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Abstract. Bounded Model Checking (BMC) is a successful method for
refuting properties of erroneous systems. Initially applied to discrete sys-
tems only, BMC could be extended to more complex domains like linear
hybrid automata. The increasing complexity coming along with these com-
plex models, but also recent optimizations of SAT-based BMC, like exces-
sive conflict learning, reveal a memory explosion problem especially for
deep counterexamples. In this paper we introduce parametric data types
for the internal solver structure that, taking advantage of the symmetry of
BMC problems, remarkably reduce the memory requirements of the solver.

1 Introduction

Bounded model checking (BMC) [5, 6] is a successful refutation method which was
studied and applied very intensively in the last years. Starting with the initial states
of a system, the BMC algorithm considers computations with increasing length & =
0,1,.... Foreach k£, the algorithm checks whether there exists a counterexample of the
given length, i.e., if there is a computation that starts in an initial state and that leads to
a state violating the system specification in k steps.

Basically, BMC can be applied to all kinds of systems for that reachability within a
bounded number of steps can be expressed in a decidable logic. For example, for dis-
crete systems first-order predicate logic is used, whereas the analysis of linear hybrid
automata [8] requires first-order logic formulas over (R, +, <, 0, 1) [7].

In this work we focus on checking safety properties of linear hybrid automata, whereby
the violation of a safety property is expressed by stating that the last, i.e., the kth, state
of the computation does not fulfill the specification. The corresponding formula must
be checked for satisfiability: The formula is satisfiable if and only if the specification
can be violated by a computation of length k. In the discrete case the satisfiability
check is carried out by a SAT-solver, whereas in the mixed discrete-continuous case of
hybrid automata the satisfiability check is usually done by combining a SAT- and an
LP-solver.

One of our main research goals in the context of the German AVACS project [4] is
to make BMC applicable also to large hybrid automata and to industry-relevant case
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studies. In an earlier paper [2] we concentrated on how BMC of linear hybrid automata
can be accelerated already by appropriate encoding of counterexamples as formulas,
and by selective conflict learning. Although these accelerations are improving the CPU
run times, we also observed that for long counterexamples the corresponding formulas
are getting very large. Additionally, learning in the style of Shtrichman [11] consid-
erably increases the memory consumption. When the memory requirements reach the
computer’s memory size, the computer starts to swap, thereby slowing down the com-
putations by several orders of magnitude.

In this paper we discuss how the memory size can be reduced without increasing the
running times of the solver. The main idea is to take advantage of the symmetry of
BMC problems, and to store symmetric parts of the formulas in a parametric form.
We introduce parametric data types for the internal solver structure and show that the
usage of those parametric structures remarkably reduces the memory requirements
of the solver. Experimental results show that the CPU times are not increased, and
furthermore, due to lower demands on memory, we are able to solve BMC problems
corresponding to longer counterexamples.

The paper is organized as follows: In Section 2 we review the definition of linear hybrid
automata and the BMC approach. In Section 3 we describe the parametric data types
of our solver. Experimental results are presented in Section 4. Finally, in Section 5 we
discuss related work and draw conclusions.

2 Bounded Model Checking for Linear Hybrid Automata

Before presenting our work, we first briefly introduce linear hybrid automata and de-
scribe the encoding of their finite runs as Boolean combinations of linear (in)equations,
as used for BMC, in the same style as in [2]. Furthermore, we describe relevant details
of state-of-the-art solvers for checking satisfiability of such formulas.

2.1 Linear Hybrid Automata

Hybrid automata [8] are a formal model to describe systems with combined discrete
and continuous behavior. As an example, in Figure 1 an automata for a thermostat is
illustrated, which senses the temperature x of a room and turns a heater on and off.
When control stays in a location and time elapses, flow conditions in the form of dif-
ferential equations determine the continuous change of the real-valued variables, e.g. ,
in location off the temperature decreases according to —% <1< —1—10. However,
control may enter a location or stay in the location only as long as the location’s in-
variant is satisfied. The invariant > 18 of location off ensures that the heater turns on
at latest when the temperature reaches 18 degrees. Control may move along a discrete
jump from one location to another if the transition’s condition is satisfied; additionally,
the jJump may cause discrete changes to the system state which is called the jump’s ef-
fect. As an example, the transition leading from location off to on is enabled when the
temperature is below 19 degrees; the temperature x does not change during the jump.
Finally, an initial condition describes the starting point of the system’s computations.
For our example, initially the heater is off and the temperature is 20 degrees.
Formally, a linear hybrid automaton H is a tuple

(L7 v, (jumpe,g/)z,é’eb (flowy)er, (inve)er, (ith)ZGL) )
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Fig. 1. Thermostat

where L and V' are finite nonempty sets, and (jump, ;)eecr, (flowy)eer, (inve)ecr,
(inity) ey, are families of first-order logic formulas over the structure (R, +, <, 0, 1):

- L ={t,...,(,} isthe set of locations.

- V ={vy,...,v,} is the set of continuous variables.

— Aformula jump, o (v1, ..., vy, v, ..., v,) represents the possible jumps from loca-
tion ¢ to location ¢, where vy, . .., v, (vy, ..., v ) are the values of the continuous
variables before (after) the jump.

— A formula flow,(vq, ..., v, t, 0], ..., v)) represents the flow of duration ¢ > 0 in
location ¢, where the values of the continuous variables change from vy, ..., v, to
Uiy ooy U

— A formula inv,(vy, . .., v,) represents the invariant in location ¢. We require that

all invariants are convex sets.
— (unity) ey, 1S representing the initial states of the system.

For instance, the flow in location on of the thermostat in Figure 1 can be described by
the formula flow,,, (x,t,2") = 102’ — 10z > t A 52’ — bx < t. The other components
of the thermostat can be described analogously.

For advanced modelling topics like parallel composition and the definition of opera-
tional semantics the interested reader may consult e.g. [3].

2.2 Encoding Linear Hybrid Automata

Let H = (L, V, (jumpyp)eeer, (flow)eer, (inve)ecr, (init,)eer,) be ahybrid automa-
tonwith L = {ly,...,l,} and V = {vy,...,v,}, for some m,n € N. For readability,
we write tuples in boldface, i.e., v abbreviates (vy,...,v,), and we introduce state
variables s = (at, v), where at ranges over the locations in L and v = (vy, ..., v,).
A jump of the automaton H can be described by the formula
J(5,8) =V ppep(at = LN at’ = 0N\ jump, (v, ') A inve (V"))
and a flow by
F(s,t,8")=Vep(at =N at = AE> 0N flow,(v,t,0') A inve(v'))

where s = (at,v) and s’ = (at’,v’) are state variables, and ¢ is a real-valued variable
representing the duration of the flow. Note that we check the invariant of a location
after time ¢ has passed in F'(s,t,s’) and when we enter the location of s’ in a jump
J(s,s’). Since we assume that invariants are convex sets, we do not have to check at
every time point between 0 and ¢ of a flow whether the invariant in the location is sat-
isfied. For & € N, we recursively define the formula 7, describing the execution of &
successive computation steps by

mo(s0) = \/éeL(ato =/ A mw(vo))
and for £ > 0,
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Wk(So,...,Sk,tl,...,tk) =
Th1(S0, s Sh-1, 1, -« ti1) A (T (81, 8%) V F(sp-1,th, sk))
where s, ..., s;, are state variablesand ¢4, . . . , t;, are real-valued variables. Counterex-

amples of length £ violating a safety property safe(s) can now be described by
(pk(SQ, .. .,Sk,tl, .. .,tk) ==
(\/ZeL(atO =/(A mitg('vo))) AT(S0s -y Sky b1y - ooy i) A —safe(sy) .

Starting with £ = 0 and iteratively increasing £ € N, BMC checks whether ¢, is
satisfiable. The algorithm terminates if ¢, is satisfiable, i.e., an unsafe state is reachable
from an initial state in k steps.

We also apply several optimizations wrt. encoding and counterexample description,
due to page limitation we kindly refer to [2].

2.3 Satisfiability Checking

The above formulas are checked by a suitable solver. As we are dealing with the
Boolean combination of linear (in)equations over real-valued variables, the satisfia-
bility check is done by a combined SAT-LP-solver, as illustrated in Figure 2. First, the
hybrid formulas are abstracted in an over-approximative manner to pure Boolean ones
by replacing each linear (in)equation by an auxiliary Boolean abstraction variable. This
Boolean abstraction is checked for satisfiability by a SAT-solver. In case the abstrac-
tion is unsatisfiable, the concrete hybrid formula is unsatisfiable, too. Otherwise, if the
abstraction has a solution, then the LP-solver checks whether there is a corresponding
solution in the real domain. l.e., the LP-solver collects all real constraints depending
on their abstraction value, and checks their combined satisfiability. If they are satisfi-
able, then we have found a solution for the concrete problem. If not, then the LP-solver
provides an explanation, in the form of an unsatisfiable (in)equation set, why the cur-
rent Boolean assignment leads to a contradiction in the real domain. The SAT-solver
can now refine the abstraction by excluding the abstracted explanation in the further
search.

Now we have a closer look on the satisfiability check of the Boolean abstraction. First,
the Boolean formula is transformed into a conjunctive normal form (CNF) that consists
of a set of clauses, whereby each clause is a disjunction of literals. In order to satisfy
the CNF, each clause must be satisfied, i.e., at least one of its literals must be true.



The SAT-solver iteratively assigns values to the variables. After each decision, i.e.,
free choice of an assignment, the solver propagates the assignment by searching for
unit-clauses in that all literals but one are assigned false. For those clauses, that last
unassigned literal is implied to be true. If two unit-clauses imply different values for the
same variable, a conflict occurs. In this case a conflict analysis can take place which
results in non-chronological backtracking and conflict learning [12]. An important
point for this paper is the usage of watch-literals for the detection of unit-clauses [10].
The basic idea is the following: If in a clause there are two unassigned (or already true)
variables, then this clause cannot be a unit-clause. So it is enough to watch only two
unassigned or true variables in each clause, which we call the watch-literals. If one
of the watch-literals becomes false, we search for another literal in the clause, being
unassigned or already true, and being different from the other watch-literal. Only if we
cannot find any new watch-literal, the clause is indeed a unit-clause. With this method,
the number of clauses that we have to look at to determine the unit-clauses after a
decision can be reduced remarkably.

3 Symmetriesand Parametric Data Structures

In this main section we present how we make use of the inherent symmetries of BMC
problems by parameterizing the solver-internal data structures.

3.1 Symmetries of BMC problems

The formulas of BMC problems have a special structure: They describe computations,
starting from an initial state, executing & transition steps, and leading to a state violat-
ing the specification. Accordingly, the set of clauses generated by the SAT-solver, can
be grouped into clauses describing (1) the initial condition (I-clauses), (2) one of the
transitions (T-clauses), and (3) the violation of the specification (S-clauses). Further-
more, the T-clauses can be grouped into £ disjoint groups describing the &£ computation
steps. Those k T-clause groups describe the same transition relation, but at different
time points. That means, they are actually the same up to renaming the variables. For
example, some BMC problem in the 3rd iteration could be represented by a clause set
like this:

I-clauses T-clauses S-clauses
(.To\/’y(]),... (Io\/yl \/50),...,(1’1 \/yl \/Zo> (yg\/Zg),...
(1 VyaVZ1),..., (22 VT V 21)
(22 VY3 VZa),.... (23 VY3V 29)
The T-clauses representing the 2nd transition step are the same as the T-clauses of the

1st step but v; replaced by v, for all variables v and indices i; we write [v; 1 /v;] for
that substitution.

3.2 Parametric Data Structures

Since the T-clauses of different steps are the same up to variable renaming, it is enough
to store a parametric version of a transition step, actually the transition relation, and
remember the renaming in order to compute the information about the £ different com-
putation steps. If we need a clause of a certain transition step (e.g. to determine unit-
clauses), we just rename the variables in the parametric T-clauses accordingly.



For the above example, we could store the parametric T-clause set (xq V 1 V Zp), . . .,
(x1 V7, V zo). The first computation step is described by that clause set, after the appli-
cation of the trivial substitution [v; /v;]. Applying the substitution [v; 1 /v;] ([vis2/vi])
gives the clause set describing the second (third) computation step.

For the above described substitutions, we provide a renaming mechanism that works
as follows:

— Variables are represented by a pair (a, ) of integers, where the abstract id « iden-
tifies a variable, and the instance id ¢ the instance of the variable, i.e., the time
instance at that the variable’s value is considered. For example, if = has the ab-
stract id 5, then z in the 4th step is represented by (5,4). Negation of a variable is
expressed by the abstract id being negative. E.g., 75 is stored as (—5, 3).

— The contents of a clause, i.e., its literals, are now represented by a list of integer
pairs. For example, the literals (x, 7, ) are stored as ((5,0), (=5, 1)).

— Finally, each clause is referred to by a pair (a,7) of non-negative integers, where
the abstract id a identifies the parametric clause, and the instance id i its instance.
The ith instance of a parametric clause contains the literals of that clause with each
instance id increased by 7. For example, if the 7th parametric clause has literals
((5,0),(=5,1)), then (7,4) stands for the clause ((5,%), (—5,7 + 1)).

In this way, dealing with parametric clauses for BMC becomes very simple: We store
the literals of the T-clauses describing the first computation step as parametric clauses.
To compute the concrete literals of a T-clause describing the ith computation step, we
just have to increase the instance ids of all literals of the T-clause by i — 1.

For each new BMC iteration we have to increment the computation length as follows:

— we add a new instance to each parametric T-clause by extending the watch-literal
list by a new pair, and
— we increase the literals’ instance ids in the S-clauses by 1.

The I-clauses remain untouched.

Besides Boolean variables, the representation of two other kinds of variables needs
some more explanation: the auxiliary Boolean variables used to build the CNF effi-
ciently, and the abstraction variables used to represent constraints over the reals in the
Boolean domain.

Both cases extend the above encoding in a natural way as follows: An auxiliary Boolean
variable gets as instance id the smallest instance id occurring in the formula it encodes.
The abstraction of the same formula at different time points use the same abstract id.
The case for (in)equations is analogous: the instance id of an (in)equation is deter-
mined by the smallest instance id of its real variables. (In)equations imposing the same
constraint at different time points are abstracted by the same abstract id.

The parametric storage is restricted to the literals of the clauses. We still have to store
the assignments for each variable instance on its own. Also the watch-literals of differ-
ent instances of a parametric clause are stored separately. Thus, each parametric clause
consists of a list of its parametric literals, and a list of watch-index pairs, determining
the current watch-literals for each possible instance of the clause (see Figure 3).

3.3 Conflict Learning

Besides the clauses describing counterexamples we also have to pay attention to a sec-
ond clause type: the conflict clauses. Usually, the conflict clauses learned during the
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Fig. 3. Parametric and non-parametric data structures

SAT-check of a BMC instance get removed before the satisfiability check of the next
BMC instance. However, they can also be partially re-used in the style of Shtrich-
man [11]: If a conflict clause is the result of a resolution applied to clauses that are
present also in the next iteration, then the same resolution could be made in the new
setting, too, and thus we can keep those conflict clauses. Furthermore, if all clauses
used for resolution to generate a conflict clause are present in the next SAT iteration
with an increased instance, then the same resolution could be made using the increased
instances. Thus each such conflict clause can be added with an increased instance in
the next BMC iteration. Accordingly, we distinguish between the following conflict
clause types:

— I-conflict clauses being the result of resolution of I- and possibly T-clauses (or I- or
T-conflict clauses) can be re-used in the next iterations.

— S-conflict clauses being the result of resolution of S- and possibly T-clauses (or S-
or T-conflict clauses) can be re-used with an increased instance only.

— T-conflict clauses being the result only of resolution of T-clauses (or T-conflict
clauses) can be re-used and additionally inserted with an increased instance.

Note that conflict clauses stemming from both I- and S-clauses cannot be re-used. Pre-
liminary experiments showed that learning all possible instances for T-conflict clauses
leads to a large number of new clauses, massively increasing the amount of future prop-
agations. Hence, learning too much rather decelerates than accelerates. Therefore, we
follow the policy of re-using conflict clauses when possible, and inserting T-conflict
clauses additionally with one increased instance only. This policy turned out to be
successful within our experimental BMC framework.

During the SAT-checks, our solver also learns the explanations served by the LP-solver
in order to refine the abstraction. Those explanations are contradictions in the real-
valued domain, thus we could exclude them using all possible renamings of the in-
volved real-valued variables. In our solver those conflict clauses, stemming from the
real-valued domain, are treated as T-conflict clauses.

Please note that the parametric handling of clauses as described in Section 3.2 can
naturally be extended to conflict clauses.

3.4 Variable Ordering

Although dynamic variable ordering strategies like VSIDS [10] are mandatory in mod-
ern CNF-SAT-solver, our solver prototype succeeds already by supporting only a static



variable order for selecting decision variables. The static variable order is determined
by the instance ids of the variables, and thus follows the natural temporal order of
computation. Additionally it allows a direct comparison between the non-parametric
and the suggested parametric version of the solver.

4 Experimental Results

We implemented a combined SAT-LP-solver, working mainly as described in Sec-
tion 2.3, but with parametric internal data structures. To see the difference to the case
without parametric structures, we created also a modified solver, working exactly the
same way but without parametric clauses. Though our solver is not as fast as other
state-of-the-art solver, it is well-suited to show the advantage of using parametric struc-
tures.

Our experiments were carried out on a single-processor laptop with a Pentium I11 650
MHz CPU and 256 MB memory. We used Fischer’s mutual exclusion protocol [9]
with 3 processes to illustrate the advantages of parametric data structures. The hybrid
system H; representing the ith process (1 < ¢ < 3) using the protocol is depicted in
Figure 4. The specification states the mutual exclusion property, i.e., that at each time
point there is at most one process in its critical section. The results for the protocol
applied to 3 processes running in parallel is illustrated in Figure 5.

The first diagram of Figure 5 shows the number of clauses generated for the different
computation lengths during the BMC search. Generally, using parametric clauses in
the kth iteration of BMC, the number of T-clauses can be reduced by the factor of &;
similarly for real-conflict clauses. T-conflict clauses learned in the iteration ¢ get shifted
in each iteration from ¢ + 1 to k& by learning; instead of £ — i + 1 clauses we have to
store only 1 parametric instance. The number of I- and S-clauses remains unchanged
in both approaches; the same holds for I- and S-conflict clauses. It is worth to mention
that the learned conflicts form a large part of the clauses.

The second diagram shows the heap peak during the different iterations of the BMC
search. The memory requirements cannot be reduced with the same factor as the num-
ber of clauses, since we have to store all watch-literal informations for all clause in-
stances, and also the assignments to all variables etc. However, the memory require-
ments are still reduced by a comparable factor as the number of clauses.

The third diagram shows the CPU times needed for the satisfiability checks of the
different BMC instances. The diagram shows that using parametric clauses does not
slow down the computation times. This is due to the natural internal data structures
used to represent variables, literals, and clauses. Computing a certain concrete instance
of a parametric clause is done by executing just a few arithmetic additions.

Finally, the last diagram illustrates what happens if the memory of the computer reaches
its limits when using non-parametric data structures. At round about the 50th BMC in-
stance the memory limit is reached and the computer starts to swap. Though the CPU
times are not affected, the system times increase by several orders of magnitude. Us-
ing parametric structures, this happens much later, and we succeed to compute further
BMC instances.

Figure 6 shows the memory requirements with and without parametric clauses for two
further examples. The first example is Fischer’s protocol for 4 processes. The second
example is a Railroad Crossing [1], consisting of 3 parallel automata: one modeling
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a train, one a railroad crossing gate, and one a controller. The specification requires
that the gate is always fully closed when the train is near to the railroad crossing.
For lack of space, the other figures comparing the running times, the system times,
and the numbers of clauses for the parametric and the non-parametric cases cannot be
listed here. The curve progressions look similar to those for Fischer’s protocol for 3
processes.

5 Conclusion

In this paper we introduced parametric data structures in order to reduce the mem-
ory requirements of satisfiability checking for the special purpose of bounded model
checking. The application of BMC to Fischer’s protocol and the Railroad Crossing
example served to point out the practical relevance of our approach.

As to future work, besides extending our SAT-solver by dynamic variable-ordering
strategies, we are also working on the solver’s parallelization.
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