
Components, Objects, and Contracts

[Position Paper]

Olaf Owe
∗

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern
N-0316 Oslo, Norway

olaf@ifi.uio.no

Gerardo Schneider
†

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern
N-0316 Oslo, Norway
gerardo@ifi.uio.no

Martin Steffen
‡

Department of Informatics
University of Oslo

P.O. Box 1080 Blindern
N-0316 Oslo, Norway

msteffen@ifi.uio.no

ABSTRACT
Being a composite part of a larger system, a crucial feature
of a component is its interface, as it describes the compo-
nent’s interaction with the rest of the system in an abstract
manner. It is now commonly accepted that simple, func-
tional interfaces are not expressive enough for components,
and the trend is towards behavioral interfaces.

We propose to go a step further and enhance components
with contracts, i.e., agreements between two or more com-
ponents on what they are obliged, permitted and forbidden
when interacting. This way, contracts are modelled after
legal contracts from conventional business or judicial are-
nas. Indeed, our work aims at a framework for e-contracts,
i.e., “electronic” versions of legal documents describing the
parties’ respective duties.

We take the object-oriented, concurrent programming lan-
guage Creol as starting point and extend it with a notion
of components. We then discuss a framework where com-
ponents are accompanied by contracts and we sketch some
ideas on how analysis of compatibility and compositionality
could be done in such a setting.

Categories and Subject Descriptors
F.3.1 [Logics and meanings of programs]: Specifying
and Verifying and Reasoning about Programs; D.2.13 [Software

∗Partially supported by the Nordunet 3 project
Contract-Oriented Software Development for Internet
Services
†Partially supported by the Nordunet 3 project
Contract-Oriented Software Development for Internet
Services
‡Partially supported by the EU-project IST-33826
Credo: Modeling and analysis of evolutionary struc-
tures for distributed services. For more information, see
http://credo.cwi.nl

Engineering]: Reusable Software; D.1.3 [Programming
Techniques]: Concurrent programming; D.1.5 [Programming
Techniques]: Object-oriented programming

Keywords
Components, compositionality, contracts, interfaces, object-
orientation, Creol, deontic logic

1. INTRODUCTION
Even without general agreement, what concretely consti-
tutes a component, one thing is for sure: components are
intended for composition. Whence the central role of in-
terfaces as an abstraction mechanism for hiding internal
details. The interface description is the basis for compo-
sition both from a theoretical point of view —to semanti-
cally understand composition and to formally reason about
components— as well as a practical concern —only when
agreeing on well-defined interfaces, there is hope to sepa-
rately develop and deploy software that works together.

But then again, within this general picture, there is a large
design space what exactly constitutes a good interface ab-
straction, and the choice depends on the underlying lan-
guage, the communication model, and the properties of in-
terest. At any rate, it is now commonly accepted that sim-
ple, functional interfaces, listing the method signatures, are
not expressive enough for components, and the trend is to
define components together with behavioral interfaces.

We propose to go a step further and enhance components
with contracts, i.e., agreements between two or more com-
ponents on what they are obliged, permitted and forbidden
when interacting. This way, contracts are modelled after
legal contracts from conventional business or judicial are-
nas. Indeed, our work aims at a framework for e-contracts,
i.e., “electronic” versions of legal documents describing the
parties’ respective duties. They go beyond standard behav-
ioral interface descriptions, which typically describe sets of
interaction traces. Contracts, in the intended application
domain, involve a deontic perspective, speaking about obli-
gations, permissions and obligations, also containing clauses
on what is to happen in case the contract is not respected.

We take the object-oriented, concurrent programming lan-
guage Creol as starting point and extend it with a notion
of components. We then discuss a framework where com-

1

http://www.ifi.uio.no/~olaf
http://heim.ifi.uio.no/~gerardo
http://www.ifi.uio.no/~msteffen
http://nordunet3.org/
http://heim.ifi.uio.no/~gerardo/nordunet3/
http://heim.ifi.uio.no/~gerardo/nordunet3/
http://nordunet3.org/
http://heim.ifi.uio.no/~gerardo/nordunet3/
http://heim.ifi.uio.no/~gerardo/nordunet3/
http://credo.cwi.nl

ponents are accompanied by contracts and we sketch some
ideas on how analysis of compatibility and compositionality
could be done in such a setting.

1.1 Outline of the paper
The paper is organized as follows. In the next section we
further elaborate on the motivation of our work. In Sec-
tion 3 we describe the object-oriented programming (and
modeling) language Creol. In Section 4 we expand on the
definition and the use of contracts in other domains not nec-
essarily related to components. Section 5 is the main part
of this paper and consists on two parts. We first show how
Creol may be extended to be used as a programming lan-
guage for components, whereas in the second part we de-
scribe a framework that combines components, objects and
contracts, and how contracts may be used to facilitate in-
teraction of components. We conclude in the last section.

2. MOTIVATION
Even if there still is no clear-cut definition what exactly
is a component, and what distinguishes the notion from a
software module or just an object. It is now more or less
well-understood the distinction between (sets of) objects
and components, and certainly at least the practice of com-
ponent frameworks, distinguishes them. The slight concep-
tual confusion may still remain due to some similarities and
perhaps also since both object-orientation and component-
based technologies, each at their time, where both hailed
with similar promises as the next silver bullet to solve the
software crisis. For instance, both objects and components
are usually typed by interfaces, and the services they offer
are only accessible through such interfaces. Hence, provide
abstraction in supporting the notion of encapsulation and
hiding.

We highlight here some essential differences between objects
and components. (1) Components are supposed to be self-
contained units, platform independent, and independently
deployable. This is not the case in general with objects,
as they are instances of a class and usually are not exe-
cutable by themselves. (2) A component may (and in gen-
eral will, if developed using the object-oriented paradigm)
contain many objects which are encapsulated and thus are
not accessible from the outer of the components. If an ob-
ject creates another object inside a component, this new
object is not visible from the outside unless explicitly al-
lowed by the interface. Objects in most languages do not
have this feature. (3) Components are unique and cannot
be copied within one system, while there might exists many
copies of an object. (4) Components represent static entities
representing the main elements of the run-time structure, in
contrast to classes, which can be instantiated dynamically
in any number. A purely class-oriented program does not
identify the main elements of a system.1

In some sense the above may justify the definition of compo-
nents as being just a collection of ’circles’ (objects) encap-
sulated inside a ’box’, which in turns could also be a kind of
object typed by an interface. It is now accepted that such in-

1However, early OO languages had a notion of block prefix-
ing giving rise to singleton objects which resemble compo-
nents in this sense.

terfaces should not only take into account functional aspects
but should take into account the history of interactions, or
in other words be behavioral.

In this paper we will discuss the relation between objects and
components, by sketching how components could be defined
in the object-oriented programming and modeling language
Creol [8]. We will also present some ideas on the use of
contracts as complement to behavioral interfaces to help the
development and deployment of components, to guarantee
among other things their correctness and compositionality.

2.1 The problem
We are concerned with finding a good programming lan-
guage and appropriate abstractions for developing compo-
nents in an integrated manner within the object-oriented
paradigm. We are also interested in enhancing components
with more sophisticated structures than interfaces, targeted
towards e-contracts. In that context, we address the follow-
ing questions.

Design: How to develop components in a programming en-
vironment facilitating rapid prototyping and testing?

Composition and compatibility: How do we know that
two or more components will not conflict with each
other when put together?

Substitutability: How to guarantee that replacing a com-
ponent will not introduce new unexpected behaviors?

Deontic specification: How to specify what a component
is supposed to do, what it may do, and what it should
not do?

Contract violation: How to react in case a component
does what it is not supposed to do?

2.2 Relevance of the problem to component-
based software development

The issues mentioned above are crucial in a component-
based software development and deployment. In fact, most
of the questions in the previous section, apart from perhaps
the deontic aspect, are not new to the component-based soft-
ware engineering community who is trying to answer them
in one or another way.

2.3 Towards a solution
We propose here to use contracts as a means to specify and
to (partially) guarantee the safe coexistence of components.
A contract in our setting is modelled after real contracts, as
one might find in law or judicial arenas. In this sense, it is
more than a behavioral interface2 as it contain clauses about
the obligations, permissions (or rights), and prohibitions of
the signatories.

The basic idea is that components are deployed not only with
its usual interface specification, but together with a contract
in that sense. To assure non-conflicting interaction between
two components, their respective contracts must agree in
well-defined ways as explained in more detail in Section 5.
2See for instance the series of OOPSLA workshops on be-
havioral interfaces for further information.

2

3. CREOL
The choice of Creol as underlying language is motivated as
follows:

Concurrency: Creol is a language for open, distributed
systems, supporting concurrency and asynchronous method
calls. The concurrency model therefore is that of loosely
coupled active objects with asynchronous communica-
tion. This makes it an attractive basis for component-
based systems. It has been argued also elsewhere,
that an asynchronous communication model of enti-
ties, loosely coupled by message passing, is well-suited
in such settings.

Object-orientation: Creol is an object-oriented, class-based
language, with late binding and multiple inheritance,
as well as user defined data types and functions. It is
strongly typed, supporting subtypes and sub-interfaces

Interfaces: The language at the current state already sup-
ports behavioral interfaces, based on assume-guarantee
specifications. In particular, Creol’s notion of co-interface
allows specification of required and provided interfaces.

Formal foundations: A formal operational semantics, de-
fined in rewriting logics, allows to formalize the exten-
sion to components by reuse of the operational seman-
tics. The core of the language has a small kernel with
an operational semantics consisting of only 11 rewrite
rules. This makes it easy to extend and modify the
language and the semantics. Based on the formal se-
mantics, the language comes with a simple reasoning
system and composition rules. Creol has an executable
interpreter defined in the Maude language and rewrit-
ing tool. This provides a useful test-bed for the imple-
mentation and testing of our component-based exten-
sion.

4. CONTRACTS
The term ’contract’ is becoming a buzzword, and different
research communities understand it in various ways. We
briefly recall some of its more common definitions or infor-
mal meanings.

1. Conventional contracts are legally binding documents,
establishing the rights and obligations of different sig-
natories, as in traditional judicial and commercial ac-
tivities.

2. Electronic contracts are machine-oriented and may be
written directly in a formal specification language, or
translated from a conventional contract. The main
feature is the inclusion of certain normative notions
as obligations, permissions, and prohibitions, be it di-
rectly or by representing them indirectly. In this con-
text, the signatories of a contract may be objects,
agents, web services, etc.

3. Some researchers informally understand contracts as
behavioral interfaces, which specify the history of inter-
actions between different agents (participants, objects,
principals, entities, etc). The rights and obligations are
thus determined by legal (sets of) traces.

4. The term ’contract’ is sometimes used for specifying
the interaction between communicating entities (agents,
objects, etc). It is common to talk then about a con-
tractual protocol.

5. Programming by contract or design by contract is an in-
fluential methodology popularized first in the context
of the object-oriented language Eiffel [21]. Contract
here means a relation between pre- and post-conditions
of routines, method calls, etc.

6. In the context of web services, ’contracts’ may be un-
derstood as a service-level agreement usually written
in an XML-like language like IBM’s Web Service Level
Agreement (WSLA [34]).

We are mostly concerned with the first two meanings, though,
as we will see later, to be able to reason and operate on con-
tracts it is natural to have the contracts written in a formal
language, and thus the second meaning is more adequate.

5. COMPONENTS, OBJECTS AND
CONTRACTS

In this section we first propose a way to extend the object-
oriented programming language Creol to deal with compo-
nents. We then present a framework where components are
accompanied by contracts and we sketch some ideas on how
analysis of compatibility and compositionality could be done
in such a framework.

5.1 Creol as a Component-Based Programming
Language

The core Creol language is centered around classes and dy-
namically generated objects. A simple notion of component
representing singleton entities encapsulating a subsystem, is
obtained by the construct

component C implements list-of-interfaces
body
end

where the body contain ordinary Creol declarations and
code, including a number of attributes setting up the initial
internal object structure. All internal structure is hidden,
except from the communication primitives stated in the in-
terfaces in the implements clause. In particular, objects
generated by the structure inside a component are consid-
ered to be part of this internal structure. A component may
be thought of as an abstraction of a subsystem where the
implements clause defines visible events in the interaction
with the environment. Communication to the component is
done using the name of the component.3 The input and out-
put events of a Creol component is method invocation and
reply events. In order to obtain platform independent units
one would need to lift the interaction model to the level of
ports.

3Routing of incoming calls may be done automatically, and
in principle non-deterministically, or, if desired, by explicit
programming of the handling of the re-routing.

3

5.2 Components and Contracts
Before describing our proposed framework, we list some of
the main features of contracts in the context of component-
based development and deployment. Formal contracts as-
sociated with components complement behavioral interfaces
and give the following added value:

1. If written in a formal language with formal seman-
tics and proof system, a contract can be proved to be
conflict-free, both by model checking and logical de-
duction techniques. The automatic checks can also re-
veal incompleteness in the specification, for instance it
may indicate that no escalation is agreed upon in case
one of the partners acts contrary to what it is specified
in the contract.

2. The use of contracts may assist the developer dur-
ing the development phase to check whether a com-
ponent may enter into conflict with other components,
through a static analysis of contract compatibility. The
appropriate notion of compatibility in the presence of
obligations, permissions, and prohibitions needs to be
developed.

3. A well-founded theory of contracts should provide the
following kinds of analysis:

• Determine whether a contract is covered by an-
other one, i.e. a well-defined notion of sub-contract.
This will help deciding whether a component may
be replaced by another one in a safe manner.

• Allow decisions on whether paying a penalty in
case of one contract violation is beneficial or not
in case of sub-contracting. Assume component A
has a contract with component B where it is stip-
ulated that A must“pay”x (according to a certain
notion of quantified penalty) to B in case of con-
tract violation. Suppose now that such violation
depends on a service/product provided by C to
A and that there is a contract between A and C
stating that C must pay y to A in case of their
own contract violation. Then a theory of con-
tracts would allow A to determine whether or not
it is good to compose with B. During the devel-
opment phase this kind of information may help
defining sub-contracting which are not against a
component’s own interest.

• A negotiation phase could be added previous to
the composition of two or more components. In
this phase a contract could be negotiated before
final ‘signature’, as in web services context.

4. A run-time contract monitor will guarantee that the
contract is respected, including the penalties and esca-
lations in case of contract violation. I.e., what should
happen if one of the signatories acts “contrary to duty”
or “contrary to permission” (abbreviated as CTD and
CTP). We expect such a monitor could be extracted
from the components contracts in a (semi-)automatic
way, at least partially.

The above list already gives an idea on how we intend to
combine contracts and components. Contracts may be used
both at the development and deployment phase.

Static Analysis Testing/Simulation (Maude)

Development (Creol)

Conformance

Compatibility/conflict−freedom

Co1

Co1

Co1

Con

Con

Cc1

Cc1

Cc1

Cc1

Ccn

Ccn

Ccn

Figure 1: Development phase.

Development Phase. During this phase our framework may
be summarized as follows (see Fig. 1):

Development: Each components has associated one or more
contracts in the sense discussed above, i.e., specifying
the obligations, permissions, and prohibitions in the
component’s interacting behavior. We propose Creol
as a development platform.

Static Analysis: Before deployment the contract is for-
mally analyzed to guarantee it is contradiction free.
This might be done by using a proof system or by
model checking. The conformance between the com-
ponent and its contract should also be proved.

Testing/Simulation: It is well known that static analysis
techniques cannot validate every aspect of a system.
Testing and simulation are thus needed to complement
the above. Since Creol has formal semantics in rewrit-
ing logic and implemented in Maude, we propose to
use the Maude environment to simulate and test each
component separately and its interaction with other
components being developed.

Deployment Phase. After the component is ’released’ there
is still no complete guarantee of it being well suited for the
yet unknown platform where it will be executed. We pro-
pose the following framework to increase confidence on the
component’s compatibility with its future environment. See
Fig. 2.

Pre-execution Analysis: Before adding a new component
to an existing context where it will be composed with
other components, the corresponding contracts are checked

4

Pre−execution Analysis

Executing Platform

Monitor

Co1

Co1

Con

Con

Coi

Coi

Cc1

Cc1

Ccn

Ccn

Cci

Cci

Figure 2: Deployment phase.

to guarantee their compatibility. If there are disagree-
ments, a phase of negotiation may start, or the compo-
nents is simply rejected. This phase may be considered
as a kind of static analysis on the side of the execution
platform.

Execution: If the component is accepted after the analysis
of the previous phase, then it is deployed. A contract
monitor is launched to guarantee that the components
behave according to the contract. In case of contract
violation, the monitor is responsible of taking the cor-
responding action as stipulated in the contract for such
situation, or cancel the contract and disable the com-
ponent.

6. RELATED WORK

Object-orientation. Two main interaction models for distri-
buted processes are remote method invocation (RMI) and
message passing. RMI is the approach adopted by Java,
and may lead to unnecessary waiting in a distributed set-
ting. Moreover, Java’s thread concept forces the program-
mer to choose between reduced parallelism (using the syn-

chronized keyword) and shared-variable interference, and
makes reasoning highly complex [2]. Mechanisms based on
synchronous message passing also result in unnecessary de-
lays [19]. Asynchronous message passing, as popularized by
the actor model [4, 17], is very flexible but lacks the struc-
ture and discipline of object-oriented method calls. More-
over, actors have no direct notion of inheritance or hierarchy.
In contrast, Creol objects are concurrent, each with its own
virtual processor and internal process control, and commu-
nicate using synchronous or asynchronous, i.e., non-blocking
method calls. This provides the efficiency of message passing
systems, while keeping the structuring benefits of methods
and object-oriented programming. A distinguishing feature

of the language in this respect is also that in Creol, the client
object, i.e., the caller, decides, whether to invoke the service
asynchronously or whether to block. Furthermore, condi-
tional processor release points provide a high-level synchro-
nization mechanism that allow combination of active and
reactive object behavior.

Components. With the size of software systems ever in-
creasing, there is no lack of proposals for component mod-
els, frameworks, and platforms, including various proposals
within UML [7], Java component models, for instance EJB
[31], and different component models put forward by Mi-
crosoft. As stressed above, composability and, as a conse-
quence, the notion of interfaces are central. Furthermore
finding the right level of abstraction is crucial, especially
when developing a formal approach to components (cf. [20]
for a collection of formal approaches to component-based
software). A conceptually clear and elegant approach to
get a grip on interface behavior is to consider the notion
of being replaceable as a definitorial starting point: Two
components seen as a syntactically composable units of a
language, are considered equal, when they can replace each
other with no observable difference. This corresponds to an
observable, contextual perspective on equality as definito-
rial yardstick. As black-box notion, it is appropriate for a
component-based setting and has been employed for many
languages and calculi, but obviously the definition leaves the
actual interface description implicit. The task proper then
to develop and explicit interface semantics, and ideally, to
prove that it coincides with the implicit, contextually given
one. That corresponds to the well-known problem of full
abstraction.

In [30], for instance, such a semantics is developed in a
class-based object-oriented setting, without explicit notion
of component. In other words, a component is seen just
as a set of classes, without linguistic support. The no-
tion of observation is based on based on may- and must-
testing [23]. Furthermore, the mode is based on a more
tightly-coupled model of communication, namely that of
multi-threaded Java. Currently [3], the communication model
ported from multi-threading as in Java to a more loosely
coupled model with asynchronous messages passing and ac-
tive objects, corresponding to Creol. In particular, the lan-
guage features Creol including first-class futures [12] and
promises. With similar goals, [25] presents a behavioral in-
terface semantics for a class-based object-oriented calculus,
however without concurrency. The language, on the other
hand, achieves a better modularization of the program, i.e.,
In particular, it curbs the unstructuredness of the heap by
imposing ownership-structure. Another interaction seman-
tics of components, in this case based on the actor model
of concurrency, is presented in [32]. None of the mentioned
approaches, however, is tailored towards deontic aspects, as
aimed for in our setting

Contracts. Due to the great influence of the design by con-
tract introduced by Bertrand Meyer and popularized first
in the context of the object-oriented language Eiffel [21],
we briefly discuss here some related works. Contract here
means that every feature or method, created by the soft-

5

ware developer (the supplier) starts with a precondition that
must be satisfied by the software user (the consumer) of the
routine. Moreover, each feature ends with postconditions
which the supplier guarantees to be true, if the precondi-
tions were satisfied. The approach has been used for other
languages, as well, for instance in the context of C# language
[13]. Relatively well-known here is the Spec#-language [5]
and more recently Sing#[14] as extension of Spec#. Sing#,
the core language of the Singularity operating system [18],
is a type-safe, object-oriented language based on message-
passing communication, where in so-called channel contracts
(which are closely related to what is known as session types).

To use contracts in the context of component-based devel-
opment and deployment as we have sketched in the previous
sections we need to be able to write a contract in a formal
language to be amenable to formal analysis, negotiation and
monitoring.

There are currently several different approaches aiming at
defining a formal language for contracts. Some works con-
centrate on the definition of contract taxonomies [1, 6, 33],
while others look for formalizations based on logics (e.g.
classical [11], modal [10], deontic [16, 24] and defeasible logic
[15, 29]). Other formalizations are based on models of com-
putation (e.g. FSMs [22] and Petri Nets [9]). None of the
above has reached enough maturity as to be considered the
solution to the problems of formal definition of contracts.
Some provide a good framework for monitoring but lack a
formal semantics and a reasoning system; others have nice
proof systems and model theory, but not mechanism for
monitoring or negotiation; many of the deontic-based ap-
proaches put too much emphasis on the logical properties
and neglect the practical side, including monitoring. None
of them captures all the intuitive properties of e-contracts
we have described, while avoiding the most important para-
doxes.

Since we intend to pursue our research by extending the con-
tract language CL developed in [27], we describe the main
features of this language in more detail. CL is a language
tailored for electronic contracts (e-contracts) with formal se-
mantics in an extension of the µ

a-calculus, which is a nice
feature as it open the way to use the logic proof system,
as well as existing model checkers. Since the µ

a-calculus
is an action-based logic the language follows an out-to-do
approach, i.e. where obligations, permissions and prohibi-
tions are applied to actions and not to state-of-affairs. The
language avoids most of the classical paradoxes of deontic
logic and it is possible to express (conditional) obligation,
permission and prohibition over concurrent actions keeping
their intuitive meaning. Obligation of disjunctive and con-
junctive actions is defined compositionally and it allows the
representation of CTDs and CTPs. On the other hand, there
is no mechanism for monitoring nor negotiation in the cur-
rent state of development. No reasoning system is provided,
though it seems quite straightforward to use the proof sys-
tem as well as existing model checkers of the underlying
µ-calculus. The approach is intended to be restricted to the
context of e-contracts, so it is not practical for more general
contracts, though we believe it can be used in the context of
components. The underlying action algebra has been stud-
ied in [26] and initial works to show how to model check

contracts has been presented in [28].

7. FINAL DISCUSSION
In this paper we sketched how to enhance components with
contracts as complementary to the latest ideas of using be-
havioral interfaces. In our opinion this approach would ben-
efit from the fact that such contracts could be analyzed log-
ically and model checked in order to find (local) inconsisten-
cies, they could be negotiated and monitored. We believe
component-based development and engineering will in some
sense be reduced to the same kind of problems one finds in
web services and other application domains where contracts
are being studied.

The extension of Creol with primitives to define components
is not difficult to do as most of the basic constructs are al-
ready defined in the language. Contracts might be included
as data-type in the language though it is really needed in
our current setting.

The successful use of contracts as we have proposed depends
very much on the existence of a suitable formal contract lan-
guage. As mentioned in the related work section we intend
to further explore CL and its semantics to be used in this
context. We expect to benefit from its formal semantics in
the µ-calculus to further develop proof systems and to ex-
plore the possibility of use existing model checking tools.

Though we believe the first phase of the deployment phase
could be achieved reasonable easy4 we are aware that ob-
taining a contract monitor, when executing a component,
could represent a big challenge if we intend to do so in real-
time. We do not have a solution yet. We would need to
study how to combine meta-programming (e.g. in a reflec-
tive language) techniques with a formal (logical) framework
for extracting a monitor from one, or more, contracts. This
is definitely a very interesting research direction.

8. REFERENCES
[1] J. Aagedal. Quality of Service Support in Development

of Distributed Systems. PhD thesis, Dept. of
Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[2] E. Ábrahám, F. S. de Boer, W.-P. de Roever, and
M. Steffen. An assertion-based proof system for
multithreaded Java. Theoretical Comput. Sci., 331,
2005.

[3] E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen.
Abstract interface behavior of an object-oriented
language with futures and promises. 2007. In
preparation.

[4] G. A. Agha. ACTORS: A Model of Concurrent
Computation in Distibuted Systems. MIT Press, 1986.

[5] M. Barnett, K. R. M. Leino, and W. Schulte. The
Spec# programming system: An overview. In
Proceedings of In CASSIS 2004, volume 3362 of
Lecture Notes in Computer Science. Springer-Verlag,
2004.

[6] A. Beugnard, J.-M. Jézéquel, and N. Plouzeau.
Making components contract aware. IEEE Computer,

4There are, of course, some theoretical and practical issues
to be solved, but we believe the difficulties may be overcome.

6

32(7):38–45, 1999.

[7] J. Cheesman and J. Daniels. UML Components.
Addison-Wesley, 2000.

[8] The Creol language. http:www.ifi.uio.no/~creol,
2007.

[9] A. Daskalopulu. Model Checking Contractual
Protocols. In L. Breuker and Winkels, editors, JURIX
2000, Frontiers in Artificial Intelligence and
Applications Series, pages 35–47. IOS Press, 2000.

[10] A. Daskalopulu and T. S. E. Maibaum. Towards
Electronic Contract Performance. In Legal Information
Systems Applications, 12th International Conference
and Workshop on Database and Expert Systems
Applications, pages 771–777. IEEE C.S. Press, 2001.

[11] H. Davulcu, M. Kifer, and I. V. Ramakrishnan.
CTR-S: A Logic for Specifying Contracts in Semantic
Web Services. In Proceedings of WWW2004, pages
144–153, May 2004.

[12] F. S. de Boer, D. Clarke, and E. B. Johnsen. A
complete guide to the future. In R. de Nicola, editor,
Proceedings of Programming Languages and Systems,
16th European Symposium on Programming, ESOP
2007, Vienna, Austria., volume 4421 of Lecture Notes
in Computer Science. Springer-Verlag, 2007.

[13] ECMA International Standardizing Information and
Communication Systems. C# Language Specification,
2nd edition, Dec. 2002. Standard ECMA-334.

[14] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. C. Hunt, J. R. Larus, and S. Levi. Language
support for fast and reliable message-based
communication in Singularity OS. In Proceedings of
EuroSys 2006, Leuven, Belgium. ACM SIGOPS, 2006.

[15] G. Governatori. Representing business contracts in
RuleML. International Journal of Cooperative
Information Systems, 14:181–216, 2005.

[16] G. Governatori and A. Rotolo. Logic of violations: A
Gentzen system for reasoning with contrary-to-duty
obligations. Australasian Journal of Logic, 4:193–215,
2006.

[17] I. A. M. Gul A. Agha, S. F. Smith, and C. L. Talcott.
A foundation for actor computation. Journal of
Functional Programming, 7(1), Jan. 1997.

[18] G. C. Hunt, J. R. Larus, M. Abadi, M. Aiken,
P. Barham, M. Fähndrich, C. Hawblitzel, O. Hodson,
S. Levi, N. Murphy, B. Steensgaard, D. Traditi,
T. Wobber, and B. Zill. An overview of the Singularity
project. Technical Report MSR-TR-2005-135,
Microsoft Research, 2005.

[19] E. B. Johnsen and O. Owe. An asynchronous
communication model for distributed concurrent
objects. Software and Systems Modeling, 6(1):35–58,
Mar. 2007.

[20] G. T. Leavens and M. Sitaraman, editors. Foundations
of Component-Based Systems. Cambridge University
Press, 2000.

[21] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[22] C. Molina-Jimenez, S. Shrivastava, E. Solaiman, and
J. Warne. Run-time Monitoring and Enforcement of
Electronic Contracts. Electronic Commerce Research
and Applications, 3(2):108–125, 2004.

[23] R. D. Nicola and M. Hennessy. Testing equivalences

for processes. Theoretical Comput. Sci., 34:83–133,
1984.

[24] A. Paschke, J. Dietrich, and K. Kuhla. A Logic Based
SLA Management Framework. In 4th Semantic Web
Conference (ISWC 2005), 2005.

[25] A. Poetzsch-Heffter and J. Schäfer. A
representation-independent behavioral semantics for
object-oriented components. In 9th IFIP International
Conference on Formal Methods for Open Object-Based
Distributed Systems (FMOODS), volume 4468 of
LNCS, pages 157–173. Springer, 2007.

[26] C. Prisacariu and G. Schneider. An algebraic structure
for the action-based contract language CL. 2007.
Submitted.

[27] C. Prisacariu and G. Schneider. A formal language for
electronic contracts. In FMOODS’07, volume 4468 of
LNCS, pages 174–189. Springer, 2007.

[28] C. Prisacariu and G. Schneider. Model checking
contracts – a case study. 2007. Submitted.

[29] I. Song and G. Governatori. Nested rules in defeasible
logic. In RuleML, volume 3791 of LNCS, pages
204–208, 2005.

[30] M. Steffen. Object-Connectivity and Observability for
Class-Based, Object-Oriented Languages. Habilitation
thesis, Technische Faktultät der
Christian-Albrechts-Universität zu Kiel, 2006.
submitted 4th. July, accepted 7. February 2007.

[31] Sun Microsystems Inc., USA. JSR-220 Enterprise
JavaBeans Specification, version 3.0 edition, May 2006.

[32] C. L. Talcott. Interaction semantics for components of
distributed systems. In 1st IFIP Workshop on Formal
Methods for Open Object-based Distributed Systems,
FMOODS’96, 1996.
http://www-formal.stanford.edu/MT/96fmoods.ps.Z.

[33] V. Tosic. On Comprehensive Contractual Descriptions
of Web Services. In IEEE International Conference on
e-Technology, e-Commerce, and e-Service, pages
444–449. IEEE, 2005.

[34] WSLA: Web Service Level Agreements.
www.research.ibm.com/wsla/.

7

http:www.ifi.uio.no/~creol
http://www-formal.stanford.edu/MT/96fmoods.ps.Z
www.research.ibm.com/wsla/

	Introduction
	Outline of the paper

	Motivation
	The problem
	Relevance of the problem to component-based software development
	Towards a solution

	Creol
	Contracts
	Components, Objects and Contracts
	Creol as a Component-Based Programming Language
	Components and Contracts

	Related work
	Final Discussion
	References

