
Heap-Abstraction

for an Object-Oriented Calculus

with Thread Classes

E. Ábrahám A. Grüner M. Steffen

Albert-Ludwigs-University Freiburg, Christian-Albrechts University Kiel

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Starting point
• component = “program fragment” = “open program”

• environment = “context” = “observer”

• compositional semantics

f

Component Environment

I
n
t
e
r

a
c
e

Starting point
• question:

what’s observable of an open class-based,
object-oriented, multi-threaded program

• goal: fully-abstract semantics

f

Component

I
n
t
e
r

a
c
e

Full abstraction
• natural definition of equivalence of program fragments

• basically: comparison between two semantics, resp. two
implied notions of equality

• given a reference semantics, the 2nd one is
– neither too abstract = sound
– nor too concrete = complete

• Milner, Plotkin: λ-calculus

• Jeffrey, Rathke: concurrent ν-calculus

Notion of observation: Reference semantics

/ / component
public class P {

public s t a t i c vo id main (S t r i n g [] arg) {
O x = new O() ;
x .m(4 2) ;

}
}

Notion of observation: Reference semantics

/ / component
public class P {

public s t a t i c vo id main (S t r i n g [] arg) {
O x = new O() ;
x .m(4 2) ;

}
}

/ / e x te rn a l observer
class O {

public vo id m(i n t x) {
<some code>;
System . out . p r i n t l n (” success ”) ;

}
}

Notion of observation: Reference semantics
• pretty simple observational notion: “may-testing”:

compose a component with an observer, let it run
and see, whether the observer may be/is
successful

• P1 ⊑may P2: for all observers O: if P1 + O may be/is
successful, then so may be/is P2 + O.

Classes?
• open semantics (based on may testing/observational

equivalence): in principle: straightforward and understood

⇒ corresponding semantics is “traces” as interface
interactions (messages, method calls and returns)

what is the semantical import of classes?

• 3 issues:
1. interface separates component and observer classes
2. class = generators of object (via new)1

⇒ instantiation requests as interface interaction

1Classes in Java or C# serve also as kind of types, and furthermore for
inheritance. We ignore that mostly here.

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

2no direct access to instance variables

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

Labels:

γ ::= n〈call o.m(~v)〉 | n〈return(v)〉
| 〈spawn n of c(~v)〉 | ν(n:T).γ basic labels

a ::= γ? | γ! receive and send labels

2no direct access to instance variables

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary?

2no direct access to instance variables

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary?

• well, depends . . . does “arbitrary trace” mean ∈ Label∗ ?

2no direct access to instance variables

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary?

• well, depends . . . does “arbitrary trace” mean ∈ Label∗ ?
• we know P + O is a program of the language

• well-formed
• well-typed
• class-structured

2no direct access to instance variables

Problems to tackle for an open f-a semantics
• “message passing”2 framework ⇒ in first approx.:

semantics = message interchange at the interface

• open = environment absent/arbitrary

⇒ does this mean: environment behavior arbitrary?

• well, depends . . . does “arbitrary trace” mean ∈ Label∗ ?
• we know P + O is a program of the language

• well-formed
• well-typed
• class-structured

environment is arbitrary but realizable

2no direct access to instance variables

Open semantics
• operational description:

• assumption/commitment formulation

• Ass ⊢ C : Comm a
−→ ´Ass ⊢ Ć : ´Comm

• interface: 3 orthogonal abstractions:
• static abstraction: type system
• abstraction of the stack structure of thread(s)
• dynamic abstraction of the heap topology

Open semantics
• operational description:

• assumption/commitment formulation

• Ass ⊢ C : Comm a
−→ ´Ass ⊢ Ć : ´Comm

• interface: 3 orthogonal abstractions:
• static abstraction: type system
• abstraction of the stack structure of thread(s)
• dynamic abstraction of the heap topology

As illustration, let us have a look at incoming calls.
Basically, an incoming call can always arrive. But:

Is each incoming call realizable?

1. Static abstraction: type system

/ / component
public class P{

public vo id m(C x){
. . .

}
}

E.g.: Method m of o:P must have one parameter of type C.

 Traces

. . . n〈call o.m(o′)〉? . . .

with o, o′ : P are not realizable.

2. Abstraction of the stack structure
E.g.:

• A thread must start its execution on the side of its thread
class.

• Calls and returns of a thread must occur pairwise in a
nested fashion.

• Each call returns to its caller.

 Traces
. . .

n〈call o.m(. . .)〉?
n〈call o′.m(. . .)〉?
. . .

are not realizable.

3. Dynamic abstraction of the heap topology

/ / component
public class P {

. . .

public vo id m() {
C x = new C () ;
C y = x .m() ;

}
}

Is a trace
. . .

ν(o2 : C).n〈call o2.m()〉!
ν(o3 : C).n′〈call o3.m()〉!
n′〈return(o2)〉?
. . .

realizable?

Dynamic heap abstraction example

EnvironmentComponent

o1

P

o2

C

o1 creates o2

o1 calls o2.m()

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m()

o3 returns o2

o2 and o3 cannot “know” each other!

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m′(o2)

o3 returns o2

merging!

Dynamic heap abstraction: example

EnvironmentComponent

o1

P

o2

C

o3

o1 creates o2

o1 calls o2.m()

o1 creates o3

o1 calls o3.m′(o2)

o2 returns o3

merging!

Dynamic aspects of cliques
• we have seen: cliques can merge

• assumption: names are never forgotten
⇒ cliques never fall apart again

• clique evolution represents a tree:

o1 o2

o3
o1, o2

o1, o2, o3

merging comm. step

merging comm. step

Open semantics and heap abstraction
• exact interface behavior

⇒ abstraction of the heap topology necessary

• keep book about “who has been told what”:

∆; E∆ ⊢ C : Θ; EΘ

• assumption context: E∆ ⊆ ∆ × (∆ + Θ) = pairs of objects

• written o1 →֒ o2 :

• worst case: equational theory implied by E∆ (on ∆):

E∆ ⊢ o1 ⇌ o2

(for o2 ∈ Θ: E∆ ⊢ o1 ⇌; →֒ o2)

Dynamic heap abstraction
• outgoing call

• both caller and callee are known
• a = n〈call ocallee.l(~v)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• update: É∆ = E∆ + ocallee →֒ ~v

Dynamic heap abstraction
• outgoing call

• both caller and callee are known
• a = n〈call ocallee.l(~v)〉!

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• update: É∆ = E∆ + ocallee →֒ ~v

• incoming call
• only callee is known, caller is guessed
• a = n〈call ocallee.l(~v)〉?

∆; E∆ ⊢ C : Θ; EΘ
a

−−−−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

• check:3 E∆ ⊢ ocaller →֒ ~v

3actually, it’s É∆ instead of E∆.

Simplified rule

a = n〈call or .l(~v)〉?

update contexts: Θ́; ÉΘ = Θ; EΘ + or →֒ ~v , n
check context: ∆́; É∆ ⊢ os ⇌→֒ ~v , or : Θ́

CALLI
∆; E∆ ⊢ C : Θ; EΘ

a
−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ

Where are we?
Open semantics in the presence of classes

• static abstraction of type system

• abstraction of the stack structure

• abstraction of heap topology

• formalized in some “object calculus”

But we are still not ready...

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Order of events
• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable4

c1

c2

Θ ∆

4Take care of merging

Order of events
• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable4

c1

c2

Θ ∆

c1

c2

Θ ∆

4Take care of merging

Order of events
• separate observer cliques

• separate observer cliques cannot cooperate

⇒ order of interaction not globally observable4

c1

c2

Θ ∆

c1

c2

Θ ∆

c1

c2

Θ ∆

4Take care of merging

Order of events
• an observer reporting success, could additionally observe,

that the interaction with the other clique is a prefix of the
original, but not longer

∆Θ

succ

Order of events
• an observer reporting success, could additionally observe,

that the interaction with the other clique is a prefix of the
original, but not longer

∆Θ

succ

∆Θ

succ

Order of events
• an observer reporting success, could additionally observe,

that the interaction with the other clique is a prefix of the
original, but not longer

∆Θ

succ

∆Θ

succ

∆Θ

⊥

Trace semantics

Definition (⊑trace)
Ξ0 ⊢ C1 ⊑trace C2, if the following holds. For all Ξ0 ⊢ C1

t
=⇒ and

all environment cliques [ot] after t , there exists Ξ0 ⊢ C2
s

=⇒
such that

1. there exists an environment clique [os] after s such that
Ξ0 ⊢ s ↓[os]≍∆ t ↓[oa], and

2.
Ξ0 ⊢ t 42∆ s.

• ≍∆: up-to swapping

• 42∆: up-to swapping, replay, prefix

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Completeness: line of argument
• goal: if C1 ⊑may C2, then C1 ⊑trace C2

• so, given a legal trace s ∈ [[C1]]trace, do
– construct a complementary context Cs̄

– composition: program + context may do the observation

Cs̄[C1] −→
∗ success

– observational equivalence: C2 may do that, too:

Cs̄[C2] −→
∗ success

– decomposition:5 s ∈ [[C2]]trace

⇒ problems for completeness (apart from technicalities)
1. definability ⇒ what are legal traces?
2. what can be observed/distinguished?

5That s is a trace of C2 by decomposition is not a direct consequence. I
ignore that here.

introduction

classes and observable behavior

consequences (closure conditions)

completeness

conclusion

Conclusions
• Fully abstract semantics for an

• OO,
• class-based,
• multi-threaded (thread-classes)

language.
• Abstractions:

• type system
• stack structure
• heap topology

• Extensions:
• monitors
• subtyping (and subclassing), cloning, . . .
• (fully) compositional semantics

Results
• in the setting of = may-testing equivalence

– exactly one kind of observation (e.g., “success”)
– terminal i.e., not repeated observation

⇒ trace semantics gets weakened into a partial order
semantics, relative to

• dynamic cliques of connectivity of objects

• note: we don’t allow to observe (e.g.) divergence!
• note: if we allowed

– different, repeated observations (for instance
success-method + divergence), or

– if we had a global shared variables (e.g., stdout)

we are back in linear trace semantics

Results
Subject reduction: ∆; E∆ ⊢ C : Θ; EΘ

s
=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ,

then ∆́ ⊢ Ć : Θ́. A fortiori: If ∆,Σ,Θ ⊢ n : T , then
∆́, Σ́, Θ́ ⊢ n : T .

Soundness of connectivity abstraction:
∆; E∆ ⊢ C : Θ; EΘ

s
=⇒ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ, then

∆́; É∆ ⊢ Ć : Θ́; ÉΘ.

No surprise ∆; E∆ ⊢ C : Θ; EΘ
a
−→ ∆́; É∆ ⊢ Ć : Θ́; ÉΘ, for

incoming label a, then ∆́; É∆ is a conservative
extension of ∆; E∆ . For outgoing steps, the
situation is dual.

Soundness of legal trace system: If ∆0;⊢ C : Θ0; and

∆0;⊢ C : Θ0;
t

=⇒, then ∆0 ⊢ t : trace Θ0.

	introduction
	classes and observable behavior
	consequences (closure conditions)
	completeness
	conclusion
	appendix

