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1 Motivation

How to marry concurrency and object-orientation has been a long-standing issue; see
e.g., [2] for an early discussion of different design choices. Recently, the thread-based
model of concurrency, prominently represented by languages like Java and C# has been
criticized, especially in the context of component-based software development. As the
word indicates, components are (software) artifacts intended for composition, i.e., open
systems, interacting with a surrounding environment. To compare different concurrency
models on a solid mathematical basis, a semantical description of the interface behavior
is needed, and this is what we do in this work. We present an open semantics for a
core of the Creol language [4,7], an object-oriented, concurrent language, featuring in
particular asynchronous method calls and (since recently [5]) future-based concurrency.

Futures and promises A future, very generally, represents a result yet to be computed.
It acts as a proxy for, or reference to, the delayed result from a given sequential piece of
code (e.g., a method or a function body in an object-oriented, resp. a functional setting).
As the client of the delayed result can proceed its own execution until it actually needs
the result, futures provide a natural, lightweight, and (in a functional setting) transparent
mechanism to introduce parallelism into a language. Since its introduction in Multilisp
[6][3], futures have been used in various languages, including Alice ML, E, the ASP-
calculus, Creol, and others more. A promise is a generalization insofar that the reference
to the result on the one hand, and the code responsible to calculate the result on the other,
are not created at the same time; instead, a promise can be created independently and
only later, after possibly passing it around, the promise is bound to the code (one also
says, the promise is fulfilled).

Interface behavior An open program interacts with its environment via message ex-
change. The interface behaviour of such an open program C can be characterized by the
set of all those message sequences (= traces) t, for which there exists an environment
E such that C and E can exchange the messages recorded in t. Thus the interface be-
haviour abstracts away of any concrete environment. However, it only considers such
environments, that are compliant to the language restrictions (syntax, type system, etc.).



Consequently, interactions do not consist of arbitrary message sequences C
t
=⇒; instead

we consider the behavior C ‖ E
t
=⇒

t̄
Ć ‖ É where E is an arbitrary but realizable envi-

ronment and t̄ complementary to t.
To account for the existentially abstracted environment (“there exists an E s.t. . . . ”),

the open semantics is given in an assumption-commitment way:

∆ ` C : Θ
t
=⇒ ∆́ ` Ć : Θ́

where ∆ contains (as an abstract version of E) the assumptions about the environment,
and dually Θ the commitments of the component. Abstracting away also from C gives a
language characterization by the set of all possible traces between any component and
any environment.

Such a behavioral interface description is relevant and useful for the following rea-
sons. 1) The set of possible traces is more restricted than the one obtained when ignoring
the environments. I.e., when reasoning about the trace-based behavior of a component,
e.g., in compositional verification, with more precise characterization one can carry out
stronger arguments. 2) When using the trace description for black-box testing, one can
describe test cases in terms of the interface traces and then synthesize appropriate test
drivers from it. Clearly, it makes no sense to specify impossible interface behavior, as in
this case one cannot generate a corresponding tester. 3) A representation-independent
behavior of open programs paves the way for a compositional semantics and allows fur-
thermore optimization of components: only if two components show the same external
behavior, one can replace one for the other without changing the interaction with any en-
vironment. 4) The formulation gives insight into the semantical nature of the language,
here, the observable consequences of futures and promises. This helps to compare al-
ternatives, for instance the Creol concurrency model with Java-like threading.

2 Results

We formalize the abstract interface behavior for concurrent object-oriented class-based
languages with futures and promises. The long version of the submission includes the
following results:

Concurrent object calculus with futures and promises We formalize a class-based
concurrent language featuring futures and promises, capturing the core aspects of the
Creol-language. The formalization is given as a typed, imperative object calculus in
the style of [1] resp. one of its concurrent extensions. We present the semantics in a
way that facilitates comparison with Java’s multi-threading concurrency model, i.e.,
the operational semantics is formulated so that the multi-threaded concurrency as (for
instance) in Java and the one based on futures here are represented similarly.

Linear type system for promises Featuring promises, the calculus extends the seman-
tic basis of Creol as given for example in [5] (only futures). Promises can refer to a
computation with code bound to it later. It is important, that the binding is done at most



once. To guarantee such a write-once policy when passing around promises, we refine
the type system introducing two type constructors

[T ]+− and [T ]+

representing a reference to a promise that can still be written (and read, and with result
type T ), resp. a reference with read-only permission. The write-permission constitutes
a resource which is consumed when the promise is fulfilled. The resource-aware type
system is therefore formulated in a linear manner wrt. the write permissions and resem-
bles in intention the one in [8] for a functional calculus with references. Our work is
more general, in that it tackles the problem in an object-oriented setting (which, how-
ever, conceptually does not pose much complications). It is in addition more general in
that we do not give a type system for a closed system, but for an open component. Also
this aspect of openness is not dealt with in [5]. Additionally, the type system presented
here is simpler as the one in [8], as it avoids the representation of the promise-concept
by so-called handled futures.

Soundness of the abstractions We show soundness of the abstractions, which includes

– subject reduction, i.e., preservation of well-typedness under reduction. Subject re-
duction is not just proven for a closed system (as usual), but for an open program
interacting with its environment. Subject reduction implies

– absence of run-time errors such as “message-not-understood”, again also for open
systems.

– A proof that the characterization of the interface behavior is sound, i.e., all interac-
tion behavior which is possible by an actual, concrete environment is included in
the abstract interface behavior description.

– for promises: absence of write-errors, i.e. the attempt to fulfill a promise twice.
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