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Abstract. Bounded Model Checking (BMC) is a successful refutationhoet

for detecting errors in not only circuits and other binargtsyns but also in sys-
tems with more complex domains like timed automata or litgdrid automata.

Counterexamples of a fixed length are described by formualasiecidable logic,
and checked for satisfiability by a suitable solver.

In an earlier paper we analyzed how BMC of linear hybrid awttarcan be ac-
celerated already by appropriate encoding of counterebesgs formulas and
by selective conflict learning. In this paper we introduceapzetric datatypes
for the internal solver structure that, taking advantagthefsymmetry of BMC

problems, remarkably reduce the memory requirements afdiver.

1 Introduction

Bounded model checkin®@MC) [BCCZ99] is a successful, relatively young refuta-
tion method which was studied and applied very intensivalyhie last years (see
e.g. [BCRZ99,CFF01] for some industrial applications). Starting with thitial states
of a system, the BMC algorithm considers computations wittréasing lengtlt =
0,1,.... For eachk, the algorithm checks whether there existoanterexamplef the
given length, i.e., if there is a computation that startsnnrgtial state and that leads to
a state violating the system specificatiorkisteps.

Basically, BMC can be applied to all kinds of systems for tiegtchability within
a bounded number of steps can be expressed in a decidalde Fogiexample, for
discretesystems first-order predicate logic is used, whereas thigsas@f linear hy-
brid automata [ACH™95,Hen96] requires first-order logic formulas ov&&, +, <
,0,1) [dMRS02].Timed automatga restricted class of linear hybrid automata, are dealt
with, e.g., in [NMAT02,Sor02,ACKS02,WZP03].

Also the kind of specification considered can have diffefegical domains. The
violation of asafetyproperty is expressed by stating that the last, i.e. e state
of the computation does not fulfill the specification. Forasubftemporal logiccan
be handled by checking whether a computation violates tkeeifipation in the first
k steps. Additional loop-determining techniques extendntle¢hod to be also able to
verify properties for some problem classes (see e.g. [BGIMRS03)).

* This work was partly supported by the German Research Co{€G) as part of the Trans-
regional Collaborative Research Center “Automatic Veatiien and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS). Seaww. avacs. or g for more information.



Once the existence of a counterexample of a fixed length iseegpd by some
formula, we need to check that formula for satisfiability:eTtormula is satisfiable
if and only if the specification can be violated by a compuotatdf lengthk. In the
discrete case the satisfiability check is carried out by a-S#WVer, i.e., a Boolean
satisfiability checker, whereas in the mixed discrete-omius case of hybrid and
timed automata the satisfiability check is usually done bylgioing a SAT- and an
LP-solver (Linear Programming, see Section 2.3). Some @fntlost popular solvers
are, e.g., ZChaff [MMZ 01], BerkMin [GN02], MiniSAT [ES03], HySat [FH05],Math-
SAT [ABC*02], CVC Lite [BB04], and ICS [dMRO04].

Though our approach, as introduced in the following sesti@s not restricted to
any fixed application domain, we illustrate its advantagetwcking safety properties
of linear hybrid automata.

One of our main research goals in the context of the GermarZ8&/aroject [AVA]
is to make BMC applicable also to large hybrid automata anddastry-relevant case
studies. In an earlier papeABKS05] we concentrated on how BMC of linear hybrid
automata can be accelerated already by appropriate emcoflitounterexamples as
formulas, and by selective conflict learning. Those techesqwere introduced in or-
der to improve th&€€PU running timesWe observed, however, that for some examples
the system timesi.e., the real times needed for the computation, were maogdr
than the CPU times. Some analysis has shown that the diffesdmetween the CPU
and the system times were causedsiapping For long counterexamples the corre-
sponding formulas are getting very large. Additiondigrningin the style of Shtrich-
man [Sht01] considerably increases the memory consumptihien the memory re-
quirements reach the computer’s memory size, the comptads g0 swap, thereby
slowing down the computations by several orders of magaitud

In this paper we discuss how the memory size necessary fanga BMC problem
can be reduced without increasing the running times of theesdrhe main idea is to
take advantage of the symmetry of BMC problems, and to sioreveetric parts of the
formulas in a parametric form. We introduce parametrictyates for the internal solver
structure and show that the usage of those parametricistesatemarkably reduces the
memory requirements of the solver. Experimental resultsvainat the CPU times are
not increased, and furthermore, due to lower demands on myeswapping occurs
much later resulting in shorter system times.

The paper is organized as follows: In Section 2 we review #fmiion of linear hy-
brid automata and the BMC approach. In Section 3 we desdréedrametric datatypes
of our solver. Experimental results are presented in Seetid-inally, in Section 5 we
discuss related work and draw conclusions.

2 Bounded Model Checking for Linear Hybrid Automata

Before presenting our work, we first introduce linear hylanidomata and describe the
encoding of their finite runs as Boolean combinations ofdin@n)equations, as used
for BMC, in the same style as iri\BKSOS]. Furthermore, we describe relevant details
of state-of-the-art solvers for checking satisfiabilitysath formulas.
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Fig. 1. Thermostat

2.1 Linear Hybrid Automata

Hybrid automatdACH*95,Hen96] are a formal model to describe systems with com-
bined discrete and continuous behaviour. They are oftestitited graphically, like the
one shown in Figure 1. This automaton models a thermostatjvaenses the temper-
aturez of a room and turns a heater on and off. When control stays acatibn and
time elapses, flow conditions in the form of differential atjons determine the contin-
uous change of the real-valued variables. For examplecatilan off the temperature
decreases according to the flow conditie}; < & < —<5. However, control may en-
ter a location or stay in the location only as long as the oot invariant is satisfied.
The invariantz > 18 of location off ensures that the heater turns on at latest when
the temperature reach&8 degrees. Control may move along a discrete jump from one
location to another if the transition’s condition is sassfj additionally, the jump may
cause discrete changes to the system state which is cadigdrtip’s effect. As an ex-
ample, the transition leading from locatioff to on is enabled when the temperature is
below19 degrees; the temperatureloes not change during the jump. Finally, an initial
condition describes the starting point of the system’s astampns. For our example,
initially the heater isoff and the temperature 2 degrees.

We consider the class of linear hybrid automata, which caselseribed using first-
order logic formulas ovefR, +, <, 0, 1). Formally, alinear hybrid automatori{ is a
tuple

(L7 v, (jumpe,gr)é,é'eL, (ﬂsz)éeb (inW)éeL, (mité)éeL) ,

whereL andV are finite nonempty sets, ar@jitmpu,)g_[@, (flowy)eer, (inve)eer,
(inite)ec 1, are families of first-order logic formulas over the struet(R, +, <, 0, 1):

— L ={ty,...,¢4,} is the set ofocations

-V ={uv1,...,v,} is the set otontinuous variables

= (jumpy o )eerer is an(L x L)-indexed family of formulas with free variablesin
and their primed versions. A formulamp, ,/(vi, ..., vn,v1,. .., v, ) represents
the possiblgumpsfrom location? to location?’, wherev,, ..., v, are the values

of the continuous variables before the jump and...,v] are the values of the
continuous variables after the jump.

— (flow,)eer is an L-indexed family of formulas with free variables W, their
primed versions, and A formula flow,(v1, ..., vn,t,v],...,v),) represents the

flow of durationt > 0 in location/, where the values of the continuous variables
change from, ..., v, tov], ..., v

n-



— (inve)eer is anL-indexed family of formulas with free variables in. A formula
inve(vy,. .. ,v,) represents thevariantin location/. We require that all invariants
are convex sets.

— (inite)eer is anL-indexed family of formulas with free variablesinrepresenting
theinitial statesof the system.

For instance, the flow in locatiosw. of the thermostat in Figure 1 can be described by
the formulaflow ,,, (¢, t,2') = 102’ — 10z > ¢ A 52’ — ba < t. The other components
of the thermostat can be described analogously.

Hybrid automata often consist of several hybrid automasa tthn in parallel and
interact with each other. The parallel composition of hgltanitomata requires an addi-
tional event set for synchronization purposes. The padm@eposition is standard but
technical and we omit it here. We are neither going to defileeftihmal operational
semantics of linear hybrid automata at this place. For bayfcs, the interested reader
may consult e.g. [ACF95]. Informally, the state-based transition relation iscified
by the flows and jumps of a system; runs are sequences of, sttemg with an initial
state, such that neighbored states are related by thetioanslation.

2.2 Encoding Linear Hybrid Automata

LetH = (L,V, (jumpu,)g_lzeL, (flowy)eer, (inve)ecr, (inite)geL) be a hybrid au-

tomaton withL = {ly,...,l} andV = {v1,...,v,}, for somem,n € N. For
readability, we write tuples in boldface, i.a.,abbreviategv,, . . ., v,), and we intro-
duce state variables = (at,v), whereat ranges over the locations ih andv =
(’Ul, N ,’Un).

A jump of the automatoft{ can be described by the formula
J(s,s") = \/M’EL(at =UAat’ =0 A jumpg o (v,0") A inve (v'))
and a flow by
F(s,t,s") = Vyep(at =CAat’ =LAt >0A flowy(v,t,0") Ainve(v')),

wheres = (at,v) ands’ = (at’, v’) are state variables, ards a real-valued variable
representing the duration of the flow. Note that we checkrihariant of a location after
timet has passed if'(s, t, s') and when we enter the location gfin a jump.J(s, s’).
Since we assume that invariants are convex sets, we do nethaheck at every time
point betweerd andt of a flow whether the invariant in the location is satisfiedr Fo
k € N, we recursively define the formuta, describing the execution @f successive
computation steps by

mo(s0) = Vyey (ato = € A inve(vo))
and fork > 0,

Wk(SQ,...,Sk,tl,...,tk) =
To—1(S0, -5 Sk—1,t1, -, th1) A (J(Sk=1, 5%) V F(Sk—1, tk, Sk)) ,



wheresy, ..., s, are state variables and., . .., t; are real-valued variables. Finally,
counterexamples of lengthviolating a safety propertyafe(s) can now be described
by

Sok(SO)'-'ask)tla"'atk):
(\/zEL(atO ={A mitg('vo))) ATE(S0y -« -y Skyt1,- -y tk) A Tsafe(sy) .

Starting withk = 0 and iteratively increasing € N, BMC checks whethepy, is
satisfiable. The algorithm terminatesdf is satisfiable, i.e., an unsafe state is reachable
from an initial state irk steps.

Above we gave one possible way of describing counterexazntniéABKSOS] we
extensively analyzed how the encoding of counterexamglésranulas influences the
running time of their satisfiability checks. For examplépwaing only alternating flows
and jumps reduces the nondeterminism in the system’s bahaithout changing the
reachability relation, and thus speeds up the check. Iss @deful to encode finite do-
mains, like the location sets, by Boolean variables instéading integers. Introducing
T-transitions allows to check the existence of counterexampith lengths from an in-
terval, reducing the number of necessary satisfiabilitckbeWe can exclude from the
search all runs with théth state; > 0, being initial: if there would be a counterexam-
ple of that form, then the postfix of the computation starimghe ith state would be
a counterexample, too, which would have been found in aieed@dration. Similarly,
we can exclude all runs in that not only the last state visléte specification. How-
ever, due to the incremental BMC approach, at iteratiome know that there are no
counterexamples with length less thian

2.3 Satisfiability Checking

The above formulas describing counterexamples of a fixegttesre checked by a suit-
able solver. As we are dealing with the Boolean combinatfdinear (in)equations over
real-valued variables, the satisfiability check is done bgmbined SAT-LP-solver, as
illustrated in Figure 2.

First, the hybrid formulas are abstracted in an over-agprative manner to pure
Boolean ones by replacing each real constraint, i.e., éaeérl(in)equation, by an aux-
iliary Boolean abstraction variable. This Boolean absioads checked for satisfiability
by a SAT-solver. In case the abstraction is unsatisfiab&ectincrete hybrid formula is
unsatisfiable, too. Otherwise, if the abstraction has aisolthen the LP-solver checks
whether there is a corresponding solution in the real donh&in the LP-solver collects
all those real constraints whose abstraction variablesraeesand the negation of all
those whose abstraction variables are false, and checkbevlibey are together sat-
isfiable. If yes, then we have found a solution for the corcprbblem. If not, then
the LP-solver provides an explanation, in the form of an tigable (in)equation set,
why the current Boolean assignment leads to a contradiatidine real domain. The
SAT-solver can now refine the abstraction by excluding th&rabted explanation in
the further search.

The above mechanism is knownlagysatisfiability checkLess lazyariants check
for consistency in the real domain more often, not only fdr Boolean solutions, but
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Fig. 2. Basic structure of combined SAT-LP-solver

also for partial ones. This allows earlier detection of aiflicts, and thus also earlier
backtracking for such conflicts. Though LP-checks are ikagt expensive in running
time, the advantage of earlier backtracking usually paysHdwever, the degree of
laziness is crucial for the running time. If there are only folutions for the abstrac-
tion, then the full lazy variant will probably be faster, Whfor abstractions with many
solutions the less lazy variant is expected to be more dfficla our solver, the fre-
guency of LP-checks is determined dynamically dependinthemumber of solutions
already found for the abstraction.

Now let us have a closer look on the satisfiability check ofBbelean abstraction,
i.e., how state-of-the-art DPLL (Davis-Putham-Logemémnweland, [DP60,DLL62])
SAT-solvers work.

First, the Boolean formula is transformed int@@njunctive normal fornfCNF).

In order to keep the formula as small as possible, auxiliavglBan variables are used
to build the CNF [Tse68]. A formula in CNF-form is a conjurstiof clauses while
each clause is the disjunction l@érals. We distinguish between positive and negative
literals, being Boolean variables or their negations.

In order to satisfy the formula, each of the clauses must bsfisd, i.e., at least
one of their literals must be true. The SAT-sohassigns value$o the variables in
an iterative manner. After eadecision i.e., free choice of an assignment, the solver
propagateghe assignment by searching famit-clausesn that all literals but one are
already false. For those clauses, that last unassigneal igemplied to be true.

If two unit-clauses imply different values for the same aate, aconflictoccurs. In
this case a conflict analysis can take place which resuttsiithronological backtrack-
ing andconflict learninglZMMMOL1]. Intuitively, the solver applies resolution to se
unit-clauses, using the implication tree, and inserts a clawse thereby strengthening
the problem constraints and restricting the state spadefitrer search.

An important point for this paper is the usagewedtch-literalsfor the detection
of unit-clauses [MMZ'01]. The basic idea is the following: If in a clause there are



two unassigned (or already true) variables, then this el@asnot be a unit-clause. So
it is enough to watch only two unassigned or true variablesaich clause, which we
call the watch-literals. If one of the watch-literals beasfialse, we search for another
literal in the clause, being unassigned or already truepairty different from the other
watch-literal. Only if we cannot find any new watch-litertle clause is indeed a unit-
clause. With this method, the number of clauses that we lal@ok at to determine
the unit-clauses after a decision can be reduced remarkably

3 Symmetries and Parametric Data Structures

In this main section we present how we make use of the inhsyenimetries of BMC
problems by parameterizing the solver-internal data sires.

3.1 Symmetries of BMC problems

The formulas of BMC problems have a special structure: Thescdbe computations,
starting from an initial state, executiigtransition steps, and leading to a state violat-
ing the specification. Accordingly, the set of clauses geteer by the SAT-solver, can
be grouped into clauses describing (1) the initial condifleclauses, (2) one of the
transitions T-clause} and (3) the violation of the specificatioB-clauses Further-
more, the T-clauses can be grouped ihtdisjoint groups describing thecomputation
steps. Thosé& T-clause groups describe the same transition relationabdifferent
time points. That means, they are actually the same up tomegathe variables. For
example, some BMC problem in ti3ed iteration could be represented by a clause set
like this:

I-clauses T-clauses S-clauses
(IZ?()\/yQ),... (IL'()\/yl \/EQ),...,(IL‘l \/yl\/Z()) (yg\/Zg),...
(IZ?l \/y2 \/El),...,(IEQ\/ZQ\/Zl)
(IEQ\/yg \/EQ),...,(IL'g\/yg\/ZQ)

The T-clauses representing thed transition step are the same as the T-clauses of the
1st step buw; replaced by, for all variablesy and indices; we write [v;41 /v;] for
that substitution.

3.2 Parametric Data Structures

Since the T-clauses of different steps are the same up tabkarienaming, it is enough
to store aparametricversion of a transition step, actually the transition ielatand
remember the renaming in order to compute the informatioutthek different com-
putation steps. If we need a clause of a certain transitem $br example to determine
unit-clauses or for resolution, we just rename the varmlrléhe parametric T-clauses
accordingly.

For the above example, we could store the parametric T-elaas(zo V y1 V
Z0),---, (1 VT V 20). The first computation step is described by that clause Bet, a
ter the application of the trivial substitutidn; /v;]. Applying the substitutiofv; ;1 /v;]
([vit2/v4]) gives the clause set describing the second (third) cortipotstep.



In order to keep the solver structure simple, it is very int@otto use a fast and un-
complicated renaming mechanism. Look-up tables would basaiple solution, how-
ever, we expect that they would lead to increased computttiees. Instead, we apply
a more natural and easy naming convention, consisting eétstages:

— Variablesare represented inside the solver not by an integer, but kairgq i)
of integers, where thabstract ida identifies a variable, and thastance id: the
instance of the variable, i.e., the time instance at thav#niable’s value is consid-
ered. For example, if: has the abstract i, thenz in the initial state, i.e.zo, is
represented b{s, 0), « after the first transition step, i.ex, by (5, 1) and after the
kth step forz;, we have(5, k). Negation of a variable is expressed by the abstract
id being negative. E.gZ; is stored ag—>5, 3). Constants, being independent from
the state in that they are evaluated, have the instaned idn the following, we
treat constants as variables; if we say that we increasestenice id of a variable,
then we mean that its instance id gets increased if it is regative, only.

— The contents of a clause, i.e., literals, are now represented byliat of integer
pairs. For example, the literalgeg, 71 ) are stored a§(5, 0), (—5,1)).

— Finally, eaclclauses referred to by a paifa, i) of non-negative integers, where the
abstract ida identifies the parametric clause, usually by its index indlaese list,
and theinstance idi its instance. Théth instance of a parametric clause contains
the literals of that clause with each (non-negative) instaid increased by. For
example, if therth parametric clause has literdl$, 0), (—5, 1)), then(7,0) refers
to the clause with literal§(5,0), (—5, 1)), whereag7, 1) stands for the clause with
the literals((5, 1), (=5, 2)), and(7, k) for ((5, %), (—=5,k + 1)).

In this way, dealing with parametric clauses for BMC becomwexy simple: We store
the literals of the T-clauses describing the first compatesitep as parametric clauses.
To compute the concrete literals of the T-clauses desgittirith computation step,
we just have to increase the instance ids of all T-clauselgdoyi — 1.

Above we described the encoding of the Boolean variabldssofidrmula within the
solver. The representation of two other kinds of variabkeds some more explanation:
the auxiliary Boolean variables used to build the CNF effitie and the abstraction
variables used to represent constraints over the realgiBdblean domain.

Both cases extend the above encoding in a natural way asviollan auxiliary
Boolean variable gets as instance id the smallest instahoedurring in the formula
it encodes. The abstraction of the same formula at diffeferg points use the same
abstract id.

The case for (in)equations is analogous: the instance id ¢ghyequation is deter-
mined by the smallest instance id of its real variables egmjations imposing the same
constraint at different time points are abstracted by tineesabstract id.

Note that parametric storage is possible only for the liseoathe clauses. We still
have to store for example the assignments for each variabiarice on its own. Also
the watch-literals of different instances of a paramettduse have to be stored sep-
arately. Thus, each parametric clause consists of a ligs¢parametric) literals, and
additionally a list of watch-index pairs, determining therent watch-literals for each
possible instance of the clause, as illustrated in Figure 3.
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Fig. 3. Parametric and non-parametric data structures

Using the introduced parametric data structure for claubesnumber of instances
of a parametric clause is implicitly given by the length oé tvatch-index-pair list,
and thus does not need to be stored explicitly. For exampdeparametric clauses of
Figure 3 have: instanced, . . ., k, since they havé watch-index pairs attached.

For the conflict analysis, the solver stores the informatianich unit-clause im-
plied which assignment, in form of an implication tree. le frarametric approach, the
implicating unit-clauses are identified by an integer pasrexplained above.

Now, let us see how BMC works with the parametric structur@tially, we check
whether there are computations of lengtbr 1. At that point, the solver contains all I-
clauses stating that the first state is initial, all T-claudescribing the first computation
step, and all S-clauses stating that the last state in theidlates the specification.
For each subsequent BMC iteration we have to increment thegpuatation length as
follows:

— we add a new instance to each parametric T-clause by extgtiténwatch-literal
list by a new pair, and
— we increase the literals’ instance ids in the S-clausek by

The I-clauses remain untouched.

Note that we do not need to insert any new clauses or litesala¢reasing the com-
putation length! This is done simply by adding a new instatoctne already existing
transition clauses in the form of a new watch-index pair. fitmmber of clauses and the
number of literals remain unchanged.

3.3 Conflict Learning

Besides the clauses describing counterexamples we alsdtaay attention to a sec-
ond clause type: the conflict clauses. In Section 2.3 we prafscribed the conflict
learning mechanism of modern SAT-solvers. The conflicts#alearned during a SAT-
check assure that the search does not enter the same sehr(dr ganilar search paths)
again.



Usually, the conflict clauses learned during the SAT-cheick BMC instance get
removed before the satisfiability check of the next BMC insta However, they can
also be partially re-used in the style of Shtrichman [Sht@#reby excluding search
paths from the SAT-search already before the search sthasconflict clause is the
result of a resolution applied to clauses that are preseatialthe next iteration, then
the same resolution could be made in the new setting, tootharsdwe can keep those
conflict clauses. Furthermore, if all clauses used for tdgmi to generate a conflict
clause are present in the next SAT iteration with an incietésstance, then the same
resolution could be made using the increased instances. 8deh such conflict clause
can be added with an increased instance in the next BMCitearat

Accordingly, we distinguish between the following conflitause types:

— I-conflict clauses being the result of resolution of |- andgibly T-clauses (or I- or
T-conflict clauses) can be re-used in the next iterationsesihose clauses are also
present in all the following iterations, i.e., the same heton could be made.

— S-conflict clauses being the result of resolution of S- anskjidy T-clauses (or
S- or T-conflict clauses) can be re-used with an increasedrins only, since the
instance of S-clauses gets increased in the next iteration.

— T-conflict clauses being the result only of resolution oflduses (or T-conflict
clauses) can be re-used like I-conflict clauses and additioinserted with an
increased instance like S-conflict clauses, since all Gisgda are present in the next
iteration both with the same and with an increased instance.

Note that conflict clauses stemming from both I- and S-clay$e-conflict clauses)
cannot be re-used. Note furthermore that it is possibledmleven more thag in-
stances of T-conflict clauses, if we record during the ragmiunot only whichkind of
clauses are involved (I, T, or S) but also whiicistancesof T-clauses. However, our
experiments show that learning all possible conflict clanstances leads to a large
number of new clauses (or clause instances in the pararmat#), each of which must
be considered in the propagation of new decisions. Thaeisghson why learning too
much rather slows down the SAT-check instead of acceleyiétilve follow the policy
of re-using conflict clauses when possible, and insertiegriflict clauses additionally
with one increased instance. This policy turned out to beessful within our experi-
mental BMC framework.

We store conflict clauses in a parametric manner, too, anakigto the I-, T-, and
S-clauses. After each iteration, additionally to the updatf the I-, T-, and S-clauses,
the following updates take place:

— insert a new watch-pair for each T-conflict clause,

— increase the instance ids (if non-negative) of all litemnaksach S-conflict clause by
1,and

— delete all IS-conflict clauses.

Again, I-conflict clauses are untouched.

During the SAT-checks, our solver also learns the explanatserved by the LP-
solver in order to refine the abstraction. Those explanataoe contradictions in the
real-valued domain, thus we could exclude them using alsiptesrenamings of the
involved real-valued variables. In our solver those confliauses, stemming from the
real-valued domain, are treated as T-conflict clauses.



3.4 Variable Ordering

Although dynamic variable ordering strategies like VSID@Z 01] are mandatory
in modern CNF-SAT-solver, our solver prototype succeedstie case studies we use
already by supporting only a static variable order for dilgcdecision variables. The
static variable order is determined by the instance idse¥#riables, and thus follows
the natural temporal order of computation. Additionallaliows a direct comparison
between the non-parametric and the suggested paramasiowef the solver.

Nevertheless, our parametric data structures enable naoigble-focused scoring
heuristics which do not handle the variables independeastfyjure CNF-SAT solver do,
but group information belonging to several instances ofvareable over the unfolded
time-frames, allowing problem-oriented dynamic assigntse

4 Experimental Results

We implemented a combined SAT-LP-solver, working mainlydascribed in Sec-
tion 2.3, but with parametric internal data structures. &e the difference to the case
without parametric structures, we created also a modifibgegovorking exactly the
same way but without parametric clauses. When a new BMC erolihstance gets
created, for the T-clauses and the T-conflict clauses thenpetric solver adds a new
clause instance by appending a new watch pair to the clausah list, while the
solver without the parametric structure creates a new elalisough our solver is not
as fast as other state-of-the-art solver, it is well-suitedhow the advantage of using
parametric structures.

In the encoding of the existence of a counterexample as flarma use the op-
timizations as described in Section 2.2. Especially, weiiregalternating flows and
jumps, where flows may have durationRuns always begin with a flow. l.e., in the
60th iteration we consider runs consisting3sf flows and30 jumps in an alternating
manner.

Our experiments were carried out on a single-processoopapith a Pentium
Il 650 MHz CPU and256 MB memory. We used Fischer's mutual exclusion proto-
col [Lyn96] with 3 processes to illustrate the advantages of parametric ttatdiges.
The hybrid systent{; representing théth process{ < ¢ < 3) using the protocol is
depicted in Figure 4. The specification states the mutudlisian property, i.e., that at
each time point there is at most one process in its criticztic® The results for the
protocol applied t@ processes running in parallel is illustrated in Figure 5.

The first diagram of Figure 5 shows the number of clauses ge&tefor the different
computation lengths during the BMC search. Generally,gigparametric clauses in
the kth iteration of BMC, the number of T-clauses can be reducethbyfactor ofk;
similarly for real-conflict clauses. T-conflict clausesrtead in the iteratior get shifted
in each iteration from + 1 to k by learning; instead of — i + 1 clauses we have to
store onlyl parametric instance. The number of I- and S-clauses remuaicisanged
in both approaches; the same holds for I- and S-conflict emusis worth to mention
that the learned conflicts form a large part of the clauses.

The second diagram shows the heap peak during the difféeeations of the BMC
search. The memory requirements cannot be reduced withthe fctor as the number
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of clauses, since we have to store all watch-literal infaroms for all clause instances,
and also the assignments to all variables etc. However, #raary requirements are
still reduced by a comparable factor as the number of clauses

The third diagram shows the CPU times needed for the sail@fiadthecks of the
different BMC instances. The diagram shows that using pataenclauses does not
slow down the computation times. This is due to the naturariral data structures
used to represent variables, literals, and clauses. Camgpautertain concrete instance
of a parametric clause is done by executing just a few ariticradditions.

Finally, the last diagram illustrates what happens if thenoey of the computer
reaches its limits when using non-parametric data strastukt round about th&0th
BMC instance the memory limit is reached and the computetssta swap. Though
the CPU times are not affected, the system times increaseveya orders of magni-
tude. Using parametric structures, this happens much &tdrwe succeed to compute
further BMC instances.

Figure 6 shows the memory requirements with and withoutrpatéc clauses for
two further examples. The first example is Fischer’s protémo4 processes. The sec-
ond example is a Railroad CrossinéE{KSO4], consisting o3 parallel automata: one
modeling a train, one a railroad crossing gate, and one aatltamt The specification
requires that the gate is always fully closed when the tiimeiar to the railroad cross-
ing. For lack of space, the other figures comparing the rugtiimes, the system times,
and the numbers of clauses for the parametric and the namgdiric cases cannot be
listed here. The curve progressions look similar to those~fscher’s protocol foB
processes.

Fischer's protocol for 4 processes Railroad Crossing
200 P10l ———
m 800 parametric ) parametric
=, 700 non-parametric =, 200 r non-parametric
~ 600t ~
< 500 < 150 ¢
() ()
o 400 o
o L o 100
g 300 g
© 200 o 50 -
< 100+t <
0 : : 0 : : : : :
0 5 10 15 20 25 30 0 10 20 30 40 50 60
iteration iteration

Fig. 6. Memory requirements for Fischer’s protocol fbprocesses and for the Railroad Crossing
example

5 Conclusion and Related Work

In this paper we introduced parametric data structuresderoio reduce the memory
requirements of satisfiability checking for the specialjgmse of bounded model check-



ing. The application of BMC to Fischer’s protocol and thelReid Crossing example
served to point out the practical relevance of our approach.

Most research on SAT-solvers is done in the important areecofasing the runtime
efficiency of SAT-solvers. Related works, like those dagliith the basic solver algo-
rithms, bounded model checking, and learning in the cordeBMC etc., are already
mentioned in the introduction.

We know of only one work explicitly dealing with the reduatiof the memory
requirements [DHKO5]. Similarly to our approach, the papekes use of the symme-
try of the transition steps. However, instead of introdgaiew internal data structures
as we do, they apply quantification to compressitigansitions of a counterexample
description into a single quantified term. The quantifiedrfola is checked for satisfia-
bility by a dedicated QBF solver. Since their QBF solver (atiter state-of-the-art QBF
solvers) cannot handle real-valued constraints, theiragah is inherently designed for
discrete systems, only, and is not suited to adapt to BMGrieal hybrid systems.

As to future work, besides extending our SAT-solver by dyitarariable-ordering
strategies, we are also working on the solver’s paralltétina
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