Heap-Abstraction for an Object-Oriented
Calculus with Thread Classes*

March 30, 2006

Erika Abraham! and Andreas Griiner? and Martin Steffen?

1 Albert-Ludwigs-University Freiburg, Germany, eab@informatik.uni-freiburg.de
2 Christian-Albrechts-University Kiel, Germany, {ang,ms}@informatik.uni-kiel.de

Abstract. This paper formalizes an open semantics for a calculus fea-
turing thread classes, where the environment, consisting in particular of
an overapproximation of the heap topology, is abstractly represented.
We extend our prior work not only by adding thread classes, but also in
that thread names may be communicated, which means that the seman-
tics needs to account explicitly for the possible acquaintance of objects
with threads. We show soundness of the abstraction.

Keywords: class-based oo languages, thread-based concurrency, open
systems, formal semantics, heap abstraction, observable behavior

1 Introduction

An open system is a program fragment or component interacting with its envi-
ronment. The behavior of the component can be understood to consist of message
traces at the interface, i.e., of sequences of component-environment interaction.
Even if the environment is absent, it must be assured that the component to-
gether with the (abstracted) environment gives a well-formed program adhering
to the syntactical and the context-sensitive restrictions of the language at hand.
Technically, for an exact representation of the interface behavior, the semantics
of the open program needs to be formulated under assumptions about the en-
vironment, capturing those restrictions. The resulting assumption-commitment
framework gives insight to the semantical nature of the language. Furthermore, a
characterization of the interface behavior with environment and component ab-
stracted can be seen as a trace logic under the most general assumptions, namely
conformance to the inherent restrictions of the language and its semantics.
With these goals in mind, we deal with languages supporting:

— types and classes: the languages are statically typed, and only well-typed
programs are considered. For class-based languages, complications arise as
classes play the role of types and additionally act as generators of objects.

* Part of this work has been financially supported by the NWO/DFG project Mobi-J
(RO 1122/9-4) and by the DFG project AVACS (SFB/TR-14-AVACS).

— concurrency: the languages feature concurrency based on threads and thread
classes (as opposed to processes or active objects).

— references: each object carries a unique identity. New objects are dynamically
allocated on the heap as instances of classes.

The interface behavior is phrased in an assumption-commitment framework and
is based on three orthogonal abstractions:

— a static abstraction, i.e., the type system:;

— an abstraction of the stacks of recursive method invocations, representing the
recursive and reentrant nature of method calls in a multi-threaded setting;

— an abstraction of the heap topology, approximating potential connectivity of
objects and threads. The heap topology is dynamic due to object creation
and tree-structured in that previously separate object groups may merge.

In [12] we showed that the need to represent the heap topology is a direct
consequence of considering classes as a language concept. Their foremost role in
object-oriented languages is to act as “generators of state”. With thread classes,
there is also a mechanism for “gemerating new activity”. This extension makes
cross-border activity generation a possible component-environment interaction,
i.e., the component may create threads in the environment and vice versa.

Thus, the technical contribution of this paper is threefold. We extend the
class-based calculus [II2] with thread classes and allow to communicate thread
names. This requires to consider cross-border activity generation and to incorpo-
rate the connectivity of objects and threads. Secondly, we characterize the poten-
tial traces of any component in an assumption-commitment framework in a novel
derivation system: The branching nature of the heap abstraction—connected ob-
ject groups may merge by communication—is reflected in the branching structure
of the derivation system. Finally, we show soundness of the abstractions.

Overview The paper is organized as follows. Section Bl defines syntax and se-
mantics of the calculus. Section Bl characterizes the observable behavior of an
open system and presents the soundness results. Related and future work is dis-
cussed in Section El See [3] for a full description of semantics and type system.

2 A multi-threaded calculus with thread classes

2.1 Syntax

The abstract syntax is given in Table [l For names, we will generally use o and
its syntactic variants for objects, ¢ for classes (in particular ¢; for thread classes),
and n when being unspecific. A class ¢[O]] with name ¢ defines its methods and
fields. A method ¢(self:c).t, provides the method body abstracted over the ¢-
bound “self” and the formal parameters. An object o[c, F] of type ¢ stores the
current field values. We use [for fields, [= f for field declaration, field access is
written as v.l, and field update as v.l :=v'. Thread classes c¢;(t,)) with name ¢,

C:=0|C| C|v(nT).C|n[O)]|nn, F]|n{t) | n{t.)) program

O:=FM object
M:=l=m,....l=m method suite
Fuo=l=f...)l=f fields
m = ¢(n:T).ta method
foa=c(n:T).A)v | s(n:T).A().Le field
to = XNax:T,...,x:T).t parameter abstraction
t = | stop | letx:T =eint thread
e ==t |ifv=vtheneelsee | if undef (v.l) theneelsee expression
| vl(v,...,v)|vl:=v
| currentthread | new n | spawn n(v,...,v)
vi=z|n values

Table 1. Abstract syntax

carry their abstract code in t,. A thread n(t) with name n is basically either a
value or a sequence of expressions, notably method calls v.l(¥), object creation
new ¢, and thread instantiation spawn ci(U).

As types we have thread for threads, class names ¢ as object types, T1 X ... X
T, — T as the type of methods and thread classes (in last case T' equals thread),
[[1:U1, ..., l:Ug] for unnamed objects, and [(I1:Ux, ..., 1;:Ux) for classes.

2.2 Operational semantics

For lack of space we concentrate on the interface behavior and omit the defini-
tions of the component-internal steps like internal method calls [3].

The external steps define the interaction between component and environ-
ment in an assumption-commitment context. The static part of the context cor-
responds to the static type system [3] and takes care that, e.g., only well-typed
values are received from the environment. The context, however, needs to con-
tain also a dynamic part dealing with the potential connectivity of objects and
thread names, corresponding to an abstraction of the heap topology.

The component-environment interaction is represented by labels a:

v == n{call 0.l(V)) | n{return(v)) | {spawn n of ¢(v)) | v(n:T).y
a=~7|9!

For call and return, n is the active thread. For spawning, n is the new thread.
There are no labels for object creation: Externally instantiated objects are cre-
ated only when they are accessed for the first time (“lazy instantiation”). For
labels a = v(®).y? or a = v(P).4! with ¢ a sequence of v(n:T) bindings and ~
does not contain any binders, |a] = is the core of the label a.

2.2.1 Connectivity contexts In the presence of cross-border instantiation,
the semantics must contain a representation of the connectivity, which is for-
malized by a relation on names and which can be seen as an abstraction of the

program’s heap; see Eq. (@) and (@) below for the exact definition. The external
semantics is formalized as labeled transitions between judgments of the form

A EAFC:0,XEg (1)

where A, X; E o are the assumptions about the environment of C and 0, X; Eg
the commitments. The assumptions consist of a part A, Y concerning the ex-
istence (plus static typing information) of named entities in the environment.
By convention, the contexts X (and their alphabetic variants) contain exactly
all bindings for thread names. The semantics maintains as invariant that for all
judgments A, X, Ea FC: 0,X; Eg that A, X, and © are pairwise disjoint.
The semantics must book-keep which objects of the environment have been
told which identities: It must take into account the relation of objects from the
assumption context A amongst each other, and the knowledge of objects from A
about thread names and names exported by the component, i.e., those from ©.
In analogy to the name contexts A and ©, the connectivity context F o expresses
assumptions about the environment, and Fg commitments of the component:

EACAX(A4+XY+0) and Eo COXx(O+X+A). (2)

Since thread names may be communicated, we must include pairs from A x X
(resp. © x X)) into the connectivity. We write o < n (“o may know n”) for
pairs from Ex and Fg. Without full information about the complete system,
the component must make worst-case assumptions concerning the proliferation
of knowledge, which are represented as the reflexive, transitive, and symmetric
closure of the <—-pairs of objects from A. We write = for this closure:

=2 (=laUla) CAxA, (3)

where < | o is the projection of < to A. We also need the union = U =; < C
A X (A+ X+ 0), where the semicolon denotes relational composition. We write
=< for that union. As judgment, we use A, YX;EA F 01 = 09 : O, % resp.
A Y Eatos—n:60,X. For ©,%, Eg, and A, Y, the definitions are dual.

The relation = partitions the objects from A (resp. ©) into equivalence
classes. We call a set of object names from A (or dually from ©) such that for
all objects 01 and oy from that set, A, X Ea F o1 = 09 : ©, X, a clique, and if
we speak of the clique of an object we mean the equivalence class.

If a thread is instantiated without connection to any object, like the initial
thread, we need a syntactical representation ®,, for the clique the thread n starts
in. If the single initial thread starts within the component, the contexts of the
initial configuration Ag - C' : O assert @y F ©. Otherwise, Ap - ©.

As for the relationship of communicated values, incoming and outgoing com-
munication play dual roles: Eg over-approximates the actual connectivity of the
component and is updated in incoming communications, while the assumption
context E A is consulted to exclude impossible incoming values, and is updated
in outgoing communications. Incoming new names update both EFg and EA.

2.2.2 Augmentation We extend the syntax by two auxiliary expressions
01 blocks for os and os returns to o1 v, denoting a method body in 0 waiting for
a return from oo, and dually for the return of v from 05 to 0;. We augment the
method definitions accordingly, such that each method call and spawn action is
annotated by the caller. I.e., we write

s(self:) NZT).(.... selfa.1(F) . .. self spawn c;(Z)...) .

instead of (self:¢) N(Z:T).(... z.(§) ... spawn ¢;(Z) . ..). Thread classes are aug-
mented by © instead of self. If a thread n is instantiated, ® is replaced by ©®,,.
For a thread class of the form ¢, (A(Z:T).t)), let ¢;(7) denote t[®n,7/®,]. The
initial thread ng, which is not instantiated but is given directly (in case it starts
in the component), has ®,, as augmentation. We omit the adaptation of the
internal semantics and the typing rules for the augmentation.

2.2.3 Use and change of contexts

Notation 1 We abbreviate the triple of name contexts A, X, O as @, the context
A, X O, Ea, Eg combining assumptions and commitments as =, and write =
C for A, X;EAFC:0,X;Eg. We use syntactical variants analogously.

The operational semantics is formulated as transitions between typed judgments
EFC % EFC. The assumption context A, YX; Ea is an abstraction of the
environment, as it represents the potential behavior of all possible environments.
The check whether the current assumptions are met in an incoming communi-
cation step is given in Definition [l Note that in case of an incoming call label,
fn(a), the free names in a, includes the receiver o, and the thread name.

Definition 1 (Connectivity check). An incoming core label a with sender os

a/nd/rec/eiver 0, 18 Well—connqctqd wrt. = (written Zr 0s = oy :0k) if
A Ea oy == fn(a): 0,

Besides checking whether the connectivity assumptions are met before a transi-
tion, the contexts are updated by a step, reflecting the change of knowledge.

Definition 2 (Name context update: @ + a). The update b =& +a of
an assumption-commitment context ® wrt. an incoming label a = v(P')|al? is
defined as follows.

1. ©@ =6+ 6. For spawning, © = O + (@', ®n) with n the spawned thread.
2. A=A+ (©x,A"). For spawning of thread n, © s\ , is used instead of ©x.
3 N=X45.

The notation Ox: abbreviates ®,, for all thread identities from X'. The update
for outgoing communication is defined dually (®,, of a spawn label is added to
A instead of ©, and the © s resp. O\, are added to O, instead of A).

Definition 3 (Connectivity context update). The update (Ea, Eo) = (Ea,
Eo) + os 2 0, of an assumption-commitment context (Ea, Fo) wrt. an incom-
ing label a = v(P')|a]? with sender o5 and receiver o, is defined as follows.

1. l?@ = Fo + o0, %fn(LaJ)
2. BEA = Ea+os — ', Ox. For spawning of n, ©®x\ , s used instead of ©x.

Combining Definitions Bl and B, we write = = = + 0, - 0, when updating the
name and the connectivity at the same time.

Besides the connectivity check of Definition [, we must also check the static
assumptions, i.e., whether the transmitted values are of the correct types. In
slight abuse of notation, we write @ - o, — o, : T for that check, where T is
type of the expression in the program that gives rise to the label (see [3] for
the definition). We combine the connectivity check of Definition [[l and the type
check into a single judgment 5 F 0, % o, : T.

2.2.4 Operational rules Three CALLI-rules for incoming calls deal with
three different situations: A call reentrant on the level of the component, a call
of a thread whose name is already known by the component, and a call of a
thread new to the component. For all three cases, the contexts are updated to
Z to include the information concerning new objects, threads, and connectivity
transmitted in that step. Furthermore, it is checked whether the label statically
type-checks and that the step is possible according to the (updated) connectivity
assumptions =. Remember that the update from = to = includes guessing of
connectivity.

To deal with component entities (threads and objects) that are being created
during the call, C(0', X’) stands for C(@’) || C(X"), where C(©') are the lazily
instantiated objects mentioned in @’. Furthermore, for each thread name n’ in
X' a new component n’(stop) is included, written as C(X").

For reentrant method calls in rule CALLI;, the thread is blocked, i.e., it has
left the component previously via an outgoing call. The object o, that had been
the target of the call is remembered as part of the augmented block syntax, and
is used now to represent the sender’s clique for the current incoming call.

In CALLI5, the thread is not in the component, but the thread’s name is
already known. If A + @,, and n(stop) is part of the component code, it is
assured that the thread either has never actively entered the component before
(and does so right now) or has left the component to the environment by some
last outgoing return. In either case, the incoming call is possible now, and in
both cases we can use ®,, as representative of the caller’s identity.

In CALLI3 a new thread n enters the component for the first time, as assured
by X/ n : thread. The new thread must be an instance of an environment thread
class created by an environment clique, otherwise the cross-border instantiation
would have been observed and the thread name would not be fresh. Since any
existing environment clique is a candidate, the update to z non-deterministically

E’:E—i-osiu)r E')—os L—>aJor:T
a=v(P). n{call 0,.L(D))? tpiocked = letx’":T" = o blocks for os int
CALLIy
=r V(él)(c Il n<tblocked>) =
EFu(d1).(C || €O, %) || n{let &:T = 0,-.1(F) in 0, returns to 0s ; tyiocked))
a=uv(®). n(call 0,.1(7))? A+ GO, E=E4+0, 20, ZF O, Lo or: T

CALLIo
ZEF C || nistop) & ZFC | C(O,%) || nlleta:T = 0,.1(T) in o, returns to O x; stop)

a=uv(®). nlcall 0,.(7)? Abo Z'kn E=Z40%0, EFo,Ho:T
CaLLI3

ErCc L ErRC|C@,5 \n) | n{leta:T = 0,.1(7) in o, returns to ©,, x; stop)

a=v(®). nicall 0,.1(7))! & =fn(la))Nd &1 =d\® AbLo, E=EF+40s2o0,

Fu(®1).(C || n{letx:T = o5 0,.1(T) int))
F v($1).(C || n(let o:T = o, blocks for o, int))

n

(1.

EI:EJroSi@,L EII—oSg»J@nzthread

a=v(®').(spawnn of c,(¥))? OF O, Aklos OFc¢ X Fn
SPAWNI

EFC S ERC|CO,5\n) | nlc(D))

Table 2. External steps

guesses to which environment clique the thread’s origin ©,, belongs to. Note that
Oy contains @, since X’ n, which means A ®,, after the call.

For incoming thread creation in SPAWNI the situation is similar to CALLI3,
in that the spawner needs to be guessed. The last rule deals with outgoing call
and is simpler, as the “check-part” is omitted: With the code of the program
present, the checks are guaranteed to be satisfied. In Table Bl we omitted the
rules for outgoing spawning, for returns, and for the initial steps [3].

3 Legal traces

Next we present an independent characterization of the possible interface be-
havior. “Half” of the work has been already done by the abstractly represented
environment. For the legal traces, we analogously abstract away from the com-
ponent, making the system completely symmetric.

3.1 A branching derivation system characterizing legal traces

Instead of connectivity contexts, now the tree structure of the derivation repre-
sents the connectivity and its change. There are two variants of the derivation
system, one from the perspective of the component, and one for the environ-
ment. Each derivation corresponds to a forest, with each tree representing a

component resp. environment clique. In judgments A, X Fg r > s : trace @, X,
r represents the history, and s the future interaction. We write Fg to indicate
that legality is checked from the perspective of the component. From that per-
spective, we maintain as invariant that on the commitment side, the context ©
represents one single clique. Thus the connectivity among objects of © needs no
longer be remembered. What needs to be remembered still are the thread names
known by @ and the cross-border object connectivity, i.e., the acquaintance of
the clique represented by © with objects of the environment. This is kept in
A resp. Y. Note that this corresponds to the environmental objects mentioned
in Eg C O x (0 + A+ 2Y), projected onto the component clique under con-
sideration, in the linear system. The connectivity of the environment is ignored
which implies that the system of Table Bl cannot assure that the environment
behaves according to a possible connectivity. On the other hand, dualizing the
rules checks whether the environment adheres to possible connectivity.

=Py P Prr>os B0, b=0o,+a o, o, 0k

Vj.a;j=ale; NO; - la] a=uv(®"). n{call 0,.1(T))? r#e dFra>s:trace

L-CaLLI
by Frp>ay s:trace ... Db r>ap s: trace

a=~? PFr>os S0, Ol|al,or PFral> s:trace r#e
L-Skipl

Db r > s:trace

Table 3. Legal traces, branching on @ (incoming call and skip)

In L-CALLI of Table Bl the incoming call is possible only when the thread
is input call enabled after the current history. This is checked by the premise
D+ 1> 05 — 0, which also determines caller and callee. As from the perspective
of the component, the connectivity of the environment is no longer represented
as assumption, there are no premises checking connectivity! Interesting is the
treatment of the commitment context: Incoming communication may update the
component connectivity, in that new cliques may be created or existing cliques
may merge. The merging of component cliques is now represented by a branching
of the proof system. Leaves of the resulting tree (respectively forest) correspond
to freshly created cliques. In L-CALLI, the context @ in the premise corresponds
to the merged clique, the ©; below the line to the still split cliques before the
merge. The ©;’s form a partitioning of the component objects before commu-
nication, @ is the disjoint combination of the @;’s plus the lazily instantiated
objects from @’. For the cross-border connectivity, i.e., the environmental ob-
jects known by the component cliques, the different component cliques ©; may of
course share acquaintance; thus, the parts A; and X; are not merged disjointly,
but by ordinary “set” union. These restrictions are covered by € =;.

The skip-rules stipulate that an action a which does not belong to the com-
ponent clique under consideration, is omitted from the component’s “future”
(interpreting the rule from bottom to top). We omit the remaining rules (see [3]).

Definition 4 (Legal traces, tree system). We write A Fg t : trace O, if
there exists a derivation forest using the rules of Table E with roots A;, X;
t > €: trace ©;, X; and a leaf justified by one of the initial rules L-CALLIy or
L-CALLOy. Using the dual rules, we write 4 instead of Fo. We write A Fapo
t : trace ©, if there exits a pair of derivations in the Fa- and the Fo- system
with a consistent pair of root judgments.

To accommodate for the simpler context structures, we adapt the notational
conventions (cf. Notation [Ml) appropriately. The way a communication step up-
dates the name context can be defined as simplification of the treatment in the
operational semantics (cf. Definition B). As before we write ¢+ a for the update.

3.2 Soundness of the abstractions

With Ex and Eg as part of the judgment, we must still clarify what it “means”,
i.e., when does A, X: Ex F C : O,X; Eg hold? The relation Eg asserts about
the component C' that the connectivity of the objects from the component is
not larger than the connectivity entailed by Eg. Given a component C' and two
names o from @ and n from © + A+ X, we write C' - 0 — n, if C = v(P).(C" ||
o[...,f =mn,...]) where o and n are not bound by @, i.e., o contains in one of
its fields a reference to n. We can thus define:

Definition 5. The judgment A, X Ex F C : ©,X;Eg holds, if A, X+ C :
6,X, and if C'Fny < ng, then ©,X; Eg Fny =—ng : A, Y.

We simply write A, X, Ea F C : 0, Eg to assert that the judgment is satis-
fied. Note that references mentioned in threads do not “count” as acquaintance.

Lemma 1 (Subject reduction). Assume =+ C == =+ C. Then

1. A,EI—C@,E A fortiori: If A, Y, O Fn:T, thenA,f,éFn:T.
2. =+ C.

Definition 6 (Conservative extension). Given 2 pairs (¢, Ex) and (¥, E)
of name context and connectivity context, i.e., Eo C ®x & (and analogously for
(D,EA)), we write (D, Ea) b (P, EA) if the following two conditions holds:

1. o+ @ and

2. b n1 = ng tmplies @+ ny = no, for all ny,ny with @ = nq,no.

Lemma 2 (No surprise). Let A, X;Ex - C : 0,5 B9 & AN EA b C
0, Eg for some incoming label a. Then A, X, Ex F A, Y Ea. For outgoing
steps, the situation is dual.

Lemma 3 (Soundness of legal trace system). If Ag;t- C : Op; and Ag;t
C: @m%, then Ag &t : trace Oq.

10

4 Conclusion

Related work [§] presents a fully abstract model for Object-Z, an object-oriented
extension of the Z specification language. It is based on a refinement of the sim-
ple trace semantics called the complete-readiness model, which is related to the
readiness model of Olderog and Hoare. In [9], full abstraction in an object calcu-
lus with subtyping is investigated. The setting is slightly different from the one
here, as the paper does not compare a contextual semantics with a denotational
one, but a semantics by translation with a direct one. The paper considers nei-
ther concurrency nor aliasing. Recently, Jeffrey and Rathke [extended their
work [6] on trace-based semantics from an object-based setting to a core of Java,
called JavaJr, including classes and subtyping. However, their semantics avoids
object connectivity by using a notion of package. [B] tackles full abstraction and
observable component behavior and connectivity in a UML-setting.

Future work We plan to extend the language with further features to make
it more resembling Java or C#. Besides monitor synchronization using object
locks and wait and signal methods, as provided by Java, another interesting
direction concerns subtyping and inheritance. This is challenging especially if
the component may inherit from environment classes and vice versa. Another
direction is to extend the semantics to a compositional one. Finally, we work on
adapting the full abstraction proof of [1] to deal with thread classes. The results
of Section are covering the soundness-part of the full-abstraction result.

References

1. E. Abrahdm, M. M. Bonsangue, F. S. de Boer, and M. Steffen. Object connectivity
and full abstraction for a concurrent calculus of classes. In Z. Li and K. Araki,
editors, ICTAC’04, volume 3407 of LNCS, pages 37-51. Springer-Verlag, July 2004.

2. E. Abrahdm, F. S. de Boer, M. M. Bonsangue, A. Griiner, and M. Steffen. Ob-
servability, connectivity, and replay in a sequential calculus of classes. In Bosangue
et al. [, pages 296-316.

3. E. Abrahdm, A. Griiner, and M. Steffen. Dynamic heap-abstraction for open, object-
oriented systems with thread classes. Technical Report 0601, Institut fiir Informatik
und Praktische Mathematik, Christian-Albrechts-Universitat zu Kiel, Jan. 2006.

4. M. Bosangue, F. S. de Boer, W.-P. de Roever, and S. Graf, editors. Proceedings of
FMCO 2004, volume 3657 of LNCS. Springer-Verlag, 2005.

5. F. S. de Boer, M. Bonsangue, M. Steffen, and E. Abrahdm. A fully abstract trace
semantics for UML components. In Bosangue et al. [d], pages 49-69.

6. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent
objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

7. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java
language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of LNCS,
pages 423-438. Springer-Verlag, 2005.

8. G. P. Smith. An Object-Oriented Approach to Formal Specification. PhD thesis,
Department of Computer Science, University of Queensland, Oct. 1992.

9. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

	Heap-Abstraction for an Object-Oriented Calculus with Thread Classes [0.4em] March 30, 2006
	 Erika Ábrahám and Andreas Grüner and Martin Steffen
	Introduction
	A multi-threaded calculus with thread classes
	Syntax
	Operational semantics
	Connectivity contexts
	Augmentation
	Use and change of contexts
	Operational rules

	Legal traces
	A branching derivation system characterizing legal traces
	Soundness of the abstractions

	Conclusion
	References

