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Abstract. Bounded Model Checking (BMC) is a successful refutation method
for detecting errors in not only circuits and other binary systems but also in sys-
tems with more complex domains like timed automata or linearhybrid automata.
Counterexamples of a fixed length are described by formulas in a decidable logic,
and checked for satisfiability by a suitable solver.
In an earlier paper we analyzed how BMC of linear hybrid automata can be ac-
celerated already by appropriate encoding of counterexamples as formulas and
by selective conflict learning. In this paper we introduce parametric datatypes
for the internal solver structure that, taking advantage ofthe symmetry of BMC
problems, remarkably reduce the memory requirements of thesolver.

1 Introduction

Bounded model checking(BMC) [BCCZ99] is a successful, relatively young refuta-
tion method which was studied and applied very intensively in the last years (see
e.g. [BCRZ99,CFF+01] for some industrial applications). Starting with the initial states
of a system, the BMC algorithm considers computations with increasing lengthk =
0, 1, . . .. For eachk, the algorithm checks whether there exists acounterexampleof the
given length, i.e., if there is a computation that starts in an initial state and that leads to
a state violating the system specification ink steps.

Basically, BMC can be applied to all kinds of systems for thatreachability within
a bounded number of steps can be expressed in a decidable logic. For example, for
discretesystems first-order predicate logic is used, whereas the analysis of linear hy-
brid automata [ACH+95,Hen96] requires first-order logic formulas over(R, +, <
, 0, 1) [dMRS02].Timed automata, a restricted class of linear hybrid automata, are dealt
with, e.g., in [NMA+02,Sor02,ACKS02,WZP03].

Also the kind of specification considered can have differentlogical domains. The
violation of asafetyproperty is expressed by stating that the last, i.e., thekth, state
of the computation does not fulfill the specification. Formulas of temporal logiccan
be handled by checking whether a computation violates the specification in the first
k steps. Additional loop-determining techniques extend themethod to be also able to
verify properties for some problem classes (see e.g. [BCC+03,dMRS03]).

⋆ This work was partly supported by the German Research Council (DFG) as part of the Trans-
regional Collaborative Research Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS). Seewww.avacs.org for more information.



Once the existence of a counterexample of a fixed length is expressed by some
formula, we need to check that formula for satisfiability: The formula is satisfiable
if and only if the specification can be violated by a computation of lengthk. In the
discrete case the satisfiability check is carried out by a SAT-solver, i.e., a Boolean
satisfiability checker, whereas in the mixed discrete-continuous case of hybrid and
timed automata the satisfiability check is usually done by combining a SAT- and an
LP-solver (Linear Programming, see Section 2.3). Some of the most popular solvers
are, e.g., ZChaff [MMZ+01], BerkMin [GN02], MiniSAT [ES03], HySat [FH05],Math-
SAT [ABC+02], CVC Lite [BB04], and ICS [dMR04].

Though our approach, as introduced in the following sections, is not restricted to
any fixed application domain, we illustrate its advantage bychecking safety properties
of linear hybrid automata.

One of our main research goals in the context of the German AVACS project [AVA]
is to make BMC applicable also to large hybrid automata and toindustry-relevant case
studies. In an earlier paper [ÁBKS05] we concentrated on how BMC of linear hybrid
automata can be accelerated already by appropriate encoding of counterexamples as
formulas, and by selective conflict learning. Those techniques were introduced in or-
der to improve theCPU running times. We observed, however, that for some examples
the system times, i.e., the real times needed for the computation, were much longer
than the CPU times. Some analysis has shown that the differences between the CPU
and the system times were caused byswapping. For long counterexamples the corre-
sponding formulas are getting very large. Additionally,learningin the style of Shtrich-
man [Sht01] considerably increases the memory consumption. When the memory re-
quirements reach the computer’s memory size, the computer starts to swap, thereby
slowing down the computations by several orders of magnitude.

In this paper we discuss how the memory size necessary for solving a BMC problem
can be reduced without increasing the running times of the solver. The main idea is to
take advantage of the symmetry of BMC problems, and to store symmetric parts of the
formulas in a parametric form. We introduce parametric datatypes for the internal solver
structure and show that the usage of those parametric structures remarkably reduces the
memory requirements of the solver. Experimental results show that the CPU times are
not increased, and furthermore, due to lower demands on memory, swapping occurs
much later resulting in shorter system times.

The paper is organized as follows: In Section 2 we review the definition of linear hy-
brid automata and the BMC approach. In Section 3 we describe the parametric datatypes
of our solver. Experimental results are presented in Section 4. Finally, in Section 5 we
discuss related work and draw conclusions.

2 Bounded Model Checking for Linear Hybrid Automata

Before presenting our work, we first introduce linear hybridautomata and describe the
encoding of their finite runs as Boolean combinations of linear (in)equations, as used
for BMC, in the same style as in [ÁBKS05]. Furthermore, we describe relevant details
of state-of-the-art solvers for checking satisfiability ofsuch formulas.
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≤ ẋ ≤

1

5

x ≤ 22x>21

oo

x=20
//

Fig. 1. Thermostat

2.1 Linear Hybrid Automata

Hybrid automata[ACH+95,Hen96] are a formal model to describe systems with com-
bined discrete and continuous behaviour. They are often illustrated graphically, like the
one shown in Figure 1. This automaton models a thermostat, which senses the temper-
aturex of a room and turns a heater on and off. When control stays in a location and
time elapses, flow conditions in the form of differential equations determine the contin-
uous change of the real-valued variables. For example, in locationoff the temperature
decreases according to the flow condition− 3

10
≤ ẋ ≤ − 1

10
. However, control may en-

ter a location or stay in the location only as long as the location’s invariant is satisfied.
The invariantx ≥ 18 of locationoff ensures that the heater turns on at latest when
the temperature reaches18 degrees. Control may move along a discrete jump from one
location to another if the transition’s condition is satisfied; additionally, the jump may
cause discrete changes to the system state which is called the jump’s effect. As an ex-
ample, the transition leading from locationoff to on is enabled when the temperature is
below19 degrees; the temperaturex does not change during the jump. Finally, an initial
condition describes the starting point of the system’s computations. For our example,
initially the heater isoff and the temperature is20 degrees.

We consider the class of linear hybrid automata, which can bedescribed using first-
order logic formulas over(R, +, <, 0, 1). Formally, alinear hybrid automatonH is a
tuple

(

L, V, (jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L, (init ℓ)ℓ∈L

)

,

whereL andV are finite nonempty sets, and(jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L,
(init ℓ)ℓ∈L are families of first-order logic formulas over the structure (R, +, <, 0, 1):

– L = {ℓ1, . . . , ℓm} is the set oflocations.
– V = {v1, . . . , vn} is the set ofcontinuous variables.
– (jumpℓ,ℓ′)ℓ,ℓ′∈L is an(L×L)-indexed family of formulas with free variables inV

and their primed versions. A formulajumpℓ,ℓ′(v1, . . . , vn, v′1, . . . , v
′
n) represents

the possiblejumpsfrom locationℓ to locationℓ′, wherev1, . . . , vn are the values
of the continuous variables before the jump andv′1, . . . , v

′
n are the values of the

continuous variables after the jump.
– (flow ℓ)ℓ∈L is an L-indexed family of formulas with free variables inV , their

primed versions, andt. A formula flow ℓ(v1, . . . , vn, t, v′1, . . . , v
′
n) represents the

flow of durationt ≥ 0 in locationℓ, where the values of the continuous variables
change fromv1, . . . , vn to v′1, . . . , v

′
n.



– (inv ℓ)ℓ∈L is anL-indexed family of formulas with free variables inV . A formula
inv ℓ(v1, . . . , vn) represents theinvariant in locationℓ. We require that all invariants
are convex sets.

– (init ℓ)ℓ∈L is anL-indexed family of formulas with free variables inV representing
the initial statesof the system.

For instance, the flow in locationon of the thermostat in Figure 1 can be described by
the formulaflowon(x, t, x′) = 10x′ − 10x ≥ t ∧ 5x′ − 5x ≤ t. The other components
of the thermostat can be described analogously.

Hybrid automata often consist of several hybrid automata that run in parallel and
interact with each other. The parallel composition of hybrid automata requires an addi-
tional event set for synchronization purposes. The parallel composition is standard but
technical and we omit it here. We are neither going to define the formal operational
semantics of linear hybrid automata at this place. For both topics, the interested reader
may consult e.g. [ACH+95]. Informally, the state-based transition relation is specified
by the flows and jumps of a system; runs are sequences of states, starting with an initial
state, such that neighbored states are related by the transition relation.

2.2 Encoding Linear Hybrid Automata

Let H =
(

L, V, (jumpℓ,ℓ′)ℓ,ℓ′∈L, (flow ℓ)ℓ∈L, (inv ℓ)ℓ∈L, (init ℓ)ℓ∈L

)

be a hybrid au-
tomaton withL = {l1, . . . , lm} and V = {v1, . . . , vn}, for somem, n ∈ N. For
readability, we write tuples in boldface, i.e.,v abbreviates(v1, . . . , vn), and we intro-
duce state variabless = (at , v), whereat ranges over the locations inL andv =
(v1, . . . , vn).

A jump of the automatonH can be described by the formula

J(s, s′) =
∨

ℓ,ℓ′∈L

(

at = ℓ ∧ at ′ = ℓ′ ∧ jumpℓ,ℓ′(v, v′) ∧ inv ℓ′(v
′)
)

and a flow by

F (s, t, s′) =
∨

ℓ∈L

(

at = ℓ ∧ at ′ = ℓ ∧ t ≥ 0 ∧ flow ℓ(v, t, v′) ∧ inv ℓ(v
′)
)

,

wheres = (at , v) ands′ = (at ′, v′) are state variables, andt is a real-valued variable
representing the duration of the flow. Note that we check the invariant of a location after
time t has passed inF (s, t, s′) and when we enter the location ofs′ in a jumpJ(s, s′).
Since we assume that invariants are convex sets, we do not have to check at every time
point between0 andt of a flow whether the invariant in the location is satisfied. For
k ∈ N, we recursively define the formulaπk describing the execution ofk successive
computation steps by

π0(s0) =
∨

ℓ∈L

(

at0 = ℓ ∧ inv ℓ(v0)
)

and fork > 0,

πk(s0, . . . , sk, t1, . . . , tk) =

πk−1(s0, . . . , sk−1, t1, . . . , tk−1) ∧
(

J(sk−1, sk) ∨ F (sk−1, tk, sk)
)

,



wheres0, . . . , sk are state variables andt1, . . . , tk are real-valued variables. Finally,
counterexamples of lengthk violating a safety propertysafe(s) can now be described
by

ϕk(s0, . . . , sk, t1, . . . , tk) =
(
∨

ℓ∈L(at0 = ℓ ∧ init ℓ(v0))
)

∧ πk(s0, . . . , sk, t1, . . . , tk) ∧ ¬safe(sk) .

Starting withk = 0 and iteratively increasingk ∈ N, BMC checks whetherϕk is
satisfiable. The algorithm terminates ifϕk is satisfiable, i.e., an unsafe state is reachable
from an initial state ink steps.

Above we gave one possible way of describing counterexamples. In [ÁBKS05] we
extensively analyzed how the encoding of counterexamples as formulas influences the
running time of their satisfiability checks. For example, allowing only alternating flows
and jumps reduces the nondeterminism in the system’s behavior without changing the
reachability relation, and thus speeds up the check. It is also useful to encode finite do-
mains, like the location sets, by Boolean variables insteadof using integers. Introducing
τ -transitions allows to check the existence of counterexamples with lengths from an in-
terval, reducing the number of necessary satisfiability checks. We can exclude from the
search all runs with theith state,i > 0, being initial: if there would be a counterexam-
ple of that form, then the postfix of the computation startingin the ith state would be
a counterexample, too, which would have been found in an earlier iteration. Similarly,
we can exclude all runs in that not only the last state violates the specification. How-
ever, due to the incremental BMC approach, at iterationk we know that there are no
counterexamples with length less thank.

2.3 Satisfiability Checking

The above formulas describing counterexamples of a fixed length are checked by a suit-
able solver. As we are dealing with the Boolean combination of linear (in)equations over
real-valued variables, the satisfiability check is done by acombined SAT-LP-solver, as
illustrated in Figure 2.

First, the hybrid formulas are abstracted in an over-approximative manner to pure
Boolean ones by replacing each real constraint, i.e., each linear (in)equation, by an aux-
iliary Boolean abstraction variable. This Boolean abstraction is checked for satisfiability
by a SAT-solver. In case the abstraction is unsatisfiable, the concrete hybrid formula is
unsatisfiable, too. Otherwise, if the abstraction has a solution, then the LP-solver checks
whether there is a corresponding solution in the real domain. I.e., the LP-solver collects
all those real constraints whose abstraction variables aretrue and the negation of all
those whose abstraction variables are false, and checks whether they are together sat-
isfiable. If yes, then we have found a solution for the concrete problem. If not, then
the LP-solver provides an explanation, in the form of an unsatisfiable (in)equation set,
why the current Boolean assignment leads to a contradictionin the real domain. The
SAT-solver can now refine the abstraction by excluding the abstracted explanation in
the further search.

The above mechanism is known aslazysatisfiability check.Less lazyvariants check
for consistency in the real domain more often, not only for full Boolean solutions, but



φ

LP−solver

UNSATSAT−solver

SAT

(In)equation set Explanation

sat

Boolean 
abstraction

unsat

unsat

sat

Fig. 2.Basic structure of combined SAT-LP-solver

also for partial ones. This allows earlier detection of realconflicts, and thus also earlier
backtracking for such conflicts. Though LP-checks are relatively expensive in running
time, the advantage of earlier backtracking usually pays off. However, the degree of
laziness is crucial for the running time. If there are only few solutions for the abstrac-
tion, then the full lazy variant will probably be faster, while for abstractions with many
solutions the less lazy variant is expected to be more efficient. In our solver, the fre-
quency of LP-checks is determined dynamically depending onthe number of solutions
already found for the abstraction.

Now let us have a closer look on the satisfiability check of theBoolean abstraction,
i.e., how state-of-the-art DPLL (Davis-Putnam-Logemann-Loveland, [DP60,DLL62])
SAT-solvers work.

First, the Boolean formula is transformed into aconjunctive normal form(CNF).
In order to keep the formula as small as possible, auxiliary Boolean variables are used
to build the CNF [Tse68]. A formula in CNF-form is a conjunction of clauses, while
each clause is the disjunction ofliterals. We distinguish between positive and negative
literals, being Boolean variables or their negations.

In order to satisfy the formula, each of the clauses must be satisfied, i.e., at least
one of their literals must be true. The SAT-solverassigns valuesto the variables in
an iterative manner. After eachdecision, i.e., free choice of an assignment, the solver
propagatesthe assignment by searching forunit-clausesin that all literals but one are
already false. For those clauses, that last unassigned literal is implied to be true.

If two unit-clauses imply different values for the same variable, aconflictoccurs. In
this case a conflict analysis can take place which results innonchronological backtrack-
ing andconflict learning[ZMMM01]. Intuitively, the solver applies resolution to some
unit-clauses, using the implication tree, and inserts a newclause thereby strengthening
the problem constraints and restricting the state space forfurther search.

An important point for this paper is the usage ofwatch-literalsfor the detection
of unit-clauses [MMZ+01]. The basic idea is the following: If in a clause there are



two unassigned (or already true) variables, then this clause cannot be a unit-clause. So
it is enough to watch only two unassigned or true variables ineach clause, which we
call the watch-literals. If one of the watch-literals becomes false, we search for another
literal in the clause, being unassigned or already true, andbeing different from the other
watch-literal. Only if we cannot find any new watch-literal,the clause is indeed a unit-
clause. With this method, the number of clauses that we have to look at to determine
the unit-clauses after a decision can be reduced remarkably.

3 Symmetries and Parametric Data Structures

In this main section we present how we make use of the inherentsymmetries of BMC
problems by parameterizing the solver-internal data structures.

3.1 Symmetries of BMC problems

The formulas of BMC problems have a special structure: They describe computations,
starting from an initial state, executingk transition steps, and leading to a state violat-
ing the specification. Accordingly, the set of clauses generated by the SAT-solver, can
be grouped into clauses describing (1) the initial condition (I-clauses), (2) one of the
transitions (T-clauses), and (3) the violation of the specification (S-clauses). Further-
more, the T-clauses can be grouped intok disjoint groups describing thek computation
steps. Thosek T-clause groups describe the same transition relation, butat different
time points. That means, they are actually the same up to renaming the variables. For
example, some BMC problem in the3rd iteration could be represented by a clause set
like this:

I-clauses T-clauses S-clauses
(x0 ∨ y0), . . . (x0 ∨ y1 ∨ z0), . . . , (x1 ∨ y1 ∨ z0) (y3 ∨ z3), . . .

(x1 ∨ y2 ∨ z1), . . . , (x2 ∨ y2 ∨ z1)
(x2 ∨ y3 ∨ z2), . . . , (x3 ∨ y3 ∨ z2)

The T-clauses representing the2nd transition step are the same as the T-clauses of the
1st step butvi replaced byvi+1 for all variablesv and indicesi; we write [vi+1/vi] for
that substitution.

3.2 Parametric Data Structures

Since the T-clauses of different steps are the same up to variable renaming, it is enough
to store aparametricversion of a transition step, actually the transition relation, and
remember the renaming in order to compute the information about thek different com-
putation steps. If we need a clause of a certain transition step, for example to determine
unit-clauses or for resolution, we just rename the variables in the parametric T-clauses
accordingly.

For the above example, we could store the parametric T-clause set(x0 ∨ y1 ∨
z0), . . . , (x1 ∨ y1 ∨ z0). The first computation step is described by that clause set, af-
ter the application of the trivial substitution[vi/vi]. Applying the substitution[vi+1/vi]
([vi+2/vi]) gives the clause set describing the second (third) computation step.



In order to keep the solver structure simple, it is very important to use a fast and un-
complicated renaming mechanism. Look-up tables would be a possible solution, how-
ever, we expect that they would lead to increased computation times. Instead, we apply
a more natural and easy naming convention, consisting of three stages:

– Variablesare represented inside the solver not by an integer, but by a pair (a, i)
of integers, where theabstract ida identifies a variable, and theinstance idi the
instance of the variable, i.e., the time instance at that thevariable’s value is consid-
ered. For example, ifx has the abstract id5, thenx in the initial state, i.e.,x0, is
represented by(5, 0), x after the first transition step, i.e.,x1, by (5, 1) and after the
kth step forxk we have(5, k). Negation of a variable is expressed by the abstract
id being negative. E.g.,x3 is stored as(−5, 3). Constants, being independent from
the state in that they are evaluated, have the instance id−1. In the following, we
treat constants as variables; if we say that we increase the instance id of a variable,
then we mean that its instance id gets increased if it is non-negative, only.

– The contents of a clause, i.e., itsliterals, are now represented by alist of integer
pairs. For example, the literals(x0, x1) are stored as((5, 0), (−5, 1)).

– Finally, eachclauseis referred to by a pair(a, i) of non-negative integers, where the
abstract ida identifies the parametric clause, usually by its index in theclause list,
and theinstance idi its instance. Theith instance of a parametric clause contains
the literals of that clause with each (non-negative) instance id increased byi. For
example, if the7th parametric clause has literals((5, 0), (−5, 1)), then(7, 0) refers
to the clause with literals((5, 0), (−5, 1)), whereas(7, 1) stands for the clause with
the literals((5, 1), (−5, 2)), and(7, k) for ((5, k), (−5, k + 1)).

In this way, dealing with parametric clauses for BMC becomesvery simple: We store
the literals of the T-clauses describing the first computation step as parametric clauses.
To compute the concrete literals of the T-clauses describing theith computation step,
we just have to increase the instance ids of all T-clause literals byi − 1.

Above we described the encoding of the Boolean variables of the formula within the
solver. The representation of two other kinds of variables needs some more explanation:
the auxiliary Boolean variables used to build the CNF efficiently, and the abstraction
variables used to represent constraints over the reals in the Boolean domain.

Both cases extend the above encoding in a natural way as follows: An auxiliary
Boolean variable gets as instance id the smallest instance id occurring in the formula
it encodes. The abstraction of the same formula at differenttime points use the same
abstract id.

The case for (in)equations is analogous: the instance id of an (in)equation is deter-
mined by the smallest instance id of its real variables. (In)equations imposing the same
constraint at different time points are abstracted by the same abstract id.

Note that parametric storage is possible only for the literals of the clauses. We still
have to store for example the assignments for each variable instance on its own. Also
the watch-literals of different instances of a parametric clause have to be stored sep-
arately. Thus, each parametric clause consists of a list of its (parametric) literals, and
additionally a list of watch-index pairs, determining the current watch-literals for each
possible instance of the clause, as illustrated in Figure 3.
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Using the introduced parametric data structure for clauses, the number of instances
of a parametric clause is implicitly given by the length of the watch-index-pair list,
and thus does not need to be stored explicitly. For example, the parametric clauses of
Figure 3 havek instances1, . . . , k, since they havek watch-index pairs attached.

For the conflict analysis, the solver stores the information, which unit-clause im-
plied which assignment, in form of an implication tree. In the parametric approach, the
implicating unit-clauses are identified by an integer pair,as explained above.

Now, let us see how BMC works with the parametric structures.Initially, we check
whether there are computations of length0 or 1. At that point, the solver contains all I-
clauses stating that the first state is initial, all T-clauses describing the first computation
step, and all S-clauses stating that the last state in the runviolates the specification.
For each subsequent BMC iteration we have to increment the computation length as
follows:

– we add a new instance to each parametric T-clause by extending the watch-literal
list by a new pair, and

– we increase the literals’ instance ids in the S-clauses by1.

The I-clauses remain untouched.
Note that we do not need to insert any new clauses or literals for increasing the com-

putation length! This is done simply by adding a new instanceto the already existing
transition clauses in the form of a new watch-index pair. Thenumber of clauses and the
number of literals remain unchanged.

3.3 Conflict Learning

Besides the clauses describing counterexamples we also have to pay attention to a sec-
ond clause type: the conflict clauses. In Section 2.3 we briefly described the conflict
learning mechanism of modern SAT-solvers. The conflict clauses learned during a SAT-
check assure that the search does not enter the same search path (or similar search paths)
again.



Usually, the conflict clauses learned during the SAT-check of a BMC instance get
removed before the satisfiability check of the next BMC instance. However, they can
also be partially re-used in the style of Shtrichman [Sht04], thereby excluding search
paths from the SAT-search already before the search starts:If a conflict clause is the
result of a resolution applied to clauses that are present also in the next iteration, then
the same resolution could be made in the new setting, too, andthus we can keep those
conflict clauses. Furthermore, if all clauses used for resolution to generate a conflict
clause are present in the next SAT iteration with an increased instance, then the same
resolution could be made using the increased instances. Thus each such conflict clause
can be added with an increased instance in the next BMC iteration.

Accordingly, we distinguish between the following conflictclause types:

– I-conflict clauses being the result of resolution of I- and possibly T-clauses (or I- or
T-conflict clauses) can be re-used in the next iterations, since those clauses are also
present in all the following iterations, i.e., the same resolution could be made.

– S-conflict clauses being the result of resolution of S- and possibly T-clauses (or
S- or T-conflict clauses) can be re-used with an increased instance only, since the
instance of S-clauses gets increased in the next iteration.

– T-conflict clauses being the result only of resolution of T-clauses (or T-conflict
clauses) can be re-used like I-conflict clauses and additionally inserted with an
increased instance like S-conflict clauses, since all T-clauses are present in the next
iteration both with the same and with an increased instance.

Note that conflict clauses stemming from both I- and S-clauses (IS-conflict clauses)
cannot be re-used. Note furthermore that it is possible to learn even more than2 in-
stances of T-conflict clauses, if we record during the resolution not only whichkind of
clauses are involved (I, T, or S) but also whichinstancesof T-clauses. However, our
experiments show that learning all possible conflict clauseinstances leads to a large
number of new clauses (or clause instances in the parametriccase), each of which must
be considered in the propagation of new decisions. That is the reason why learning too
much rather slows down the SAT-check instead of accelerating it. We follow the policy
of re-using conflict clauses when possible, and inserting T-conflict clauses additionally
with one increased instance. This policy turned out to be successful within our experi-
mental BMC framework.

We store conflict clauses in a parametric manner, too, analogously to the I-, T-, and
S-clauses. After each iteration, additionally to the updates of the I-, T-, and S-clauses,
the following updates take place:

– insert a new watch-pair for each T-conflict clause,
– increase the instance ids (if non-negative) of all literalsin each S-conflict clause by

1, and
– delete all IS-conflict clauses.

Again, I-conflict clauses are untouched.
During the SAT-checks, our solver also learns the explanations served by the LP-

solver in order to refine the abstraction. Those explanations are contradictions in the
real-valued domain, thus we could exclude them using all possible renamings of the
involved real-valued variables. In our solver those conflict clauses, stemming from the
real-valued domain, are treated as T-conflict clauses.



3.4 Variable Ordering

Although dynamic variable ordering strategies like VSIDS [MMZ+01] are mandatory
in modern CNF-SAT-solver, our solver prototype succeeds for the case studies we use
already by supporting only a static variable order for selecting decision variables. The
static variable order is determined by the instance ids of the variables, and thus follows
the natural temporal order of computation. Additionally itallows a direct comparison
between the non-parametric and the suggested parametric version of the solver.

Nevertheless, our parametric data structures enable more variable-focused scoring
heuristics which do not handle the variables independentlyas pure CNF-SAT solver do,
but group information belonging to several instances of onevariable over the unfolded
time-frames, allowing problem-oriented dynamic assignments.

4 Experimental Results

We implemented a combined SAT-LP-solver, working mainly asdescribed in Sec-
tion 2.3, but with parametric internal data structures. To see the difference to the case
without parametric structures, we created also a modified solver, working exactly the
same way but without parametric clauses. When a new BMC problem instance gets
created, for the T-clauses and the T-conflict clauses the parametric solver adds a new
clause instance by appending a new watch pair to the clause’swatch list, while the
solver without the parametric structure creates a new clause. Though our solver is not
as fast as other state-of-the-art solver, it is well-suitedto show the advantage of using
parametric structures.

In the encoding of the existence of a counterexample as formula we use the op-
timizations as described in Section 2.2. Especially, we require alternating flows and
jumps, where flows may have duration0. Runs always begin with a flow. I.e., in the
60th iteration we consider runs consisting of30 flows and30 jumps in an alternating
manner.

Our experiments were carried out on a single-processor laptop with a Pentium
III 650 MHz CPU and256 MB memory. We used Fischer’s mutual exclusion proto-
col [Lyn96] with 3 processes to illustrate the advantages of parametric data structures.
The hybrid systemHi representing theith process (1 ≤ i ≤ 3) using the protocol is
depicted in Figure 4. The specification states the mutual exclusion property, i.e., that at
each time point there is at most one process in its critical section. The results for the
protocol applied to3 processes running in parallel is illustrated in Figure 5.

The first diagram of Figure 5 shows the number of clauses generated for the different
computation lengths during the BMC search. Generally, using parametric clauses in
thekth iteration of BMC, the number of T-clauses can be reduced bythe factor ofk;
similarly for real-conflict clauses. T-conflict clauses learned in the iterationi get shifted
in each iteration fromi + 1 to k by learning; instead ofk − i + 1 clauses we have to
store only1 parametric instance. The number of I- and S-clauses remainsunchanged
in both approaches; the same holds for I- and S-conflict clauses. It is worth to mention
that the learned conflicts form a large part of the clauses.

The second diagram shows the heap peak during the different iterations of the BMC
search. The memory requirements cannot be reduced with the same factor as the number
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Fig. 4. Fischer’s mutual exclusion protocol: Theith process
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Fig. 5.Results for BMC of Fischer’s protocol for3 processes



of clauses, since we have to store all watch-literal informations for all clause instances,
and also the assignments to all variables etc. However, the memory requirements are
still reduced by a comparable factor as the number of clauses.

The third diagram shows the CPU times needed for the satisfiability checks of the
different BMC instances. The diagram shows that using parametric clauses does not
slow down the computation times. This is due to the natural internal data structures
used to represent variables, literals, and clauses. Computing a certain concrete instance
of a parametric clause is done by executing just a few arithmetic additions.

Finally, the last diagram illustrates what happens if the memory of the computer
reaches its limits when using non-parametric data structures. At round about the50th
BMC instance the memory limit is reached and the computer starts to swap. Though
the CPU times are not affected, the system times increase by several orders of magni-
tude. Using parametric structures, this happens much later, and we succeed to compute
further BMC instances.

Figure 6 shows the memory requirements with and without parametric clauses for
two further examples. The first example is Fischer’s protocol for 4 processes. The sec-
ond example is a Railroad Crossing [ÁBKS04], consisting of3 parallel automata: one
modeling a train, one a railroad crossing gate, and one a controller. The specification
requires that the gate is always fully closed when the train is near to the railroad cross-
ing. For lack of space, the other figures comparing the running times, the system times,
and the numbers of clauses for the parametric and the non-parametric cases cannot be
listed here. The curve progressions look similar to those for Fischer’s protocol for3
processes.
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5 Conclusion and Related Work

In this paper we introduced parametric data structures in order to reduce the memory
requirements of satisfiability checking for the special purpose of bounded model check-



ing. The application of BMC to Fischer’s protocol and the Railroad Crossing example
served to point out the practical relevance of our approach.

Most research on SAT-solvers is done in the important area ofincreasing the runtime
efficiency of SAT-solvers. Related works, like those dealing with the basic solver algo-
rithms, bounded model checking, and learning in the contextof BMC etc., are already
mentioned in the introduction.

We know of only one work explicitly dealing with the reduction of the memory
requirements [DHK05]. Similarly to our approach, the papermakes use of the symme-
try of the transition steps. However, instead of introducing new internal data structures
as we do, they apply quantification to compress thek transitions of a counterexample
description into a single quantified term. The quantified formula is checked for satisfia-
bility by a dedicated QBF solver. Since their QBF solver (andother state-of-the-art QBF
solvers) cannot handle real-valued constraints, their approach is inherently designed for
discrete systems, only, and is not suited to adapt to BMC for linear hybrid systems.

As to future work, besides extending our SAT-solver by dynamic variable-ordering
strategies, we are also working on the solver’s parallelization.
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