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Starting point
• component = “program fragment” = “open program”

• environment = “context” = “observer”

•  compositional semantics
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Starting point
• question:

what’s observable of an open class-based,
object-oriented, multi-threaded program

• goal: fully-abstract semantics
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Full abstraction
• natural definition of equivalence of program fragments

• basically: comparison between two semantics, resp. two
implied notions of equality

• given a reference semantics, the 2nd one is
– neither too abstract = sound
– nor too concrete = complete

• Milner, Plotkin: λ-calculus

• Jeffrey, Rathke: concurrent ν-calculus



Notion of observation: Reference semantics

/ / component
public class P {

public s t a t i c vo id main ( S t r i n g [ ] arg ) {
O x = new O( ) ;
x .m( 4 2 ) ;

}
}



Notion of observation: Reference semantics

/ / component
public class P {

public s t a t i c vo id main ( S t r i n g [ ] arg ) {
O x = new O( ) ;
x .m( 4 2 ) ;

}
}

/ / e x te rn a l observer
class O {

public vo id m( i n t x ) {
<some code>;
System . out . p r i n t l n ( ” success ” ) ;

}
}



Notion of observation: Reference semantics
• pretty simple observational notion: “may-testing”:

compose a component with an observer, let it run
and see, whether the observer may be/is
successful

• P1 ⊑may P2: for all observers O: if P1 + O may be/is
successful, then so may be/is P2 + O.



Classes?
• open semantics (based on may testing/observational

equivalence): in principle: straightforward and understood

⇒ corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes?

• 3 issues:
1. interface separates component and observer classes
2. class = generators of object (via new)1

⇒ instantiation requests as interface interaction

1Classes in Java or C# serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.
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Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

2no direct access to instance variables
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γ ::= n〈call o.m(~v)〉 | n〈return(v)〉
| 〈spawn n of c(~v)〉 | ν(n:T ).γ basic labels

a ::= γ? | γ! receive and send labels

2no direct access to instance variables
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Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary?

• well, depends . . . does “arbitrary trace” mean ∈ Label∗ ?
• we know P + O is a program of the language

• well-formed
• well-typed
• class-structured

environment is arbitrary but realizable

2no direct access to instance variables



Open semantics
• operational description:

• assumption/commitment formulation

• Ass ⊢ C : Comm a
−→ ´Ass ⊢ Ć : ´Comm

• interface: 3 orthogonal abstractions:
• static abstraction: type system
• abstraction of the stack structure of thread(s)
• dynamic abstraction of the heap topology



Open semantics
• operational description:

• assumption/commitment formulation

• Ass ⊢ C : Comm a
−→ ´Ass ⊢ Ć : ´Comm

• interface: 3 orthogonal abstractions:
• static abstraction: type system
• abstraction of the stack structure of thread(s)
• dynamic abstraction of the heap topology

As illustration, let us have a look at incoming calls.
Basically, an incoming call can always arrive. But:

Is each incoming call realizable?



1. Static abstraction: type system

/ / component
public class P{

public vo id m(C x ){
. . .

}
}

E.g.: Method m of o:P must have one parameter of type C.

 Traces

. . . n〈call o.m(o′)〉? . . .

with o, o′ : P are not realizable.



2. Abstraction of the stack structure
E.g.:

• A thread must start its execution on the side of its thread
class.

• Calls and returns of a thread must occur pairwise in a
nested fashion.

• Each call returns to its caller.

 Traces
. . .

n〈call o.m(. . .)〉?
n〈call o′.m(. . .)〉?
. . .

are not realizable.



3. Dynamic abstraction of the heap topology

/ / component
public class P {

. . .

public vo id m( ) {
C x = new C ( ) ;
C y = x .m( ) ;

}
}

Is a trace
. . .

ν(o2 : C).n〈call o2.m()〉!
ν(o3 : C).n′〈call o3.m()〉!
n′〈return(o2)〉?
. . .

realizable?



Dynamic heap abstraction example

EnvironmentComponent

o1

P

o2

C

o1 creates o2

o1 calls o2.m()



Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()



Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()
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o2 and o3 cannot “know” each other!
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Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m′(o2)

o2 returns o3
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Dynamic aspects of cliques
• we have seen: cliques can merge

• assumption: names are never forgotten
⇒ cliques never fall apart again

• clique evolution represents a tree:

o1 o2

o3
o1, o2

o1, o2, o3

merging comm. step

merging comm. step



Open semantics and heap abstraction
• exact interface behavior

⇒ abstraction of the heap topology necessary

• keep book about “who has been told what”:

∆; E∆ ⊢ C : Θ; EΘ

• assumption context: E∆ ⊆ ∆ × (∆ + Θ) = pairs of objects

• written o1 →֒ o2 :

• worst case: equational theory implied by E∆ (on ∆):

E∆ ⊢ o1 ⇌ o2

(for o2 ∈ Θ: E∆ ⊢ o1 ⇌; →֒ o2)



Dynamic heap abstraction
• outgoing call

• both caller and callee are known
• a = n〈call ocallee.l(~v)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• update: É∆ = E∆ + ocallee →֒ ~v



Dynamic heap abstraction
• outgoing call

• both caller and callee are known
• a = n〈call ocallee.l(~v)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• update: É∆ = E∆ + ocallee →֒ ~v

• incoming call
• only callee is known, caller is guessed
• a = n〈call ocallee.l(~v)〉?

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• check:3 E∆ ⊢ ocaller →֒ ~v

3actually, it’s É∆ instead of E∆.



Simplified rule

a = n〈call or .l(~v)〉?

update contexts: Θ́; ÉΘ = Θ; EΘ + or →֒ ~v , n
check context: ∆́; É∆ ⊢ os ⇌→֒ ~v , or : Θ́

CALLI
∆; E∆ ⊢ C : Θ; EΘ

a
−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ



Where are we?
Open semantics in the presence of classes

• static abstraction of type system

• abstraction of the stack structure

• abstraction of heap topology

• formalized in some “object calculus”

But we are still not ready...
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Order of events
• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable4

c1
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Θ ∆

4Take care of merging
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Order of events
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• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable4
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Θ ∆
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Θ ∆
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Θ ∆

4Take care of merging



Order of events
• an observer reporting success, could additionally observe,

that the interaction with the other clique is a prefix of the
original, but not longer

∆Θ

succ
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Order of events
• an observer reporting success, could additionally observe,

that the interaction with the other clique is a prefix of the
original, but not longer

∆Θ

succ

∆Θ

succ

∆Θ

⊥



Trace semantics

Definition (⊑trace)
Ξ0 ⊢ C1 ⊑trace C2, if the following holds. For all Ξ0 ⊢ C1

t
=⇒ and

all environment cliques [ot ] after t , there exists Ξ0 ⊢ C2
s

=⇒
such that

1. there exists an environment clique [os] after s such that
Ξ0 ⊢ s ↓[os]≍∆ t ↓[oa], and

2.
Ξ0 ⊢ t 42∆ s.

• ≍∆: up-to swapping

• 42∆: up-to swapping, replay, prefix
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Completeness: line of argument
• goal: if C1 ⊑may C2, then C1 ⊑trace C2

• so, given a legal trace s ∈ [[C1]]trace, do
– construct a complementary context Cs̄

– composition: program + context may do the observation

Cs̄[C1] −→
∗ success

– observational equivalence: C2 may do that, too:

Cs̄[C2] −→
∗ success

– decomposition:5 s ∈ [[C2]]trace

⇒ problems for completeness (apart from technicalities)
1. definability ⇒ what are legal traces?
2. what can be observed/distinguished?

5That s is a trace of C2 by decomposition is not a direct consequence. I
ignore that here.
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Conclusions
• Fully abstract semantics for an

• OO,
• class-based,
• multi-threaded (thread-classes)

language.
• Abstractions:

• type system
• stack structure
• heap topology

• Extensions:
• monitors
• subtyping (and subclassing), cloning, . . .
• (fully) compositional semantics



Results
• in the setting of = may-testing equivalence

– exactly one kind of observation (e.g., “success”)
– terminal i.e., not repeated observation

⇒ trace semantics gets weakened into a partial order
semantics, relative to

• dynamic cliques of connectivity of objects

• note: we don’t allow to observe (e.g.) divergence!
• note: if we allowed

– different, repeated observations (for instance
success-method + divergence), or

– if we had a global shared variables (e.g., stdout)

we are back in linear trace semantics



Results
Subject reduction: ∆; E∆ ⊢ C : Θ; EΘ

s
=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ,

then ∆́ ⊢ Ć : Θ́. A fortiori: If ∆,Σ,Θ ⊢ n : T , then
∆́, Σ́, Θ́ ⊢ n : T .

Soundness of connectivity abstraction:
∆; E∆ ⊢ C : Θ; EΘ

s
=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ, then

∆́; É∆ ⊢ Ć : Θ́; ÉΘ.

No surprise ∆; E∆ ⊢ C : Θ; EΘ
a
−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ, for

incoming label a, then ∆́; É∆ is a conservative
extension of ∆; E∆ . For outgoing steps, the
situation is dual.

Soundness of legal trace system: If ∆0;⊢ C : Θ0; and

∆0;⊢ C : Θ0;
t

=⇒, then ∆0 ⊢ t : trace Θ0.
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