Abstract Interface Behavior of
Object-Oriented Languages with Monitors

Martin Steffen
Christian-Albrechts University Kiel

Oslo

20 Februrary 2006

Structure

introduction

semantics

interface description
lock ownership
data dependencies
control dependencies

conclusion

introduction

A

Introduction

e considered so far
e classes and instantiation
= heap
e multithreading (vs. sequential/deterministic programs)
e connectivity

¢ here: synchronization/monitors

A

Monitors

¢ shared (instance) state + concurrency = mutex
e sync. mechanism: monitors

e for instance in Java
e here
e no synchronized blocks
e no wait/signal®
e NO connectivity
e but:
e re-entrant monitors (recursion)
e deliverable for task 1 (“‘compositionality and modularity: a

semantic approach”), subtask 1.c (“basic features: libraries
and synchronization protocols”), cf. [2, Sec. 7.2].

Yn Java: wait and notify.

Why is this interesting?

e fundamental question:
what is observable of an oo program?

e Now:

Does the addition of monitors increase
or decrease the discriminating power
or not?

e intuitively: 2 plausible answers:

Why is this interesting?

e fundamental question:
what is observable of an oo program?

e Now:

Does the addition of monitors increase
or decrease the discriminating power
or not?

e intuitively: 2 plausible answers:
o the observer sees less!

Why is this interesting?

e fundamental question:
what is observable of an oo program?

e Now:

Does the addition of monitors increase
or decrease the discriminating power
or not?

e intuitively: 2 plausible answers:

e the observer sees less!
e the observer sees more!

Road map

e incorporate monitors into the semantics
¢ characterization of the interface behavior
e may and must approximation of lock-ownership
e design goals
o (preferably) seamless extension of the calculus with an

e eye to compositionality
= clean separation of concerns between

assumptions vs. commitments

e intuitively:
e enabledness of input must depend only on the environment
(= assumption)
e enabledness of output must depend only on the component
(= commitments)
e interface trace must contain all relevant information relevant
(and not part of the internal state(s))
e cf. game theory

A

semantics

A

Syntax

e modest changes
e objects with locks

o extend object = class + fields (written o[c, F] to “class +
fields + lock”
o[c,F,n]

(lock n = reference to thread)

Syntax

O ~=+-3TMZ00O

O|C||C|v(n:T).C|n[O]|n[n,F,n]|n) program

F,M object
M=m,...,lN=m,5=m,....IS=m method suite
U =f,.. . V=f fields
s(NT)AX:T,...,x:T)t method
s(N:T)A)V | s(n:T).A().Ln field

v | stop | letx:T =eint thread

t | ifv = vtheneelsee | ifundef(v.l)theneelse e expr.
v.iI(v,...,v) | v.l :=v | currentthread

new n | new(t)

X|n values

A

Semantics

1. operational semantics

2. remember the design-goals

3. two stages
e internal semantics

e closed system
e spec. of the “virtual machine”

e external semantics

e interaction with environment via
e message passing (calls/returns)

A

first attempt

e example: incoming call of unsynchronized method

===+a =k |a):T

a=v(Z'). n(call 0;.1(V))? tyiockea = let x":T’ = block int

=+ C || N{tpiocked) 2
ZEC | C(@) | nletx:T = o,.I(V)inreturn x; tocked)

first attempt

e example: incoming call of synchronized method
e assume: lock is free

===+a Ztr|a:T
a=v(Z'). n(call o;.1(V))? tyiockea = let x":T’ = block int

=kC ” O[Ca FI,J—thread] || n<tblocked> i’
=+ C | C(@)] ofc,F’,n] || nllet x:T = o,.I(V)inreturn X; tyocked)

A

first attempt

e example: incoming call of synchronized method
e assume: lock is free

===+a Z+la|:T
a=v(Z'). n(call o;.1(V))? tyiockea = let x":T’ = block int

=kC ” O[Ca Fla J—thread] || n<tblocked> i’
FC || C(@)] o[c,F’,n] || n{let x:T = o,.I(V)inreturn X; tpiocked)

I

e problem:
e internal and external behavior not separated
o whether the incoming call is possible: dependent on the
component-internal state,? i.e.,
¢ the history trace doesn’t contain enough information to
determine enabledness
2Note: for thocked, the problem is not there even if it lookssthe .same.

A

“Non-atomic lock grabbing”

¢ handing over of call:

e irrespective of availability of lock

e i.e., no difference of externall/intefaces rules for
synchronized vs. non-synchronized methods!

e component is input enabled

= lock-grabbing (of comp. locks) is an internal step
e interface interaction: non-atomic lock-handling.

“Non-atomic lock grabbing”

¢ handing over of call:

e irrespective of availability of lock

e i.e., no difference of externall/intefaces rules for
synchronized vs. non-synchronized methods!

e component is input enabled

= lock-grabbing (of comp. locks) is an internal step
e interface interaction: non-atomic lock-handling.

=+a ZhHla|:T
a=v(Z'). n(call o;.1(V))? tyiockea = let x":T’ = block int

=+ C || N{tbiocked) 2
=+ C | C(@) | nlletx:T = o,.I(V)in return X; toiocked)

Internal steps

c[(F,M) |l o[c,F’,] || n{letx:T =o.I5(V)int) =
c[F,M) || o[c,F’,n] || n{letx:T = M.I(0)(V)in

c[F,M) | o[c,F’,n] || n{letx:T = o0.I5(V)int) &
c[F,M) || o[c,F’,n] || n{letx:T = M.IS(0)(V)int)

CALL}
2

e 2 internal rules for sync. methods
e note: re-entrancy, aux. syntax release

interface description
lock ownership
data dependencies
control dependencies

A

Interface description: Task

cf. Andreas’ talk

characterize possible interface behavior
possible = adhering to the restriction of the language

o well-typed
e no violation of mutex

rudimentary trace logic

Example (1)

e 2 calls, competing for the same (component) lock
e data dependence

e 0’ received by the first call (of n;)
e returned by second thread n; afterwards

e note: o’ is new)
program environment

FYI‘Z! ‘

e question: is that trace possible?

Example (1)

e 2 calls, competing for the same (component) lock
e data dependence
e 0’ received by the first call (of ny)

e returned by second thread n; afterwards
e note: o’ is new

Yer ! Voo ? 7{:1! Ve, ! =

(vo’:c)ny(call 0.1(0”))? nz{call 0.I())? ny{call 6.1())! ny{return(o’))!

e question: is that trace possible?

Example (1)

Pycl? PyCZ? A/(/:l l nyz I =

(vo’:c)nyi(call 0.1(0"))? np(call 0.1())? ni(call 6.1())! na(return(o’))!

guestion: is that trace possible?

. |no!
the answer is

data: “n; before ny”

monitors:
e the outgoing call of n; shows that n; must have the lock now
= n, cannot have it now: =
“n, before ny”

A

Example (1)

Pycl? ’702? A/(/:l l nyz I =

(vo’:c)nyi(call 0.1(0"))? np(call 0.1())? ni(call 6.1())! na(return(o’))!

e question: is that trace possible?

7C1 ? ’YC2 ?

2

Note: non-atomic lock-grabbing = no order!

Example (1)

Pycl? ’702? A/(/:l l nyz I =

(vo’:c)nyi(call 0.1(0"))? np(call 0.1())? ni(call 6.1())! na(return(o’))!

e question: is that trace possible?

7C1 ? ’YC2 ?

|

-

’YC]_ .

®3)

Note: there is no order between events of n; and n5!

Example (1)

Pycl? ’702? A/(/:l l nyz I =

(vo’:c)nyi(call 0.1(0"))? np(call 0.1())? ni(call 6.1())! na(return(o’))!

e question: is that trace possible?

7C1 ? ’YC2 ?

Note:
e data dependence because of 0’

Conditions characterizing monitors

e apart from conditions concerning non-monitor features
o well-typedness
¢ freshness
o (connectivity)

e 3 types of dependecies/precedences between events

1. mutual exclusion:
If a thread has taken the lock of a monitor,
interactions of other threads with that monitor
must either occur before the lock is taken, or after
it has been released again.

2. data dependencies:
no value (unless generated new) can be
transmitted before it has been received.

3. control dependecies:
within 1 thread, the events are linearly ordered.

Lock ownership

question:
given interaction of thread n, is the of object
available
first attempt:
“after call n{call 0.1())?, thread n owns the lock of

alas: not true!

complication: non-atomic lock-grabbing

handing-over call = not necessarily obtaining lock

Lock ownership: non-atomic lock grabbing

e delayed observation:

n(call 0.1())?
“after , thread n may own lock of
component object 0. ”
e and later:
n{call o.[()}? n{call o’.1())!
after (Qo 0 , thread n must
own lock of

e 2 approximations per thread:

¢ potential lock-ownership: “may”, written: ¢n0
e necessary lock-ownership: “must”, written: [J,0

Lock-ownership: May-approximation

e given the trace t projected to one thread
« from the component-perspective®
after s, the thread may own the lock of o:

3dually for the environment.

Lock-ownership: May-approximation

F s, : balanced Sy #e€ =k s1:900
M-
=Fs152:00
receiver(s;y.) =0 receiver(siyc) #0 =tk s1:00
B2 =0 3o, (5:7c) M-102
=k s177: 00 =k s177:00
=Fs; : 00
— M-09
=Fs1v!: 00

Lock-ownership: Must-approximation

e similar system as in the may case

« based on the may-system3

e again from the component-perspective
after s, the thread must own the lock of o:

3put no mutual recursion

Lock-ownership: Must-approximation

Sty 0o
=+t:0o =+t:0o
— M-10q M-100,
=kFty?:00 =Fty?:00
=Ft: 00 =Ft:0o0
— M-004 — M-00,
=k ty!: 0o =k ty!:0o

[llustration

Example

t =~:.? = (v=)n(call o;.1(0))? .

then
ZFt:0o and =ZFt:-=00

Note: ¢ is a local interpretation.

Example

t =7:?%! = (v=)n(call o;.1())? n(return())! .

Then:
ZF%?:0n0r but =t A:7: 040,

and

Mutual exclusion

here: again for component locks
“global” perspective: not just one thread

mutex precedence edges for event a after r wrt.

component object o.

M@(ra7 O)

auxiliary definitions:
o “after may”: {(t,0)
e “before must”: (J(t,0)
edges: Fa; —-Ma,
distinction for a between
e incoming communication
e no condition for incoming returns
e incoming calls
e outgoing communication: 2 conditions

e a before other threads have taken the lock
e after

A

Mutual exclusion

M@(r/YC?a O)
M@(r’)/r?, 0)

M@(r’YL O)

<,>7£n(r70) — Y’

{3

- ‘D#(r,g),
Qxn(r,0) — On(ry!,0)

data dependence

e jugment

For: 'y?deI

if 0 € names(~) and r'4? is a prefix of r.

e “0 is potentially data-dependent on event/label ~7 of trace
r”

e note: it's only potential dependence

Do(ry!) = {57 =~} wherekg 7?7 -9 fn(y!) N A(r)
Do(ry?) = {}.

For A, the definitions are applied dually.

control dependencies

e precedence nr. 3
e trivial
= the events within each trace are linearly ordered

e notation
Fa —Ca

putting it together: legal traces

o formal system to characterize interface behavior
non-branching :-)
judgment:

E;GFrDS:traceI

“after r and with assumption/commitment-contexts = and
G, the trace s is possible”
context G:

e precedence graphs
e cleanly separated into Gx and Gg
e 3 reasons for precedence:

m
d

1. —»
2. —

3. —»°

G must remain acyclic: - G ok

putting it together: legal traces

Zhr>os S0 Z=Z+a Zhra:ok
Go = Gg UGg(ra,01) Ga = GaUGa(ra,0s) + Ga 0k
a=v(=). n(call o I(V))? Z;GFrarp>s:trace

= Gkr>as:trace

L-CALLI

Results

e Soundness of the abstraction
e in particular: soundness of may and must:

Lemma (Soundness of lock ownership)

1. ZFC =% =k C and = I t : 0,0, then thread n has the
lock of oin C.

2. f=FC==and=Ft: On0 and there does not exist an
r]’;éps.t.El—t:Dn/o,thenEI—C:t>E'F,(':forsome
= F C s.t. the thread n has the lock of 0 in C.

conclusion

A

Future work

 combination with cross-border instantiation/connectivity®
e thread coordination:*

e wait

e signal
e “cleaner” characterization:

e non-determinism is theoretically (and practically)
unpleasant

e better: “real” strongest post-condition

e “event-structures™?

3conceptually not too complicated, technically tricky.
“no ideas yet

A

References |

[1] E.Abraham, A. Griiner, and M. Steffen.
Abstract interface behavior of object-oriented languages with monitors.
Jan. 2006
Submitted as conference contribution

Mobi-j Il. Formal methods for components and objects.
A continuation proposal for cooperation between research groups in bilateral research program NWO/DFG,

May 2004.

[2

A

	introduction
	semantics
	interface description
	lock ownership
	data dependencies
	control dependencies

	conclusion

