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Introduction
• considered so far

• classes and instantiation
⇒ heap
• multithreading (vs. sequential/deterministic programs)
• connectivity

• here: synchronization/monitors



Monitors

• shared (instance) state + concurrency ⇒ mutex

• sync. mechanism: monitors

• for instance in Java
• here

• no synchronized blocks
• no wait/signal1

• no connectivity

• but:
• re-entrant monitors (recursion)

• deliverable for task 1 (“compositionality and modularity: a
semantic approach”), subtask 1.c (“basic features: libraries
and synchronization protocols”), cf. [2, Sec. 7.2].

1In Java: wait and notify.



Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!



Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!



Why is this interesting?

• fundamental question:

what is observable of an oo program?

• Now:
Does the addition of monitors increase
or decrease the discriminating power
or not?

• intuitively: 2 plausible answers:
• the observer sees less!
• the observer sees more!



Road map

• incorporate monitors into the semantics
• characterization of the interface behavior

• may and must approximation of lock-ownership

• design goals
• (preferably) seamless extension of the calculus with an
• eye to compositionality

⇒ clean separation of concerns between

assumptions vs. commitments

• intuitively:
• enabledness of input must depend only on the environment

(= assumption)
• enabledness of output must depend only on the component

(= commitments)

• interface trace must contain all relevant information relevant
(and not part of the internal state(s))

• cf. game theory
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Syntax

• modest changes

• objects with locks

• extend object = class + fields (written o[c, F ] to “class +
fields + lock”

o[c, F , n]

(lock n = reference to thread)



Syntax

C ::= 0 | C ‖ C | ν(n:T ).C | n[(O)] | n[n, F , n] | n〈t〉 program
O ::= F , M object
M ::= lu = m, . . . , lu = m, ls = m, . . . , ls = m method suite
F ::= lu = f , . . . , lu = f fields
m ::= ς(n:T ).λ(x :T , . . . , x :T ).t method
f ::= ς(n:T ).λ().v | ς(n:T ).λ().⊥n field
t ::= v | stop | let x :T = e in t thread
e ::= t | if v = v then e else e | if undef (v .l) then e else e expr.

| v .l(v , . . . , v) | v .l := v | currentthread
| new n | new〈t〉

v ::= x | n values



Semantics

1. operational semantics

2. remember the design-goals
3. two stages

• internal semantics
• closed system
• spec. of the “virtual machine”

• external semantics
• interaction with environment via
• message passing (calls/returns)



first attempt

• example: incoming call of unsynchronized method

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉
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• assume: lock is free
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• example: incoming call of synchronized method

• assume: lock is free

Ξ́ = Ξ + a Ξ́ ⊢ ⌊a⌋ : T

a = ν(Ξ′). n〈call or .l(~v)〉? tblocked = let x ′:T ′ = block in t

Ξ ⊢ C ‖ o[c, F ′,⊥thread ] ‖ n〈tblocked 〉
a
−→

Ξ́ ⊢ C ‖ C(Θ′) ‖ o[c, F ′, n] ‖ n〈let x :T = or .l(~v) in return x ; tblocked〉

• problem:
• internal and external behavior not separated
• whether the incoming call is possible: dependent on the

component-internal state,2 i.e.,
• the history trace doesn’t contain enough information to

determine enabledness
2Note: for tblocked , the problem is not there even if it looks the same.



“Non-atomic lock grabbing”

• handing over of call:
• irrespective of availability of lock
• i.e., no difference of external/intefaces rules for

synchronized vs. non-synchronized methods!
• component is input enabled

⇒ lock-grabbing (of comp. locks) is an internal step

• interface interaction: non-atomic lock-handling.
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Internal steps

c[(F , M)] ‖ o[c, F ′,⊥thread ] ‖ n〈let x :T = o.ls(~v) in t〉 τ

−→

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = M.ls(o)(~v) in release(o); t〉

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = o.ls(~v) in t〉 τ

−→

c[(F , M)] ‖ o[c, F ′, n] ‖ n〈let x :T = M.ls(o)(~v) in t〉 CALLs
i2

• 2 internal rules for sync. methods

• note: re-entrancy, aux. syntax release
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Interface description: Task

• cf. Andreas’ talk

• characterize possible interface behavior
• possible = adhering to the restriction of the language

• well-typed
• no violation of mutex

• rudimentary trace logic



Example (1)

• 2 calls, competing for the same (component) lock
• data dependence

• o′ received by the first call (of n1)
• returned by second thread n1 afterwards
• note: o′ is new

γc1?

γc2?

γ′
c1

!

γr2 !

program environment

• question: is that trace possible?
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Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

• the answer is
no!

• data: “n1 before n2”
• monitors:

• the outgoing call of n1 shows that n1 must have the lock now
⇒ n2 cannot have it now: ⇒

“n2 before n1”



Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1? γc2?

(2)

Note: non-atomic lock-grabbing ⇒ no order!



Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1?

n1

��

γc2?

γ′
c1

!

(3)

Note: there is no order between events of n1 and n2!



Example (1)

γc1? γc2? γ′

c1
! γr2 ! =

(νo′:c)n1〈call o.l(o′)〉? n2〈call o.l()〉? n1〈call õ.l()〉! n2〈return(o′)〉!

• question: is that trace possible?

γc1?

n1

��

o′

��

γc2?

n2

��
γ′

c1
! γr2!

ZZ

(4)

Note:

• data dependence because of o′



Conditions characterizing monitors

• apart from conditions concerning non-monitor features
• well-typedness
• freshness
• (connectivity)

• 3 types of dependecies/precedences between events

1. mutual exclusion:
If a thread has taken the lock of a monitor,
interactions of other threads with that monitor
must either occur before the lock is taken, or after
it has been released again.

2. data dependencies:
no value (unless generated new) can be
transmitted before it has been received.

3. control dependecies:
within 1 thread, the events are linearly ordered.



Lock ownership

• question:
given interaction of thread n, is the lock of object
o available

• first attempt:
“after call n〈call o.l()〉?, thread n owns the lock of
o.”

• alas: not true!

• complication: non-atomic lock-grabbing

• handing-over call ⇒ not necessarily obtaining lock



Lock ownership: non-atomic lock grabbing

• delayed observation:

“after
n〈call o.l()〉?

, thread n may own lock of
component object o. ”

• and later:

after
n〈call o.l()〉? n〈call o′.l()〉!

, thread n must
own lock of o.

• 2 approximations per thread:
• potential lock-ownership: “may”, written: ♦no
• necessary lock-ownership: “must”, written: �no



Lock-ownership: May-approximation

• given the trace t projected to one thread

• from the component-perspective3

after s, the thread may own the lock of o:

Ξ ⊢ s : ♦o

3dually for the environment.



Lock-ownership: May-approximation

⊢ s2 : balanced s2 6= ǫ Ξ ⊢ s1 : ♦o
M-♦

Ξ ⊢ s1 s2 : ♦o

receiver(s1γc) = o
M-I♦1

Ξ ⊢ s1 γc? : ♦o

receiver(s1γc) 6= o Ξ ⊢ s1 : ♦o
M-I♦2

Ξ ⊢ s1 γc? : ♦o

Ξ ⊢ s1 : ♦o
M-O♦

Ξ ⊢ s1 γc! : ♦o



Lock-ownership: Must-approximation

• similar system as in the may case

• based on the may-system3

• again from the component-perspective

after s, the thread must own the lock of o:

Ξ ⊢ s : �o

3but no mutual recursion



Lock-ownership: Must-approximation

Ξ ⊢ t : �o
M-I�1

Ξ ⊢ tγc? : �o

Ξ ⊢ tγr ?γ
′

r ! : ♦o

Ξ ⊢ t : �o
M-I�2

Ξ ⊢ tγr ? : �o

Ξ ⊢ t : ♦o
M-O�1

Ξ ⊢ tγc! : �o

Ξ ⊢ t : �o
M-O�2

Ξ ⊢ tγr ! : �o



Illustration

Example

t = γc? = (νΞ)n〈call or .l(o)〉? .

then
Ξ ⊢ t : ♦or and Ξ ⊢ t : ¬♦o

Note: ♦ is a local interpretation.

Example

t = γc?γr ! = (νΞ)n〈call or .l()〉? n〈return()〉! .

Then:
Ξ ⊢ γc? : ♦nor but Ξ 6⊢ γc? : �nor

and

Ξ ⊢ t : ¬♦or



Mutual exclusion

• here: again for component locks
• “global” perspective: not just one thread
• mutex precedence edges for event a after r wrt.

component object o.

MΘ(ra, o)

• auxiliary definitions:
• “after may”: ♦́(t , o)
• “before must”: �̀(t , o)

• edges: ⊢ a1 _
m a2

• distinction for a between
• incoming communication

• no condition for incoming returns
• incoming calls

• outgoing communication: 2 conditions
• a before other threads have taken the lock
• after



Mutual exclusion

MΘ(rγc?, o) = ♦́ 6=n(r , o) _ γc?
MΘ(rγr?, o) = {}

MΘ(rγ!, o) = γ! _ �̀ 6=n(r , o),

♦́ 6=n(r , o) _ �̀n(rγ!, o)



data dependence

• jugment

⊢Θ r : γ?_do

if o ∈ names(γ) and r ′γ? is a prefix of r .

• “o is potentially data-dependent on event/label γ? of trace
r ”

• note: it’s only potential dependence

DΘ(rγ!) = {~γ? _ γ!} where ⊢Θ ~γ? _
d fn(γ!) ∩ ∆(r)

DΘ(rγ?) = {} .

For ∆, the definitions are applied dually.



control dependencies

• precedence nr. 3

• trivial

⇒ the events within each trace are linearly ordered

• notation
⊢ a′

_
c a



putting it together: legal traces

• formal system to characterize interface behavior

• non-branching :-)

• judgment:

Ξ; G ⊢ r ⊲ s : trace

• “after r and with assumption/commitment-contexts Ξ and
G, the trace s is possible”

• context G:
• precedence graphs
• cleanly separated into G∆ and GΘ

• 3 reasons for precedence:
1. _

m

2. _
d

3. _
c

• G must remain acyclic: ⊢ G ok



putting it together: legal traces

Ξ ⊢ r ⊲ os
a
→ or Ξ́ = Ξ + a Ξ́ ⊢ a :ok

ǴΘ = GΘ ∪ GΘ(ra, or ) Ǵ∆ = G∆ ∪ G∆(ra, os) ⊢ Ǵ∆ :ok

a = ν(Ξ′). n〈call or .l(~v)〉? Ξ́; Ǵ ⊢ r a ⊲ s : trace
L-CALLI

Ξ; G ⊢ r ⊲ a s : trace



Results

• Soundness of the abstraction

• in particular: soundness of may and must:

Lemma (Soundness of lock ownership)

1. Ξ ⊢ C t
=⇒ Ξ́ ⊢ Ć and Ξ ⊢ t : �no, then thread n has the

lock of o in Ć.

2. If Ξ ⊢ C t
=⇒ and Ξ ⊢ t : ♦no and there does not exist an

n′ 6= n s.t. Ξ ⊢ t : �n′o, then Ξ ⊢ C t
=⇒ Ξ́ ⊢ Ć for some

Ξ́ ⊢ Ć s.t. the thread n has the lock of o in Ć.
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Future work

• combination with cross-border instantiation/connectivity3

• thread coordination:4

• wait
• signal

• “cleaner” characterization:
• non-determinism is theoretically (and practically)

unpleasant
• better: “real” strongest post-condition
• “event-structures”?

3conceptually not too complicated, technically tricky.
4no ideas yet
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