Heap-Abstraction
for an Object-Oriented Calculus

with Thread Classes

E. Abraham A. Griiner M. Steffen

Albert-Ludwigs-University Freiburg, Christian-Albrechts University Kiel

introduction

Starting point

e component = “program fragment” = “open program”
e environment = “context” = “observer”
e ~~ compositional semantics

Component

DOV TSD®FS—

Starting point

e uestion:

what's observable of an open class-based,
object-oriented, multi-threaded program

e goal: fully-abstract semantics

v

v

Component

OOV "=Om S —

Full abstraction

¢ natural definition of equivalence of program fragments

basically: comparison between two semantics, resp. two
implied notions of equality
given a reference semantics, the 2nd one is

— neither too abstract = sound
— nor too concrete = complete

Milner, Plotkin: \-calculus
Jeffrey, Rathke: concurrent v-calculus

Notion of observation; Reference semantics

/1 component
public class P {
public static void main(String[] arg) {
O x = new O();
X.m(42);

Notion of observation; Reference semantics

/1 component
public class P {
public static void main(String[] arg) {
O x = new O();
X.m(42);

/1 external observer
class O {
public void m(int x) {
<some code>;
System.out. println ("success ");

}

Notion of observation; Reference semantics

e pretty simple observational notion: “may-testing”:

compose a component with an observer, let it run
and see, whether the observer may belis
successful

e P1 Cmay Po: for all observers O: if Py + O may belis
successful, then so may be/is P, + O.

Classes?

e open semantics (based on may testing/observational
equivalence): in principle: straightforward and understood

= corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes? I

e 3issues:
1. interface separates component and observer classes
2. class = generators of object (via new)!
= instantiation requests as interface interaction

IClasses in Java or C* serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.

classes and observable behavior

Problems to tackle for an open f-a semantics

 “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary

Zno direct access to instance variables

Problems to tackle for an open f-a semantics

 “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary

Labels:
v == n{call o.m(V)) | n(return(v))
| (spawnnofc(V)) | v(n:T).y basic labels
a == ~?|~! receive and send labels

Zno direct access to instance variables

Problems to tackle for an open f-a semantics
 “message passing” framework = in first approx.:
semantics = message interchange at the interface
e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary?

Zno direct access to instance variables

Problems to tackle for an open f-a semantics
 “message passing” framework = in first approx.:
semantics = message interchange at the interface
e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary?
o well, depends . ..does “arbitrary trace” mean < Label™ ?

Zno direct access to instance variables

Problems to tackle for an open f-a semantics

 “message passing” framework = in first approx.:
semantics = message interchange at the interface

e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary?
o well, depends . ..does “arbitrary trace” mean < Label™ ?

e we know P + O is a program of the language

o well-formed
o well-typed
e class-structured

Zno direct access to instance variables

Problems to tackle for an open f-a semantics
 “message passing” framework = in first approx.:
semantics = message interchange at the interface
e open = environment absent/arbitrary
= does this mean: environment behavior arbitrary?

o well, depends . ..does “arbitrary trace” mean < Label™ ?
e we know P + O is a program of the language

o well-formed
o well-typed
e class-structured

environment is arbitrary but realizable I

Zno direct access to instance variables

Open semantics

e operational description:
e assumption/commitment formulation
e AssF C:Comm & Ass + C : Comm

e interface: 3 orthogonal abstractions:

¢ static abstraction: type system
e abstraction of the stack structure of thread(s)
e dynamic abstraction of the heap topology

Open semantics

e operational description:
e assumption/commitment formulation
e AssF C:Comm & Ass + C : Comm

e interface: 3 orthogonal abstractions:

¢ static abstraction: type system
e abstraction of the stack structure of thread(s)
e dynamic abstraction of the heap topology

As illustration, let us have a look at incoming calls.
Basically, an incoming call can always arrive. But:

Is each incoming call realizable?'

1. Static abstraction: type system

/1 component
public class P{
public void m(C x){

}
}

E.g.: Method m of o:P must have one parameter of type C.
~ Traces
...n{call o.m(0’))?...

with 0,0’ : P are not realizable.

2. Abstraction of the stack structure
E.g.:

e A thread must start its execution on the side of its thread
class.

e Calls and returns of a thread must occur pairwise in a
nested fashion.

e Each call returns to its caller.

~~ Traces

.n.<.call om(...))?
n{call o’.m(...))?

are not realizable.

3. Dynamic abstraction of the heap topology

/1 component
public class P {

bl;lb”c void m(){

C x = new C();
Cy = x.m();
}
}
Is a trace

2(05 : C).n(call op.m())!
v(0z : C).n'{call o3.m())!
n’(return(0z))?

realizable?

Dynamic heap abstraction example
Component Environment

= : c

0, creates 0,
v lls 6,.m
01 calls 62.m() 0,

01

Dynamic heap abstraction

Component

P

v

0, creates 0,
01 calls 62.m()

. example

Environment

02

)

0 creates 03
01 calls 63.m()

Dynamic heap abstraction: example

Component Environment

= : c ...

: 0, creates 0,
v 0; calls 62.m() 0,

0, creates 03
01 0; calls 63.m()

03 returns o,

0, and o3z cannot “know” each other!

Dynamic heap abstraction: example

Component

P

v

Environment

0, creates 0,
0; calls 62.m() 0,

)

v

0, creates 03
- 1 I
01 calls 63.m’(0,) (nerging:

03 returns o,

Dynamic heap abstraction: example

Component Environment

= : c .. |

: 0, creates 0,
v 0; calls 62.m()

0, creates 03
01 0; calls 03.m’(07)

0, returns o3

mergihg.g v

°i

Dynamic aspects of cliques

¢ we have seen: cliques can merge

e assumption: names are never forgotten
= cliques never fall apart again

e clique evolution represents a tree:

Open semantics and heap abstraction

e exact interface behavior
= abstraction of the heap topology necessary
e keep book about “who has been told what”:

ANEAFC:0Eg

e assumption context: Ex C A x (A + ©) = pairs of objects
e written 04 < 05 :
e worst case: equational theory implied by Ex (on A):

EAF 01 =0,

(foroo, € ©: EA F 01 =;<— 0))

Dynamic heap abstraction
e outgoing call
e both caller and callee are known
e a = n(call Ocgjee.l(V))!
N, EAFC:0;Eg L>A,;E,A|—é:é;lé@

o update: En = Ep + Ocaliee — V

Dynamic heap abstraction

e outgoing call
e both caller and callee are known
e a = n(call Ocgjee.l(V))!

N, EAFC:0;Eg L>A,;E,A|—Clié;|ée
o update: En = Ep + Ocaliee — V
e incoming call
¢ only callee is known, caller is guessed
e a = n(call Ocajee.I(V))?
AEAFC:0;Ee —2— AEx+C:6:Ee

e check:® Ex F Ocaller — V

3actually, it's Ex instead of Ea.

Simplified rule

a = n{call o,.I(V))?
update contexts: ©;Eg = ©;Eg +0; < V,n
check context: A;Ea F0s =— V,0,: ©

T = > CALLI
ANEAFC:0;Eg - A;EAFC :0;Ep

Where are we?

Open semantics in the presence of classes
¢ static abstraction of type system
e abstraction of the stack structure
¢ abstraction of heap topology
o formalized in some “object calculus”

But we are still not ready...

consequences (closure conditions)

Order of events

e separate observer cliques

e separate observer cliques cannot cooperate
= order of interaction not globally observable*

S) A

“Take care of merging

Order of events

e separate observer cliques

e separate observer cliques cannot cooperate
= order of interaction not globally observable*

© A S)

“Take care of merging

Order of events

e separate observer cliques
e separate observer cliques cannot cooperate
= order of interaction not globally observable*

© A S) A S) A
o X\\ X\\
S = =
;= . ;
— z T~
//x // = g
x\\ i A\\
S -, T
— =
— ://* ://*

“Take care of merging

Order of events

e an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer

© A

Order of events

e an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer

© A © A
A\ *\

- succ 1 - succ

Order of events

e an observer reporting success, could additionally observe,
that the interaction with the other clique is a prefix of the
original, but not longer

© A © A © A
~ \ s :

Trace semantics

=0 I C1 Cace Ca, if the following holds. For all Z¢ - C; == and
all environment cliques [o,] after t, there exists =g - C, =

such that
L there exists an environment clique [os] after s such that
=okFs l[os]xA t l[oa], and
2.

ZoFt=Xas.

e =A: Up-to swapping
e =X A: Up-to swapping, replay, prefix

completeness

Completeness: line of argument

e goal: if Cy Emay Co, then Cq Cirace C2
e s0, given a legal trace s € [Cq]race, dO

— construct a complementary context Cs
— composition: program + context may do the observation

Cs[C1] —* success
— observational equivalence: C, may do that, too:
Cs[Cy] —* success

— decomposition:® s € [Ca]lrace
= problems for completeness (apart from technicalities)

1. definability = what are legal traces?
2. what can be observed/distinguished?

>That s is a trace of C, by decomposition is not a direct consequence. |
ignore that here.

conclusion

Conclusions

e Fully abstract semantics for an
e OO,
e class-based,
e multi-threaded (thread-classes)
language.
e Abstractions:
e type system
e stack structure
e heap topology
e Extensions:
e monitors

e subtyping (and subclassing), cloning, ...

o (fully) compositional semantics

Results

¢ in the setting of = may-testing equivalence

— exactly one kind of observation (e.g., “success”)
— terminal i.e., not repeated observation

= trace semantics gets weakened into a partial order
semantics, relative to

e dynamic cliques of connectivity of objects
e note: we don't allow to observe (e.g.) divergence!
¢ note: if we allowed

— different, repeated observations (for instance
success-method + divergence), or
— if we had a global shared variables (e.g., st dout)

we are back in linear trace semantics

Results

Subject reduction: A;Ex +C:©;Eg =+ A;Ep+C:6;Ep,
t[]er) A FC:0. Afortiori: If A,X,©Fn:T,then
AY,OFn:T.

Soundness of connectivity abstraction:

A,;EA I—(,I :Q;E@ :S>AI;EAI—(II : é;ée,then
A EAFC:0O;Ep.

No surprise A;Ea - C:©;Eg 2 A;Ep - C : 6;Eo, for
incoming label a, then A; Ea is a conservative
extension of A; Ea. For outgoing steps, the
situation is dual.

Soundness of legal trace system: If Ag;F C : ©g; and
Ag:F C : Og; :t>, then Ag -t : trace Oq.

	introduction
	classes and observable behavior
	consequences (closure conditions)
	completeness
	conclusion
	appendix

