
Abstract Interface Behavior of
Object-Oriented Languages with Monitors

Martin Steffen

Christian-Albrechts University Kiel

Oslo

20 Februrary 2006

Structure

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

Introduction
• considered so far

• classes and instantiation
⇒ heap
• multithreading (vs. sequential/deterministic programs)
• connectivity

• here: synchronization/monitors

Monitors

• shared (instance) state + concurrency ⇒ mutex

• sync. mechanism: monitors

• for instance in Java
• here

• no synchronized blocks
• no wait/signal1

• no connectivity

• but:
• re-entrant monitors (recursion)

• deliverable for task 1 (“compositionality and modularity: a
semantic approach”), subtask 1.c (“basic features: libraries
and synchronization protocols”), cf. [2, Sec. 7.2].

1In Java: wait and notify.

Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!

Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!

Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!

Road map

• incorporate monitors into the semantics
• characterization of the interface behavior

• may and must approximation of lock-ownership

• design goals
• (preferably) seamless extension of the calculus with an
• eye to compositionality

⇒ clean separation of concerns between

assumptions vs. commitments

• intuitively:
• enabledness of input must depend only on the environment

(= assumption)
• enabledness of output must depend only on the component

(= commitments)

• interface trace must contain all relevant information relevant
(and not part of the internal state(s))

• cf. game theory

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

Syntax

• modest changes

• objects with locks

• extend object = class + fields (written o[c, F] to “class +
fields + lock”

o[c, F , n]

(lock n = reference to thread)

Syntax

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F , n] | n〈t〉 program
O ::= F , M object
M ::= lu = m, . . . , lu = m, ls = m, . . . , ls = m method suite
F ::= lu = f , . . . , lu = f fields
m ::= ς(n:T).λ(x :T , . . . , x :T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n field
t ::= v | stop | let x :T = e in t thread
e ::= t | if v = v then e else e | if undef (v .l) then e else e expr.

| v .l(v , . . . , v) | v .l := v | currentthread
| new n | new〈t〉

v ::= x | n values

Semantics

1. operational semantics

2. remember the design-goals
3. two stages

• internal semantics
• closed system
• spec. of the “virtual machine”

• external semantics
• interaction with environment via
• message passing (calls/returns)

first attempt

• example: incoming call of unsynchronized method

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉

first attempt

• example: incoming call of synchronized method

• assume: lock is free

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ o[c, F ′,⊥thread] ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ o[c, F ′, n] ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉

first attempt

• example: incoming call of synchronized method

• assume: lock is free

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ o[c, F ′,⊥thread] ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ o[c, F ′, n] ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉

• problem:
• internal and external behavior not separated
• whether the incoming call is possible: dependent on the

component-internal state,2 i.e.,
• the history trace doesn’t contain enough information to

determine enabledness
2Note: for tblocked , the problem is not there even if it looks the same.

“Non-atomic lock grabbing”

• handing over of call:
• irrespective of availability of lock
• i.e., no difference of external/intefaces rules for

synchronized vs. non-synchronized methods!
• component is input enabled

⇒ lock-grabbing (of comp. locks) is an internal step

• interface interaction: non-atomic lock-handling.

“Non-atomic lock grabbing”

• handing over of call:
• irrespective of availability of lock
• i.e., no difference of external/intefaces rules for

synchronized vs. non-synchronized methods!
• component is input enabled

⇒ lock-grabbing (of comp. locks) is an internal step

• interface interaction: non-atomic lock-handling.

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉

Internal steps

c[(F , M)] ‖ o[c, F ′,⊥thread] ‖ n〈let x :T = o.ls(~v) in t〉 τ

−→

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = M.ls(o)(~v) in release(o); t〉

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = o.ls(~v) in t〉 τ

−→

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = M.ls(o)(~v) in t〉 CALLs
i2

• 2 internal rules for sync. methods

• note: re-entrancy, aux. syntax release

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

Interface description: Task

• cf. Andreas’ talk

• characterize possible interface behavior
• possible = adhering to the restriction of the language

• well-typed
• no violation of mutex

• rudimentary trace logic

Example (1)

• 2 calls, competing for the same (component) lock
• data dependence

• o′ received by the first call (of n1)
• returned by second thread n1 afterwards
• note: o′ is new

γc1?

γc2?

γ′
c1

!

γr2 !

program environment

• question: is that trace possible?

Example (1)

• 2 calls, competing for the same (component) lock
• data dependence

• o′ received by the first call (of n1)
• returned by second thread n1 afterwards
• note: o′ is new

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

• the answer is
no!

• data: “n1 before n2”
• monitors:

• the outgoing call of n1 shows that n1 must have the lock now
⇒ n2 cannot have it now: ⇒

“n2 before n1”

Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1? γc2?

(2)

Note: non-atomic lock-grabbing ⇒ no order!

Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1?

n1

��

γc2?

γ′
c1

!

(3)

Note: there is no order between events of n1 and n2!

Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1?

n1

��

o′

��

γc2?

n2

��
γ′

c1
! γr2!

ZZ

(4)

Note:

• data dependence because of o′

Conditions characterizing monitors

• apart from conditions concerning non-monitor features
• well-typedness
• freshness
• (connectivity)

• 3 types of dependecies/precedences between events

1. mutual exclusion:
If a thread has taken the lock of a monitor,
interactions of other threads with that monitor
must either occur before the lock is taken, or after
it has been released again.

2. data dependencies:
no value (unless generated new) can be
transmitted before it has been received.

3. control dependecies:
within 1 thread, the events are linearly ordered.

Lock ownership

• question:
given interaction of thread n, is the lock of object
o available

• first attempt:
“after call n〈call o.l()〉?, thread n owns the lock of
o.”

• alas: not true!

• complication: non-atomic lock-grabbing

• handing-over call ⇒ not necessarily obtaining lock

Lock ownership: non-atomic lock grabbing

• delayed observation:

“after
n〈call o.l()〉?

, thread n may own lock of
component object o. ”

• and later:

after
n〈call o.l()〉? n〈call o′.l()〉!

, thread n must
own lock of o.

• 2 approximations per thread:
• potential lock-ownership: “may”, written: ♦no
• necessary lock-ownership: “must”, written: �no

Lock-ownership: May-approximation

• given the trace t projected to one thread

• from the component-perspective3

after s, the thread may own the lock of o:

Ξ ⊢ s : ♦o

3dually for the environment.

Lock-ownership: May-approximation

⊢ s2 : balanced s2 6= ǫ Ξ ⊢ s1 : ♦o
M-♦

Ξ ⊢ s1 s2 : ♦o

receiver(s1γc) = o
M-I♦1

Ξ ⊢ s1 γc? : ♦o

receiver(s1γc) 6= o Ξ ⊢ s1 : ♦o
M-I♦2

Ξ ⊢ s1 γc? : ♦o

Ξ ⊢ s1 : ♦o
M-O♦

Ξ ⊢ s1 γc! : ♦o

Lock-ownership: Must-approximation

• similar system as in the may case

• based on the may-system3

• again from the component-perspective

after s, the thread must own the lock of o:

Ξ ⊢ s : �o

3but no mutual recursion

Lock-ownership: Must-approximation

Ξ ⊢ t : �o
M-I�1

Ξ ⊢ tγc? : �o

Ξ ⊢ tγr ?γ
′

r ! : ♦o

Ξ ⊢ t : �o
M-I�2

Ξ ⊢ tγr ? : �o

Ξ ⊢ t : ♦o
M-O�1

Ξ ⊢ tγc! : �o

Ξ ⊢ t : �o
M-O�2

Ξ ⊢ tγr ! : �o

Illustration

Example

t = γc? = (νΞ)n〈call or .l(o)〉? .

then
Ξ ⊢ t : ♦or and Ξ ⊢ t : ¬♦o

Note: ♦ is a local interpretation.

Example

t = γc?γr ! = (νΞ)n〈call or .l()〉? n〈return()〉! .

Then:
Ξ ⊢ γc? : ♦nor but Ξ 6⊢ γc? : �nor

and

Ξ ⊢ t : ¬♦or

Mutual exclusion

• here: again for component locks
• “global” perspective: not just one thread
• mutex precedence edges for event a after r wrt.

component object o.

MΘ(ra, o)

• auxiliary definitions:
• “after may”: ♦́(t , o)
• “before must”: �̀(t , o)

• edges: ⊢ a1 _
m a2

• distinction for a between
• incoming communication

• no condition for incoming returns
• incoming calls

• outgoing communication: 2 conditions
• a before other threads have taken the lock
• after

Mutual exclusion

MΘ(rγc?, o) = ♦́ 6=n(r , o) _ γc?
MΘ(rγr?, o) = {}

MΘ(rγ!, o) = γ! _ �̀ 6=n(r , o),

♦́ 6=n(r , o) _ �̀n(rγ!, o)

data dependence

• jugment

⊢Θ r : γ?_do

if o ∈ names(γ) and r ′γ? is a prefix of r .

• “o is potentially data-dependent on event/label γ? of trace
r ”

• note: it’s only potential dependence

DΘ(rγ!) = {~γ? _ γ!} where ⊢Θ ~γ? _
d fn(γ!) ∩ ∆(r)

DΘ(rγ?) = {} .

For ∆, the definitions are applied dually.

control dependencies

• precedence nr. 3

• trivial

⇒ the events within each trace are linearly ordered

• notation
⊢ a′

_
c a

putting it together: legal traces

• formal system to characterize interface behavior

• non-branching :-)

• judgment:

Ξ; G ⊢ r ⊲ s : trace

• “after r and with assumption/commitment-contexts Ξ and
G, the trace s is possible”

• context G:
• precedence graphs
• cleanly separated into G∆ and GΘ

• 3 reasons for precedence:
1. _

m

2. _
d

3. _
c

• G must remain acyclic: ⊢ G ok

putting it together: legal traces

Ξ ⊢ r ⊲ os
a
→ or Ξ́ = Ξ + a Ξ́ ⊢ a :ok

ǴΘ = GΘ ∪ GΘ(ra, or) Ǵ∆ = G∆ ∪ G∆(ra, os) ⊢ Ǵ∆ :ok

a = ν(Ξ′). n〈call or .l(~v)〉? Ξ́; Ǵ ⊢ r a ⊲ s : trace
L-CALLI

Ξ; G ⊢ r ⊲ a s : trace

Results

• Soundness of the abstraction

• in particular: soundness of may and must:

Lemma (Soundness of lock ownership)

1. Ξ ⊢ C t
=⇒ Ξ́ ⊢ Ć and Ξ ⊢ t : �no, then thread n has the

lock of o in Ć.

2. If Ξ ⊢ C t
=⇒ and Ξ ⊢ t : ♦no and there does not exist an

n′ 6= n s.t. Ξ ⊢ t : �n′o, then Ξ ⊢ C t
=⇒ Ξ́ ⊢ Ć for some

Ξ́ ⊢ Ć s.t. the thread n has the lock of o in Ć.

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

Future work

• combination with cross-border instantiation/connectivity3

• thread coordination:4

• wait
• signal

• “cleaner” characterization:
• non-determinism is theoretically (and practically)

unpleasant
• better: “real” strongest post-condition
• “event-structures”?

3conceptually not too complicated, technically tricky.
4no ideas yet

References I
[1] E. Ábrahám, A. Grüner, and M. Steffen.

Abstract interface behavior of object-oriented languages with monitors.
Jan. 2006.
Submitted as conference contribution.

[2] Mobi-j II. Formal methods for components and objects.
A continuation proposal for cooperation between research groups in bilateral research program NWO/DFG,
May 2004.

	introduction
	semantics
	interface description
	lock ownership
	data dependencies
	control dependencies

	conclusion

