables are stack allocated and checked in a stack-organized
variable context Γ . Names created by new are heap allocated and thus checked
in a “parallel” context (cf. again the assumption-commitment rule T-Par). The
rules for named classes introduce the name of the class and its type into the
commitment (cf. T-NClass and T-NTClass); The code of the class [(O)] re-
spectively the code of the thread class 〈(ta)〉 is checked in an assumption context
where the name of the class is available.

An instantiated object will be available in the exported context Θ by rule
T-NObj. Running threads are treated similarly, except that they possess as type
not the name of their thread class, but the type none, which expresses that they
do not return with a value.4

Remark 2 (Thread classes and types). Thread classes and ordinary classes are
treated slightly differently as far as the typing is concerned. Where for objects,
the name of its class is taken as the type, threads have the general thread as their
type. The reason for that decision is partly technical. It would be straightforward,

4 For the thread in T-NThread, the type none can be generated by the atomic thread
stop. In principle, a variable could have the type none, as well, but there are no values
except variables of this type.
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to use also for threads their class name as type. From a pragmatic point of view,
this seems unplausibly restrictive, however. On the other hand, we decided for the
simple scheme for typing objects, to leave aside the orthogonal issue of subtyping
and inheritance. For the types of threads, subtyping is not an issue, since one
cannot “do” anything with a thread name (for instance communicating with the
thread) except comparing it with other names. In particular, a thread cannot
observe the fact that it is an instance of a particular class. Java, for instance,
connects the notions of objects and threads in such a way, that the instance of
a “thread class” is an object in which the thread starts its life, the thread could
determine the identity of its thread class via the instanceof-operator. ⊓⊔

The last rule is a rule of subsumption. It expresses a very simple form of sub-
typing: we allow that an object respectively class contains at least the members
than the interface requires. This corresponds to width subtyping. Note, however,
that each object has exactly one type, namely its class.

Definition 1 (Subtyping). Let ∆1 and ∆2 be two well-formed name contexts.
Then ∆1 ≤ ∆2, if ∆1 and ∆2 have the same domain, and additionally ∆1(n) ≤
∆2(n) for all names. In abuse of notation, the relation ≤ on types is defined as
identity for all types except for object interfaces where we have:

[(l1:T1, . . . , lk:Tk, lk+1:Tk+1, . . .)] ≤ [(l1:T1, . . . lk:Tk)] .

The relations ≤ are obviously reflexive, transitive, and antisymmetric.
The typing rules of Table 3 formalize typing judgments for threads and ob-

jects and their syntactic sub-constituents. Besides assumptions about the pro-
vided names of the environment kept in ∆ as before, the typing is done relative
to assumptions about occurring free variables. They are kept separately in a
variable context Γ , a finite mapping from variables to types.

The typing rules are rather straightforward and in many cases identical to
the ones from [10] and [2]. We allow ourselves to write ~T and ~v for T1× . . .× Tk

and v1, . . . , vk and similar abbreviations, where we assume that the number of
arguments match in the rules. Different from the object-based setting are the
ones dealing with objects and classes. Rule T-Class is the introduction rule for
class types, the rule of instantiation of a class T-NewC requires reference to
a class-typed name. Similarly for thread classes, which are typed as functions
from the domain of their constructor to the domain of threads in rule T-TClass.
Consequently, the spawning of a new thread yields an element of thread , if the
type of the actual parameters match with the required ones. Note also that the
deadlocking expression stop has every type.

2.3 Operational semantics

Next we present the operational semantics; it is given in two stages. Section 2.3.1
starts with component-internal steps, i.e., those definable without reference to
the environment. In particular, the steps have no observable external effect and
are formulated independently of the assumption and commitment contexts.
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T-Empty

∆ ⊢ 0 : ()

∆, Θ2 ⊢ C1 : Θ1 ∆, Θ1 ⊢ C2 : Θ2

T-Par

∆ ⊢ C1 ‖ C2 : Θ1 + Θ2

∆ ⊢ C : Θ, n:T ∆ 6⊢ T : [(. . .)]
T-Nui

∆ ⊢ ν(n:T ).C : Θ

∆, o:c ⊢ C : Θ ∆ ⊢ c : [(. . .)]
T-Nue

∆ ⊢ ν(o:c).C : Θ

; ∆, c:T ⊢ [(O)] : T
T-NClass

∆ ⊢ c[(O)] : (c:T )

; ∆, ct:T ⊢ 〈(ta)〉 : T
T-NTClass

∆ ⊢ ct〈(ta)〉 : (ct:T )

; ∆ ⊢ c : [(TF , TM )] ; ∆, o:c ⊢ [F ] : [TF ]
T-NObj

∆ ⊢ o[c, F ] : (o:c)

; ∆, n: thread ⊢ t : none
T-NThread

∆ ⊢ n〈t〉 : (n: thread )

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢ C : Θ
T-Sub

∆′ ⊢ C : Θ′

Table 2. Static semantics (components)

The external steps, on the other hand, presented in Section 2.3.2, define the
interaction of the component with the environment. In particular, the semantics
is defined in reference to assumption and commitment contexts. The static part
of the contexts corresponds to the type system from Section 2.2 on component
level and takes care that, e.g., only well-typed values are received from the
environment. The contexts, however, need to be extended by a dynamic part
which deals with the potential connectivity of objects and thread names and
which corresponds to an abstraction of the heap of the program.

2.3.1 Internal steps The internal steps are given in Table 4, where we distin-
guish between confluent steps, written , and other internal transitions, written
τ
−→. The first 5 rules deal with the basic sequential constructs, all as  -steps.
The basic evaluation mechanism is substitution (cf. rule Red). Note that the rule
requires that the leading let-bound variable of a thread can be replaced only by
values. This means the redex (if any) is uniquely determined within the thread
which makes the reduction strategy deterministic. The stop-thread terminates
for good, i.e., the rest of the thread will never be executed (cf. rule Stop).

The step NewOi describes the creation of an instance of a component in-
ternal class c[(F, M)], i.e., a class whose name is contained in the configuration.
Note that instantiation is a confluent step. The fields F of the class are taken
as template for the created object, and the identity of the object is new and
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Γ ; ∆ ⊢ m1 : T1 . . . Γ ; ∆ ⊢ mk : Tk T = [(l1:T1, . . . , lk:Tk)]
T-Class

Γ ; ∆ ⊢ [(l1 = m1, . . . , lk = mk)] : T

Γ ; ∆ ⊢ f1 : T1 . . . Γ ; ∆ ⊢ fk : Tk T = [l1:T1, . . . , lk:Tk]
T-Obj

Γ ; ∆ ⊢ [l1 = f1, . . . , lk = fk] : T

Γ, x1:T1, . . . , xk:Tk; ∆ ⊢ t : none

T-TClass

Γ ; ∆ ⊢ 〈(λ(~x:~T ).t)〉 : ~T → thread

Γ, x1:T1, . . . , xk:Tk; ∆, n:c ⊢ t : T ′ Γ ; ∆ ⊢ c : T T = [(. . . , l:~T → T ′, . . .)]
T-Memb

Γ ; ∆ ⊢ ς(n:c).λ(~x:~T ).t : T.l

Γ ; ∆ ⊢ v : c Γ ; ∆ ⊢ c : [(. . . , l:~T → T, . . .)] Γ ; ∆ ⊢ ~v : ~T
T-Call

Γ ; ∆ ⊢ v.l(~v) : T

Γ ; ∆ ⊢ v : c Γ ; ∆ ⊢ c : T Γ ; ∆ ⊢ v′ : T.f
T-FUpdate

Γ ; ∆ ⊢ v.f := v′ : c

Γ ; ∆ ⊢ c : [(T )]
T-NewC

Γ ; ∆ ⊢ new c : c

Γ ; ∆ ⊢ n : ~T → thread Γ ; ∆ ⊢ ~v : ~T
T-Spawn

Γ ; ∆ ⊢ spawn n(~v) : thread

T-CurrT

Γ ; ∆ ⊢ currentthread : thread

Γ ; ∆ ⊢ e : T1 Γ, x:T1; ∆ ⊢ t : T2

T-Let

Γ ; ∆ ⊢ let x:T1 = e in t : T2

Γ ; ∆ ⊢ v1 : T1 Γ ; ∆ ⊢ v2 : T1 Γ ; ∆ ⊢ e1 : T2 Γ ; ∆ ⊢ e2 : T2

T-Cond

Γ ; ∆ ⊢ if v1 = v2 then e1 else e2 : T2

T-Stop

Γ ; ∆ ⊢ stop : T

Γ (x) = T
T-Var

Γ ; ∆ ⊢ x : T

∆(n) = T
T-Name

Γ ; ∆ ⊢ n : T

Table 3. Static semantics (2)
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n〈let x:T = v in t〉 n〈t[v/x]〉 Red

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 

n〈let x1:T1 = e1 in (let x2:T2 = e in t)〉 Let

n〈let x:T = (if v = v then e1 else e2) in t〉 n〈let x:T = e1 in t〉 Cond1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉 n〈let x:T = e2 in t〉 Cond2

n〈let x:T = stop in t〉 n〈stop〉 Stop

n〈let x:T = currentthread in t〉 n〈let x:T = n in t〉 CurrentThread

c[(F, M)] ‖ n〈let x:T = new c in t〉 

c[(F, M)] ‖ ν(o:T ).(o[c, F ] ‖ n〈let x:c = o in t〉) NewOi

ct〈(λ(~x:~T ).t2)〉 ‖ n1〈let x:T = spawn ct(~v) in t1〉 

ct〈(λ(~x:~T ).t2)〉 ‖ ν(n2:T ).(n1〈let x:T = n2 in t1〉 ‖ n2〈t2[~v/~x]〉) Spawni

c[(F, M)] ‖ o[c, F ′] ‖ n〈let x:T = o.l(~v) in t〉
τ
−→

c[(F, M)] ‖ o[c, F ′] ‖ n〈let x:T = M.l(o)(~v) in t〉 Calli

o[c, F ] ‖ n〈let x:T = o.f := v in t〉
τ
−→ o[c, F.f := v] ‖ n〈let x:T = o in t〉 FUpdate

Table 4. Internal steps

local —for the time being— to the instantiating thread; the new named object
and the thread are thus enclosed in a ν-binding. Similarly, rule Spawni specifies
internal thread class instantiation.

Rule Calli treats an internal method call, i.e., a call to an object contained
in the configuration. In the step, M.l(o)(~v) stands for t[o/s][~v/~x], when method

suite [M ] equals [. . . , l = ς(s:T ).λ(~x:~T ).t, . . .]. Note also that the step is a
τ
−→-

step, not a confluent one. The same holds for field update in rule FUpdate,
where [c, (l1 = f1, . . . , lk = fk, f = v′).f := v] stands for [c, l1 = f1, . . . , lk =
fk, f = v]. Note further that instances of a component class invariantly belong
to the component and not to the environment. This means that an instance of a
component class resides after instantiation in the component, and named objects
will never be exported from the component to the environment or vice versa; of
course, names to objects may well be exported.

The reduction relations from above are used modulo structural congruence,
which captures the algebraic properties of parallel composition and the hiding
operator. The basic axioms for ≡ are shown in Table 5 where in the fourth
axiom, n does not occur free in C1. The congruence relation is imported into the
reduction relations in Table 6. Note that all syntactic entities are always tacitly
understood modulo α-conversion.
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0 ‖ C ≡ C

C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T ).C2 ≡ ν(n:T ).(C1 ‖ C2)

ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 5. Structural congruence

2.3.2 External steps Besides internal steps a component exchanges infor-
mation with the environment via calls, returns, and spawn actions (cf. Table 7).
In the call and return labels, the mentioned n is the active thread that issues
the call or returns from the call. In the thread instantiation label, n is the name
of the new thread; the thread which spawned the new thread is not part of the
label.5 In accordance with π-calculus terminology, let us say, the thread name
occurs in the label in subject position in the first case and in object or argument
position in the latter. Of course, a thread name may occur in both positions
at the same time. Furthermore note that there are no separate external labels
for object instantiation: Externally instantiated objects are created only at the
point when it is actually accessed for the first time, which we call “lazy instanti-
ation”. Given a label ν(Φ).γ′ where Φ is a name context, i.e., a sequence of single
ν(n:T ) bindings (whose names are assumed all disjoint, as usual) and were γ′

does not contain any binders, we call γ′ the core of the label. Given a label γ,
we refer with ⌊γ⌋ to its core. Analogously for send and receive labels.

Augmentation To formulate the external communication properly, we need to
introduce a few augmentations. We extend the syntax by two additional expres-
sions

o1 blocks for o2 and o2 return to o1 v .

5 Of course it might be mentioned in the arguments.

C ≡  ≡ C′

C  C′

C  C′

C ‖ C′′

 C′ ‖ C′′

C  C′

ν(n:T ).C  ν(n:T ).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′ τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T ).C
τ
−→ ν(n:T ).C′

Table 6. Reduction modulo congruence
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γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | 〈spawn n of c(~v)〉 | ν(n:T ).γ basic labels
a ::= γ? | γ! receive and send

Table 7. Labels

The first one denotes a method body in o1 waiting for a return from o2, and
dually the second expression returns v from o2 to o1. Furthermore, we augment
the syntax of the method definitions accordingly, such that each method call
and each spawn step is preceded by an annotation of the caller; i.e., instead of
ς(self :c).λ(~x:~T ).(. . . x.l(~y) . . .) we write

ς(self :c).λ(~x:~T ).(. . . self x.l(~y) . . . self spawn ct(~z)) .

Even if threads themselves cannot communicate, their names can be commu-
nicated via message passing. To obtain a faithful representation of the behavior,
the semantics must contain information to which clique of objects the thread
belongs to. Especially for new threads, the semantics needs a representation of
that clique. Note that a thread can be instantiated without connection to any
object/clique and indeed the initial thread starts with static code, i.e., without
reference to any object. As representation of the clique of objects, the thread n
starts in ⊙n. As said, ⊙n may not correspond to any existing object; we need
this representative just to maintain the connectivity of the thread in case there
is indeed no (visible) object.

We need to augment the threads such that every thread n carries at the
beginning the identity ⊙n of its initial clique. The program starts with one
single initial thread. If the thread starts within the component, the contexts
of the initial configuration ∆0 ⊢ C : Θ0 asserts Θ0 ⊢ ⊙. Otherwise, ∆0 ⊢ ⊙.
As in the augmentation for methods, the code in the thread classes must be
augmented in such a way, that for method calls the virtual clique of the thread
is mentioned in front of the call, i.e., after instantiation, the call looks as follows:
n〈. . .⊙n x.l(~v) . . .〉. The static code of each thread class is augmented into

ct〈(λ(~x:~T ).(. . .⊙ x.l(~v) . . .))〉

for each mentioned call. When the thread is instantiated, ⊙ is replaced by ⊙n

where n is the identity of the new thread. Given the above thread class, we
denote by ct(~v) the replacement t[⊙n, ~v/⊙, ~x], when t is the body of the thread
class definition. The initial thread, which is not instantiated from a thread class
but given directly (in case the activity starts in the component) starts with ⊙n

as augmentation, if the initial thread is named n. If the component is renamed
by α-conversion, n and ⊙n are renamed simultaneously. The steps of the internal
semantics must be adapted accordingly. One particular thing we require for the
treatment of stop in connection with the block-return augmentation: The internal
rule Stop for the deadlocked thread is adapted insofar that it does not remove a
os return to or v-statement. We also omit the typing rules for the augmentation,
as they are straightforward.
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Remark 3 (Augmentation). Intuitively, the introduction of the auxiliary symbols
⊙n does not influence the behavior, since the programmer is not allowed to
use them in his code. Note in this context that ⊙n is not comparable with n.
Note further that ⊙n which we introduced for an accurate representation of the
semantics is straightforwardly implementable in the given language. ⊓⊔

Remark 4 (Thread classes). In Java, thread classes are ordinary classes, i.e.,
classes which are instantiated into objects, which possess a special method that
can be used to spawn a new thread. ⊙n can be seen as analogue of that “thread
object”. A difference is, however, that in our setting, ⊙n is not a real object, e.g.,
it is not included in the type system. In particular it does not contains fields nor
methods, which means one cannot use ⊙n to communicate information to the
thread n. In our formalization, the only way the spawner of a new thread can
hand over information to the spawnee is explicitely via the thread constructor.

⊓⊔

Connectivity contexts In the presence of cross-border instantiation, the seman-
tics must contain a representation of the connectivity, which can be seen as
an abstraction of the program’s heap. The external semantics is formalized as
labeled transitions between judgments of the form

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ , (1)

where ∆, Σ; E∆ are the assumptions about the environment of the component
C and Θ, Σ; EΘ the commitments ; alternative names are the required and the
provided interface of the component. The assumptions consist of a part ∆, Σ
concerning the existence (plus static typing information) of named entities in
the environment. The semantics maintains as invariant that the assumption and
commitment contexts are disjoint concerning object and class names, whereas a
thread name occurs as assumption iff. it is mentioned in the commitments. By
convention, the contexts Σ (and their alphabetic variants) contain exactly all
bindings for thread names.

This means, as invariant we maintain for all judgments ∆, Σ; E∆ ⊢ C :
Θ, Σ; EΘ that ∆, Σ, and Θ are pairwise disjoint. A further invariant is that
a thread name n occurs in Σ, iff. ⊙n occurs in either ∆ or else in Θ. This
means, besides being relevant for connectivity information, ⊙n contains also the
information whether the threads started its life in the environment or in the
component.

As mentioned, the ⊙n are needed in particular because new thread names
may be communicated between environment and component. If the thread has
been active at the interface in the past, the semantics contains enough informa-
tion such that the originating clique of objects is clear.

For the book-keeping of which objects of the environment have been told
which identities, a well-typed component must take into account the relation of
object from the assumption context ∆ amongst each other, and the knowledge
of objects from ∆ about thread names and names exported by the component,
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i.e., those from Θ. In analogy to the name contexts ∆ and Θ, E∆ expresses
assumptions about the environment, and EΘ commitments of the component:

E∆ ⊆ ∆× (∆ + Σ + Θ) . (2)

and dually EΘ ⊆ Θ× (Θ+Σ +∆). Since in the language we allow the sending of
thread names, we must include pairs from ∆×Σ resp. Θ×Σ into the connectivity.
We write o →֒ n (“o may know n”) for pairs from these relations. Without full
information about the complete system, the component must make worst-case
assumptions concerning the proliferation of knowledge, which are represented as
the reflexive, transitive, and symmetric closure of the →֒-pairs of objects from
∆. Given ∆, Θ, and E∆, we write ⇌ for this closure, i.e.,

⇌ , (→֒↓∆ ∪ ←֓↓∆)∗ ⊆ ∆×∆ . (3)

Note that we close →֒ only wrt. environment objects, but not wrt. objects at
the interface nor wrt. thread names, i.e., the part of →֒ ⊆ ∆ × (Θ + Σ). The
intuitive reason is that the closure expresses the worst-case assumptions about
the environment behavior. The objects from Θ′, however, are not under control of
the environment. That the closure does not concern thread names reflects the fact
that threads “themselves” cannot distribute information except by method calls,
i.e., via objects. Threads do not communicate and exchange information, it’s
rather the objects that exchange information via method calls, which constitute
the threads. We also need the union ⇌ ∪ ⇌; →֒ ⊆ ∆ × (∆ + Σ + Θ), where
the semicolon denotes relational composition. We write ⇌→֒ for that union. As
judgment, we use ∆, Σ; E∆ ⊢ o1 ⇌ o2 : Θ, Σ, resp. ∆, Σ; E∆ ⊢ o⇌→֒ n : Θ, Σ.
For Θ, Σ, EΘ, and ∆, Σ, the definitions are applied dually.

The relation ⇌ partitions the objects from ∆ into equivalence classes. We
call a set of object names from ∆ (or dually from Θ) such that for all objects
o1 and o2 from that set, ∆, Σ; E∆ ⊢ o1 ⇌ o2 : Θ, Σ, a clique, and if we speak of
the clique of an object we mean the equivalence class.

Having introduced E∆ and EΘ as part of the judgment, we must still clarify
what it “means”, i.e., when does ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ hold? Besides the
typing part, which remains unchanged, this concerns the commitment part EΘ.
The relation EΘ asserts about the component C that the connectivity of the
objects from the component is not larger than the connectivity entailed by EΘ.
Given a component C and two names o from Θ and n from Θ+∆+Σ, we write
C ⊢ o →֒ n, if C ≡ ν(Φ).(C′ ‖ o[. . . , f = n, . . .]) where o and n are not bound by
Φ, i.e., o contains in one of its fields a reference to n. We can thus define:

Definition 2. The judgment ∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ holds, if ∆, Σ ⊢ C :
Θ, Σ, and if C ⊢ n1 →֒ n2, then Θ, Σ; EΘ ⊢ n1 ⇌→֒ n2 : ∆, Σ.

We often simply write ∆, Σ ⊢ C : Θ, Σ; EΘ to assert that the judgment is satis-
fied. Note that references mentioned in threads do not “count” as acquaintance.

The pairs listed in a commitment context EΘ do not require the existence of
connections in the components, it is rather the contrapositive situation: If EΘ
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does not imply that two entities are in connection, either directly or indirectly,
then they must not be in connection in C. Thus, a larger EΘ means a weaker
specification. To make this precise, let us define what it means for one context
to be stronger than another:

Definition 3 (Entailment). ∆1, Σ1; E∆1
; Θ1 ⊢ ∆2, Σ2; E∆2

; Θ2 iff. for all
names n and n′ with ∆2 ⊢ n and ∆2 + Σ2 + Θ2 ⊢ n′ we have: if ∆2, Σ2; E∆2

⊢
n⇌→֒ n′ : Θ2, then ∆1, Σ1; E∆1

⊢ n⇌→֒ n′ : Θ1.

Note that since ⇌ is reflexive on ∆2, the above definition implies ∆1 ≥ ∆2, by
which we mean that the binding context ∆1 is an extension of ∆2 wrt. object
names (analogously we write ∆2 ≤ ∆1 when ∆2 is extended by ∆1, and say that
∆2 is a subcontext of ∆1).

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: EΘ over-approximates the actual connectivity of
the component and is update in incoming communication, while the assumption
context E∆ is consulted to exclude impossible combinations of incoming values.
Incoming new names, exchanged boundedly, however, update both commitments
and assumptions.

Use and change of contexts The operational semantics is formulated as transi-
tions between typed judgments

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ
a
−→ ∆́, Σ́; É∆ ⊢ Ć : Θ́, Σ́; ÉΘ .

The assumption contexts ∆, Σ; E∆ can be seen as an abstraction of the (not-
present) environment; more precisely, it represents the potential behavior of
all possible environments. So the assumption contexts are consulted to check
whether an incoming action is currently possible, and are updated in outgoing
communication. The commitment contexts play a dual role, i.e., it is updated in
incoming communication. For outgoing communication, however, the commit-
ment context is not consulted for checks.

Notation 1 To facilitate the following definitions notationally, we will make
use of the following conventions. We abbreviate the triple of name contexts
∆, Σ, Θ as Φ, and the context ∆, Σ, Θ, E∆, EΘ combining assumptions and com-
mitments Ξ. Furthermore we understand Θ́, Σ́, ∆́ as Φ́, Ξ́ as consisting of
∆́, Σ́; É∆ , ÉDelta, ÉT heta etc.

The check whether the current assumptions are met in an incoming commu-
nication step is given in Definition 4.

Definition 4 (Connectivity check). An incoming core label a with sender
os and receiver or is well-connected wrt. an assumption-commitment context Ξ́
(written Ξ́ ⊢ os

a
→ or :ok) if:

∆́, Σ́; É∆ ⊢ os ⇌→֒ fn(a) : Θ́ . (4)
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Note that in case of an incoming call label, fn(a) includes the receiver or and
the thread name.

Besides checking whether the connectivity assumptions are met before a tran-
sition, the contexts are updated by a step, reflecting the change of knowledge. In
first approximation, an incoming communication updates the commitment con-
texts, but not the assumption context, and dually for outgoing communication.

More precisely, however, incoming communication, for instance, updates both
contexts, namely in connection with references exchanged boundedly. All exter-
nal transitions may exchange bound names in the label, i.e., bound references to
objects and threads, but not to classes since class names cannot be communi-
cated. For the binding part Φ′ = ∆′, Σ′, Θ′ of a label ν(Φ′).γ, we distinguish ref-
erences to existing objects whose scope extrudes across the border, object names
which are lazily instantiated in the step, and references to existing threads whose
scope extrudes. In the special case of a spawn-label for cross-border instantia-
tion of a new thread, also the new thread is transmitted boundedly, of course.
Remember that for thread instantiation we cannot have lazy instantiation.

For incoming communication, with the binding part Φ′ = ∆′, Σ′, Θ′, the
bindings ∆′ and Σ′ are object references respectively thread names transmitted
by scope extrusion, and Θ′ the reference to the lazily instantiated objects. For
object references, the distinction is based on the class types which are never
transmitted. In the incoming step, ∆′ extends the assumption context ∆, Θ′

extends Θ, and Σ′ extends the assumption and the commitment context. For
outgoing communication, the situation is dual. Cf. Definition 5.

Definition 5 (Name context update: Φ+a). The update Φ́ of an assumption-
commitment context Φ wrt. an incoming label a = ν(Φ′)⌊a⌋ is defined as follows.

1. Θ́ = Θ + Θ′. In case of a spawn-label Θ́ = Θ + Θ′,⊙n, where n is the name
of the spawned thread.

2. ∆́ = ∆ + ⊙Σ′, ∆′. In case of a spawn label, ⊙Σ′ \n is used instead of ⊙Σ′,
where n is the name of the spawned thread.

3. Σ́ = Σ + Σ′

We write Φ+a for the update. The update for outgoing communication is defined
dually in the sense that ⊙n of a spawn label is added to ∆ instead of Θ. Likewise,
the ⊙Σ (resp. ⊙Σ′ \n) are added to Θ, instead of ∆.

Now to the update of connectivity. We concentrate again on incoming com-
munication; the situation for outgoing communication is dual. The general in-
tention of updating environment connectivity is clear: incoming communication
may bring entities in connection which had been separate before, in particular
it may merge object cliques. For the commitment context, this can be directly
formulated by adding the fact that the receiver of the communication now is
acquainted with all transmitted arguments. See part (1) of Definition 6 below.
For the update of assumption connectivity context E∆, we add that the sender
knows all of the names which are transmitted boundedly (cf. part (2) of Defini-
tion 6). No update occurs wrt. names already known.
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Note that the sender of a communication may itself not be contained in ∆
before the communication: This situation occurs only for call and spawn steps,
more precisely for incoming spawn steps and incoming calls, where the calling
thread enters the component for the first time; for incoming returns, the sender
is already known (and determined). Indeed, for an incoming call or spawn, the
sender may not only be unknown, i.e., not mentioned in ∆ before the step,
it may remain anonymous after, as well. Furthermore, even if it’s clear that
the communication must originate from the environment, there can be more
than one possible environment cliques as source, when the thread is new. In
the operational rules, the update of Definition 6 is used where the sender is
appropriately guessed in those circumstances.

Remains the treatment of thread names transmitted boundedly. Let us first
assume that they do not include the active thread. As mentioned, for each thread
n′, the contexts remember where the thread starts its life, using the symbol ⊙n′

to denote the “initial clique” of thread n. The initial clique may not contain
real objects, namely if the thread is instantiated without handing over object
identities via the thread constructor. The semantics maintains as invariant that
for each thread name n mentioned in the Σ-context, either ∆ ⊢ ⊙n or Θ ⊢ ⊙n:
A thread known both at the environment and the components started on exactly
one side. The thread exchanged in Σ′ have not yet crossed the border actively
(indeed their names have not even passed the border in argument position, for
that matter). It it clear, however, if they start being active at the interface, if
ever, their first interaction will be an incoming call. To remember this circum-
stance, ⊙n′ for all thread identities from Σ′ (abbreviated ⊙Σ′) is added to the
environment context. Furthermore we may assume that they belong to the clique
of the sender, which we fix by adding os →֒ ⊙Σ′ to the connectivity assumptions.

Definition 6 (Connectivity context update). The update (É∆, ÉΘ) of an
assumption-commitment context (E∆, EΘ) wrt. an incoming label a = ν(Φ′)⌊a⌋?
with sender os and receiver or is defined as follows.

1. ÉΘ = EΘ + or →֒ ⌊a⌋.
2. É∆ = E∆ + os →֒ Φ′,⊙Σ′ . In case of a spawn label, ⊙Σ′ \n is used instead

of ⊙Σ′ , where n is the name of the spawned thread.

We write (E∆, EΘ) + os
a
→ or for the update.

Combining Definitions 5 and 6, we write Ξ + os
a
→ or when updating the name

and the connectivity at the same time.
Besides Definition 4, which checks whether a label is possible in that the

connectivity assumptions are met, we must not forget the static assumptions,
i.e., whether the transmitted values are of the correct types. This is covered in
the following definition.

Definition 7 (Well-typedness of a label). Well-typedness of an outgoing
label a relative to the contexts ∆, Σ, Θ is given by the rules of Table 8. We use
∆, Σ, Θ ⊢ a : ok as notation to assert well-typedness.
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Φ′ = ∆′, Σ′, Θ′ dom(Φ′) ⊆ fn(n〈call or.l(~v)〉) Θ́, Σ́, ∆́ = ∆, Σ, Θ + Φ′

; Θ́ ⊢ or :cr ; ∆, Θ ⊢ cr : [(. . . , l:~T → T, . . .)] ; ∆′, Σ′, Θ′ ⊢ ~v : ~T

∆, Σ, Θ ⊢ ν(Φ′).n〈call or.l(~v)〉? :ok

Φ′ = ∆′, Σ′, Θ′ dom(Φ′) ⊆ 〈spawn n of ct(~v)〉? Θ́, Σ́, ∆́ = ∆, Σ, Θ + Φ′

∆, Θ ⊢ ct : ~T → thread Θ́, Σ́, ∆́ ⊢ ~v : ~T

∆, Σ, Θ ⊢ ν(Φ′).〈spawn n of ct(~v)〉? :ok

Φ′ = ∆′, Σ′, Θ′ dom(Φ′) ⊆ n〈return(v)〉? Θ́, Σ́, ∆́ = ∆, Σ, Θ + Φ́

; ∆, Θ ⊢ cr : [(. . . , l:~T → T, . . .)] ; ∆, Σ, Θ ⊢ v : T

∆, Σ, Θ ⊢ ν(Φ′).n〈return(v)〉? :ok

Table 8. Checking static assumptions

Remark 5 (Without thread classes). In a setting without thread classes and
where thread names cannot be sent around in the programming language, still
thread names are exchanged by scope extrusion: When a new thread crosses
actively the border, its name occurs in subject position in the label and is trans-
mitted boundedly.

Without thread classes, however, the setting simplifies in that one does not
need ⊙n. We introduced ⊙n as a representation of the clique where n started its
life, n’s urvater. This “virtual object” is needed for the situation, when a thread
name crosses the component-environment border for the first time, i.e., in the
situation of a first cross-border method call of a thread.

For example in an incoming call and without thread classes, it is clear that
the new thread has started its life in the environment; hence the semantics
needs no representation of that fact, for instance by requiring ∆ ⊢ ⊙n as here.
Furthermore, one additional fact is guaranteed: the thread is spawned by some
existing environment clique mentioned in ∆.6 In that setting, the spawner of the
new thread still needs to be guessed, but the semantics can pick a spawner from
the objects already known.

With thread instantiation, this assumption is no longer valid: the component
can create an environment thread without connection to any environment object,
or even without connection to any object. If such a thread then calls back (or it
creates internally another thread that then enters the component), the semantics
must check whether it is possible that it knows all of the values mentioned in
the label.

In short, the presence of thread classes requires the introduction of ⊙n into
the semantics. ⊓⊔

Remark 6 (Without communication of thread names). In [3], we considered a
setting which is restricted not only in that it does not feature thread classes but

6 The only exception is the very first step.
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also in that communication of thread names is not supported. More precisely,
the only way in that thread names are communicated is in subject position of the
label. The thread name in this situation is still part of the communication label,
as the expression currentthread allows to observe the name; in particular, the
setting of [3] allows to store thread identities, it is only not possible to mention
the name as argument in method calls.

The fact that the thread name in subject position is observable by the callee
of a method in some sense means that the mentioned restriction not to commu-
nicate thread in argument position is not a real restriction. On the other hand,
since thread names do not appear in communication labels in object position,
there is no need to check whether this name may be known by the respective
caller. As a consequence, the setting is simplified in that the connectivity of
objects and threads, i.e., pairs of the form o →֒ n are not needed for a fully
abstract semantics. ⊓⊔

Operational rules With all the ancillary definitions at hand, we can define the
operational rules of the semantics (cf. Table 9).

The three CallI-rules deal with incoming calls. For all three cases, the
contexts are updated to Ξ́ to include the information concerning new objects,
threads, and connectivity transmitted in that step. Furthermore, it is checked
whether the label statically type-checks and that the step is possible according
to the (updated) connectivity assumptions Ξ́. Remember that the update from
Ξ to Ξ́ includes guessing of connectivity, i.e., an element of non-determinism,
when the sender of the communication is unknown to the component.

The three rules for incoming calls deal with three different situations as to
when an incoming call may happen: A reentrant call7, a call of thread where the
thread name is already known in the component, and a call of a thread which is
new to the component.

To deal with component entities (threads and objects) that are being created
during the call C(Θ′, Σ′) stands for C(Θ′) ‖ C(Σ′), were C(Θ′) are the lazily
instantiated objects mentioned in Θ′. Furthermore, for each thread name n′ in
Σ′, a new component n′〈stop〉 is included, written as C(Σ′).

The treatment of the connectivity contexts is uniform in all three cases, only
the identity of the sender is different.

For reentrant method calls (cf. rule CallI1), the thread is blocked, i.e., it has
left the component previously via an outgoing call. The object that had been
the target of the call is remembered as part of the augmented block syntax.
In the rule it is referred to as os, as it is the sender of the current incoming
call. Two points are worth mentioning: first, os needs not be the actual caller,
which remains anonymous, since the callee cannot observe who really calls. The
reference os, however, can be taken as representative of the environment clique
from which the call is being issued: the call must originate from the clique where
it has previously left into since it cannot enter a disjoint environment clique, at
least not without detour via the component which would have been observable

7 Reentrant on the level of the component, not on the level of a single object.
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and recorded in the connectivity contexts. Secondly, note that the object os

stored in the block-syntax is not necessarily the callee of the call the thread
did immediately prior to this incoming call. In the history of the thread, there
might have been message exchange in between the blocked outgoing call and the
current incoming call, whose code has been popped off the stack. Nonetheless,
os must (still) be in the clique which sends the current call.

Rule CallI2 treats a non-reentrancy situation, where the thread name is
already known in the component nonetheless. As a consequence, the component
contains the entity n〈stop〉. Unlike in rule CallI1, the program code contains
no indication as to the origin of the call. Since the thread n must have crossed
the border before, the marker for its initial clique ⊙n must be contained in
either ∆ or in Θ. The premise ∆ ⊢ ⊙n assures that n had started its life on the
environment side. This bit of information is important as otherwise one could
mistake the code n〈stop〉 for the code of a (deadlocked) outgoing call. If ∆ ⊢ ⊙n

and n〈stop〉 is part of the component code, it is assured that the thread either
has never actively entered the component before (and does so right now) or has
left the component to the environment by some last outgoing return. In either
case, the incoming call is possible now, and in both cases we can use ⊙n as
representative of the caller’s identity.

The last call rule CallI3 deals with the situation, that the thread n enters
the component for the first time. This is assured by the premise Σ′ ⊢ n : thread .
As in CallI2, we do not have an indication from which clique the call originates,
since the corresponding thread is new.

What is assured is that the new thread has been created at some point
before as instance of some environment thread class —otherwise the cross-border
instantiation would have been observed and the thread name would not be fresh
now— and by some environment clique. Indeed, any existing environment clique
is a candidate that might have created the thread n. So the update to Ξ́ non-
deterministically guesses to which environment clique the thread’s origin ⊙n

belongs to. Note that ⊙Σ′ contains ⊙n since Σ′ ⊢ n, which means ∆́ ⊢ ⊙n after
the call.

For incoming thread creation in rule SpawnI, we need again to know the
origin of the call, i.e., the spawning clique. The situation is similar to the one for
CallI3, in that the origin of the communication needs to be guessed. In the case
of CallI3, we use ⊙n as “virtual clique”, i.e., as representative for the calling
clique, covering the situation where no actual calling object may be the source.
Different from the situation of unknown caller is that here we can obviously not
use ⊙n; that identity is incorporated into the component after the call. What
is clear is that the spawner must be part of the environment prior to the call,
i.e., ∆ ⊢ os, where os might be some ⊙n′ , i.e., a virtual clique of objects from
which no actually existing objects has yet escaped to the component. Note that
if os = ⊙n′ , ∆ ⊢ os assures that n 6= n′. Note further that the name of the
spawned thread is treated specifically in the definition of context update (cf.
Definitions 5 and 6) to cater for cross-border instantiation of the new thread.
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Ξ́ = Ξ + os

a
→ or Ξ́ ⊢ os

⌊a⌋
→ or :ok Θ́, Σ́, ∆́ ⊢ ⌊a⌋ :ok Θ́ ⊢ or

a = ν(Φ′). n〈call or .l(~v)〉? tblocked = let x′:T ′ = o blocks for os in t
CallI1

∆, Σ; E∆ ⊢ ν(Φ).(C ‖ n〈tblocked〉) : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ).(C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(~v) in or return to os x; tblocked〉) : Θ́, Σ́; ÉΘ

Ξ́ = Ξ + ⊙n

a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or Θ́, Σ́, ∆́ ⊢ ⌊a⌋ ok Θ́ ⊢ or

a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ ⊙n

CallI2

∆, Σ; E∆ ⊢ C ‖ n〈stop〉 : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′) ‖ n〈let x:T = or.l(~v) in or return to ⊙n x; stop〉 : Θ́, Σ́; ÉΘ

Ξ́ = Ξ + o
a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or Θ́, Σ́, ∆́ ⊢ ⌊a⌋ :ok Θ́ ⊢ or

a = ν(Φ′). n〈call or.l(~v)〉? ∆ ⊢ o Σ′ ⊢ n : thread
CallI3

∆, Σ; E∆ ⊢ C : Θ, Σ;EΘ

a
−→

∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈let x:T = or.l(~v) in or return to ⊙n x; stop〉 : Θ́, Σ́; ÉΘ

a = ν(Φ′).〈spawn n of ct(~v)〉? Ξ́ = Ξ + os

a
→ ⊙n Ξ́ ⊢ os

⌊a⌋
→ ⊙n Θ́, Σ́, ∆́ ⊢ ⌊a⌋ :ok

Θ́ ⊢ or ∆ ⊢ os Φ′ = Θ′, ∆′, Σ′ Θ ⊢ ct Σ′ ⊢ n : thread
SpawnI

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ

a
−→ ∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈ct(~v)〉 : Θ́, Σ́; ÉΘ

a = ν(Φ′). n〈call or.l(~v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ ∆́ ⊢ or Ξ́ = Ξ + os

a
→ or

CallO

∆, Σ;E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = os or.l(~v) in t〉) : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = os blocks for or in t〉) : Θ́, Σ́; ÉΘ

a = ν(Φ′).〈spawn n′ of ct(~v)〉! Φ′ = (fn(⌊a⌋) \n′) ∩ Φ Φ́ = Φ \Φ′

∆ ⊢ ct Ξ́ = Ξ + os

a
→ ⊙

n′
SpawnO

∆, Σ; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = os spawn ct(~v) in t〉) : Θ, Σ;EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = n′ in t〉) : Θ́, Σ́; ÉΘ

Table 9. External steps

An incoming spawn action without known external objects is possible only in
the very first step and is covered by SpawnI0 from Table 11.

Outgoing calls are dealt with in rule CallO. To distinguish the situation
from component-internal calls, the receiver must be part of the environment,
which is expressed by ∆́ ⊢ or. Note that the identity or may be contained in
the bound names ∆′ of the label, i.e., the callee or may be lazily instantiated
by the outgoing call. The connectivity assumption contexts are updated by the
information that the callee may now know the thread name and all arguments.
For the commitment context, we must add connectivity information concerning
the names whose scope now extrudes to the environment.

The sender os is contained in the code as part of the augmentation, so no
guessing is involved this time. Outgoing communication is simpler also wrt. static
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type checking: Assuming that we start with a well-typed component, there is no
need in re-checking now that only values of appropriate types are handed out,
since the operational steps preserve well-typedness (“subject reduction”).

The boundedly transmitted thread names Σ′ now contains the threads in-
stantiated from component thread classes and whose life starts at the component
side. We simply extend the commitments by the additional information that they
belong to the sender’s clique by adding os →֒ ⊙Σ′.

For outgoing thread creation (cf. rule SpawnO), the action updates the as-
sumption context in the following manner. The name context ∆ is extended by
the environment names transmitted boundedly, which in particular includes the
name of the new thread. In addition we must remember which references are
handed over to the new thread to detect situations, when the thread later calls
back with references it cannot possibly know (cf. also Remark 8). As before, ⊙n′

denotes the initial clique of environment objects the thread starts in, which is in
acquaintance with the arguments ~v after the step. The thread names transmitted
in subject position in Σ′, which refer to threads that start in the component, are
treated as in CallO, where os in the augmented code represents the spawning
clique. Unlike the treatment of the outgoing call, os needs not be remembered
in the code, as the thread never returns.

The rules of Table 10 deal with the return actions and lazy instantiation of
objects. The return steps work similar as the calls. They are simpler, however,
since the element of guessing is not present: when a thread returns, the callee
as well as the thread are already known. Returns are simpler than calls also in
that only one value is communicated, not a tuple (and we don’t have compound
types). To avoid case distinctions and to stress the parallel with the treatment of
the calls, we denote the binding part of the label by ν(Φ′) resp. ν(∆′, Σ′, Θ′) as
before, even if at least two of the name contexts are guaranteed to be empty. Rule
NewOlazy deals with lazy instantiation and describes the local instantiation of
an external class. Instead of exporting the newly created name of the object plus
the object itself immediately to the environment, the name is kept local until,
if ever, it gets into contact with the environment. When this happens, the new
instance will not only become known to the environment, but the object will also
be instantiated in the environment. Note that the instantiation is a confluent
step. Nevertheless, it is part of the external semantics in that it references the
assumption context.

The initial steps are axiomatized in Table 11. Obviously, initially no returns
are possible. The rules are variants of the rules from Table 9, where it is required
that the assumption and commitment contexts do not contain object or thread
names, formalized as ∆0, Θ0 ⊢ static. There is exactly one initial thread, either in
the component or in the environment. Where the initial activity starts is marked
by ⊙. For the initial static contexts, we are given either ∆0 ⊢ ⊙ or Θ0 ⊢ ⊙.
Note that in rules CallO0 and SpawnO0, the sender needs not be the initial
clique. The first outgoing environment interaction is not necessarily caused by
the initial code fragment; the component might start with internal method calls,
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a = ν(Φ′). n〈return(v)〉? Ξ́ = Ξ + os

a
→ or Θ́, Σ́, ∆́ ⊢ ⌊a⌋ :ok Ξ́ ⊢ os

⌊a⌋
→ or :ok

RetI

∆; E∆ ⊢ C ‖ n〈let x:T = or blocks for os in t〉 : Θ; EΘ

a
−→

∆́; É∆ ⊢ C ‖ n〈t[v/x]〉 : Θ́; ÉΘ

a = ν(Φ′). n〈return(v)〉! Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ Ξ́ = Ξ + os

a
→ or

RetO

∆, Σ; E∆ ⊢ ν(Φ).(C ‖ n〈let x:T = os return to or v in t〉) : Θ, Σ; EΘ

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈t〉) : Θ́, Σ́; ÉΘ

∆ ⊢ c
NewOlazy

∆, Σ; E∆ ⊢ n〈let x:c = new c in t〉 : Θ, Σ;EΘ  

∆, Σ; E∆ ⊢ ν(o:c).n〈let x:c = o in t〉 : Θ, Σ; EΘ

Table 10. External steps (2)

and indeed the active thread as the subject of the interaction need not be the
initial thread.

∆0, Θ0 ⊢ static ∆0 ⊢ ⊙ Ξ́ = Ξ + ⊙n

a
→ or Ξ́ ⊢ ⊙n

⌊a⌋
→ or :ok ∆0, Σ0, Θ0 ⊢ a :ok

a = ν(Φ′). n〈call or .l(~v)〉? Σ́ ⊢ n : thread
CallI0

∆0 ⊢ C : Θ0

a
−→

∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈let x:T = or.l(~v) in or return to ⊙ x; stop〉 : Θ́, Σ́; ÉΘ

∆0, Θ0 ⊢ static Θ0 ⊢ ⊙ a = ν(Φ′). n〈call or .l(~v)〉!

Φ′ = fn(⌊a⌋) ∩ Φ Φ́ = Φ \Φ′ ∆́ ⊢ or Ξ́ = Ξ + os

a
→ or

CallO0

∆0 ⊢ ν(Φ).(C ‖ n〈let x:T = os or.l(~v) in t〉) : Θ0

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = os blocks for or in t〉) : Θ́, Σ́; ÉΘ

∆0, Θ0 ⊢ static ∆0 ⊢ ⊙ Ξ́ = Ξ + ⊙
a
→ ⊙n Ξ́ ⊢ ⊙

⌊a⌋
→ ⊙n Θ́, Σ́, ∆́ ⊢ ⌊a⌋ :ok

a = ν(Φ′).〈spawn n of ct(~v)〉? Θ ⊢ ct Σ′ ⊢ n : thread
SpawnI0

∆0 ⊢ C : Θ0

a
−→ ∆́, Σ́; É∆ ⊢ C ‖ C(Θ′, Σ′ \n) ‖ n〈ct(~v)〉 : Θ́, Σ́; ÉΘ

∆0, Θ0 ⊢ static Θ0 ⊢ ⊙ a = ν(Φ′).〈spawn n′ of ct(~v)〉!

Φ′ = (fn(⌊a⌋) \n′) ∩ Φ Φ́ = Φ \Φ′ ∆ ⊢ ct Ξ́ = Ξ + os

a
→ ⊙n′

SpawnO0

∆0 ⊢ ν(Φ).(C ‖ n〈let x:T = os spawn ct(~v) in t〉) : Θ0

a
−→

∆́, Σ́; É∆ ⊢ ν(Φ́).(C ‖ n〈let x:T = n′ in t〉) : Θ́, Σ́; ÉΘ

Table 11. Initial external steps
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Remark 7 (Hiding, thread classes and types). Note the following (rather arcane)
point in connection with new threads entering actively the component, i.e., in
connection with rule CallI2. The fact that the language allows to hide com-
ponents via the ν-binder assures that, as we claimed, one of the existing envi-
ronment cliques can indeed be the origin of the new thread! If all thread classes
would be visible at the interface, then there might not be any thread class avail-
able which we could hand over object references to the new thread in such a way
that it can call back to the component. This failure would ultimately compromise
the completeness of the semantics.

Without the ability to hide (thread) classes, a new thread in the above sit-
uation can be invisibly created by an existing environment clique appropriately
only under the following assumption: there must be at least one environment
clique with a thread constructor where at least one argument is of an environ-
ment class type. The constructor is needed to hand over to the new thread at
least one object reference which can be used to distribute connectivity informa-
tion. The object used for that needs to be environment object; otherwise the
interaction with the object would be visible. Note also that if it is possible for
an environment clique to spawn the new thread, any existing environment clique
can spawn it. Indeed the only situation under these circumstances, where the
spawning is not possible then is when there is no environment clique at all and
where the main thread has started in the component, i.e., at the very beginning.

Related to the discussion: it is important that thread names are typed by
thread , and not by the name of their thread class (cf. also Remark 2). If the
type were the thread class, then the semantics would have to forbid that the
instances of hidden thread classes cross the border between environment and
component, otherwise subject reduction would break. So this restriction would
not solve the above mentioned problem. The alternative would be that scope
extrusion of a thread name would entail scope extrusion of the name of the
thread class, which would guarantee subject reduction, but this “solution” seems
strongly unplausible namely: getting hold of a thread name gives the power to
instantiate the corresponding thread class. For objects, which are typed by the
name of their class, the problem is not present as the caller in a method call
remains anonymous. ⊓⊔

Remark 8 (Thread constructors). The spawner can hand over values to the new
thread via the thread constructor. For ordinary class instantiation, where we
don’t have constructors, we stated that the absence of constructors entailed lazy
instantiation. Note, however, that in the case of thread instantiation, we would
have eager instantiation even if we disallowed constructors. The reason is, that
upon instantiation, the new thread is active from the beginning.

In case of threads, however, the absence of constructors would be more dras-
tic: without acquaintance with objects handed over at instantiation time, the new
thread would not be able to contact any of the existing objects in the component
as well as in the environment. The spawner is “acquainted” with the new thread
in that it knows its identity but it cannot “communicate” with its child thread.
In some sense, the only point where the spawner can communicate with its child
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thread is during instantiation, and without this possibility, the multithreading
would degenerate to a program consisting of groups each with one single threads
which are globally completely separate, i.e., not simply separate when considered
the connectivity as seen from the component or the environment. Note that it
does not mean that for instance an environment thread created by the compo-
nent via SpawnO cannot “call back” to the component, only that for calling
back it needs to create its own cliques of objects unrelated to the rest. ⊓⊔

3 Conclusion

Smith [15] presents a fully abstract model for Object-Z, an object-oriented ex-
tension of the Z [16][13] specification language. called the complete-readiness
model, related to the readiness model of Olderog and Hoare [12]. [17] investi-
gates full abstraction in an object calculus with subtyping. The setting is a bit
different from the one as used here as the paper does not compare a contextual
semantics with a denotational one, but a semantics by translation with a direct
one. The paper considers neither concurrency nor aliasing. Recently, Jeffrey and
Rathke [11] extended their work on trace-based semantics from an object-based
setting to a core of Java, called JavaJr, including classes and subtyping. How-
ever, their semantics avoids the issue of object connectivity by using a notion of
package. Cf. also [14]. [6] tackles the problem of full abstraction and observable
component behavior and connectivity in a UML-setting.

Future work The trace semantics together with the equivalence relation cap-
turing the undefinedness of order of interacting with separate cliques is a “tree”
semantics. The semantics can be understood as a forest of interactions, where
each tree represents one current clique of objects. The cliques can be dynami-
cally created and the branching structure is caused by merging of cliques. We are
currently working on a direct tree representation of the semantics. The resulting
semantics is simpler as it can do without the secondary notion of equivalence
relation on traces, and furthermore one can avoid an explicit representation of
object connectivity. However, e.g., the derivation system for legal traces gets
more involved in that it must reflect the branching structure.

Acknowledgements We thank Harald Fecher, and Marcel Kyas, and Willem-
Paul de Roever for stimulating discussions on various aspects of this topic.
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3. E. Ábrahám, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Z. Li, editor, ICTAC’04,
volume 3407 of Lecture Notes in Computer Science, pages 38–52. Springer-Verlag,
July 2004.
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semantics for UML components. In Bosangue et al. [5]. To appear.

7. ECMA International Standardizing Information and Communication Systems. C#

Language Specification, 2nd edition, Dec. 2002. Standard ECMA-334.
8. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and

typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of Electronic Notes in Theoretical Computer Science. Elsevier Science
Publishers, 1998.

9. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, Second edition, 2000.

10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

11. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. 2005. Submitted for publication.

12. E.-R. Olderog and C. A. R. Hoare. Specification-oriented semantics of commu-
nicating processes. Acta Informatica, 23(1):9–66, 1986. A preliminary version
appeared under the same title in the proceedings of the 10th ICALP 1983, volume
154 of LNCS.

13. B. Potter, J. Sinclair, and D. Till. An Introduction to Formal Specification and Z.
Series in Computer Science. Prentice Hall, 1990.

14. J. Rathke. A fully abstract trace semantics for a core Java language (preliminary
title). In Bosangue et al. [5]. To appear.

15. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

16. J. M. Spivey. The Z Notation: A Reference Manual. International Series in Com-
puter Science. Prentice Hall, 1989.

17. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.



Index

(E∆, EΘ) + os

a
→ or, 16

C(Σ), 18
C(Θ), 18
C ⊢ o →֒ n, 13
E∆, 12
∆; E∆ ⊢ o1 ⇌ o2 : Θ, 13
∆; E∆ ⊢ o1 ⇌→֒ o2 : Θ, 13
∆1, Σ1; E∆1

, Θ1 ⊢ ∆2, Σ2; E∆2
, Θ2, 14

∆, Σ; E∆ ⊢ C : Θ, Σ; EΘ , 12, 13
∆, Σ, Θ ⊢ a : ok , 16
∆ ⊢ Θ, 4
∆1 ≥ ∆2, 14
∆1 ≤ ∆2, 14
Φ + a, 15
Φ ⊢ static, 21
Θ1 + Θ2, 4
Θ1, Θ2, 4
Ξ́ ⊢ os

a
→ or :ok , 14

Ξ + os

a
→ or, 16

⇌, 13
⇌→֒, 13
⌊a⌋, 10
⊙n, 11, 17, 21
⊙Σ′ , 16
 , 7
τ
−→, 7
ct(~v), 11
o →֒ n, 13

abstract syntax, 3
acquaintance, 13
α-conversion, 9
anonymous caller, 23
anonymous spawner, 19
augmentation, 10

caller identity
– new thread, 19
– reentrant thread, 19
clique, 13
communication labels, 11
connectivity
– check, 14

connectivity context, 12
context
– connectivity update, 16
– entailment, 14
– names update, 15

instantiation
– typing, 6

Java

– thread class, 12
JavaJr, 24

label
– core, 10
lazy instantiation, 10, 21
– thread creation, 23
– typing, 5

name context
– well-formed, 4

package, 24

rule
– Red, 7

step
– initial, 21
– internal, 7
structural congruence, 9
subcontext, 14
subsumption, 6
subtyping, 6

thread class
– syntax, 3
thread name
– in subject position, 17
tree semantics, 24
type system, 4
types, 3

UML, 24



27

List of Tables

1 Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Static semantics (components) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Static semantics (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 Internal steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Structural congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Reduction modulo congruence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
7 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 Checking static assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
9 External steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
10 External steps (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
11 Initial external steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


	An open structural operational semantics for an object-oriented calculus with thread classes [1em] May 13, 10, 2005 
	 Erika Ábrahám and Andreas Grüner and Martin Steffen 
	Introduction
	A multithreaded calculus with thread classes
	Syntax
	Type system
	Operational semantics
	Internal steps
	External steps
	Augmentation
	Connectivity contexts
	Use and change of contexts
	Operational rules



	Conclusion
	References
	Index
	List of tables



