
Components, Objects, and Contracts

Olaf Owe
Department of Informatics
University of Oslo, Norway

olaf@ifi.uio.no

Gerardo Schneider
Department of Informatics
University of Oslo, Norway

gerardo@ifi.uio.no

Martin Steffen
Department of Informatics
University of Oslo, Norway

msteffen@ifi.uio.no

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.1.3
[Programming Techniques]: Concurrent programming;
D.1.5 [Programming Techniques]: Object-oriented pro-
gramming; F.3.1 [Logics and meanings of programs]:
Specifying and Verifying and Reasoning about Programs

Introduction
We propose to combine components with deontic contracts,
i.e., agreements between two or more components on what
they are obliged, permitted and forbidden when interacting.
This way, contracts are modelled after legal contracts from
conventional business or judicial arenas. Indeed, our work
aims at a framework for e-contracts, i.e., “electronic”versions
of legal documents describing the parties’ respective duties.
They go beyond standard behavioral interface descriptions,
which typically describe sets of interaction traces. In partic-
ular, contracts, in the intended application domain, involve
a deontic perspective, speaking about obligations, permis-
sions and prohibitions, and also contain clauses on what is
to happen in case the contract is not respected. This deontic
aspect is typical for natural language legal contracts which
we use as a starting point and which we aim to formalize.

The problem
We are concerned with finding a good programming and
specification language, and appropriate abstractions for de-
veloping components in an integrated manner within the
object-oriented paradigm. We are interested in enhancing
components with more sophisticated structures than inter-
faces, targeted towards e-contracts. In that context, we ad-
dress the following questions.

Design: How to develop components in a programming en-
vironment facilitating rapid prototyping and testing?

Composition and compatibility: How do we know that
two or more components will not conflict with each
other when put together?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007),September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

Substitutability: How to guarantee that replacing a com-
ponent will not introduce new unexpected behaviors?

Deontic specification: How to specify what a component
is supposed to do, what it may do, and what it should
not do?

Contract violation: How to react in case a component
does what it is not supposed to do?

These issues are crucial in component-based software de-
velopment and deployment. In fact, most of the questions,
perhaps apart from the deontic aspect, are not new to the
component-based software engineering community.

We propose a model combining the following ingredients:
1) As underlying object-oriented language, we use the con-
current language Creol. 2) As mentioned, we propose a no-
tion of deontic contract, written in a contract language. 3)
The contract is associated with the component model. 4) A
contract logic allows static and dynamic reasoning on com-
ponent consistency and conformance. 1In the rest of this
paper, we sketch the four ingredients in turn.

Creol
Creol [2] as underlying language is motivated as follows:

Concurrency: It is a language for open, distributed sys-
tems, supporting concurrency and asynchronous meth-
od calls. The concurrency model is that of loosely cou-
pled active objects with asynchronous communication.

Object-orientation: Creol is an object-oriented language,
with late binding and multiple inheritance. It is strong-
ly typed, supporting subtypes and sub-interfaces.

Interfaces: The language at the current state, already sup-
ports behavioral interfaces, based on assume-guarantee
specifications. In particular, its notion of co-interface
allows specification of required and provided interfaces.

Formal foundations: Creol has a formal operational se-
mantics defined in rewriting logic. The core of the
language has an operational semantics consisting of
only 11 rewrite rules. This makes it easy to extend and
modify the language and the semantics. We may reuse
the operational semantics when formalizing the exten-
sion to components. Based on the formal semantics,
the language comes with a simple reasoning system
and composition rules. Creol has an executable in-
terpreter defined in the Maude language and rewriting
tool. This provides a useful test-bed for the implemen-
tation and testing of our component-based extension.

Contract language
Formally, we let component interface descriptions be based
on the contract language CL developed in [5]. CL is a lan-
guage tailored for electronic contracts (e-contracts) with for-
mal semantics in an extension of the µ-calculus. The lan-
guage follows an out-to-do approach, i.e. where obligations,
permissions and prohibitions are applied to actions and not
to state-of-affairs. The language avoids the main classical
paradoxes of deontic logic and it is possible to express (con-
ditional) obligations, permissions and prohibitions over con-
current actions keeping their intuitive meaning. Moreover, it
is possible to represent (nested) CTDs (contrary-to-duty, i.e.
what happens when an obligation is not fulfilled) and CTPs
(contrary-to-prohibitions, i.e which action to be performed
in case of violating a prohibition).

Components and Contracts
We list some of the main features of contracts in the context
of component-based development and deployment. Con-
tracts associated with components enhance behavioral in-
terfaces and give the following added value:

1. If written in a formal language with formal seman-
tics and proof system, a contract can be proved to be
conflict-free, both by model checking and logical de-
duction techniques. The automatic checks can also
reveal incompleteness in the specification, for instance
it may indicate that no escalation is agreed upon in
case one of the partners acts contrary to its contract.

2. The use of contracts may assist the developer during
the development phase to check whether a component
may enter into conflict with others, through a static
analysis of contract compatibility. The appropriate
notion of compatibility in the presence of obligations,
permissions, and prohibitions needs to be developed.

3. A well-founded theory of contracts should provide the
following kinds of analysis:

• Determine whether a contract is covered by an-
other one, i.e. a well-defined notion of sub-contract.
This will help deciding whether a component may
be replaced by another one in a safe manner.

• Allow decisions on whether paying a penalty in
case of one contract violation is beneficial or not
when sub-contracting. Assume component A has
a contract with component B where it is stipu-
lated that A must “pay” x to B in case of con-
tract violation. Suppose now that such violation
depends on a service provided by C to A and that
there is a contract between A and C stating that
C must pay y to A in case of their own contract
violation. Then a theory of contracts would allow
A to determine whether it is good to compose
with B. During the development phase this kind
of information may help defining sub-contracting
which are not against a component’s own interest.

• A negotiation phase could be added prior to the
composition of two or more components. In this
phase a contract could be negotiated before the
final signature, as in the context of web services.

4. A run-time contract monitor will guarantee that the
contract is respected, including the penalties and esca-
lations in case of contract violation (CTDs and CTPs).
We expect such a monitor could be extracted from the
components contracts in a (semi-)automatic way.

Contract logic
The logical semantics of CL opens the way to use the logic
proof system of µ-calculus, as well as existing model check-
ers. Initial work on model checking a contract has been
presented in [4]. We propose to use the contract logic both
during the component’s development and deployment phase,
using Creol as the development platform.
Development Phase During this phase our framework
may be summarized as follows: a) Development: Each com-
ponents has associated one or more contracts in the sense
discussed above, i.e., specifying the obligations, permissions,
and prohibitions in the component’s interacting behavior.
b) Static Analysis: Before deployment the contract is for-
mally analyzed to guarantee it is contradiction free. This
might be done by using a proof system or by model check-
ing. Similarly, conformance between the component and its
contract can be proved. c) Testing/Simulation: It is well
known that static analysis techniques cannot validate every
aspect of a system. Testing and simulation are thus needed
to complement the above. Since Creol has formal semantics
in rewriting logic we propose to use the Maude environment
to simulate and test each component separately and its in-
teraction with other components being developed.
Deployment Phase After the component is released there
is still no complete guarantee of it being well suited for the
yet unknown platform where it will be executed. We propose
the following framework to increase confidence on the com-
ponent’s compatibility with its future environment. a) Pre-
execution Analysis: Before adding a new component to an
existing context where it will be composed with other com-
ponents, the corresponding contracts are checked to guaran-
tee their compatibility. If there are disagreements, a phase
of negotiation may start, or the components is simply re-
jected. This phase may be considered as a kind of static
analysis on the side of the execution platform. b) Execu-
tion: If the component is accepted after the analysis of the
previous phase, then it is deployed. A contract monitor
is launched to guarantee that the components behave ac-
cording to the contracts. In case of contract violation, the
monitor is responsible of taking the corresponding action as
stipulated in the contract for such situation, or cancel the
contract and disable the component.

Further details may be found in the accompanying tech-
nical report [3], representing the full version of the paper.

Acknowledgment. This work is partially supported by
the Nordunet 3 project Contract-Oriented Software Devel-
opment for Internet Services [1] and the EU-project Credo.

1. REFERENCES
[1] COSDIS. www.ifi.uio.no/~gerardo/nordunet3, 2007.

[2] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A
type-safe object-oriented model for distributed
concurrent systems. TCS, 365(1–2):23–66, Nov. 2006.

[3] O. Owe, G. Schneider, and M. Steffen. Components,
objects, and contracts. Technical Report 363, Dept. of
Informatics, Univ. of Oslo, Norway, August 2007.

[4] G. Pace, C. Prisacariu, and G. Schneider. Model
checking contracts — a case study. In ATVA’07,
volume 4762 of LNCS, pages 82–97, 2007.

[5] C. Prisacariu and G. Schneider. A formal language for
electronic contracts. In FMOODS’07, volume 4468 of
LNCS, pages 174–189, 2007.

