Heap-Abstraction for an Object-Oriented Calculus with Thread Classes

E. Ábrahám A. Grüner M. Steffen

Albert-Ludwigs-University Freiburg, Christian-Albrechts University Kiel

introduction

classes and observable behavior

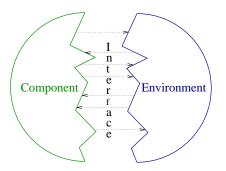
consequences (closure conditions)

completeness

conclusion

Starting point

- component = "program fragment" = "open program"
- environment = "context" = "observer"
- ~ compositional semantics

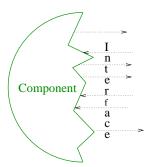


Starting point

question:

what's observable of an open class-based, object-oriented, multi-threaded program

goal: fully-abstract semantics



Full abstraction

- natural definition of equivalence of program fragments
- basically: comparison between two semantics, resp. two implied notions of equality
- given a reference semantics, the 2nd one is
 - neither too abstract = sound
 - nor too concrete = complete
- Milner, Plotkin: λ-calculus
- Jeffrey, Rathke: concurrent ν -calculus

Notion of observation: Reference semantics

```
// component
public class P {
    public static void main(String[] arg) {
        O x = new O();
        x.m(42);
    }
}
```

Notion of observation: Reference semantics

```
// component
public class P {
    public static void main(String[] arg) {
        O x = new O();
        x.m(42);
// external observer
class O {
    public void m(int x) {
      <some code>:
      System.out.println("success");
```

Notion of observation: Reference semantics

- pretty simple observational notion: "may-testing":
 compose a component with an observer, let it run
 and see, whether the observer may be/is
 successful
- $P_1 \sqsubseteq_{may} P_2$: for all observers O: if $P_1 + O$ may be/is successful, then so may be/is $P_2 + O$.

Classes?

- open semantics (based on may testing/observational equivalence): in principle: straightforward and understood
- ⇒ corresponding semantics is "traces" as interface interactions (messages, method calls and returns)

what is the semantical import of classes?

- 3 issues:
 - 1. interface separates component and observer classes
 - 2. class = generators of object (via new)¹
 - ⇒ instantiation requests as interface interaction

¹Classes in *Java* or *C*[#] serve also as kind of types, and furthermore for inheritance. We ignore that mostly here.

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary

²no direct access to instance variables

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary

Labels:

```
\begin{array}{ll} \gamma & ::= & \textit{n}\langle\textit{call o.m}(\vec{v})\rangle \mid \textit{n}\langle\textit{return}(v)\rangle \\ & \mid & \langle\textit{spawn n of c}(\vec{v})\rangle \mid \nu(\textit{n}:\textit{T}).\gamma \\ a & ::= & \gamma? \mid \gamma! \end{array} \qquad \begin{array}{ll} \text{basic labels} \\ \text{receive and send labels} \end{array}
```


²no direct access to instance variables

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary
- ⇒ does this mean: environment behavior arbitrary?

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary
- ⇒ does this mean: environment behavior arbitrary?
 - well, depends . . . does "arbitrary trace" mean ∈ Label* ?

²no direct access to instance variables

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary
- ⇒ does this mean: environment behavior arbitrary?
 - well, depends . . . does "arbitrary trace" mean ∈ Label* ?
 - we know P + O is a program of the language
 - well-formed
 - well-typed
 - class-structured

- "message passing"² framework ⇒ in first approx.: semantics = message interchange at the interface
- open = environment absent/arbitrary
- ⇒ does this mean: environment behavior arbitrary?
 - well, depends . . . does "arbitrary trace" mean ∈ Label* ?
 - we know P + O is a program of the language
 - well-formed
 - well-typed
 - class-structured

environment is arbitrary but realizable

²no direct access to instance variables

Open semantics

- operational description:
- assumption/commitment formulation
- Ass ⊢ C : Comm ^a→ Ass ⊢ Ć : Comm
- interface: 3 orthogonal abstractions:
 - static abstraction: type system
 - abstraction of the stack structure of thread(s)
 - dynamic abstraction of the heap topology

Open semantics

- operational description:
- assumption/commitment formulation
- $Ass \vdash C : Comm \xrightarrow{a} Ass \vdash \acute{C} : Comm$
- interface: 3 orthogonal abstractions:
 - static abstraction: type system
 - abstraction of the stack structure of thread(s)
 - dynamic abstraction of the heap topology

As illustration, let us have a look at incoming calls. Basically, an incoming call can always arrive. But:

Is each incoming call realizable?

1. Static abstraction: type system

E.g.: Method m of o:P must have one parameter of type C.

```
\sim Traces \dots n\langle call\ o.m(o')\rangle?\dots with o,o':P are not realizable.
```

2. Abstraction of the stack structure

E.g.:

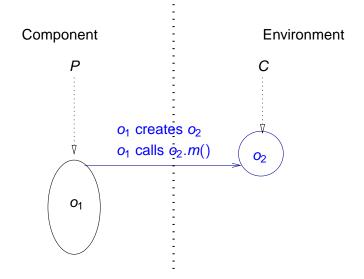
- A thread must start its execution on the side of its thread class.
- Calls and returns of a thread must occur pairwise in a nested fashion.
- Each call returns to its caller.

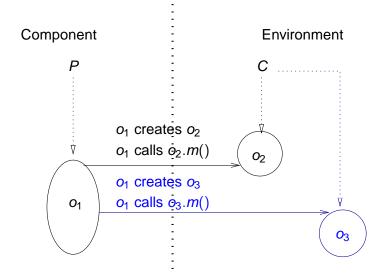
```
ightharpoonup Traces ... n\langle call\ o.m(\ldots)\rangle? n\langle call\ o'.m(\ldots)\rangle? ...
```

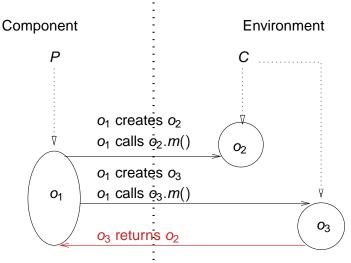
3. Dynamic abstraction of the heap topology

```
// component
public class P {
      public void m(){
           C x = new C();
           C y = x.m();
Is a trace
     \nu(o_2:C).n\langle call\ o_2.m()\rangle!
     \nu(o_3:C).n'\langle call\ o_3.m()\rangle!
      n'\langle return(o_2)\rangle?
```

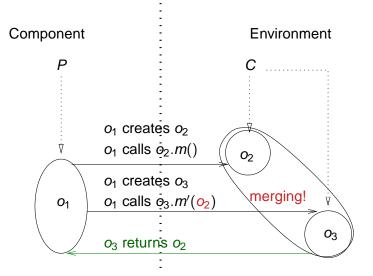
realizable?

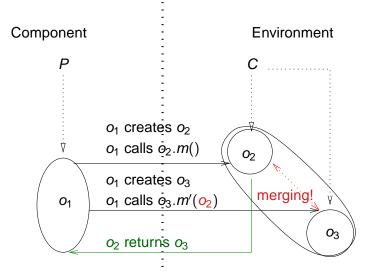






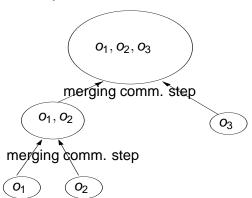
o2 and o3 cannot "know" each other!





Dynamic aspects of cliques

- we have seen: cliques can merge
- assumption: names are never forgotten
 ⇒ cliques never fall apart again
- clique evolution represents a tree:



Open semantics and heap abstraction

- exact interface behavior
- ⇒ abstraction of the heap topology necessary
 - keep book about "who has been told what":

$$\Delta$$
; $E_{\Delta} \vdash C : \Theta$; E_{Θ}

- assumption context: $E_{\Delta} \subseteq \Delta \times (\Delta + \Theta)$ = pairs of objects
- written $o_1 \hookrightarrow o_2$:
- worst case: equational theory implied by E_{Δ} (on Δ):

$$E_{\Delta} \vdash o_1 \leftrightharpoons o_2$$

(for
$$o_2 \in \Theta$$
: $E_{\Delta} \vdash o_1 \leftrightharpoons ; \hookrightarrow o_2$)

Dynamic heap abstraction

- outgoing call
 - both caller and callee are known
 - $a = n\langle call \ o_{callee}.l(\vec{v})\rangle!$

$$\Delta; E_{\Delta} \vdash C : \Theta; E_{\Theta} \xrightarrow{a} \acute{\Delta}; \acute{E}_{\Delta} \vdash \acute{C} : \acute{\Theta}; \acute{E}_{\Theta}$$

• update: $\not E_{\Delta} = E_{\Delta} + o_{callee} \hookrightarrow \vec{v}$

Dynamic heap abstraction

- outgoing call
 - both caller and callee are known
 - $a = n\langle call \ o_{callee}.l(\vec{v})\rangle!$

$$\Delta; \textbf{\textit{E}}_{\Delta} \vdash \textbf{\textit{C}} : \Theta; \textbf{\textit{E}}_{\Theta} \xrightarrow{\quad a \quad} \acute{\Delta}; \not {\textbf{\textit{E}}}_{\Delta} \vdash \acute{\textbf{\textit{C}}} : \acute{\Theta}; \not {\textbf{\textit{E}}}_{\Theta}$$

- update: $\not E_{\Delta} = E_{\Delta} + o_{callee} \hookrightarrow \vec{v}$
- incoming call
 - only callee is known, caller is guessed
 - $a = n\langle call \ o_{callee}.I(\vec{v})\rangle$?

$$\Delta; \stackrel{\textbf{\textit{E}}_{\Delta}}{\vdash} C : \Theta; \stackrel{\textbf{\textit{E}}_{\Theta}}{\vdash} \stackrel{a}{\longrightarrow} \acute{\Delta}; \stackrel{\textbf{\textit{E}}_{\Delta}}{\vdash} \vdash \acute{C} : \acute{\Theta}; \stackrel{\textbf{\textit{E}}_{\Theta}}{\vdash}$$

• check: 3 E_{\wedge} \vdash $o_{caller} \hookrightarrow \vec{v}$

Simplified rule

```
\begin{aligned} &a = n \langle \textit{call } o_r. \textit{I}(\vec{v}) \rangle? \\ &\text{update contexts:} \quad \acute{\Theta}; \acute{E}_{\Theta} = \Theta; E_{\Theta} + o_r \hookrightarrow \vec{v}, n \\ &\underbrace{\text{check context:}} \quad \acute{\Delta}; \acute{E}_{\Delta} \vdash o_s \leftrightharpoons \hookrightarrow \vec{v}, o_r : \acute{\Theta} \\ &\underbrace{\Delta; E_{\Delta} \vdash C : \Theta; E_{\Theta} \xrightarrow{a} \acute{\Delta}; \acute{E}_{\Delta} \vdash \acute{C} : \acute{\Theta}; \acute{E}_{\Theta}} \end{aligned} \text{CALLI}
```

Where are we?

Open semantics in the presence of classes

- static abstraction of type system
- abstraction of the stack structure
- abstraction of heap topology
- formalized in some "object calculus"

But we are still not ready...

introduction

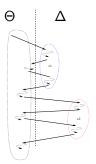
classes and observable behavior

consequences (closure conditions)

completeness

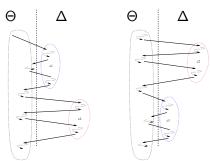
conclusion

- separate observer cliques
- separate observer cliques cannot cooperate
- ⇒ order of interaction not globally observable⁴



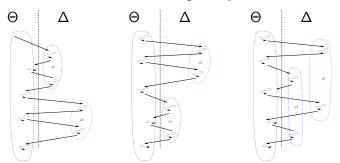
⁴Take care of merging

- separate observer cliques
- separate observer cliques cannot cooperate
- ⇒ order of interaction not globally observable⁴



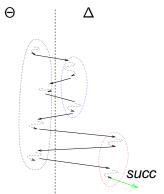
⁴Take care of merging

- separate observer cliques
- separate observer cliques cannot cooperate
- ⇒ order of interaction not globally observable⁴

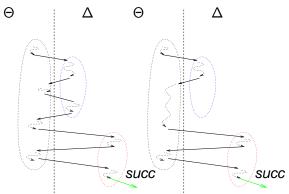


⁴Take care of merging

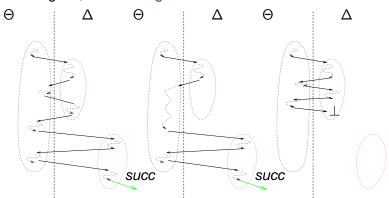
 an observer reporting success, could additionally observe, that the interaction with the other clique is a prefix of the original, but not longer



 an observer reporting success, could additionally observe, that the interaction with the other clique is a prefix of the original, but not longer



 an observer reporting success, could additionally observe, that the interaction with the other clique is a prefix of the original, but not longer



Trace semantics

Definition (\sqsubseteq_{trace})

 $\equiv_0 \vdash C_1 \sqsubseteq_{trace} C_2$, if the following holds. For all $\equiv_0 \vdash C_1 \stackrel{t}{\Longrightarrow}$ and all environment cliques $[o_t]$ after t, there exists $\equiv_0 \vdash C_2 \stackrel{s}{\Longrightarrow}$ such that

- there exists an environment clique $[o_s]$ after s such that $\Xi_0 \vdash s \downarrow_{[o_s]} \asymp_{\Delta} t \downarrow_{[o_a]}$, and
- $\Xi_0 \vdash t \preccurlyeq_{\Delta} s.$

 - ≼_△: up-to swapping, replay, prefix

introduction

classes and observable behavio

consequences (closure conditions)

completeness

conclusion

Completeness: line of argument

- goal: if $C_1 \sqsubseteq_{may} C_2$, then $C_1 \sqsubseteq_{trace} C_2$
- so, given a legal trace $s \in [\![C_1]\!]_{\textit{trace}}$, do
 - construct a complementary context C_{s̄}
 - composition: program + context may do the observation

$$\mathcal{C}_{\bar{s}}[C_1] \longrightarrow^* success$$

observational equivalence: C₂ may do that, too:

$$\mathcal{C}_{\bar{s}}[C_2] \longrightarrow^* success$$

- decomposition: $s \in [\![C_2]\!]_{\textit{trace}}$
- ⇒ problems for completeness (apart from technicalities)
 - 1. definability ⇒ what are legal traces?
 - 2. what can be observed/distinguished?

⁵That s is a trace of C_2 by decomposition is not a direct consequence. I ignore that here.

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Conclusions

- · Fully abstract semantics for an
 - OO,
 - · class-based,
 - multi-threaded (thread-classes)

language.

- Abstractions:
 - type system
 - stack structure
 - heap topology
- Extensions:
 - monitors
 - subtyping (and subclassing), cloning, ...
 - (fully) compositional semantics

Results

- in the setting of = may-testing equivalence
 - exactly one kind of observation (e.g., "success")
 - terminal i.e., not repeated observation
- ⇒ trace semantics gets weakened into a partial order semantics, relative to
 - dynamic cliques of connectivity of objects
 - note: we don't allow to observe (e.g.) divergence!
 - note: if we allowed
 - different, repeated observations (for instance success-method + divergence), or
 - if we had a global shared variables (e.g., stdout)

we are back in linear trace semantics

Results

Subject reduction: Δ ; $E_{\Delta} \vdash C : \Theta$; $E_{\Theta} \stackrel{s}{\Longrightarrow} \acute{\Delta}$; $\acute{E}_{\Delta} \vdash \acute{C} : \acute{\Theta}$; \acute{E}_{Θ} , then $\acute{\Delta} \vdash \acute{C} : \acute{\Theta}$. A fortiori: If Δ , Σ , $\Theta \vdash n : T$, then $\acute{\Delta}$, $\acute{\Sigma}$, $\acute{\Theta} \vdash n : T$.

Soundness of connectivity abstraction:

 $\Delta; E_{\Delta} \vdash C : \Theta; E_{\Theta} \stackrel{s}{\Longrightarrow} \Delta; \acute{E}_{\Delta} \vdash \acute{C} : \Theta; \acute{E}_{\Theta}, \text{ then } \Delta; \acute{E}_{\Delta} \vdash \acute{C} : \Theta; \acute{E}_{\Theta}.$

No surprise Δ ; $E_{\Delta} \vdash C : \Theta$; $E_{\Theta} \stackrel{a}{\rightarrow} \Delta$; $\acute{E}_{\Delta} \vdash \acute{C} : \acute{\Theta}$; \acute{E}_{Θ} , for incoming label a, then $\acute{\Delta}$; \acute{E}_{Δ} is a conservative extension of Δ ; E_{Δ} . For outgoing steps, the situation is dual.

Soundness of legal trace system: If Δ_0 ; $\vdash C : \Theta_0$; and Δ_0 ; $\vdash C : \Theta_0$; $\stackrel{t}{\Longrightarrow}$, then $\Delta_0 \vdash t : trace \Theta_0$.