
Abstract Interface Behavior of

Object-Oriented Languages with Monitors

January 20, 2006

Erika Ábrahám1, Andreas Grüner2, and Martin Steffen2

1 Albert-Ludwigs-University Freiburg, Germany
2 Christian-Albrechts-University Kiel, Germany

Abstract. We characterize the observable behavior of multi-threaded,
object-oriented programs with re-entrant monitors. The observable un-
certainty at the interface is captured by may- and must-approximations
for potential resp. necessary lock ownership. The concepts are formalized
in an object calculus. We show the soundness of the abstractions.

Keywords: oo languages, formal semantics, thread-based concurrency,
monitors, open systems, observable behavior

1 Introduction

The behavior of an open system or component can be described by sequences of
component-environment interactions. Even if the environment is absent, it must
be assumed that the component together with the (abstracted) environment
gives a well-formed program adhering to the syntactical and the context-sensitive
restrictions of the language at hand. Technically, for an exact representation of
the interface behavior, the semantics of the open program needs to be formu-
lated under assumptions about the environment, capturing those restrictions.
The resulting assumption-commitment framework gives insight to the seman-
tical nature of the language. Furthermore, an independent characterization of
possible interface behavior with environment and component abstracted can be
seen as a trace logic under the most general assumptions, namely conformance
to the inherent restrictions of the language and its semantics.

With these goals in mind, this paper deals primarily with the following fea-
tures, which correspond to those of modern class-based object-oriented languages
like Java [7] or C# [5] and which are notoriously hard to capture:

– types and classes: the languages are statically typed, and only well-typed
programs are considered.

– references: each object carries a unique identity. New objects are dynamically
allocated on the heap.

– concurrency: the mentioned languages feature concurrency based on threads
(as opposed to processes or active objects).

2

– monitor synchronization: objects can play the role of monitors [9][8], guar-
anteeing that synchronized methods are executed mutually exclusive. Recur-
sion —direct or indirect— via method call requires re-entrant monitors.

We investigate these issues in a class-based, multi-threaded calculus with moni-
tors. The interface behavior is phrased in an assumption-commitment framework
and based on three orthogonal abstractions:

– a static abstraction, i.e., the type system;
– an abstraction of the stacks of recursive method invocations, representing

the recursive nature of method calls in a multi-threaded setting;
– finally as the core of this paper, an abstraction of lock ownership.

The contribution of this paper over our previous work in this field (e.g., [2]
dealing with deterministic, single-threaded programs, or [4] considering thread
classes) is to capture re-entrant monitor behavior. In comparison with the men-
tioned work, the setting here is simpler in one respect: we ignore instantiation
as possible interface behavior here; of course, instantiation as such is supported,
only not across the interface.

Incorporating monitors into the formal calculus is not only pragmatically
motivated —after all, Java and similar languages offer monitor synchronization—
but also semantically interesting, because the observable equivalences induced
by a language offering synchronized methods and one without are incomparable.

Overview Section 2 contains syntax and operational semantics of the calculus.
Section 3 contains an independent characterization of the interface behavior of
an open system, especially capturing the effects of lock ownership. Furthermore,
it contains the basic soundness results of the abstractions. Section 4 concludes
with related and future work. For a full account of the operational semantics
and the type system, we refer to the technical report [3].

2 A multi-threaded calculus with classes

This section presents the calculus, which is based on the multi-threaded object
calculus, similar to the one presented in [6] and in particular [10].

2.1 Syntax

The abstract syntax is given in Table 1. A program is given by a collection of
classes where a class c[(O)] carries a name c and defines its methods and fields. For
names, we will generally use o and its syntactic variants as names for objects,
c for classes, and n for thread names and when being unspecific. An object
o[c, F, n] keeps a reference to the class it instantiates, stores the current value
of the fields or instance variables, and maintains a lock n, referring to the name
of the owner thread. To denote that the lock is free, we use the special name
⊥thread (which is not a value). Immediately after instantiation, all fields carry

3

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, n] | n〈t〉 program
O ::= F, M object
M ::= lu = m, . . . , lu = m, ls = m, . . . , ls = m method suite
F ::= lu = f, . . . , lu = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n field
t ::= v | stop | let x:T = e in t thread
e ::= t | if v = v then e else e | if undef (v.l) then e else e expr.

| v.l(v, . . . , v) | v.l := v | currentthread
| new n | new〈t〉

v ::= x | n values

Table 1. Abstract syntax

the undefined reference ⊥c, where c is the (return) type of the field, and the lock

is free. A method ς(self :c).λ(~x:~T).t provides the method body abstracted over
the ς-bound “self” parameter and the formal parameters of the method [1]. We
distinguish between synchronized and un-synchronized methods conventionally
by superscripting ls resp. lu, and just l when unspecific. Besides named objects
and classes, the dynamic configuration of a program contains threads n〈t〉 as
active entities.

A thread is basically either a value or a sequence of expressions, notably
method calls (written v.l(~v)), the creation of new objects new c where c is a
(component) class name, and thread creation new〈t〉. We use f for instance
variables or fields, l = v for field variable declaration. Field access is written
as v.l, and field update as v′.l := v. Apart from disallowing instantiation cross
the interface between component and environment, we impose the following two
restrictions on the language: firstly, we disallow direct access (read or write)
to fields across object boundaries. Secondly, we forbid that any occurrence of
thread creation new〈t〉 contains a self-parameter, i.e., a name occurring bound
by ς. The reason is that a new thread must start its life “outside” any monitor.

The available types include thread as the type of threads. Furthermore, ob-
jects are typed by the name of their class. As auxiliary types we have T1 × . . .×
Tk → T as the type of methods, and furthermore [l1:U1, . . . , lk:Uk] as the type
or interface of unnamed objects, and [(l1:U1, . . . , lk:Uk)] as the type for classes.
For brevity, we omit the definition of the type system, as it is straightforward.

2.2 Operational semantics

The operational semantics is given in two stages, component internal steps and
external ones, describing the interaction at the interface. In particular, the
external steps are defined in reference to assumption and commitment contexts.
The static part of the contexts corresponds to the static type system (we again
refer to [4] for the full definition) and takes care that, e.g., only well-typed values
are received from the environment.

4

2.2.1 Internal steps Table 2 contains a few typical internal reduction steps
(the other ones for conditionals, sequencing via let, thread creation, etc., are
straightforward), distinguishing between confluent steps, written , and other

internal transitions, written
τ
−→.

The Calli-rules treat internal method calls, i.e., a call to an object contained
in the configuration, where for synchronized methods, Calls

i1
takes the free

lock and adds a release-action at the end of the method body. Rule Calls
i2

describes re-entrant calls. In the call-steps, M.l(o)(~v) stands for t[o/s][~v/~x], when

the method suite [M] equals [. . . , l = ς(s:T).λ(~x:~T).t, . . .]. Note also that the

step is a
τ
−→-step, not a confluent one. The above reduction relations are used

modulo structural congruence, which captures the algebraic properties of parallel
composition and the hiding operator.

2.2.2 External steps A component exchanges information with the environ-
ment via calls and returns (cf. Table 3). In the labels, n is the thread that issues
the call or returns from the call. Note that there are no separate external labels
for object instantiation; we have forbidden cross-border instantiation. Given a
label ν(Ξ).γ′ where Ξ is a name context, i.e., a sequence of single ν(n:T) bind-
ings and where γ′ does not contain any binders; we call γ′ the core of the label.
Note that for incoming labels, Ξ contains only bindings to environment objects
and at most one thread name; dually for outgoing communication. Given a label
γ, we refer with ⌊γ⌋ to its core. Furthermore, thread(γ) denotes the thread of
the label. The definitions are used analogously for send and receive labels. We
write shortly γc for call and γr for return labels.

The external semantics is formalized as labeled transitions between judg-
ments of the form ∆, Σ ⊢ C : Θ, Σ, where ∆, Σ represent the assumptions about
the environment of the component C and Θ, Σ the commitments . The assump-

c[(F, M)] ‖ n〈let x:c = new c in t〉

c[(F, M)] ‖ ν(o:c).(o[c, F] ‖ n〈let x:c = o in t〉) NewOi

c[(F, M)] ‖ o[c, F ′, n′] ‖ n〈let x:T = o.lu(~v) in t〉
τ

−→

c[(F, M)] ‖ o[c, F ′, n′] ‖ n〈let x:T = M.lu(o)(~v) in t〉 Call
u

i

c[(F, M)] ‖ o[c, F ′,⊥thread] ‖ n〈let x:T = o.ls(~v) in t〉
τ

−→

c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(~v) in release(o); t〉 Call
s

i1

c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = o.ls(~v) in t〉
τ

−→

c[(F, M)] ‖ o[c, F ′, n] ‖ n〈let x:T = M.ls(o)(~v) in t〉 Call
s

i2

o[c, F, n] ‖ n〈let x:T = release(o) in t〉
τ

−→ o[c, F,⊥thread] ‖ n〈t〉 Release

Table 2. Internal steps

5

γ ::= n〈call o.l(~v)〉 | n〈return(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 3. Labels

tions require the existence (plus static typing information) of named entities in
the environment. The semantics maintains as invariant that the assumption and
commitment contexts are disjoint concerning object and class names, whereas a
thread name occurs as assumption iff. it is mentioned in the commitments. By
convention, the contexts Σ (and their alphabetic variants) contain exactly all
bindings for thread names. This means, as invariant we maintain for all judg-
ments ∆, Σ ⊢ C : Θ, Σ that ∆, Σ, and Θ are pairwise disjoint.

The operational semantics is formulated as transitions between typed judg-
ments ∆, Σ ⊢ C : Θ, Σ

a
−→ ∆́, Σ́ ⊢ Ć : Θ́, Σ́ .

Notation 1 We abbreviate the triple of name contexts ∆, Σ, Θ as Ξ. Further-
more we understand ∆́, Σ́, Θ́ as Ξ́, etc.

The open semantics checks the static assumptions, i.e., whether at most the
names actually occurring in the core of the label are mentioned in the ν-binders
of the label, and whether the transmitted values are of the correct types. We
write Ξ ⊢ a : T for that check, where T is type of the expression in the program
that gives rise to the label. We omit the exact definition here (see [3]).

Besides checking whether the assumptions are met before a transition, the
contexts are updated by a step, reflecting the change of knowledge.

Definition 1 (Context update). For an incoming label a = ν(Ξ ′)⌊a⌋ where
n is a thread name s.t. Ξ ′ ⊢ n, we define Ξ́ as:

Θ́ = Θ + Θ′, ∆́ = ∆ + (∆′,⊙n), and Σ́ = Σ + Σ′.

In case Ξ ′ 6⊢ n, i.e., the thread is not new to the component, the summand
⊙n is omitted. We write Ξ + a for the update of Ξ. The update for outgoing
communication is defined dually.

The operational rules of Table 4 use two additional expressions blocks and
returns v. The three CallI-rules deal with incoming calls. For all three cases,
the contexts are updated to Ξ́ to include the information concerning new objects
and threads. Furthermore, it is checked whether the label is type-correct and
that the step is possible according to the (updated) assumptions Ξ́.

Outgoing calls are dealt with in rule CallO. To distinguish the situation
from component-internal calls, the receiver must be part of the environment,
expressed by ∆ ⊢ or. Assuming that we start with a well-typed component, there
is no need in re-checking now that only values of appropriate types are handed
out, since the operational steps preserve well-typedness (“subject reduction”).
In addition to the rules of Table 4, there are similar ones for communication via
returns. They are included in the technical report [3].

6

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x′:T ′ = blocks in t Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T
CallI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈tblocked〉)
a
−→

Ξ́ ⊢ ν(Ξ1).(C ‖ C(Θ′) ‖ n〈let x:T = or.l(~v) in returns x; tblocked〉)

a = ν(Ξ′). n〈call or.l(~v)〉? ∆ ⊢ ⊙n Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

CallI2

Ξ ⊢ C ‖ n〈stop〉
a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = or.l(~v) in returns x; stop〉

a = ν(Ξ′). n〈call or .l(~v)〉? Ξ′ ⊢ n : thread Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T
CallI3

Ξ ⊢ C
a
−→ Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x:T = or.l(~v) in returns x; stop〉

a = ν(Ξ′). n〈call or.l(~v)〉! Ξ′ = fn(⌊a⌋) ∩ Ξ Ξ́1 = Ξ1 \Ξ′ ∆́ ⊢ or Ξ́ = Ξ + a

CallO

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = os or.l(~v) in t〉)
a
−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n〈let x:T = blocks in t〉)

Table 4. External steps

Note that the steps of Table 4 are independent of lock manipulations, e.g., an
incoming call, which hands over the message via one of the CallI-rules does not
attempt to obtain the lock; this is done by the internal steps from Table 2. This
decouples the responsibilities of component and environment in the spirit of the
assumption/commitment set-up. Whether an incoming call can be sent by the
environment depends only on the past interface interaction and the environment,
but not on an internal state of the component!

3 Interface behavior

Next we characterize the possible (“legal”) interface behavior as interaction
traces between component and environment.

The calls and returns of each thread must be “parenthetic”, i.e., each return
must have a matching call prior in the trace, and we must take into account
whether the thread is resident inside the component or outside. In particular,
we must take into account restrictions due to the fact that the method bodies
are executed in mutual exclusion wrt. individual objects.

3.1 Balance conditions

We start with auxiliary definitions concerning the parenthetic nature of calls and
returns. Starting from an initial configuration, the operational semantics from
Section 2.2 assures strict alternation of incoming and outgoing communication
and additionally that there is no return without matching prior call.

Definition 2 (Balance). Let s ↓n be the projection of trace s onto thread
n. The balance of a thread n in a sequence s of labels is given by the rules of

7

B-Empty
+

⊢ ǫ : balanced+

⊢ s1 : balanced+ ⊢ s2 : balanced+ s1, s2 6= ǫ
B-II

⊢ s1 s2 : balanced+

⊢ s : balanced−

B-OI

⊢ ν(Ξ).n〈call or.l(~v)〉! s ν(Ξ ′).n〈return(v)〉? : balanced+

Table 5. Balance

Table 5, where the dual rules for balanced− are omitted. We write ⊢ s : balancedn

if ⊢ s : balanced+
n or ⊢ s : balanced−

n . We call a (not necessarily proper) prefix
of a balanced trace weakly balanced. We write ⊢ s : wbalanced+

n if the trace is
weakly balanced in n, i.e., if the projection of the trace on n is weakly balanced,
and if the last label is an incoming communication or if s ↓n is empty; dually for
⊢ s : wbalanced−

n . The function pop (on the projection of a trace onto a thread
n) is defined as follows:

1. pop s = ⊥, if s is balanced in n.
2. pop (s1as2) = s1a if a = ν(Ξ). n〈call or.l(~v)〉? and s2 is balanced+

n .
3. pop (s1as2) = s1a if a = ν(Ξ). n〈call or.l(~v)〉! and s2 is balanced−

n .

We use pop n r for pop (r ↓n).

Based on a weakly balanced past, the following definition formalizes the
notion of source and target of a communication event at the end of a trace with
the help of the function pop.

Definition 3 (Sender and receiver). Let r a be the projection of a balanced
trace onto the thread n. Sender and receiver of label a after history r are defined
by mutual recursion and pattern matching over the following cases:

sender(ν(Ξ).n〈call or.l(~v)〉!) = ⊙n

sender (r′ a′ ν(Ξ).n〈call or.l(~v)〉!) = receiver(r′ a′)
sender(r′ a′ ν(Ξ).n〈return(v)〉!) = receiver(pop(r′ a′))

receiver (r ν(Ξ).n〈call or.l(~v)〉!) = or

receiver (r ν(Ξ).n〈return(v)〉!) = sender(pop(r))

For ν(Ξ)n〈call or.l(~v)〉? resp. ν(Ξ).n〈return(v)〉?, the definition is dual.

The judgment ∆, Σ ⊢ r ⊲ a : Θ, Σ asserts that after r, the action a is
enabled. Input enabledness checks whether, given a sequence of past commu-
nication labels, an incoming call is possible in the next step; analogously for
output enabledness. To be input enabled, one checks against the last match-
ing communication. If there is no such label, enabledness depends on where the
thread started:

8

Definition 4 (Enabledness). Given a method call γ = ν(Ξ).n〈call or.l(~v)〉.
Then call-enabledness of γ after the history r and in the contexts ∆, Σ and Θ, Σ
is defined as:

∆, Σ ⊢ r ⊲ γ? : Θ, Σ if pop n r = ⊥ and ∆ ⊢ ⊙n or
pop n r = r′γ′!

(1)

∆, Σ ⊢ r ⊲ γ! : Θ, Σ if pop n r = ⊥ and Θ ⊢ ⊙n or
pop n r = r′γ′?

(2)

For return labels γ = ν(Ξ).n〈return(v)〉, Ξ ⊢ r ⊲ γ! abbreviates pop n r =
r′ν(Ξ ′).n〈call o2.l(~v)〉?, and dually for incoming returns γ?.

We further combine enabledness and determining sender and receiver (cf.

Definitions 4 and 3) into the notation Ξ ⊢ r ⊲ os
a
→ or .

3.2 Side conditions for monitors

Next we address the restrictions imposed by the fact that the methods are syn-
chronized. We assume in the following that all methods are synchronized, unless
stated otherwise. We proceed in two stages. The first step in Section 3.2.1 con-
centrates on individual threads: given the interaction history of a single thread,
we present two abstractions, one characterizing situations where the thread may
hold the lock of a given object, and a second one where, independent of the
scheduling, it must hold the lock.

The second step in Section 3.2.2 takes a global view, i.e., considers all threads,
to characterize situations in a trace (in-)consistent with the fact that objects act
as monitors. The formalization is based on a precedence or causal relation of
events of the given trace. This precedence relation formalizes three aspects that
regulate the possible orderings of events in a trace:

mutual exclusion: If a thread has taken the lock of a monitor, interactions of
other threads with that monitor must either occur before the lock is taken,
or after it has been released again.

data dependence: no value (unless generated new) can be transmitted before
it has been received.

control dependence: within a single thread, the events are linearly ordered.

The formalization of mutual exclusion is complicated by the fact that the locks
are not taken atomically, i.e., we often do not have immediate information when
the lock is taken and relinquished. Instead we must work with the may- and
must-approximations calculated in Section 3.2.1.

3.2.1 Lock ownership We start by characterizing when, given a history of
interaction of a single thread, it may own the lock. The “may”-uncertainty is due
to the fact that the actual lock manipulation is separated by the corresponding
visible interface interaction by some internal i.e., non-observable reduction steps.

9

⊢ s2 : balanced s2 6= ǫ Ξ ⊢ s1 : ♦o
M-♦

Ξ ⊢ s1 s2 : ♦o

receiver (s1γc) = o
M-I♦1

Ξ ⊢ s1 γc? : ♦o

receiver (s1γc) 6= o Ξ ⊢ s1 : ♦o
M-I♦2

Ξ ⊢ s1 γc? : ♦o

Ξ ⊢ s1 : ♦o
M-O♦

Ξ ⊢ s1 γc! : ♦o

Table 6. Potential lock ownership for Θ-locks

Definition 5 (May lock ownership). Given a sequence s of interactions of
a single thread and a component object o, the judgment Ξ ⊢ s : ♦o (“after s,
the thread of s may own the lock of o.”) is given by the rules of Table 5. For
environment locks, i.e., when o is an environment object, the definition is dual.

Rule M-♦ states that a strongly balanced tail s2 can be ignored, lock-wise.
The two M-I♦-rules deal with incoming calls, distinguishing wrt. the receiver of
the communication. If the call concerns the object o in question, the thread may
own the lock afterwards. If the receiver is distinct from o (cf. rule M-I♦2), the
thread may own the lock of o, if that was the case already before the call. An
outgoing call finally does not affect the ♦-information.

Now to the definite knowledge that a thread owns the lock of a given object.

Definition 6 (Must lock ownership). Given a sequence s of interactions of
a single thread and a component object o, the judgment Ξ ⊢ s : �o (“after s,
the thread of s must own the lock of o.”) is given by the rules of Table 7. For
environment locks, i.e., when o is an environment object, the definition is dual.

The first rule M-I�1 deals with incoming calls. Since the lock is not acquired
atomically, an incoming call alone does not guarantee that the thread owns the

Ξ ⊢ t : �o
M-I�1

Ξ ⊢ tγc? : �o

Ξ ⊢ tγr?γ
′

r! : ♦o

Ξ ⊢ t : �o
M-I�2

Ξ ⊢ tγr? : �o

Ξ ⊢ t : ♦o
M-O�1

Ξ ⊢ tγc! : �o

Ξ ⊢ t : �o
M-O�2

Ξ ⊢ tγr! : �o

Table 7. Necessary lock ownership for Θ-locks

10

callee’s lock; it potentially owns it according to rule M-I♦1. If however the lock of
an object is necessarily owned before the call, the same is true afterwards. Rule
M-I�2 deals with incoming returns. As for incoming calls, the lock is owned
for sure after the communication, if this was true before already. We need to
be careful, however. After the return γr in question, the thread may continue
internally i.e., without performing a further interface communication, and this
internal reduction may relinquish the lock! This may be the case if the mentioned
internal reduction includes the very last internal steps of a synchronized method
call, before the call actually returns at the interface, re-establishing balance. In
other words, after γr?, the component may be in a state where internally, the
lock has already been released, only that the fact has not yet been manifest at
the interface. This is captured in the premise Ξ ⊢ rγr?γ

′
r! : ♦o, i.e., the trace

rγr? is extended by one additional outgoing return γ′
r!, and if the thread may

have the lock after this extended trace, then it must have the lock after γr?.
The M-O�-rules cover outgoing communication. Remember that outgoing

communication leaves the ♦-information unchanged. For �-information, this is
different and characteristic of the non-atomic lock-handling: an incoming call is
the sign that we may have the lock of a component object, but only a following
outgoing call is the observable sign that the component must have the lock.

We write Ξ ⊢ t : �no for Ξ ⊢ (t ↓n) : �o, and analogously for ♦no.

Lemma 1 (Decidability). Given a weakly balanced trace t, the relations Ξ ⊢
t : ♦no and Ξ ⊢ t : �no are decidable.

With decidability at hand we can consider the assertions Ξ ⊢ t : ♦no and
Ξ ⊢ t : �no as boolean predicates, and we write Ξ ⊢ t : ¬♦no for Ξ 6⊢ t : ♦no,
and analogously for �.

Lemma 2 (� implies ♦). Assume a weakly balanced trace t. If Ξ ⊢ t : �no
then Ξ ⊢ t : ♦no.

3.2.2 Mutual exclusion So far we concentrated on each thread in isola-
tion. Obviously, this cannot be the whole story, as mutual exclusion is a global
property concerning more than one thread.

The formalization is based on a precedence relation on the events of a trace.
An event is an occurrence of a label in a trace, i.e., as usual, events are unique.
In the following we do not strictly distinguish (notationally) between labels and
events, i.e., we write γ? for an event labeled by an incoming communication etc.
In the formulation of dependencies for mutual exclusion, we need to require that
certain events are positioned before the lock has been taken by some thread,
or after it has been released. In this context, the following definition picks out
relevant events of a trace. In the definition, 4 denotes the prefix relation. The
♦́-function (“after may”) designates the labels after the point where the lock
may be taken, for a given pair of thread and monitor. The �̀-function (“before
must”) picks out the point before a given thread enters the monitor.

11

Definition 7. Let t be the projection of a weakly balanced trace onto a thread
n. Then the set of events ♦́(t, o) is given by:

♦́(t, o) = {a | longest prefix sa 4 t s.t. Ξ ⊢ s : ♦o} . (3)

Furthermore, the set of events �̀(t, o) is given as:

�̀(t, o) = {a1 | Ξ ⊢ t : �o, longest prefix sa1a2 4 t s.t.
Ξ ⊢ s : ¬♦o, Ξ ⊢ sa1a2 : �o } .

(4)

We use the following abbreviations: ♦́n(t, o) stands for ♦́(t ↓n, o) and ♦́6=n(t, o) =
⋃

n′ 6=n ♦́(t ↓n′ , o), and analogously for �̀.

Note that the “set” given by ♦́ in Definition 7 contains one element or is empty.
The same holds for �̀.

Based on these auxiliary definitions, we introduce now the three types of
dependencies we need to consider. We start with data dependence.

Definition 8 (Data dependence). Given a trace r, reference o, and input
label γ?, we write ⊢Θ r : γ? _

d o (in words: “o is potentially data-dependent on
event/label γ? of trace r”), if o ∈ names(γ), where r′γ? is a prefix of r. When
given a tuple ~o of names, ⊢Θ r : ~γ? _

d ~o is meant as asserting ⊢Θ r : γi? _
d oi,

for all oi from ~o.

DΘ(rγ!) = {~γ? _ γ!} where ⊢Θ ~γ? _
d fn(γ!) ∩ ∆(r)

DΘ(rγ?) = {} .
(5)

For ∆, the definitions are applied dually.

The definition states that, from the perspective of the component, arguments
of an outgoing communication must either be generated before by the compo-
nent, or must have entered the component from the outside. The definition is
a bit trickier than the informal explanation sounds. First of all, we calculate
the dependence in equation (5) only for object references occurring free in the
output label; those that occur under a ν-binder are generated by the component
itself, and do not constitute a data dependence. For the same reason we con-
sider only those free object references, which originally have been passed to the
component during the history; we denote all ν-bound environment objects in r
by ∆(r) (dually for component objects). Finally, each such object in γ! may be
potentially data dependent on more than one incoming label in the history r. It
suffices to add one data dependence edge, which is non-deterministically chosen.

Definition 9 (Control dependence). Given a trace ra, where n = thread(a),
we write ⊢ r : a′

_
c a, if r ↓n= r′a′ for some label a′. We write C(ra) for

{a′
_ a | ⊢ a′

_
c a}.

Note that the set C(ra) contains one element, i.e., one edge, or is empty.

12

Definition 10 (Mutual exclusion). Given a trace ra and a component object
o, the label a gives rise to the precedence edges wrt. component locks given by:

MΘ(rγc?, o) = ♦́6=n(r, o) _ γc?
MΘ(rγr?, o) = {}

MΘ(rγ!, o) = γ! _ �̀ 6=n(r, o), ♦́6=n(r, o) _ �̀n(rγ!, o)

(6)

For environment locks, the definition is dual.

Incoming calls can introduce a dependence with other threads n′ competing
for the concerned lock, i.e., the lock of the callee. Interaction of a thread n′ occur-
ring in the history r after n′ applied for the lock (but before γc?) makes evident
that n′ succeeded in entering the monitor. Hence the corresponding monitor in-
teractions of n′ must have happened before the current incoming call succeeds
in entering the monitor. Incoming returns do not introduce new dependencies
wrt. to Θ-locks, since the return releases the corresponding lock or keeps it, but
does not acquire a lock or competes for it.

Outgoing communication, however, does introduce dependencies, as they in
many cases indicate that a lock definitely is taken or transiently has been taken
since the last interaction of that thread. This introduces two types of depen-
dencies. First, if there are other definite lock owners, then the current action
γ! must precede the monitor interactions of those successful competitors since
the outgoing label is a definite sign that the thread of γ has held the lock of o
before that step. This explains the edges γ! _ �̀ 6=n(r, o) in the definition. Sec-
ondly, γ! does not only indicate that the thread in question had the lock prior
to the step (at least transiently), but can also introduce definite lock ownership
after the step (in particular, an outgoing call can introduce must-ownership).
Hence, the monitor interactions of all competitors observed in the trace must
precede the point, where the current thread n acquires the lock. This explains
the dependence ♦́6=n(r, o) _ �̀n(rγc!, o).

Example 1. Consider the trace t = γc1
? γc2

? γ′
c1

! γr2
!, in expanded form

t = (νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call o′.l()〉! n2〈return(o′)〉! (7)

This trace is impossible because having n1 enter the monitor before n2, as man-
dated by the data dependence, enforces that, independent of the scheduling, n1

holds the lock until the end of t, and hence n2 cannot enter the monitor.
Formally, Definitions 8 – 10 yield the following dependencies, when consid-

ering the trace after two, three, or four steps, respectively:

γc1
? γc2

?

(1)

γc1
?

n1

��

γc2
?

γ′
c1

!

(2)

γc1
?

n1

��

o′

��

γc2
?

n2

��
γ′

c1
! γr2

!

ZZ

(3)

13

Note that without data dependence from γc1
? to γr2

!, the graph is acyclic, and
hence the trace possible. Especially, the return γr2

? is possible at the end, even
if thread n1 is guaranteed to hold the lock, since thread n2 can have performed
its monitor interaction before n1 entered the monitor, only that the return was
not yet visible in the trace. ⊓⊔

3.3 Legal traces system

Table 8 specifies legality of traces; the rules combine all mentioned conditions,
type checking, balance, and in particular restrictions due to monitor behavior.
We use the same conventions and notations as for the operational semantics (cf.
Notation 1). The judgments in the derivation system are of the form

G∆; ∆, Σ ⊢ r ⊲ s : trace Θ, Σ; GΘ resp. G; Ξ ⊢ r ⊲ s : trace . (8)

In comparison to the judgments used in the operational semantics, the judgment
from (8) contains a graph GΘ as representation of control, data, and mutex-edges
wrt. component locks (cf. Section 3.2.2), and dually G∆ for environment locks.
We adapt Notation 1 appropriately, writing G for the pair (GΘ, G∆).

We write Ξ ⊢ t : trace, if there exists a derivation of G∅; Ξ ⊢ ǫ ⊲ t : trace
according to Table 8, where G∅ is the empty dependence graph. We write Ξ ⊢∆

t : trace, if there exists a derivation of G∅; Ξ ⊢ ǫ ⊲ t : trace, where only the
assumption contexts are checked in the rules but not the commitments, i.e., the
premises Ξ́ ⊢ a :ok and ⊢ Ǵ :ok remain in the rules for incoming communication
L-CallI and L-RetI, but for the outgoing communication, the corresponding
premises are omitted (dually for Ξ ⊢Θ t : trace).

Now to the rules: As base case, the empty future is always legal, and dis-
tinguishing according to the first action a of the trace, the rules check whether
a is possible. This check is represented by checking whether the dependencies
collected in the pair G are consistent, i.e., that the two graphs are acyclic. This

Ξ; G ⊢ r ⊲ ǫ : trace L-Empty

Ξ ⊢ r ⊲ os

a
→ or Ξ́ = Ξ + a Ξ́ ⊢ a :ok

ǴΘ = GΘ ∪ GΘ(ra, or) Ǵ∆ = G∆ ∪ G∆(ra, os) ⊢ Ǵ∆ :ok

a = ν(Ξ′). n〈call or.l(~v)〉? Ξ́; Ǵ ⊢ r a ⊲ s : trace
L-CallI

Ξ; G ⊢ r ⊲ a s : trace

Ξ ⊢ r ⊲ os

a
→ or Ξ́ = Ξ + a Ξ́ ⊢ a :ok

ǴΘ = GΘ ∪ GΘ(ra, or) Ǵ∆ = G∆ ∪ G∆(ra, os) ⊢ Ǵ∆ :ok

a = ν(Ξ′). n〈return(v)〉? Ξ́; Ǵ ⊢ r a ⊲ s : trace
L-RetI

Ξ; G ⊢ r ⊲ a s : trace

Table 8. Legal traces (dual rules omitted)

14

is asserted by ⊢ G :ok . Furthermore, the contexts are updated appropriately,
and the rules recur checking the tail of the trace. The update for the dependence
graph GΘ given by the union the graph GΘ before the step with

GΘ(ra, o) = MΘ(ra, o) ∪ C(ra) ∪ DΘ(ra) (9)

where the argument o refers to the monitor relevant in that step, i.e., the monitor
introduction potential inconsistencies. The definition for G∆ is dually.

The rules are completely symmetric wrt. incoming and outgoing communi-
cation (and the dual rules omitted). L-CallI for incoming calls works similar

to the CallI-rules in the semantics. The premise ∆ ⊢ r ⊲ os
a
→ or : Θ checks

whether the incoming call a is enabled and determines the sender and receiver
at the same time. The receiver or, of course, is mentioned directly, but os is
calculated from the history r. In case of incoming communication, the relevant
monitor for GΘ is the receiver, and for G∆, the sender of the step.

Remember from Section 3.1 that the sender given by, e.g., sender(rγc?) is
not (necessarily) the “real” sending object (which remains anonymous), but the
last environment object the corresponding thread has entered in the past via
an interface action. The sender in this sense is exactly the object, whose lock is
relevant when updating/checking the dependencies in G∆. A consequence of the
clean decoupling of component and environment in the assumption/commitment
formulation of the legal traces is, that for incoming communication, the update
of the graph GΘ cannot introduce a cycle: incoming communications are checked
for legality using the assumptions, not the commitments (cf. Lemma 5).

3.4 Soundness of the abstractions

The section contains the basic soundness results of the abstractions,

Lemma 3 (Subject reduction). Ξ ⊢ C
s

=⇒ Ξ́ ⊢ Ć, then Ξ́ ⊢ Ć. A fortiori:
If Ξ ⊢ n : T , then Ξ́ ⊢ n : T .

Lemma 4 (Soundness of lock ownership).

1. Ξ ⊢ C
t

=⇒ Ξ́ ⊢ Ć and Ξ ⊢ t : �no, then thread n has the lock of o in Ć.

2. If Ξ ⊢ C
t

=⇒ and Ξ ⊢ t : ♦no and there does not exist an n′ 6= n, then

Ξ ⊢ C
t

=⇒ Ξ́ ⊢ Ć for some Ξ́ ⊢ Ć s.t. the thread n has the lock of o in Ć.

Lemma 5. If G; Ξ ⊢ r : trace, and Ξ ⊢ r ⊲ os
γ?
→ or, and GΘ is acyclic, then

GΘ + GΘ(rγ?, or) is acyclic, as well.

Lemma 6 (Soundness of abstractions). Assume Ξ ⊢ C and Ξ ⊢ C
t

=⇒.
The (1) Ξ ⊢Θ t : trace and (2) Ξ ⊢∆ t : trace implies Ξ ⊢ t : trace.

15

4 Conclusion

[12] investigates full abstraction in an object calculus with subtyping. The setting
is slightly different from the one here, as the paper does not compare a contextual
semantics with a denotational one, but a semantics by translation with a direct
one. The paper considers neither concurrency nor aliasing. Recently, Jeffrey and
Rathke [11] extended their work [10] on trace-based semantics from an object-
based setting to a core of Java, called JavaJr, including classes and subtyping.

We plan to extend the language with further features to make it more resem-
bling Java or C

#. Concerning the concurrency model, one should add thread-
coordination using wait- and notify methods. Another interesting direction for
extension concerns the type system, in particular to include subtyping and in-
heritance. Another direction is to extend the semantics to a compositional one;
currently, the semantics is open in that it is defined in the context of an environ-
ment. However, general composition of open program fragments is not defined.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.
Springer, 1996.

2. E. Ábrahám, F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Observ-
ability, connectivity, and replay in a sequential calculus of classes. In M. Bosangue,
F. S. de Boer, W.-P. de Roever, and S. Graf, editors, Proceedings of the Third In-
ternational Symposium on Formal Methods for Components and Objects (FMCO
2004), volume 3657 of LNCS, pages 296–316. Springer-Verlag, 2005.

3. E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-
oriented languages with monitors. Draft technical report, Institut für Informatik
und Praktische Mathematik, CAU Kiel, Jan. 2006.

4. E. Ábrahám, A. Grüner, and M. Steffen. Dynamic heap-abstraction for open,
object-oriented systems with thread classes. Submitted for publication, 2006. a
longer version has been published as Technical Report 0601 of the Institute of
Computer Science of the University Kiel, January 2006.

5. ECMA International Standardizing Information and Communication Systems. C#

Language Specification, 2nd edition, Dec. 2002. Standard ECMA-334.
6. A. D. Gordon and P. D. Hankin. A concurrent object calculus: Reduction and

typing. In U. Nestmann and B. C. Pierce, editors, Proceedings of HLCL ’98,
volume 16.3 of ENTCS. Elsevier Science Publishers, 1998.

7. J. Gosling, B. Joy, G. L. Steele, and G. Bracha. The Java Language Specification.
Addison-Wesley, Second edition, 2000.

8. P. B. Hansen. Operating System Principles. Prentice Hall, 1973.
9. C. A. R. Hoare. Monitors: An operating system structuring concept. Communi-

cations of the ACM, 17(10):549–557, 1974.
10. A. Jeffrey and J. Rathke. A fully abstract may testing semantics for concurrent

objects. In Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.
11. A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semantics for a core Java

language. In M. Sagiv, editor, Proceedings of ESOP 2005, volume 3444 of LNCS,
pages 423–438. Springer-Verlag, 2005.

12. R. Viswanathan. Full abstraction for first-order objects with recursive types and
subtyping. In Proceedings of LICS ’98. IEEE, Computer Society Press, July 1998.

	Abstract Interface Behavior of Object-Oriented Languages with Monitors [1em] January 20, 2006
	 Erika Ábrahám, Andreas Grüner, and Martin Steffen
	Introduction
	A multi-threaded calculus with classes
	Syntax
	Operational semantics
	Internal steps
	External steps

	Interface behavior
	Balance conditions
	Side conditions for monitors
	Lock ownership
	Mutual exclusion

	Legal traces system
	Soundness of the abstractions

	Conclusion
	References

