
UNIVERSITY OF OSLO
Department of Informatics

Behavioral interface
description of an
object-oriented
language with
futures and
promises1

Research Report No.
364

Erika Ábrahám

Immo Grabe

Andreas Grüner

Martin Steffen

ISBN 82-7368-322-2
ISSN 0806-3036

October 2007

Behavioral interface description of an
object-oriented language with futures and

promises†

Erika Ábrahám Immo Grabe Andreas Grüner
Martin Steffen

12th October 2007

Abstract

This paper formalizes the observable interface behavior ofan concurrent, object-
oriented language with futures and promises. The calculus captures the core of
Creol, a language, featuring in particular asynchronous method calls and, since
recently, first-class futures.

The focus of the paper areopensystems and we formally characterize their
behavior in terms of interactions at the interface between the program and its en-
vironment. The behavior is given by transitions between typing judgments, where
the absent environment is represented abstractly by an assumption context. A par-
ticular challenge is the safe treatment of promises: The erroneous situation that
a promise is fulfilled twice, i.e., bound to code twice, is prevented by a resource
aware type system, enforcing linear use of the write-permission to a promise. We
show subject reduction and the soundness of the abstract interface description.

Keywords: concurrent object-oriented languages, Creol, formal semantics,
concurrency, futures and promises, open systems, observable behavior

1 Introduction

How to marry concurrency and object-orientation has been a long-standing issue; see
e.g., [11] for an early discussion of different design choices. The thread-based model
of concurrency, prominently represented by languages likeJavaandC#, has been re-
cently criticized, especially in the context ofcomponent-basedsoftware development.
As the word indicates, components are (software) artifactsintended for composition,
i.e., open systems, interacting with a surrounding environment. To compare different
concurrency models for open systems on a solid mathematicalbasis, a semantical de-
scription of the interface behavior is needed, and this is what we provide in this work.

∗Part of this work has supported by the NWO/DFG project Mobi-J (RO 1122/9-4) and by the EU-project
IST-33826Credo: Modeling and analysis of evolutionary structures for distributed services.For more
information, seehttp://credo.cwi.nl
†Part of this work has supported by the NWO/DFG project Mobi-J (RO 1122/9-4) and by the EU-project

IST-33826Credo: Modeling and analysis of evolutionary structures for distributed services.For more
information, seehttp://credo.cwi.nl

1

http://credo.cwi.nl
http://credo.cwi.nl

1 INTRODUCTION 2

We present anopen semanticsfor the core of theCreol language [25, 43], an object-
oriented, concurrent language, featuring in particular asynchronous method calls and,
since recently [27], first-class futures.

Futures and promises

A future, very generally, represents a result yet to be computed. It acts as a proxy
for , or reference to,the delayed result from some piece of code (e.g., a method or a
function body in an object-oriented, resp. a functional setting). As the consumer of
the result can proceed its own execution until it actually needs it, futures provide a
natural, lightweight, and (in a functional setting) transparent mechanism to introduce
parallelism into a language. Since their introduction inMultilisp [36][13], futures have
been used in various languages like Alice ML [45, 9, 58], E [28],the ASP-calculus [18],
Creol, and others. Apromiseis a generalization1 insofar as the reference to the result
on the one hand, and the code to calculate the result on the other, are not created at the
same time; instead, a promise can be created and only later, after possibly passing it
around, be bound to the code (the promise isfulfilled).

The notion of futures goes back to functional programming languages. In the func-
tional setting, futures are annotations to side-effect-free expressions2, that can be com-
puted in parallel to the rest of the program. If some program code needs the result of
a future, its execution blocks until the future’s evaluation is completed and the result
value is automatically fetched back (implicit futures). An important property of future-
based functional programs is, that future annotations do not change the functionality:
the observable behavior of an annotated program equals the observable behavior of its
non-annotated counterpart.

Interface behavior

An open program interacts with its environment via message exchange. The interface
behavior of an open programC can be characterized by the set of all those message se-
quences (traces)t, for which thereexistsan environmentE such thatC andE exchange
the messages recorded int. Thereby we abstract away from any concrete environment,
but consider only environments that are compliant to the language restrictions (syntax,

type system, etc.). Consequently, interactions are not arbitrary tracesC
t
=⇒; instead

we consider behaviorsC ‖ E
t
=⇒

t̄
Ć ‖ É whereE is anrealizableenvironment and̄t

is complementary tot. To account for the abstract environment(“there exists anE s.t.
. . . ”), the open semantics is given in anassumption-commitmentway:

∆ ⊢ C : Θ
t
=⇒ ∆́ ⊢ Ć : Θ́ ,

where∆ (as an abstract version ofE) contains theassumptionsabout the environment,
and duallyΘ thecommitmentsof the component. Abstracting away also fromC gives a
language characterization by the set of all possible tracesbetween any component and
any environment.

1The terminology concerning futures, promises, and relatedconstructs is not too consistent in the liter-
ature. Sometimes, the two words are used as synonyms. Interested in the observable differences between
futures and promises, we distinguish the concepts and thus follow the terminology as used e.g., inλfut, Alice
ML, and the definition given in Wikipedia.

2Though in e.g.Multilisp also side-effect expressions can be computed in parallel, but still underthe
restriction that the observable behavior equals that of thesequential counterpart.

1 INTRODUCTION 3

Such a behavioral interface description is relevant and useful for the following rea-
sons. 1) The set of possible traces is more restricted than the one obtained when ignor-
ing the environments. When reasoning about the trace-basedbehavior of a component,
e.g., in compositional verification, with a more precise characterization one can carry
out stronger arguments. 2) When using the trace descriptionfor black-box testing, one
can describe test cases in terms of the interface traces and then synthesize appropriate
test drivers from it. Clearly, it makes no sense to specify impossible interface behav-
ior, as in this case one cannot generate a corresponding tester. 3) A representation-
independent behavior of open programs paves the way for a compositional semantics
and allows furthermore optimization of components: only iftwo components show the
same external behavior, one can replace one for the other without changing the interac-
tion with any environment. 4) The formulation gives insightinto the semantical nature
of the language, here, the observable consequences of futures and promises. This helps
to compare alternatives, e.g., the Creol concurrency modelwith Java-like threading.

Results

The paper formalizes the abstract interface behavior for concurrent object-oriented lan-
guages with futures and promises. The contributions are thefollowing.

Concurrent object calculus with futures and promises We formalize a class-based
concurrent language featuring futures and promises. The formalization is given as a
typed, imperative object calculus in the style of [1] resp. one of its concurrent exten-
sions. The operational semantics for components distinguishes unobservable component-
internal steps from external steps which represent observable component-environment
interactions. We present the semantics in a way that facilitates comparison withJava’s
multi-threading concurrency model, i.e., the operationalsemantics is formulated so
that the multi-threaded concurrency as (for instance) inJavaand the one here based on
futures are represented similarly.

Linear type system for promises The calculus extends the semantic basis ofCreol
as given for example in [27] with promises. Promises can refer to a computation with
code bound to it later, where the binding is done at most once.To guarantee such a
write-oncepolicy when passing around promises, we refine the type system introducing
two type constructors

[T]+− and [T]+

representing a reference to a promise that can still be written (and read), with result type
T), resp. that has aread-permission. The write permission constitutes a resource which
is consumed when the promise is fulfilled. The resource-aware type system is therefore
formulated in alinear manner wrt. the write permissions and resembles in intention the
one in [53] for a functional calculus with references. Our work is more general, in that
it tackles the problem in an object-oriented setting (which, however, conceptually does
not pose much complications), and in that we do not consider closed systems, but open
components. Also this aspect of openness is not dealt with in[27]. Additionally, the
type system presented here is simpler as in [53], as it avoidsthe representation of the
promise-concept by so-calledhandled futures.

Soundness of the abstractions We show soundness of the abstractions, which in-
cludes

2 CALCULUS 4

C ::= 0 | C ‖ C | ν(n:T).C | n[(O)] | n[n, F, L] | n〈t〉 program
O ::= F,M object
M ::= l = m, . . . , l = m method suite
F ::= l = f , . . . , l = f fields
m ::= ς(n:T).λ(x:T, . . . , x:T).t method
f ::= ς(n:T).λ().v | ς(n:T).λ().⊥n′ field
t ::= v | stop | let x:T = ein t thread
e ::= t | if v = v then eelse e | if undef(v.l()) then eelse e expr.
| promise T| bind n.l(~v) : T →֒ n | set v7→ n | v.l() | v.l := ς(s:n).λ().v
| new n | claim@(n, n) | get@n | suspend(n) | grab(n) | release(n)

v ::= x | n | () values
L ::= ⊥ | ⊤ lock status

Table 1: Abstract syntax

• subject reduction,i.e., preservation of well-typedness under reduction. Subject
reduction is not just proven for a closed system (as usual), but for an open system
interacting with its environment. Subject reduction implies

• absence of run-time errorslike “message-not-understood”, also for open sys-
tems.

• soundnessof the interface behavior characterization, i.e., all possible interaction
behavior is included in the abstract interface behavior description.

• for promises: absence ofwrite-errors, i.e. the attempt to fulfill a promise twice.

The paper is organized as follows. Section 2 defines the syntax, the type system,
and the operational semantics, split into an internal one and one for open systems.
Section 3 describes the interface behavior. Section 4 concludes with related and future
work. For more details and for the proofs see [2].

2 Calculus

This section presents the calculus, based on a version of theCreol-language with first-
class futures [27] and extended with promises. It is a concurrent variant of an impera-
tive, object-calculus in the style of the ones from [1].

2.1 Syntax

The abstract syntax in Table 1 distinguishes betweenusersyntax andrun-timesyntax
(the latter is underlined). The user syntax contains the phrases in which programs
are written; the run-time syntax contains syntactic constituents additionally needed to
express the executing program in the operational semantics.

Namesn refer to classes, objects, threads, and to references to futures and promises.
We useo and its syntactic variants for objects andc for classes, andn when being un-
specific. The unit value is represented by (). A componentC is a collection of classes,
objects, and threads, with0 being the empty component. A classc[(O)] carries a namec

2 CALCULUS 5

and defines its methods and fields inO. A methodς(s:c).λ(~x:~T).t provides the method
bodyt abstracted over theς-bound “self” parametersand the formal parameters~x. For
uniformity, fields are represented as methods without parameters (except self), with a
body being either a value or yet undefined. An objecto[c, F, L] with identity o keeps a
reference to the classc it instantiates, stores the current valueF of its fields, and main-
tains abinary lock Lindicating whether any code is currently active inside the object
(in which case the lock is taken) or not (in which case the lockis free). The symbols⊤,
resp.,⊥, indicate that the lock is taken, resp., free. Note that the methods are stored in
the classes but the fields are kept in the objects, of course. In freshly created objects,
the lock is free, and all fields carry the undefined reference⊥c, where class namec is
the (return) type of the field.

Besides objects and classes, the dynamic configuration of a program contains in-
carnations of method bodies, writtenn〈t〉, as active entities. The termt is basically a
sequence of expressions, where the let-construct is used for sequencing and for local
declarations.3 During execution,n〈let x:T = t in x〉 contains int the currently running
code of a method body and the result will be stored in the localvariablex. When eval-
uated, the thread is of the formn′〈set v7→ n〉 and the value can be accessed vian, the
future reference, or future for short, whereset v7→ n is an auxiliary expression.4

We usef for instance variables or fields andl = ς(s:T).λ().v, resp.l = ς(s:T).λ().⊥c

for field variable definition. Field access is written asv.l() and field update asv′.l :=
ς(s:T).λ().v. By convention, we abbreviate the latter constructs byl = v, l = ⊥c, v.l,
andv′.l := v. We will also usev⊥ to denote either a valuev or a symbol⊥c for being
undefined. Note that the syntax does not allow to set a field back to undefined. Direct
access (read or write) to fields across object boundaries is forbidden, and we do not
allow method update. Instantiation of a new object from classc is denoted bynew c.

Expressions include especiallypromise Tfor creating a new promise, andbind o.l(~v) :
T →֒ n for binding the method callo.l(~v) with return typeT to promisen. Asyn-
chronous method calls, central toCreol’s concurrency model, are a derived concept.
An asynchronous call, writteno@l(~v) is syntactic sugar for creating a new promise and
immediately bindingo.l(~v) to it. Further, the expressionsclaim, get, suspend, grab,
andreleasedeal with communication and synchronization. The expressionclaim@(n, o)
is the attempt to obtain the result of a method call from the future namedn while in pos-
session of the lock of objecto. Executingrelease(o) relinquishes the lock of the object
o, giving other threads the chance to be executed in its stead,when succeeding to grab
the lock viagrab(o). Executingsuspend(o) causes the activity to relinquish and re-grab
the lock of objecto (see the operational rules in Section 2.3.1 below). We assume by
convention, that when appearing in methods of classes, the claim- and the suspend-
command only refer to the self-parameterself, i.e., they are writtenclaim@(n, self)
andsuspend(self). 5

2.2 Type system

The calculus is typed and the available types are given in thefollowing grammar:

3t1; t2 (sequential composition) abbreviateslet x:T = t1 in t2, wherex does not occur free int2.
4The reason why an evaluated futuren is represented byn′〈set v7→ n〉 and not byn〈v〉, which might

look more natural, is technical. In the operational semantics, the referencen′ is hidden. Technically, the
representation allows to achieve subject reduction for theopen semantics, without exposing the status of the
futuren.

5For the run-time constructsgrab and release, we need notimposethe analogous restriction, as it is
guaranteed by the operational semantics.

2 CALCULUS 6

T ::= B | Unit | [T]+− | [T]+ | [l:U, . . . , l:U] | [(l:U, . . . , l:U)] | n
U ::= T × . . . × T → T

Besides base typesB (left unspecified),Unit is the type of the unit value (). Types
[T]+− and [T]+ represent the reference to a future which will return a valueof typeT, in
case it eventually terminates. [T]+− indicates that the promise has not yet been fulfilled,
i.e., it represents the write-permission to a promise (which implies read-permission
at the same time). [T]+ represents read-only permission to a future. The read/write
capability is more specific than read-only, which is expressed by the (rather trivial)
subtyping relation generated by [T]+− ≤ [T]+, accompanied by the usual subsumption
rule. Furthermore, []+ acts monotonely, and []+− invariantly wrt. subtyping. When
not interested in the access permission, we just write [T].

The name of a class serves as the type for the named instances of the class. We
need as auxiliary type construction the type or interface ofunnamed objects, written
[l1:U1, . . . , lk:Uk] and the interface type for classes, written [(l1:U1, . . . , lk:Uk)]. We
allow ourselves to write~T for T1 × . . . × Tk etc. where we assume that the number of
arguments match in the rules, and writeUnit→ T for T1 × . . . × Tk → T whenk = 0.

We are interested in the behavior of well-typed programs, only, and the section
presents the type system to characterize those. As the operational rules later, the deriva-
tion rules for typing are grouped into two sets: one for typing on the level of compo-
nents, i.e., global configurations, and secondly one for their syntactic sub-constituents.

Table 2 defines the typing on the level of configurations, i.e., for “sets” of objects,
classes, and threads. On this level, the typing judgments are of the form

∆ ⊢ C : Θ , (1)

where∆ andΘ arename contexts, i.e., finite mappings from names to types. In the
judgment,∆ plays the role of the typing assumptions about the environment, andΘ
of the commitments of the configuration, i.e., the names offered to the environment.
Sometimes, the words required and provided interface are used to describe their dual
roles.∆must contain at least all external names referenced byC and duallyΘmentions
the names offered byC, which constitute the static interface information. A pair∆
andΘ of assumption and commitment context with disjoint domainsare calledwell-
formed.

T-E
∆ ⊢ 0 : ()

∆,Θ2 ⊢ C1 : Θ1 ∆,Θ1 ⊢ C2 : Θ2
T-P

∆ ⊢ C1 ‖ C2 : Θ1,Θ2

∆ ⊢ C : Θ,n:T
T-N

∆ ⊢ ν(n:T).C : Θ

;∆, c:T ⊢ [(O)] : T
T-NC

∆ ⊢ c[(O)] : (c:T)

;∆ ⊢ c : [(TF ,TM)] ; ∆,o:c ⊢ [F] : [TF]
T-NO

∆ ⊢ o[c, F, l] : (o:c)

; ⌊∆⌋,n:[T]+ ⊢ t : T
T-NT

∆ ⊢ n〈t〉 : (n:[T]+)

∆′ ≤ ∆ Θ ≤ Θ′ ∆ ⊢ C : Θ
T-S

∆′ ⊢ C : Θ′

Table 2: Typing (components)

2 CALCULUS 7

The empty configuration0 is well-typed in any context and exports no names (cf.
rule T-E). Two configurations in parallel can refer mutually to each other’s com-
mitments, and together offer the (disjoint) union of their names (cf. rule T-P). It will
be an invariant of the operational semantics that the identities of parallel entities are dis-
joint wrt. the mentioned names. Therefore,Θ1 andΘ2 in the rule for parallel composi-
tion are merged disjointly, indicated by writingΘ1,Θ2 (analogously for the assumption
contexts). In combination with the rest of the rules (in particular T-B below), this
assures that a promise cannot be fulfilled by the component and the environment at the
same time. Theν-binder hides the bound object or the name of the future inside the
component (cf. rule T-N). In the T-N-rule, we assume that the bound namen is new
to ∆ andΘ. Let-bound variables arestackallocated and checked in a stack-organized
variable contextΓ. Names created bynew areheapallocated and thus checked in a
“parallel” context (cf. again the assumption-commitment rule T-P). The rules for
named classes introduce the name of the class and its type into the commitment (cf.
T-NC). The code of the class [(O)] is checked in an assumption context where the
name of the class is available. An instantiated object will be available in the exported
contextΘ by rule T-NO. Named threadsn〈t〉 are treated by rule T-NT, where
the type [T]+ of the future referencen is matched against the result typeT of threadt.
As obviously futuren is already fulfilled inn〈t〉, its type exports read-permission, only.
For a named threadn〈t〉 in rule T-NT to be well-typed, the codet is checked using
the assumptions∆ of the conclusion butwithoutusing write-permissions mentioned in
∆, expressed by⌊∆⌋. On types, the⌊ ⌋ operation is defined as⌊[T]+−⌋ = [T]+ and as
identity on all other types. The definition is lifted pointwise to binding contexts. The
last rule is a rule of subsumption, expressing a simple form of subtyping: we allow that
an object respectively a class containsat leastthe members which are required by the
interface. This corresponds to width subtyping. Note, however, that each named object
has exactly one type, namely its class.

Definition 2.1 (Subtyping). The relation≤ on types is defined as identity for all types
except for[T]+− ≤ [T]+ (mentioned above) and object interfaces, where we have:

[(l1:U1, . . . , lk:Uk, lk+1:Uk+1, . . .)] ≤ [(l1:U1, . . . lk:Uk)] .

For well-formed name contexts∆1 and∆2 , we define in abuse of notation∆1 ≤ ∆2, if
∆1 and∆2 have the same domain and additionally∆1(n) ≤ ∆2(n) for all names n.

The same definition is applied, of course, also for name contextsΘ, used for the
commitments. The relations≤ are obviously reflexive, transitive, and antisymmetric.

Next we formalize the typing for objects and threads and their syntactic sub-cons-
tituents. Especially the treatment of the write-permission requires care: The capability
to write to a promise is consumed by the bind-operation as it should be done only
once. This is captured by alinear type system where the execution of a thread or an
expression may change the involved types. The judgments areof the form

Γ;∆ ⊢ e : T :: Γ́, ∆́, (2)

where the change fromΓ and∆ to Γ́ and∆́ reflects the potential consumption of write
permissions when executinge. The consumption is only potential, as the type system
statically overapproximates the run-time behavior, of course. The typing is given in
Tables 3 and 4. For brevity, we write∆; Γ ⊢ e : T for ∆; Γ ⊢ e : T :: Γ́, ∆́, when
Γ́ = Γ and∆́ = ∆. Besides assumptions about the provided names of the environment
kept in∆, the typing is done relative to assumptions about occurringfree variables.

2 CALCULUS 8

They are kept separately in a variable contextΓ, a finite mapping from variables to
types. Apart from the technicalities, treating the write capabilities in a linear fashion is
straightforward: one must assure that the corresponding capability is available at most
once in the program and is not duplicated when passed around.A promise is no longer
available for writing when bound to a variable using the let-construct, or when handed
over as argument to a method call or a return.

Γ;∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ;∆ ⊢ mi : Ui :: ∆ mi = ς(si :c).λ(xi :Ti).ti
T-C

Γ;∆ ⊢ [(l1 = m1, . . . , lk = mk)] : c

Γ;∆ ⊢ c : [(l1:U1, . . . , lk:Uk)] Γ;∆ ⊢ fi : Ui fi = ς(si :c).λ().v⊥
T-O

Γ;∆ ⊢ [l1 = f1, . . . , lk = fk] : c

Γ, ~x:~T;∆, s:c ⊢ t : T′:: ∆́ Γ;∆ ⊢ c : T T = [(. . . , l:~T → T′, . . .)]
T-M

Γ;∆ ⊢ ς(s:c).λ(~x:~T).t : T.l

Γ;∆, s:c ⊢ c : [(. . . , l : Unit→ c′, . . .)]
T-U

Γ;∆ ⊢ ς(s:c).λ().⊥c′ : c′

Γ;∆ ⊢ v : c Γ;∆ ⊢ c : T Γ;∆ ⊢ v′ : T.l
T-FU

Γ;∆ ⊢ v.l := v′ : c

Γ;∆ ⊢ c : [(T)]
T-NC

Γ;∆ ⊢ new c : c

Γ1;∆1 ⊢ e : T1 :: Γ2;∆2 Γ2, x:T1;∆2 ⊢ t : T2 :: Γ3;∆3

T-L
Γ1;∆1 ⊢ let x:T1 = e in t : T2 :: Γ3;∆3

Γ1;∆1 ⊢ v1 : T1 Γ1;∆1 ⊢ v2 : T1 Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ2;∆1 ⊢ e2 : T2 :: Γ2;∆2

T-C
Γ1;∆1 ⊢ if v1 = v2 then e1 else e2 : T2 :: Γ2;∆2

Γ1;∆1 ⊢ v : c Γ1;∆1 ⊢ c : [(. . . , l:Unit→ T, . . .)]

Γ1;∆1 ⊢ e1 : T2 :: Γ2;∆2 Γ;∆1 ⊢ e2 : T2 :: Γ2;∆2
T-C⊥

Γ;∆1 ⊢ if undef(v.l()) then e1 else e2 : T2 :: Γ2;∆2

T-S
Γ;∆ ⊢ stop : T

T-U
Γ;∆ ⊢ () : Unit

T-C
Γ;∆ ⊢ set v7→ n : Unit

Table 3: Typing

Classes, objects, and methods resp. fields have no effect on∆ (see rules T-C,
T-O, T-M, and T-U). Note that especially in T-M, the name context∆
does not change. This doesnot mean, that a method cannot have a side-effect by ful-
filling promises, but they are not part of the check of the method declarationhere.
Rule T-C is the introduction rule for class types, the rule of instantiation of a class
T-NC requires reference to a class-typed name. In the rules T-M and T-FU
we use the meta-mathematical notationT.l to pick the type inT associated with label
l, i.e.,T.l denotesU, whenT = [. . . , l:U, . . .] and analogously forT = [(. . . , l:U, . . .)].
Rules T-C and T-O check the definition of classes resp., of objects against the
respective interface type. Note that the type of the self-parameter must be identical to
the name of the class, the method resides in. The premises of rule T-M checks the
method body in the contextΓ appropriately extended with the formal parametersxi ,

2 CALCULUS 9

T-P
Γ;∆ ⊢ promise T: [T]+−

Γ;∆ ⊢ n : [T]+

T-C
Γ;∆ ⊢ claim@(n,o) : T

T-G
Γ;∆ ⊢ get@n : T

T-C
Γ;∆ ⊢ set v7→ n1 : Unit

Γ(x) = T Γ́ = Γ \ x : T
T-V

Γ;∆ ⊢ x : T :: Γ́;∆

∆(x) = T ∆́ = ∆ \n : T
T-N

Γ;∆ ⊢ n : T :: Γ;∆′

Γ;∆,n:[T]+ ⊢ o : c Γ;∆, n:[T]+ ⊢ c : [(. . . , l:~T → T, . . .)] Γ;∆, n:[T]+ ⊢ ~v : ~T Γ́; ∆́ = Γ;∆ \(~v : ~T)
T-B

Γ;∆, n : [T]+− ⊢ bind o.l(~v) : T ֒→ n : [T]+ :: Γ́; ∆́ ,n:[T]+

∆ ⊢ o : c
T-S

Γ;∆ ⊢ suspend(o) : Unit

T-G
Γ;∆ ⊢ grab(o) : Unit

T-R
Γ;∆ ⊢ release(o) : Unit

T ≤ T′

T-S
Γ1;∆1 ⊢ t : T′ :: Γ2;∆2

Table 4: Typing

resp. the context∆ extended by theς-bound self-parameter. T-U works similarly
treating the case of an uninitialized field. The terminated expressionstop and the unit
value do not change the capabilities (cf. rules T-S and T-U). Note thatstop has
any type (cf. rule T-S) reflecting the fact that control never reaches the pointafter
stop. Further constructs without side effects are the three expressions to manipulate
the monitor locks (suspension, lock grabbing, and lock release), object instantiation
(T-NC), and field update. Wrt. field update in rule T-FU, the reason why the
update has not effect on the contexts is that we do not allow fields to carry a type
of the form [T]+−. This effectively prevents the passing around of write-permissions
via fields. The rule T-L for let-bindings introduces a local scope. The change from
∆1 to ∆2 and further from∆2 to ∆3 (and analogously for theΓ’s) reflects the sequen-
tial evaluation strategy: firste is evaluated and afterwardst. For conditionals, both
branches must agree on their pre- and post∆-contexts, which typically means, over-
approximating the effect by taking the upper bound on both as combined effect. Note
that the comparison of the values in T-C resp. the check for definedness in T-C⊥
has no side-effect on the contexts. The rule for testing for definedness using undef (not
shown) works analogously.

Table 4 deals with futures, promises, and especially the linear aspect of consuming
and transmitting the write-permissions. Theclaim-command fetches the result value
from a future; hence, if the referencen is of type [T]+, the value itself carries typeT
(cf. rule T-C). The rule T-G for getworks analogously.

The expressionpromise Tcreates a new promise, which can be read or written and
is therefore of type [T]+−. Note, however, that the context∆ doesnot change. The
reason is that the new name created bypromiseis hidden by aν-binder immediately
after creation and thus does not immediately extend the∆-context (see the reduction
rule P below). The binding of a threadt to a promisen is well-typed if the type
of n still allows the promise to be fulfilled, i.e.,n is typed by [T]+− and not just [T]+.
The auxiliary expressionset v7→ n is evaluated for its side-effect, only, and is of type

2 CALCULUS 10

Unit (cf. rule T-C). claim dereferences a future, i.e., it fetches a value of type
T from the reference of type [T]+. Otherwise, the expression has no effect on∆, as
reading can be done arbitrarily many times. As an aside: in rule T-C, the type
of o is not checked, as by convention, the claim-statement must be used in the form
claim@(self) in the user syntax, whereself is the self-parameter of the surrounding
methods. Reduction then preserves well-typedness so a re-check here is not needed.
Similar remarks apply to the remaining. The treatment ofget is analogous (cf. rules
T-C and T-G). For T-B, handing over a promise with read/write permissions
as an actual parameter of a method call, the caller loses the right to fulfill the promise.
Of course, the caller can only pass the promise to a method which assumes read/write
permissions, if itself has the write permission. The loss ofthe write-permission is
specified by settinǵ∆ and Γ́ to ∆ \~v : ~T resp. toΓ \~v : ~T. The difference-operator
∆ \ n : [T]+− removes thewrite-permission forn from the context∆. In T-B, the
premise∆; Γ, n:[T]+ ⊢ ~v : ~T abbreviates the following: assume~v = v1, . . .vn and
~T = T1 . . .Tn and letΞ1 abbreviateΓ;∆, n:[T]+. ThenΞ ⊢ ~v : ~T means:Ξi ⊢ vi : Ti and
Ξi+1 = Ξi \Ti , for all 1 ≤ i ≤ n. Note that checking the type of the callee has not side-
effect on the bindings. Mentioning a variable or a name removes the write permission
(if present) from the respective binding context (cf. T-V and T-N). The next three
rules T-S, T-G, and T-R deal with the expressions for coordination
and lock handling; they are typed byUnit. The last rule T-S is the standard rule of
subsumption.

2.3 Operational semantics

The operational semantics is given in two stages, componentinternal steps and exter-
nal ones, where the latter describe the interaction at the interface. Section 2.3.1 starts
with component-internal steps, i.e., those definable without reference to the environ-
ment. In particular, the steps have no observable external effect. The external steps,
presented afterwards in Section 2.3.2, define the interaction between component and
environment. They are defined in reference to assumption andcommitment contexts.
The static part of the contexts corresponds to the static type system from Section 2.2
on component level and takes care that, e.g., only well-typed values are received from
the environment.

2.3.1 Internal steps

The internal semantics describes the operational behaviorof aclosedsystem, not inter-
acting with its environment. The corresponding reduction steps are shown in Table 5,

distinguishing between confluent steps and other internal transitions
τ
−→, both invis-

ible at the interface. The -steps, on the one hand, do not access the instance state of

the objects. They are free of imperative side effects and thus confluent. The
τ
−→-steps,

in contrast, access the instance state, either by reading orby writing it, and thus may
lead to race conditions. In other words, this part of the reduction relation is in general
not confluent.

The first seven rules deal with the basic sequential constructs, all as -steps. The
basic evaluation mechanism is substitution (cf. rule R). Note that the rule requires
that the leading let-bound variable is replaced only byvalues v. The operational be-
havior of the two forms of conditionals are axiomatized by the four C-rules. De-
pending on the result of the comparison in the first pair of rules, resp., the result of
checking for definedness in the second pair, either the then-or the else-branch is taken.

2 CALCULUS 11

///.-,()*+ claim

t2,v
///o/o/o

claim

t2=v

��
/.-,()*+

release

��

/.-,()*+ //

/.-,()*+
get

t2=v
///.-,()*+

grab ⊥

OO

Figure 1: Claiming a future

In C2, we assume thatv1 does not equalv2, as side condition. Evaluatingstop
terminates the future for good, i.e., the rest of the thread will never be executed as
there is no reduction rule for the futuren〈stop〉 (cf. rule S). The rule FL
deals with field look-up, whereF′.l(o)() stands for⊥c[o/s] = ⊥c, resp., forv[o/s],
where [c, F′] = [c, . . . , l = ς(s:c).λ().⊥c, . . . , L], if the field is yet undefined, resp.,
[c, F′] = [c, . . . , l = ς(s:c).λ().v, . . . , L]. In FU, the meta-mathematical notation
F.l := v stands for (. . . , l = v, . . .), whenF = (. . . , l = v′, . . .). There will be no external
variant of the rule for field look-up later in the semantics ofopen systems, as we do not
allow field access across component boundaries. The same restriction holds for field
update in rule FU. A new object as instance of a given class is created by rule
NOi . Note that initially, the lock is free and there is not activity associated with the
object, i.e., the object is initially passive.

The expressionpromise Tcreates a fresh promisen. Note that no new thread is yet
allocated, as so far nothing more than the name is known. The rule P mentions the
typesT andT′. The typing system assures that the typeT is of the form [S]+− for some
type S. A promise is fulfilled by thebind-command (cf. rule Bi), in that the new
threadn is put together with the codet1 to be executed and run in parallel with the rest
asn′〈let x : T = t1 in set x7→ n〉 (wheren′ is hidden). Upon termination, the result is
available via theclaim- and theget-syntax (cf. the C-rules and rule Gi), but not
before the lock of the object is given back again usingrelease(o) (cf. rule R). If
the thread is not yet terminated, the requesting thread suspends itself, thereby giving up
the lock. The behavior ofclaim is sketched in Figure 1. Note the types of the involved
let-bound variables: the future reference is typed by [T], indicating that the value forx
will not directly be available, but must be dereferenced first via claim. When it comes
to claim a future, we added as auxiliary syntaxset v7→ n. The expression presents an
evaluated thread, just in front of the step where the valuev is about to be put into the
thread namedn. The reasons for that additional syntax are largely technical, namely
to achieve a clean separation of internal and externally visible behavior, in particular,
to get a proper formulation of the subject reduction results. This additional expression
requires, that the rules C1

i , C2
i , and G1, dealing with evaluated threads of the

form n〈v〉, are complemented by the rules C3
i and C4

i , resp. G2i .
The two operationsgrab andreleasetake, resp., give back an object’s lock. They

are not part of the user syntax, i.e., the programmer cannot directly manipulate the
monitor lock. The user can release the lock using thesuspend-command or by trying
to get back the result from a call usingclaim.

The above reduction relations are used modulostructural congruence,which cap-
tures the algebraic properties of parallel composition andthe hiding operator. The basic

2 CALCULUS 12

axioms for≡ are shown in Table 6 where in the fourth axiom,n does not occur free in
C1. The congruence relation is imported into the reduction relations in Table 7. Note
that all syntactic entities are always tacitly understood moduloα-conversion.

n〈let x:T = v in t〉 n〈t[v/x]〉 R

n〈let x2:T2 = (let x1:T1 = e1 in e) in t〉 n〈let x1:T1 = e1 in (let x2:T2 = ein t)〉 L

n〈let x:T = (if v = v then e1 else e2) in t〉 n〈let x:T = e1 in t〉 C1

n〈let x:T = (if v1 = v2 then e1 else e2) in t〉 n〈let x:T = e2 in t〉 C2

n〈let x:T = (if undef(⊥c′) then e1 else e2) in t〉 n〈let x:T = e1 in t〉 C⊥1

n〈let x:T = (if undef(v) then e1 else e2) in t〉 n〈let x:T = e2 in t〉 C⊥2

n〈let x:T = stop in t〉 n〈stop〉 S

o[c, F′, L] ‖ n〈let x:T = o.l() in t〉
τ
−→ o[c, F′, L] ‖ n〈let x:T = F′.l(o)() in t〉 FL

o[c, F, L] ‖ n〈let x:T = o.l := v in t〉
τ
−→ o[c, F.l := v, n′] ‖ n〈let x:T = o in t〉 FU

c[(F,M)] ‖ n〈let x:c = new c in t〉

c[(F,M)] ‖ ν(o:c).(o[c, F,⊥] ‖ n〈let x:c = o in t〉) NOi

n′〈let x:T′ = promise Tin t〉 ν(n:T′).(n′〈let x:T′ = n in t〉) P

c[(F′,M)] ‖ o[c, F, l] ‖ n1〈let x:T = bind o.l(~v) : T2 →֒ n2 in t1〉
τ
−→

c[(F′,M)] ‖ o[c, F, l] ‖ n1〈let x:T = n2 in t1〉

‖ ν(n′:Unit).(n′〈let x:T2 = grab(o); M.l(o)(~v) in release(o); set x7→ n2〉)

Bi

n′〈set v7→ n1〉 ‖ n2〈let x : T = claim@(n1, o) in t〉

n′〈set v7→ n1〉 ‖ n2〈let x : T = v in t〉 C1
i

t2 , v
C2

i
n′〈set t2 7→ n2〉 ‖ n1〈let x : T = claim@(n2,o) in t′1〉

n′〈set t2 7→ n2〉 ‖ n1〈let x : T = release(o); get@n2 in grab(o); t′1〉

n1〈v〉 ‖ n2〈let x : T = claim@(n1, o) in t〉 n1〈v〉 ‖ n2〈let x : T = v in t〉 C3
i

t2 , v
C4

i
n2〈t2〉 ‖ n1〈let x : T = claim@(n2,o) in t′1〉

n2〈t2〉 ‖ n1〈let x : T = release(o); get@n2 in grab(o); t′1〉

n1〈v〉 ‖ n2〈let x : T = get@n1 in t〉 n1〈v〉 ‖ n2〈let x : T = v in t〉 G2i

n′〈set v7→ n1〉 ‖ n2〈let x : T = get@n1 in t〉 n1〈set v7→ n1〉 ‖ n2〈let x : T = v in t〉 Gi

n〈suspend(o); t〉 n〈release(o); grab(o); t〉 S

o[c, F,⊥] ‖ n〈grab(o); t〉
τ
−→ o[c, F,⊤] ‖ n〈t〉 G

o[c, F,⊤] ‖ n〈release(o); t〉
τ
−→ o[c, F,⊥] ‖ n〈t〉 R

Table 5: Internal steps

2 CALCULUS 13

0 ‖ C ≡ C C1 ‖ C2 ≡ C2 ‖ C1 (C1 ‖ C2) ‖ C3 ≡ C1 ‖ (C2 ‖ C3)

C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2) ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C

Table 6: Structural congruence

Next we show that the type system indeed assures what it is supposed to, most
importantly that a promise is indeed fulfilled only once. First we characterize as erro-
neous situations where a promise is about to be written a second time: A configuration
C contains awrite error if it is of the form C ≡ ν(Θ′).(C′ ‖ n′〈let x : T = bind t1 :
T1 →֒ n in t2〉 ‖ n〈t〉). Configurations without such write-errors are calledwrite-error
free, denoted⊢ C : ok. In [53], an analogous condition is calledhandle error.

First we show that a well-typed component does not contain a manifest write-error.

Lemma 2.2. If ∆ ⊢ C : Θ, then⊢ C : ok.

Proof. By induction on the typing derivations for judgments on the level of compo-
nents, i.e., for judgments of the form∆ ⊢ C : Θ; the subordinate typing rules from
Tables 3 and 4 on the level of threads and expressions do not play a role for the proof.
The empty component in the base case of T-E is clearly write-error free. The
cases for the T-N-rules by straightforward induction. The case T-S for subsumption
is likewise follows by induction. The cases for T-NC, T-NO, and T-NF are
trivially satisfied, as they mention a single, basic component, only.

Case:T-P
We are given∆,Θ2 ⊢ C1 : Θ1 and∆,Θ1 ⊢ C2 : Θ2. By induction, bothC1 andC2

are write-error free. The non-trivial case (which we will lead to a contradiction) is
when one of the components attempts to write to a promises andthe partner already
has fulfilled it. So, wlog. assume thatC1 = ν(Θ′1).(C′1 ‖ n1〈let x : T = bind x : T →֒
n2 in t′′〉 andC2 = ν(Θ′2).(C′2 ‖ n2〈t2〉). Assume thatn2 neither occurs inΘ′1 nor in
Θ′2, otherwise no write error is present (since in that case, thenamen2 mentioned on
both sides of the parallel refer to different entities). ForC1 to be well-typed, we have
∆,Θ2 ⊢ n : [T1]+− for some typeT1. ForC2 to be well-typed, we haveΘ2 ⊢ n : [T2]+

for some typeT2. Thus,∆ ⊢ C1 ‖ C2 : Θ1,Θ2 cannot be derived, which contradicts the
assumption. �

�

The next standard property shows preservation of well-typedness under internal

C ≡ ≡ C′

C C′

C C′

C ‖ C′′ C′ ‖ C′′

C C′

ν(n:T).C ν(n:T).C′

C ≡
τ
−→ ≡ C′

C
τ
−→ C′

C
τ
−→ C′

C ‖ C′′
τ
−→ C′ ‖ C′′

C
τ
−→ C′

ν(n:T).C
τ
−→ ν(n:T).C′

Table 7: Reduction modulo congruence

2 CALCULUS 14

reduction. The necessary ancillary lemmas will in general proceed by induction on the
typing derivations for judgments of the form∆ ⊢ C : Θ. From a proof-theoretical (and
algorithmic) point of view, the type system as formalized inTables 2, 3, and 4 has an
unwelcome property: it is too “non-deterministic” in that it allows the non-structural
subsumption rules T-S on the level of threadst and on the level of componentsC
at any point in the derivation. This liberality is unwelcomefor proofs by induction on
the typing derivation as one loses knowledge about the structure of the premises of an
applied rule in the derivation.

Lemma 2.3 (Minimal typing). 1. If ∆ ⊢m C : Θ and∆′ ⊢ C : Θ′, then∆ ≤ ∆′ and
Θ ≤ Θ′.

2. If ∆ ⊢m C : Θ then∆ ⊢ C : Θ.

3. If ∆′ ⊢ C : Θ′, then∆ ⊢m C : Θ with ∆ ⊢ ∆′ andΘ ≤ Θ′.

Proof. Straightforward. � �

Lemma 2.4 (Subject reduction:≡). If ∆ ⊢m C1 : Θ and C1 ≡ C2, then∆ ⊢m C2 : Θ.

Proof. We show preservation of typing by the axioms of Table 6. Proceed by induction
on the derivation of∆ ⊢m C1 : Θ.

Case: C‖ 0 ≡ C (idempotence)
We are given∆ ⊢ C ‖ 0 : Θ. Inverting T-P and by T-E we get as sub-goals
∆,Θ ⊢m 0 : () and∆ ⊢m C : Θ, which concludes the case.

Case: C≡ C ‖ 0 (idempotence)
Immediate using T-P and T-E.

Case: C1 ‖ C2 ≡ C2 ‖ C1 (commutativity)
Immediate.

Case: C1 ‖ (C2 ‖ C3) ≡ (C1 ‖ C2) ‖ C2 and vice versa (associativity)
By straightforward induction.

Case: C1 ‖ ν(n:T).C2 ≡ ν(n:T).(C1 ‖ C2)
wheren does not occur free inC1. We are given∆ ⊢ C1 ‖ ν(n:T).C2 : Θ1,Θ2, where
n neither occurs inΘ1 norΘ2. Inverting T-P and T-N f or T-N2

o, we obtain as two
subgoals∆,Θ2 ⊢ C1 : Θ1 and∆,Θ1 ⊢ C2 : Θ1,Θ2, n:T, and the result follows by T-P
and the respective T-N-rule. The case for T-N1

o works analogously.

Case:ν(n1:T1).ν(n2:T2).C ≡ ν(n2:T2).ν(n1:T1).C
Analogously. �

�

Lemma 2.5 (Subject reduction:
τ
−→ and). Assume∆ ⊢ C : Θ.

1. If C
τ
−→ Ć, then∆ ⊢ Ć : Θ.

2. If C Ć, then∆ ⊢ Ć : Θ.

Proof. The reduction rules of Table 5 are all of the formC1 ‖ n〈t1〉
τ
−→ C2 ‖ n〈t2〉,

where oftenC1 = C2 or C1 andC2 missing. In the latter case, it suffices to show that
;∆, n:[T]+ ⊢m t1 : T implies ;∆, n:[T]+ ⊢ t2 : T.

2 CALCULUS 15

Case:R: let x : T = v in t t[v/x]
By preservation of typing under substitution.

The 5 rules for let and for conditionals are straightforward. The case for stop fol-
lows from the fact thatstop has every type (cf. rule T-S).

Case:P: n′〈let x:T′ = promise Tin t〉 ν(n:T′).(n′〈let x : T′ = n in t〉)
The type system assures thatT′ = [T]+−, i.e., for the left-hand side we obtain as
subgoal (inverting T-NT, T-L, and T-P) x:[T]+−;∆, n′:[T]+− ⊢ t : T. The
result follows from T-N, T-L, and T-NT.

Case:Bi n1〈t〉 = n1〈let x:T = bind o.l(~v) : T2 →֒ n2 in t1〉
τ
−→ n1〈let x:T = () in t1〉 ‖

ν(n′:Unit).(n′〈let x:T2 = M.l(o)(~v) in set x7→ n2〉)
The type system assures (cf. T-B) thatT = [T′]+ for some typeT′. By assumption,
we are given∆ ⊢ n1〈t〉 : Θ which impliesΘ = n1:[T1]+. Inverting rule T-N gives

;∆′ ,n2:[T2]+ ⊢ M.l(o)(~v) : T1

T-B
;∆′′ , n2:[T2]+− ⊢ bind o.l(~v) : T2 ֒→ n2 : T ::;∆′′ , n2:[T2]+ x:T∆′′ ,n2:[T2]+ ⊢ t1 : T1 :: x:T; ∆́,n2:[T2]+

T-L
;∆′′ ,n2:[T2]+− ⊢ let x:T = bind o.l(~v) : T2 ֒→ n2 in t1 : T1 ::; ∆́,n2:[T2]+

∆′ ⊢ n1〈let x:T = bind o.l(~v) : T2 ֒→ n2 in t1〉 : n1:[T1]+ ,n2:[T1]+−

Rule T-B implies that∆ = ∆′, n2 : [T]+−, i.e., the thread has write permission onn2

in the pre-state. Furthermore,∆́ ⊢ n2 : [T]+, i.e., in the post-state, the thread has lost its
write-permission (as it has executed it). In addition,Γ́ is empty. With T-P we obtain
the following two sub-goals.

∆′ ,n2:[T2]+− ⊢ n1〈let x:Unit = () in t1〉 : n1:[T1]+ ∆′ ,n1:[T1]+ ⊢ ν(n′:Unit).(n′〈let x:T2 = M.l(o)(~v) in set x 7→ n2〉) : n2:[T2]+−

∆′ ⊢ n1〈let x:Unit = () in t1〉 ‖ ν(n
′:Unit).(n′〈let x:T2 = M.l(o)(~v) in set x7→ n2〉) : n1:[T1]+ ,n2:[T2]+−

Both can be straightforwardly solved using T-NF, T-N, T-U, T-L, T-C,
and the assumptions.

The remaining rules work similarly. � �

Lemma 2.6 (Subject reduction:≡). If ∆ ⊢ C1 : Θ and C1 ≡ C2, then∆ ⊢ C2 : Θ.

Proof. Assume∆ ⊢ C1 : Θ andC1 ≡ C2. By Lemma 2.3(3),∆′ ⊢m C1 : Θ′ s.t.
∆ ≤ ∆′ andΘ′ ≤ Θ. By Lemma 2.4,∆′ ⊢m C2 : Θ′, and hence by Lemma 2.3(2), also
∆′ ⊢ C2 : Θ′, and the result follows by subsumption (rule T-S). � �

Lemma 2.7 (Subject reduction:
τ
−→ and). Assume∆ ⊢ C : Θ.

1. If C
τ
−→ Ć, then∆ ⊢m Ć : Θ.

2. If C Ć, then∆ ⊢m Ć : Θ.

Proof. As consequence of the corresponding property for minimal typing from Lemma
2.5 and Lemma 2.3. � �

Lemma 2.8 (Subject reduction). If Ξ ⊢ C and C=⇒ Ć, thenΞ ⊢ Ć.

Proof. A consequence of Lemma 2.6 and 2.7. � �

A direct consequence is that all reachable configurations are write-error free:

Corollary 2.9. If ∆ ⊢ C : Θ and C=⇒ Ć, then⊢ Ć : ok.

Proof. A consequence of Lemma 2.2 and subject reduction from Lemma 2.8. � �

2 CALCULUS 16

γ ::= n〈call o.l(~v)〉 | n〈get(v)〉 | ν(n:T).γ basic labels
a ::= γ? | γ! receive and send labels

Table 8: Labels

2.3.2 External semantics

The external semantics formalizes the environment interaction of an open component
as labeled transitions between judgments of the form

∆ ⊢ C : Θ, (3)

where∆ represent theassumptionsabout the environment of the componentC andΘ
thecommitments. The assumptions require the existence ofnamed entitiesin the envi-
ronment (plus giving static typing information). The semantics maintains as invariant
that the assumption and commitment contexts are disjoint concerning the names for ob-
jects, classes, and threads. In addition, the interface keeps information about whether
the value of the futuren is already known at the interface. If it is, we writen:T = v as
binding of the context. We write furthermore∆ ⊢ n = v, if ∆ contains the correspond-
ing value information and write∆ ⊢ n = ⊥, if that is not the case. This extension makes
the value of a future (once claimed) available at the interface. With these judgments,
the external transitions are of the form:

∆ ⊢ C : Θ
a
−→ ∆́ ⊢ Ć : Θ́ . (4)

Notation 2.10. We abbreviate the tuple of name contexts∆,Θ asΞ. Furthermore we
understand́∆, Θ́ asΞ́, etc.

The labels of the external transitions represent the corresponding interface interac-
tion (cf. Table 8). A component exchanges information with the environment viacall
labelsγc andget labelsγg. Interaction is either incoming or outgoing, indicated by ?,
resp., !. In the labels,n is the identifier of the thread carrying out the call resp. of being
queried viaclaim or get. Besides that, object and future names (but no class names)
may appear as arguments in the communication. Scope extrusion of names across the
interface is indicated by theν-binder. Given a basic labelγ = ν(Ξ).γ′ whereΞ is a name
context such thatν(Ξ) abbreviates a sequence of singlen:T bindings (whose names are
assumed all disjoint, as usual) and whereγ′ does not contain any binders, we callγ′

the core of the label and refer to it by⌊γ⌋. We define core analogously for receive
and send labels. The free namesfn(a) and the bound namesbn(a) of a labela are as
usual, whereasnames(a) refer to all names ofa. In addition, we distinguish between
names occurring as arguments of a label, inpassiveposition, and the name occurring
as carrier of the activity, inactiveposition. Namen, for illustration, occurs actively and
free inn〈call o.l.(~v)〉 and inn〈get(v)〉. We writefna(a) for the free names occurring in
active position,fnp(a) for the free names in passive position, etc. All notations are used
analogously for basic labelsγ. Note that for incoming labels,Ξ contains only bind-
ings to environment objects (besides future names), as the environment cannot create
component objects; dually for outgoing communication.

The steps of the operational semantics for open systems checks thestaticassump-
tions, i.e., whether at most the names actually occurring inthe core of the label are
mentioned in theν-binders of the label, and whether the transmitted values are of the
correct types. This is covered in the following definition.

2 CALCULUS 17

Ξ́ = Ξ́1,n:[T]+ , Ξ́2 ; Ξ́ ⊢ ~v : ~T a= n〈call or .l(~v)〉?
LT-CI

Ξ́ ⊢ a : ~T →

; Ξ́ ⊢ v : T a= n〈get(v)〉?
LT-GI

Ξ́ ⊢ a : → T

Table 9: Typechecking labels

Definition 2.11 (Well-formedness and well-typedness of a label). A label a= ν(Ξ).⌊a⌋
is well-formed,written⊢ a, if dom(Ξ) ⊆ fn(⌊a⌋) and ifΞ is a well-formed name-context
for object and future names, i.e., no name bound inΞ occurs twice. The assertion

Ξ́ ⊢ o.l? : ~T → T (5)

(“an incoming call of the method labeled l in objecto expects arguments of type~T and
results in a value of type T”) is given by the following rule, i.e., implication:

; Θ́ ⊢ o : c ; Ξ́ ⊢ c : [(. . . , l:~T → T, . . .)]

Ξ́ ⊢ o.l? : ~T → T
(6)

For outgoing calls,Ξ́ ⊢ o.l! : ~T → T is defined dually. In particular, in the first
premise,Θ́ is replaced bý∆. Well-typednessof an incoming core label a with expected
type~T, resp., T , and relative to the name contextΞ́ is asserted by

Ξ́ ⊢ a : ~T → resp., Ξ́ ⊢ a : → T , (7)

as given by Table 9. InLT-CI, the premise; Ξ́ ⊢ ~v : ~T is interpreted in such a
way that checking for write-permission consumes that permission (analogous to the
corresponding premise ofT-B in Table 4): LetΞ́0 abbreviate; Ξ́. Then; Ξ́ ⊢ ~v : ~T
means:Ξ́i ⊢ vi : Ti andΞ́i+1 = Ξ́i \Ti , for all 0 ≤ i ≤ n− 1.

Note that the receivero of the call is checked using only the commitment context
Θ́, to assure thato is a component object. Note further that to check the interface type
of the classc, the full Ξ́ is consulted, since the argument types~T or the result typeT
may refer to both component and environment classes. The incremental type of first
premise ;́Ξ ⊢ ~v : ~T of LT-CI assures that no name is transmitted twice with write-
permission. In a similar spirit: requiring thatΞ́ is of the formΞ́1, n:[T]+, Ξ́2 assures
that it is not possible to transmitn with write-permissions ifn is the active thread of the
label.

Besidescheckingwhether the assumptions are met before a transition, the contexts
areupdatedby a transition step, i.e., extended by the new names, whose scope extrudes.
For the binding partΞ′ of a labelν(Ξ′).γ, the scope of the references to existing objects
and thread names∆′ extrudes across the border. In the step,∆′ extends the assumption
context∆ andΘ′ the commitment contextΘ. Besides information about new names,
the context information is potentially updated wrt. the availability of a future value.
This is done when a get-label is exchanged at the interface for the first time, i.e., when
a future value is claimed successfully for the first time. Foroutgoing communication,
the situation is dual.

Before we come to the corresponding Definition 2.12 below, wemake clear (again)
the interpretation of judgments∆ ⊢ C : Θ. Interesting is in particular the informa-
tion n:[T]+−, stipulating that namen is available with write-permission (and result type

2 CALCULUS 18

T). In case of∆ ⊢ n : [T]+−, the namen is assumed to available in the environment
as writeable, and converselyΘ ⊢ n : [T]+− asserts write permission for the compo-
nent. Since read permissions, captured by types [T]+, are not treated linearly —one
is allowed to read from a future reference as many times as wished— the treatment
of bindingsn:[T]+ is simpler. Hence here we concentrate onn:[T]+− and the write
permissions.

Since the domains of∆ andΘ are disjoint, bindingsn:T′ cannot be available in
the assumption context∆ and the commitmentsΘ at the same time. The information
T′ = [T]+− indicates which side, component or environment, has the write permission.
If, for instance∆ ⊢ n : [T]+−, then the component is not allowed to execute a bind on
referencen. The same restriction does not apply to read permissions. Inthe mentioned
situation∆ ⊢ n : [T]+−, the component can execute aclaim-operation onn. The same
applies if∆ ⊢ n : [T]+. In other words, a namen can be accessed by reading by both the
environment and the component once known at the interface, independent whether it is
part of∆ or ofΘ. A difference between bindings of the formn:[T]+− andn:[T]+ (and
likewisen:[T]+ = v) is, that communication canchange∆ ⊢ n : [T]+− toΘ ⊢ n : [T]+−

and vice versa. For namesn of type [T]+, this change of side is impossible. The latter
kind of information, for instanceΘ ⊢ n : [T]+, implies that the code has been bound to
n and it is placed in the component. Once fixed there, the reference ton may, of course,
be passed around, but the thread namedn itself cannot change to the environment since
the language does not supportmobilecode.

Now, how does communication labels as interface interactions update the binding
contexts? We distinguish two ways, the namen of a thread can be transmitted in
a label: passively,when transported as the argument of a call or a get-interaction,
andactively,when mentioned as the carrier of the activity, as then in n〈call o.l(~v)〉
andn〈get(v)〉. As usual, such references (actively or passively) can be transmitted as
fresh names, i.e., under aν-binder, or alternatively as an already known name. When
transmittedpassivelyand typed with [T]+− for some typeT, the write-permission ton
is handed over to the receiving side and at the same time, thatpermission is removed
from the sender side. So if, e.g., the environment is assumedto possess the write-
permission for referencen, witnessed by∆ ⊢ n : [T]+−, then sendingn as argument
in a communication to the component removes the binding fromthe environment and
adds the permission to the component side, yieldingΘ ⊢ n : [T]+−. In case the name is
transmittedactively,the receiver does not obtain write permission.

Now, what about transmittingn actively? An incoming calln〈call o.l(~v)〉?, e.g.,
reveals at the interface that the promise indeed has been fulfilled. As, in that situation
of an incoming call, the thread is located at the component, the commitment context
is updated to satisfyΘ ⊢ n : [T]+ = ⊥ (for an appropriate typeT) after the commu-
nication. Indeed, before the step it is checked, that the environment actually has write
permission forn, i.e., that∆ ⊢ n : [T]+−, or that the namen is new. See the incoming
call in Figure 2(a), where then is fresh, resp. in 2(c), where then has been transmitted
passively and with write-permissions to the environment before the call (in the dotted
arrow).

Whereas call-labels make public, at which side the thread inquestion resides, get-
labels, on the other hand, reveal that the thread has terminated and fix the result value
(if that information had not been public interface information before). There are two
situations, where a, say, outgoing get-communication is possible. In both cases, the
future resides in the component and after the get-communication, the value is deter-
mined, i.e.,Θ ⊢ n : [T]+ = v (if not already before the step). One scenario is that
∆ ⊢ n : [T]+ = ⊥ before the step still. If, in that situation, theget is executed by

2 CALCULUS 19

the environment, it is required that the component must havehad write permission be-
fore that step, i.e.,Θ ⊢ n : [T]+− (cf. Figure 2(b)). The only way, the value forn is
available for the environment now is that,unnoticed6 at the interface, the promise had
been fulfilled and the corresponding thread already has terminated, and this could have
been done by the component, only. In that situation, the contexts are updated from
Θ ⊢ n : [T]+− to Θ ⊢ n : [T]+ = v: the component loses the write-permission as it
obviously has executed its permission already and the valuev is fixed and known at the
interface. Alternatively, the thread may be known to be partof the component with the
promise already fulfilled (Θ ⊢ n : [T]+ = ⊥, as shown in Figure 2(a) and 2(c)). Finally,
the value forn might already been known at the interface, i.e., already before the step,
Θ ⊢ n : [T]+ = v holds. In that situation,v has been added as interface information pre-
viously, either by a prior get-interaction incoming get-communication or an outgoing
return-communication, and the situation corresponds to the last get in Figure 2(b) and
2(c).

∆Θ

call

claim

get

Ξ 6⊢ n

Θ ⊢ n : [T]+ = ⊥

Θ ⊢ n : [T]+ = v

(a)

∆Θ

get
get

Ξ 6⊢ n

Θ ⊢ n : [T]+−

Θ ⊢ n : [T]+ = v

(b)

∆Θ

call

claim

get

get

Ξ 6⊢ n

∆ ⊢ n:[T]+−
Θ ⊢ n : [T]+ = ⊥

Θ ⊢ n : [T]+ = v

(c)

Figure 2: Scenarios

This gives rise to the following definition.

Definition 2.12 (Context update). Let Ξ be a name context and a= ν(Ξ′).⌊a⌋ an
incominglabel. We define the (intermediate) contextsΘ′′ = Θ and∆′′ = ∆,Ξ′.

Let furthermoreΣ′′ be the set of bindings defined as follows. In case of a call label,
i.e., ⌊a⌋ = n〈call o.l(~v)〉?, let the vector of types~T be defined byΞ ⊢ o.l? : ~T → T
according to equation (5) of Definition 2.11. ThenΣ′′ consists of bindings of the form
vi :[T′i]

+− for values vi from~v such that Ti = [T′i]
+−. In case of a get label, i.e.,⌊a⌋ =

n〈get(v)〉?, the contextΣ′′ is v:[T]+− if ∆′′ ⊢ n : [[T]+−]+, and empty otherwise.
With Σ′′ given this way, the definitions of the post-contexts∆́ and Θ́ distinguish

between calls and get-interaction: If a is a call label and n∈ namesa(a), we define

∆́ = ∆′′ \Σ′′ \ n:[T]+− and Θ́ = Θ′′,Σ′′, n:[T]+ . (8)

If a is a get label a= ν(Ξ′).n〈get(v)〉?and n∈ namesa(a), ∆́ andΘ́ are given by:

∆́ = ∆′′ \Σ′′, n:[T]+ = v and Θ́ = Θ′′,Σ′′ . (9)

For outgoingcommunication, the definition is applied dually.

The definition proceeds in two steps. In a first step, the assumption and the com-
mitment contexts∆ andΘ are extended with the bindingsΞ′ carried with the incoming

6It is important that the bind-operation on a promise is an internal action andnot recorded at the interface.
This is also the reason to represent an evaluated futuren by n′〈set v7→ n〉, wheren′ is hidden behind aν-
binder and not byn〈v〉 (cf. rule Bi of Table 5.

2 CALCULUS 20

labela. Note that the bindingsΞ′ ⊢ n : [T]+− or Ξ′ ⊢ n : [T]+ for future references,
kept in Σ′, are added to the assumption context∆ but not the commitment context
(in the considered case of incoming communication). The second step deals with the
write permissions, i.e.., it transfers the write permission transmitted arguments from
the sender side to the receiver side. The binding contextΣ′′ deals with the permissions
carried by thread names transmitted passively, i.e., as arguments of the communication.
It remains to take care also of the information carried by theactive thread. For that we
distinguish calls and get-labels. An incoming call (equation (8)) withn as active thread
additionally is the sign that the thread is now located at thecomponent side and that
the write permission has been consumed by the environment side. Hence, in equation
(8), the environment loses the write-permission and the component is extended by the
bindingn:[T]+. In case of an incoming get, the transmitted valuev is remembered as
part of∆ (cf. equation (8)).

Now to the interface behavior. Corresponding to the labels from Table 8, there are
a number of rules for external communication: either incoming or outgoing calls, resp.,
get-labels. All rules have some premises in common. In all cases, the contextΞ before
the interaction is updated tóΞ = Ξ+a using Definition 2.12, wherea is the interaction
label. The rules for incoming communication differ from the corresponding ones for
outgoing communication in that well-typedness and well-formedness of the label is
checked by the premiseśΞ ⊢ ⌊a⌋ : ~T → , resp.Ξ́ ⊢ ⌊a⌋ : → ~T (for calls) resp.,
Ξ́ ⊢ ⌊a⌋ : → T (for get-labels), using Definition 2.11. For outgoing communication,
the check is unnecessary as starting with a well-typed component, there is no need in
re-checking now, as the operational steps preserve well-typedness (subject reduction).

When the component claims the value of a future, we distinguish two situations:
the future value is accessed for the first time across the interface or not. In the first
case, corresponding to rules CI1 and CI2, the interface does not contain the
value of the future yet, stipulated by the premise∆ ⊢ n′ = ⊥. Remember that∆ ⊢ n
requires that the threadn is part of the environment. In that situation it is unclear from
the perspective of the component, whether or not the value has already been computed.
Hence, it is possible that executingclaim is immediately successful (cf. rule C1)
or that the threadn trying to obtain the value has to suspend itself and try later(cf. rule
C2). The external rule C2 works exactly like the corresponding internal rule
C2

i from Table 5, except that here it is required that the queriedfuturen′ is part of
the environment. The behavior of a thread wrt. claiming a future value is illustrated
in Figure 1. If the future value is already known at the interface (cf. rule C3 and
especially premise∆ ⊢ n′ = v), executingclaim is always successful and the valuev is
(re-)transmitted.getworks analogously toclaim, except thatgetinsists of obtaining the
value, i.e., the alternative of relinquishing the lock and trying again as in rule C2,
is not available forget. The last two rules deal with the situation that the environment
fetches the value.

Finally, we characterize theinitial situation. Initially, the component contains at
most one initial activity and no objects. More precisely, given thatΞ0 ⊢ C0 is the
initial judgment, thenC0 contains no objects. Concerning the threads as the active
entities: initially exactly one thread is executing, either at the component side or at the
environment side. The distinction is made at the interface that initially eitherΘ0 ⊢ n or
∆0 ⊢ n, wheren is the only thread name in the system.

Remark 2.13 (Comparison withJava-like multi-threading). The formalization for
the multi-threaded case, for instance in [4], is quite similar. One complication encoun-
tered there is that one has to takereentranceinto account. The rule for incoming call

3 INTERFACE BEHAVIOR 21

a = ν(Ξ′). n〈call o.l(~v)〉? Ξ́ = Ξ + a (Ξ′ ⊢ n∨∆ ⊢ n : []+−) Ξ́ ⊢ o.l? : ~T → T Ξ́ ⊢ ⌊a⌋ : ~T →
CI

Ξ ⊢ C
a
−→ Ξ́ ⊢ C ‖ n〈let x:T = grab(o); M.l(o)(~v) in release(o); x〉

a = ν(Ξ′). n〈call o.l(~v)〉! Ξ′ = fn(⌊a⌋) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ
′ ∆ ⊢ o Ξ́ = Ξ + a

CO
Ξ ⊢ ν(Ξ1).(C ‖ n′〈let x:T = bind o.l(~v) : T ֒→ n in t〉)

a
−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n′〈let x : T = n in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ + a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T
CI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′,) in t〉)
a
−→ Ξ́ ⊢ ν(Ξ1).(C ‖ n〈let x:T = v in t〉)

∆ ⊢ n′ = ⊥
CI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′,o) in t〉) Ξ ⊢ ν(Ξ1).(C ‖ n〈let x : T = release(o); get@n′ in grab(o); t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T
CI3

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = claim@(n′,) in t〉)
a
−→ Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = v in t〉)

a = ν(Ξ′). n′〈get(v)〉? Ξ́ = Ξ + a ∆ ⊢ n′ = ⊥ Ξ́ ⊢ ⌊a⌋ : → T
GI1

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = get@n′ in t〉)
a
−→ Ξ́ ⊢ ν(Ξ1).(C ‖ n〈let x:T = v in t〉)

a = n′〈get(v)〉? ∆ ⊢ n′ = v Ξ ⊢ ⌊a⌋ : → T
GI2

Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = get@n′ in t〉)
a
−→ Ξ ⊢ ν(Ξ1).(C ‖ n〈let x:T = v in t〉)

a = ν(Ξ′).n〈get(v)〉! Ξ′ = fn(⌊a⌋) ∩ Ξ1 Ξ́1 = Ξ1 \Ξ
′ Ξ́ = Ξ + a

GO1

Ξ ⊢ ν(Ξ1).(C ‖ ν(n′:T).(n′〈set v7→ n〉))
a
−→ Ξ́ ⊢ ν(Ξ́1).(C ‖ n〈v〉)

a = n〈get(v)〉! Θ ⊢ n = v
GO2

Ξ ⊢ C
a
−→ Ξ ⊢ C

Table 10: External steps

CI in Table 10 deals with anon-reentrancesituation, which is the only situation
relevant in the setting here. In addition to the ruleCI, Java-like multi-threading
requires furtherCI-rules to cover the situations, when the call is reentrant. �

3 Interface behavior

Next we characterize the possible (“legal”)interface behavioras interaction traces be-
tween component and environment. Half of the work has been done already in the
definition of the external steps in Table 10: For incoming communication, for which
the environment is responsible, the assumption contexts are consulted to check whether
the communication originates from a realizable environment. Concerning the reaction
of the component, no such checks were necessary. To characterize when a given trace is
legal, the behavior of the component side, i.e., the outgoing communication, must ad-
here to the dual discipline we imposed on the environment forthe open semantics. This
means, we analogously abstract away from the program code, rendering the situation
symmetric.

3 INTERFACE BEHAVIOR 22

Ξ ⊢ ǫ : trace L-E

a = ν(Ξ′). n〈call o.l(~v)〉? Ξ́ = Ξ + a (Ξ′ ⊢ n∨ ∆ ⊢ n : []+−)

Ξ́ ⊢ o.l? : ~T → T Ξ́ ⊢ ⌊a⌋ : ~T → Ξ́ ⊢ s : trace
L-CI

Ξ ⊢ a s : trace

a = ν(Ξ′).n〈get(v)〉? Ξ́ = Ξ + a ∆ ⊢ n = ⊥ Ξ́ ⊢ ⌊a⌋ : → T Ξ́ ⊢ s : trace
L-GI1

Ξ ⊢ a s : trace

a = n〈get(v)〉? ∆ ⊢ n = v Ξ ⊢ s : trace
L-GI2

Ξ ⊢ a s : trace

Table 11: Legal traces (dual rules omitted)

3.1 Legal traces system

The rules of Table 11 specify legality of traces. We use the same conventions and
notations as for the operational semantics (cf. Notation 2.10). The judgments in the
derivation system are of the form

Ξ ⊢ s : trace . (10)

We writeΞ ⊢ t : trace, if there exists a derivation according to the rules of Table11 with
an instance of L-E as axiom. The empty trace is always legal (cf. rule L-E),
and distinguishing according to the first actiona of the trace, the rules check whether
a is possible. Furthermore, the contexts are updated appropriately, and the rules recur
checking the tail of the trace. The rules are symmetric wrt. incoming and outgoing
communication (the dual rules are omitted). Rule L-CI for incoming calls works
completely analogously to the CI-rule in the semantics: the second premise updates
the contextΞ appropriately with the information contained ina, premiseΞ′ ⊢ n of
L-CI assures that the identityn of the future, carrying out the call, is fresh and the
two premiseśΞ ⊢ o.l? : ~T → andΞ́ ⊢ ⌊a⌋ : ~T → together assure that the transmitted
values are well-typed (cf. Definition 2.11); the latter two checks correspond to the
analogous premises for the external semantics in rule CI, except that the return
type of the method does not play a role here. The L-GI-rules for claiming a value
work similarly. In particular the type checking of the transmitted value is done by the
combination of the premises∆ ⊢ n : [T] and Ξ́ ⊢ ⌊a⌋ : → T. As in the external
semantics, we distinguish two cases, namely whether the value of the future has been
incorporated in the interface already or not (rules L-GI2 and L-GI1). In both cases,
the thread must be executing on the side of the environment for an incoming get. This
is checked by the premise∆ ⊢ n = ⊥ resp. by∆ ⊢ n = v. In case of L-GI2, where the
value of the future has been incorporated asv into the interface information, the actual
parameter of the get-label must, of course, bev. If not (for L-GI1), the transmitted
argument value is arbitrary, apart from the fact that it mustbe consistent with the static
typing requirements.

It remains to show that the behavioral description, as givenby Table 11, actually
does what it claims to do, to characterize the possible interface behavior of well-typed
components. We show the soundness of this abstraction plus the necessary ancillary
lemmas such as subject reduction.

3 INTERFACE BEHAVIOR 23

Lemma 3.1 (Subject reduction).Ξ0 ⊢ C
s
=⇒ Ξ́ ⊢ Ć, thenΞ́ ⊢ Ć.

Proof. By induction on the number of reduction steps. That internalsteps preserve
well-typedness, i.e.,Ξ ⊢ C =⇒ Ξ ⊢ C, follows from Lemma 2.8. That leaves the
external reduction steps of Table 10.

Case:CI
We are givenΞ ⊢ C. The disjunctive premise of the rule distinguishes two sub-cases:
1) Ξ′ ⊢ n (the thread name is transmitted freshly) or 2)∆ ⊢ n : []+− (the thread is not
transmitted freshly and the environment has write-permission before the step). Both
are treated uniformly in the argument. For the right-hand side of the transition, we
need to show

Ξ́ ⊢ C ‖ n〈let x:T = grab(o); M.l(o)(~v) in release(o); x〉 .

According to the definition of context update (Definition 2.12), Ξ́ = ∆́, Θ́, where
Θ́ = Θ,Σ′′, n : [T]+ and whereΣ′′ contains bindingsn′:[T′]+− for those references
transmitted with read-write permission as argument of the call (see the right-hand of
equation (8)). The assumption context∆́ for Ć after the step (by the left-hand of the
same equation) is of the form∆,∆′,Σ′ \Σ′′ \n:[T]+−, which we abbreviate by∆,∆′,Σ∆.
So for the new threadn at component side, we need to show that

∆,∆′,Σ∆,Θ ⊢ n〈let x:T = grab(o); M.l(o)(~v) in release(o); x〉 : n:[T]+,Σ′′ . (11)

This follows by rules T-NF, T-L, T-G, preservation of typing under substi-
tution, T-R, and the axiom T-V. Note that the result typeT (which is the type
of x) is guaranteed by the premiseΞ́ ⊢ o.l? : ~T → T of the reduction rule CI. From
equation (11), the result follows by T-P, subsumption, and the assumptionΞ ⊢ C.

Case:CO
We are given

Ξ ⊢ ν(Ξ1).(C ‖ n′〈let x:T = bind o.l(~v) : T →֒ n in t〉)

before the step. By one of the premises of rule CO we know∆ ⊢ o, i.e., objecto is
an environment object7 Thato refers to an object is assured by the type system and the
assumption that the pre-configuration is well-typed.

We distinguish two sub-cases, namely whether promisen 1) is known at the inter-
face before the step or 2) it is hidden still. In the first case we haveΘ ⊢ n:[T′]+− with
T = [T′]+− (as a consequence of the fact that the configuration is well-typed. Espe-
cially, inverting T-NF and T-B entails that the component must have write-
permission forn to be well-typed). The result follows by the typing rules T-N, T-P,
T-L, and T-N.

Case:C1

The core of the type preservation here is to assure that the claim-statement in the pre-
configuration and the transmitted valuev in the post-configuration are of the same ap-
propriate typeT. Well-typedness of the pre-configuration implies withclaim@(n′, o,)
of type T, that the referencen′ is of type [T]+. The third premise of CI1 states
Ξ́ ⊢ ⌊a⌋ : → T, which implies with Definition 2.11, especially rule LT-GI of Table
9, that alsov is of typeT, as required.

7We do not allow cross-border instantiation here, i.e., the component is not allowed to instantiate envi-
ronment objects and vice versa.

3 INTERFACE BEHAVIOR 24

Case:C2

By inverting the type rules T-N, T-P, T-L and T-C for the pre-configuration of
the step, and by using the same typing rules (except T-C) plus T-G, T-R,
and T-G.

The remaining rules work similarly. � �

Lemma 3.2 (Soundness of abstractions).If Ξ0 ⊢ C andΞ0 ⊢ C
t
=⇒, thenΞ0 ⊢ t :

trace.

Proof. By induction on the number of steps in
t
=⇒. The base case of zero steps (which

implies t = ǫ) is immediate, using L-E. The induction for internal steps of the
formΞ ⊢ C =⇒ Ξ ⊢ Ć follow by subject reduction for internal steps from Lemma 2.8;
in particular, internal steps do not change the contextΞ. Remain the external steps of
Table 10. First note the contextsΞ areupdatedby each external step tóΞ the same
way as the contexts are updated in the legal trace system.

The cases for incoming communication are checked straightforwardly, as the oper-
ational rules check incoming communication for legality, already, i.e., the premises of
the operational rules have their counterparts in the rules for legal traces.

Case:CI
Immediate, as the premises of L-CI coincide with the ones of CI.

Case:C1 and G1
The two cases are covered by rule L-G1, which has the same premises as the opera-
tional rules.

Case:C2

Trivial, as the step is an internal one.

Case:C3 and G2
The two cases are covered by L-G2.

The cases for outgoing communication are slightly more complex, as the label in
the operational rule is not type-checked or checked for well-formedness as for incom-
ing communication and as is done in the rules for legality.

Case:CO
We need to check whether the premises of L-CO, the dual to L-CI of Table 11,
are satisfied. By assumption, the pre-configuration

Ξ ⊢ ν(Ξ1).(C ‖ n′〈let x:T = bind o.l(~v) : T →֒ n in t〉) (12)

is well-typed. For thread namen this implies, it is bound either inΞ or in Ξ1, more
precisely, eitherΘ ⊢ n : [T]+− (it is public interface information that the component
has write-permission forn) or Ξ1 ⊢ n : [T]+− (the namen is not yet known in the
environment before the communication). In the latter situation we obtainΞ′ ⊢ n : [+−]
by the premiseΞ′ = fn(⌊a⌋)∩Ξ1 of CO. Thus, the third premiseΞ′ ⊢ n∨Θ ⊢ n : []+−

of L-CO is satisfied. We furthermore need to check whether the labelis type-correct
(checked by premises nr. 4 and 5 or L-CO). Its easy to check that the label is well-
formed (cf. the first part of Definition 2.11). The first premise of the check of equation
(6), that the receiving objecto is an environment object, is directly given by the premise
∆ ⊢ o of CO. That the objecto supports a method labeledl (of type~T → T) follows
from the fact that the pre-configuration of the call-step is well-typed. So this gives
L-CO’s premiseΞ́ ⊢ o.l! : ~T → T. Remains the type checḱΞ ⊢ ⌊a⌋ : ~T →
(checking that the transmitted values~T are of the excepted type~t), which again follows
from well-typedness of equation (12) (especially inverting T-B).

3 INTERFACE BEHAVIOR 25

The remaining cases work similarly. � �

Remark 3.3 (Comparison with reentrant threading). In a multi-threaded setting
with synchronous method calls (see for instance [4] [59]), the definition of legal traces
is more complicated. Especially, to judge whether a trace s is possible required refer-
ring to the past. I.e., instead of judgments of the form of equation (10), the check for
legality with synchronous calls uses judgments of the form:

Ξ ⊢ r ⊲ s : trace,

reading “after history r (and in the contextΞ), the trace s is possible”. This differ-
ence has once more to do with reentrance, resp. with the absence of this phenomenon
here. In the threaded case, where, e.g., an outgoing call canbe followed by a subse-
quent incoming call as a “call-back”. To check therefore, whether a call or a return
is possible as a next step involves checking the proper nesting of the call- and return
labels. This nesting requirement (also called the balance condition) degenerates here
in the absence of call-backs to the given requirement that each call uses a fresh (future)
identity and that each get-label (taking the role of the return label in the multithreaded
setting) is preceded by exactly one matching preceding call. This can be judged by
∆ ⊢ n : [] or Θ ⊢ n : [] (depending on whether we are dealing with incoming or out-
going get-labels) and especially, no reference to the history of interface interactions is
needed. �

Remark 3.4 (Monitors). The objects of the calculus act as monitors as they allow only
one activity at a time inside the object. For the operationalsemantics of Section 2.3,
the lock-taking is part of theinternalsteps. In other words, the handing-over of the call
at the interface and the actual entry into the synchronized method body isnon-atomic,
and at the interface, objects areinput-enabled.

This formalization therefore resembles the one used for theinterface description
of Java-like reentrant monitors in [3]. To treat the interface interaction and actual
lock-grabbing as non-atomic leads to a clean separation of concerns of the component
and of the environment. In [3], this non-atomicity, however, give rise to quite complex
conditions characterizing the legal interface behavior. In short, in the setting of [3],
it is non-trivial to characterize exactly those situations, when the lock of the object
is necessarilytaken by one thread which makes certain interactions of other threads
impossible. This characterization is non-trivial especially as the interface interaction
is non-atomic.

Note, however, that these complications arenot presentin the current setting with
active objects, even if the the objects acts as monitors likein [3]. The reason is simple:
there is noneedto capture situations when the lock is taken. InJava, the synchro-
nization behavior of a method is part of theinterfaceinformation. Concretely, the
synchronized-modifier ofJava, specifies that the method’s body is executed atomically
in that object without interference of other8 threads, assuming that all other methods of
the callee are synchronized, as well. Here, in contrast, there is no interface information
that guarantees that a method body is executed atomically. In particular, the method
body can give up the lock temporarily via the suspend-statement, but this fact is not
reflected in the interface information here. This absence ofknowledge simplifies the
interface description considerably. �

8Note that a thread can “interfere” in that setting with itself due to recursion and reentrance.

4 CONCLUSION 26

4 Conclusion

We presented an open semantics describing the interface behavior of components in a
concurrent object-oriented language with futures and promises. The calculus corres-
ponds to the core of theCreol language, including classes, asynchronous method calls,
the synchronization mechanism, and futures, and extended by promises. Concentrating
on the black-box interface behavior, however, the interface semantics is, to a certain
extent, independent of the concrete language and is characteristic for the mentioned
features; for instance, extendingJavawith futures (see also the citations below) would
lead to a quite similar formalization (of course, low level details may be different).
Concentrating on the concurrency model, certain aspects ofCreol have been omitted
here, most notably inheritance and safe asynchronous classupgrades.

Related work

The general concept of “delayed reference” to a result of a computation to be yet com-
pleted is quite old. The notion of futures was introduced by Baker and Hewitt [13],
where (future e) denotes an expression executed in a separate thread, i.e.,concur-
rently with the rest of the program. As the result of thee is not immediately available,
a future variable(or future) is introduced as placeholder, which will eventually con-
tain the result ofe. In the meantime, the future can be passed around, and when itis
accessed for reading (“touched” or “claimed”), the execution suspends until the future
value is available, namely whene is evaluated. The principle has also been calledwait-
by-necessity[16][17]. Futures provide, at least in a purely functional setting, an elegant
means to introduce concurrency andtransparentsynchronization simply by accessing
the futures. They have been employed for the parallelMultilisp programming language
[36].

Indeed, quite a number of calculi and programming languageshave been equipped
with concurrency using future-like mechanisms and asynchronous method calls. Flana-
gan and Felleisen [31] [29] [30] present an operational semantics (based on evaluation
contexts) for aλ-calculus with futures. The formalization is used for an analysis and
optimization technique to eliminate superfluous dereferencing (“touches”) of future
variables. The analysis is an application of a set-based analysis and the resulting trans-
formation is known as touch optimization. Moreau [51] presents a semantics of Scheme
equipped with futures and control operators.Promisesis a mechanism quite similar to
futures and actually the two notions are sometimes used synonymously. They have
been proposed in [48]. A language featuring both futures andpromises as separate
concepts, isAlice ML [9][45][58].

[53] presents a concurrent call-by-valueλ-calculus with reference cells (i.e., a non-
purely functional calculus with an imperative part and a heap) and with futures (λfut),
which serves as the core ofAlice ML [9] [57] [45]. Certain aspects of that work are
quite close to the material presented here. In particular, we were inspired by using a
type system to avoid fulfilling a promise twice (in [53] called handle error). There are
some notable differences, as well. The calculus incorporates futures and promises into
a λ-calculus, such that functions can be executed in parallel.In contrast, the notion
of futures here, in an object-oriented setting, is coupled to the asynchronous execution
of methods. Furthermore, the object-oriented setting here, inspired byCreol, is more
high-level. In contrast,λfut relies on an atomic test-and-set operation when accessing
the heap to avoid atomicity problems. Besides that, they formalize promises using the
notion ofhandledfutures, i.e., the two roles of a promise, the writing- and the reading

4 CONCLUSION 27

part, are represented by two different references, where thehandleto the futures rep-
resents the writing-end. Apart from that, [53] are not concerned with giving an open
semantics as here. On the other hand, the paper investigatesthe role of the heap and
the reference cells, and gives a formal proof that theonly source of non-determinism
by race conditions in their language actually are the reference cells and without those,
the language becomes (uniformly) confluent.9 Recently, an observational semantics for
the (untyped)λfut-calculus has been developed in [52]. The observational equivalence
is based on may- and must-program equivalence, i.e., two program fragments are con-
sidered equivalent, if, for all observing environments, they exhibit the same necessary
and potential convergence behavior.

Apart from functional languages, the concept of futures hasalso been investigated
in the object-oriented paradigm. InJava5, futureshave been introduced as part of the
java.util.concurrent package. AsJavadoes not support futures as core mecha-
nism for parallelism, they are introduced in a library. Dereferencing of a future is done
explicitly via aget-method (similarly to this paper). A recent paper [64] introduces
safe futures forJava. The safe concept is intended to make futures and the related
parallelismtransparentand in this sense goes back to the origins of the concept: intro-
ducing parallelism via futures does not change the program’s meaning. While straight-
forward and natural in a functional setting, safe futures inan object-oriented and thus
state-based language such asJavarequire more considerations. The paper introduces
a semantics which guarantees safe, i.e., transparent, futures by deriving restrictions on
the scheduling of parallel executions and uses object versioning. The futures are intro-
duced as an extension of FeatherweightJava(FJ) [37], a core object calculus, and is
implemented on top ofJikesRVM [10, 15]. Pratikakis et. al. [55] present a constraint-
based static analysis for (transparent) futures and proxies in Java, based on type quali-
fiers and qualifier inference [32]. Also this analysis is formulated as an extension ofFJ
by type qualifiers. Similarly, Caromel et. al. [20][19][18]tackle the problem to provide
confluent, i.e., effectively deterministic system behavior for a concurrent object calcu-
lus with futures (asynchronous sequential processes,ASP, an extension of Abadi and
Cardelli’s imperative, untyped object calculus impς [1]) and in the presence of imper-
ative features. TheASP model is implemented in theProActive Java-library [21]. The
fact, thatASP is derived from some (sequential, imperative) object-calculus, as in the
formalization here, is more a superficial or formal similarity, in particular when being
interested in the interface behavior of concurrently running objects, where the inner
workings are hidden anyway. Apart from that there are some similarities and a number
of differences between the work presented here andASP. First of all, both calculi are
centered around the notion of first-class futures, yieldingactive objects. The treatment,
however, of getting the value back, is done differently in [18]. Whereas here, the client
must explicitly claim a return value of an asynchronous method, if interested in the
result, the treatment of the future references is doneimplicitly in ASP, i.e., the client
blocks if he performs a strict operation on the future (without explicit syntax to claim
the value). Apart from that, the object model is more sophisticated, in that the calculus
distinguishes between active and passive objects. Here, wesimple have objects, which
can be behave actively or passively (reactively), depending on the way they are used.

9Uniform confluence is a strengthening of the more well-knownnotion of (just ordinary) confluence; it
corresponds to the diamond property of theone-stepreduction property. For standard reduction strategies
of a purely functionalλ-calculus, only confluence holds, but not uniform confluence. However, the non-
trivial “diamonds” in the operational semantics ofλfut are caused not by different redices within oneλ-term
(representing one thread), but by redices from different threads running in parallel, where the reduction
strategy per thread is deterministic (as in our setting, as well).

4 CONCLUSION 28

In ASP, the units of concurrency are the explicitely activated active objects, and each
passive one is owned and belongs to exactly one active one. Especially, passive objects
do not directly communicate with each other across the boundaries of concurrent ac-
tivity, all such communication between concurrent activities is mediated and served by
the active objects.

Related to that, a core feature ofASP, not present here, is the necessity to specify
(also) thereceptive behaviorof the active object, i.e., in which order it is willing to pro-
cess orserveincoming messages. The simplest serve strategy would be thewillingness
to accept all messages and treat them in a first-come, first-serve manner, i.e., a input-
enabled FIFO strategy on the input message queue. The so-called serve-method is the
dedicated activity of an active object to accept and schedule incoming method calls.
Typically, as for instance in the FIFO case, it is given an an non-terminating process,
but it might also terminate, in which case the active object together with the passive
objects it governs, becomes superfluous: an active object which does no service any
longer does not become a passive data structure, but can no longer react in any way.

As extension of the coreASP calculus, [18, Chapter 10] treatsdelegationthat bears
some similarities with the promises here. By executing the constructdelegate(o.l(~v))
(using our notational conventions), a threadn hands over the permission and obligation
to provide eventually a value for the future referencen to methodl of objecto, thereby
losing that permission itself. That corresponds to executing bind o.l(~v) : T →֒ n.
Whereas in our setting, we must use a yet-unfulfilled promisen for that purpose, the
delegation operator inASP just (re-)uses the current future for that. Consequently,ASP
does not allow the creation of promises independently from the implicit creation when
asynchronously calling a method, as we do with thepromise Tconstruct. In this sense,
the promises here are more general, as they allow to profit from delegation and have
the promise as first-class entity, i.e., the programmer can pass it around as argument of
methods, This, on the other hand, requires a more elaborate type system to avoid
write errors on promises. This kind of error, fulfilling a promise twice, is avoided in
the delegate-construct ofASP not by a type system, but by construction, in that the
delegate-construct must be used only at the end of a method, so that the delegating ac-
tivity cannot write to the future/promise after it has delegated the permission to another
activity.

Further uses of futures forJavaare reported in [49] [44] [56] [62] [61]. Futures
are also integral part ofIo [38] andScoop(simple concurrent object-oriented program-
ming) [24] [12] [50], a concurrent extension ofEiffel. Both languages are based on the
active objects paradigm.

Benton et. al. [14] present polyphonicC#, adding concurrency toC#, featuring
asynchronous methods and based on the join calculus [33] [34]. PolyphonicC#allows
methods to be declared as being asynchronous using theasync keyword for the method
type declaration. Besides that, polyphonicC# supports so-calledchordsas synchro-
nization or join pattern. With similar goals,Javahas been extended by join patterns in
[39] [40].

In the context ofCreol, de Boer et. al. [27] present a formal, operational seman-
tics for the language and extend it byfutures(but not promises). Besides the fact, that
both operational semantics ultimately formalize a comparable set of features, there are,
at a technical level, a number of differences. For once, here, we simplified the lan-
guage slightly mainly in two respects (apart from making it more expressive in adding
promises, of course). We left out the “interleaving” operators9 and�� of [27] which
allows the user to express interleaving concurrencywithin one method body. Being in-
terested in the observable interface behavior, those operations are a matter of internal,

4 CONCLUSION 29

///.-,()*+

get

t2=v

��get

t2=v
///.-,()*+

susp./rel.

��

/.-,()*+ //

/.-,()*+
grab

⊥

WW

Figure 3: Claiming a future (busy wait)

hidden behavior, namely leading to non-deterministic behavior at the interface. Since
objects react non-deterministically anyhow, namely due torace conditions present in-
dependently of9 and ��, those operators have no impact on the possible traces at
they interface. The operators might be useful as abstractions for the programmer, but
without relevance for the interface traces, and so we ignored them here. Another sim-
plification, this time influencing the interface behavior, is how the programmer can
claim the value of a future. This influences, as said, the interface behavior, since the
component may fetch the value of a future being part of the environment, or vice versa.
Now, the design of theCreol-calculus in [27] is more liberal wrt. what the user is al-
lowed to do with future references. In this paper, the interaction is rather restricted:
if the client requests the value using theclaim-operation, there are basically only two
reactions. If the future computation has already been completed, the value is fetched
and the client continues; otherwise it blocks until, if ever, the value is available. The
bottom line is, that the client, being blocked, can neverobservethat the value is yet
absent. The calculus of [27], in contrast, permits the user to poll the future reference
directly, which gives the freedom to decide,not to wait for the value if not yet available.
Incorporating such a construct into the language makes theabsenceof the value for a
future reference observable and would complicate the behavioral interface semantics
to some extent. This is also corroborated by the circumstance that the expressive power
of explicit polling quite complicates the proof theory of [27] (see also the discussion
in the conclusion of [27]). This is not a coincidence, since one crux of the complete
Hoare-style proof systems such as in [27] is to internalize the (ideally observable) be-
havior into the program state by so-called auxiliary variable. In particular recording
the past interaction behavior in so-called history variables is, of course, an internaliza-
tion of the interface behavior, making it visible to the Hoare-assertions. As a further
indication that allowing to poll a future quite adds expressivity to the language is the
observation that adding a poll-operation toASP, destroys a central property ofASP,
namely confluence, as is discussed in [18, Chapter 11].

Apart from that, the combination of claiming a futures, the possibility of polling a
future, and a general await-statement complicates the semantics of claiming a future:
in [27], this is done bybusy-waiting, which in practice one intends to avoid. So instead
of the behavior described in Figure 1, the formalization in [27] behaves as sketched in
Figure 3.

After an unsuccessful try to obtain a value of future, the requesting thread is sus-
pended and loses the lock. In order to continue executing, the blocked thread needs two
resources: the value of the future, once it is there, plus thelock again. The difference
of the treatment in Figure 1 and the one of Figure 3 for [27] is the order in which the
requesting thread attempts to get hold of these two resources: our formalization first

4 CONCLUSION 30

check availability of the future and afterwards re-gains the lock to continue, whereas
[27] do it vice versa, leading to busy wait. The reason why it is sound to copy the future
value into the local state space without already having the lock again (Figure 1) is , of
course, that, once arrive, the future value remains stable and available.

In addition, our work differs also technically in the way, the operational semantics
is represented. [27] formulated the (internal) operational semantics using evaluation
contexts (as do, e.g., [53] forλfut), whereas we rely on a “reduction-style” semantics,
making use of an appropriate notion of structural congruence. While largely a matter
of taste, it seems to us that, especially in the presence of complicated synchroniza-
tion mechanisms, for instance the ready queue representation of [27], the evaluation
contexts do not give rise to an immediately more elegant specification of the reduc-
tion behavior. Admittedly, we ignored here the internal interleaving operators9 and
��, which quite contribute to the complexity of the evaluationcontexts. Another tech-
nical difference, if you wish, concerns the way, the futures, threads,and objects are
representedin the operational semantics, i.e., in the run-time syntax of the calculus.
Different from our representation, the semantics makes the active-objects paradigm
of Creol more visible, in that the activities as part of the object, more precisely, an
object contains, besides the instance state, an explicit representation of the current ac-
tivity (there called “process”) executing “inside” the object plus a representation of the
ready-queue containing all the activities, which have beensuspendedduring their ex-
ecution inside the object. The scheduling between the different activities is then done
by juggling them in and out of the ready-queue at the processor release points. Here,
in contrast, we base our semantics on a separate representation of the involved seman-
tics concepts: 1) classes asgeneratorsof objects, 2) objects carrying in the instance
variables the persistentstateof the program, thus basically forming the heap, and 3),
theparallel activities in the form of threads. While this representation makes arguably
the active-object paradigm less visible in the semantics, it on the other hand separates
the concepts in a clean way, and instead of an explicit local scheduler inside the ob-
jects, the access to a share instance states of the objects isregulated by a simple, binary
lock per object. So, instead of having to levels of parallelism —locally inside the ob-
jects and inter-object parallelism— the formalization achieves the same with just one
conceptual level, namely: parallelism is between threads (and the necessary synchro-
nization is done via object-locks). Additionally, our semantics is rather close to the
object-calculi semantics for multi-threading as inJava(for instance as in [41] [42] or
[59]). This allows to see the differences and similarities between the different mod-
els of concurrency, and the largely similar representationcould allow are more formal
comparison between the interface behaviors in the two settings.

The languageCool [22] [23] (concurrent, object-oriented language) is defined as
an extension ofC++ [60] for task-level parallelism on shared memory multi-processors.
Concurrent execution inCool is expressed by the invocation of parallel functions ex-
ecutingasynchronously.Unlike the work presented here,Cool future types, which
correspond to the types of the form [T]. Further languages supporting futures include
ACT-1 [46] [47], concurrentSmalltalk [65] [69], Cool [22] [23] (concurrent, object-
oriented language) as a parallel extension ofC++ [60], and of course the influential
actor model [8, 35, 7],ABCL/1[66] [67] (in particular the extensionABCL/f [63]).

We have characterized the behavioral semantics of open systems, similarly to the
one presented here for futures and promises, in earlier papers, especially for object-
oriented languages based onJava-like multi-threading and synchronous method calls,
as in Java or C#. The work [5] deals with thread classes and [4] with re-entrant
monitors. In [59] the proofs of full abstraction for the sequential and multi-threaded

REFERENCES 31

cases of a class-based object-calculus can be found. Poetzsch-Heffter and Schäfer
[54] present a behavioral interface semantics for a class-based object-oriented calculus,
however without concurrency. The language, on the other hand, features an ownership-
structured heap.

Future work

An obvious way to proceed is to consider more features of theCreol-language, in par-
ticular inheritance and subtyping. Incorporating inheritance is challenging, as it renders
the system open wrt. a new form of interaction, namely the environment inheriting be-
havior from a set of component classes or vice versa. AlsoCreol’s mechanisms for
dynamic class upgrades should be considered from a behavioral point of view (that
we expect to be quite more challenging than dealing with inheritance). An observa-
tional, black-box description of the system behavior is necessary for the compositional
account of the system behavior. Indeed, the legal interfacedescription is only a first,
but necessary, step in the direction of a compositional and ultimately fully-abstract se-
mantics, for instance along the lines of [59]. Based on the interaction trace, it will be
useful to develop a logic better suited for specifying the desired interface behavior of a
component than enumerating allowed traces. Another direction is to use the results in
the design of a black-box testing framework, as we started for Javain [26]. We expect
that, with the theory at hand, it should be straightforward to adapt the implementation
to other frameworks featuring futures, for instance, to thefuture libraries ofJava5.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science.

Springer-Verlag, 1996.

[2] E. Ábrahám, I. Grabe, A. Grüner, and M. Steffen. Behavioral interface description of an
object-oriented language with futures and promises. Technical Report 364, University of
Oslo, Dept. of Computer Science, Oct. 2007. In preparation.

[3] E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-oriented
languages with monitors. In R. Gorrieri and H. Wehrheim, editors,FMOODS ’06, volume
4037 ofLecture Notes in Computer Science, pages 218–232. Springer-Verlag, 2006.

[4] E. Ábrahám, A. Grüner, and M. Steffen. Abstract interface behavior of object-oriented
languages with monitors.Theory of Computing Systems, 2007. Accepted for publication.
This is an extended version of the FMOODS’06 conference contribution.

[5] E. Ábrahám, A. Grüner, and M. Steffen. Heap-abstraction for open, object-oriented systems
with thread classes.Journal of Software and Systems Modelling (SoSyM), 2007. This is
a reworked version of the Institut für Informatik und Praktische Mathematik, Christian-
Albrechts-Universität zu Kiel technical report nr. 0601 and an extended version of the
CiE’06 extended abstract.

[6] ACM. Object Oriented Programming: Systems, Languages, and Applications (OOPSLA)
’99, 1999. InSIGPLAN Notices.

[7] G. A. Agha. Actors: a Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, MA, 1986.

[8] G. A. Agha, I. A. Mason, S. F. Smith, and C. L. Talcott. Towards a theory of actor compu-
tation (extended abstract). In R. Cleaveland, editor,Proceedings of CONCUR ’92, volume
630 ofLecture Notes in Computer Science, pages 565–579. Springer-Verlag, 1992.

[9] Alice project home page.www.ps-uni-sb.de/alice, 2006.

REFERENCES 32

[10] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F.Hummel, D. Lieber, T. Ngo,
M. Mergen, J. C. Sheperd, and S. Smith. Implementing Jalapeno in Java. In OOPSLA’99
[6], pages 313–324. InSIGPLAN Notices.

[11] P. America. Issues in the design of a parallel object-oriented language.Formal Aspects of
Computing, 1(4):366–411, 1989.

[12] V. Arslan, P. Eugster, P. Nienaltowski, and S. Vaucouleur. Scoop — concurrency made easy.
In J. Kohlas, B. Meyer, and A. Schiper, editors,Research Results of the DICS Program,
volume 4028 ofLecture Notes in Computer Science, pages 82–102. Springer, 2006.

[13] H. Baker and C. Hewitt. The incremental garbage collection of processes.ACM Sigplan
Notices, 12:55–59, 1977.

[14] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstraction for C#.ACM
Transactions on Programming Languages and Systems. Special Issue with papers from
FOOL 9, 2003.

[15] M. G. Burke, J.-D. Choi, S. F. Fink, D. Grove, M. Hind, V. Sarkar, M. Serranon, V. C.
Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeno dynamic optimizing compiler. In
Proceedings of the ACM Java Grande Conference, San Francisco, pages 129–141, 1999.

[16] D. Caromel. Service, asynchrony and wait-by-necessity. Journal of Object-Oriented Pro-
gramming, 2(4):12–22, Nov. 1990.

[17] D. Caromel. Towards a method of object-oriented concurrent programming.Communica-
tions of the ACM, 36(9):90–102, Sept. 1993.

[18] D. Caromel and L. Henrio.A Theory of Distributed Objects. Asynchrony — Mobility —
Groups — Components. Springer-Verlag, 2005.

[19] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronoussequential processes. Research
Report RR-4753 (version 2), INRIA Sophia-Antipolis, May 2003.

[20] D. Caromel, L. Henrio, and B. P. Serpette. Asynchronousand deterministic objects. In
Proceedings of POPL ’04. ACM, Jan. 2004.

[21] D. Caromel, W. Klauser, and J. Vayssière. Towards seamless computing and metacomput-
ing in Java.Concurrency, Practice and Experience, 10(11-13):1043–1061, 1998. ProAc-
tive available atwww.infria.fr/oasis/proactive.

[22] R. Chandra.The COOL Parallel Programming Language: Design, Implementation, and
Performance. PhD thesis, Stanford University, Apr. 1995.

[23] R. Chandra, A. Gupta, and J. L. Hennessy. COOL: A languange for parallel program-
ming. In Proceedings of the 2nd Workshop on Programming Languanges and Compilers
for Parallel Computing. IEEE CS, 1989.

[24] M. J. Compton. SCOOP: An investigation of concurrency in Eiffel. Master’s thesis, De-
partment of Computer Science, The Australian National University, 2000.

[25] The Creol language.http:www.ifi.uio.no/˜creol, 2007.

[26] F. S. de Boer, M. M. Bonsangue, A. Grüner, and M. Steffen. Test driver generation from
object-oriented interaction traces. InProceedings of the 19th Nordic Workshop of Pro-
gramming Theory (NWPT’07), 2007.

[27] F. S. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In R. de Nicola,
editor,Proceedings of Programming Languages and Systems, 16th European Symposium
on Programming, ESOP 2007, Vienna, Austria., volume 4421 ofLecture Notes in Com-
puter Science, pages 316–330. Springer-Verlag, 2007.

[28] The E language. www.erights.org, 2007.

[29] C. Flanagan and M. Felleisen. The semantics of future. Technical Report TR94-238,
Department of Computer Science, Rice University, 1994.

http:www.ifi.uio.no/~creol

REFERENCES 33

[30] C. Flanagan and M. Felleisen. Well-founded touch optimization of parallel scheme. Tech-
nical Report TR94-239, Department of Computer Science, Rice University, 1994.

[31] C. Flanagan and M. Felleisen. The semantics of future and an application.Journal of
Functional Programming, 9(1):1–31, 1999.

[32] J. Foster, M. Fändrich, and A. Aiken. A theory of type qualifiers. InACM Conference on
Programming Language Design and Implementation, pages 192–203. ACM, May 1999.

[33] C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus.
In Proceedings of POPL ’96, pages 372–385. ACM, Jan. 1996.

[34] C. Fournet and G. Gonthier. Th join calculus: A languagefor distributed mobile program-
ming. In G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors, APPSEM 2000, volume
2395, 2002.

[35] I. A. M. Gul A. Agha, S. F. Smith, and C. L. Talcott. A foundation for actor computation.
Journal of Functional Programming, 7(1), Jan. 1997.

[36] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation.ACM
Transactions on Programming Languages and Systems, 7(4):501–538, Oct. 1985.

[37] A. Igarashi, B. C. Pierce, and P. Wadler. FeatherweightJava: A minimal core calculus for
Java and GJ. In OOPSLA’99 [6], pages 132–146. InSIGPLAN Notices.

[38] Io: A small progamming language.www.iolanguage.com, 2007.

[39] G. S. Itzstein and D. Kearney. Join Java: An alternativeconcurrency semantics for java.
Technical Report ACRC-01-001, University of South Australia, 2001.

[40] G. S. Itzstein and D. Kearney. Applications of join Java. In Proceedings of the Seventh
Asia-Pacific Computer Systems Architectures Conference (ACSAC 2002), 2002.

[41] A. Jeffrey and J. Rathke. A fully abstract may testing semantics forconcurrent objects. In
Proceedings of LICS ’02. IEEE, Computer Society Press, July 2002.

[42] A. Jeffrey and J. Rathke. Java Jr.: A fully abstract trace semanticsfor a core Java language.
In M. Sagiv, editor,Proceedings of ESOP 2005, volume 3444 ofLecture Notes in Computer
Science, pages 423–438. Springer-Verlag, 2005.

[43] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A type-safe object-oriented model for dis-
tributed concurrent systems.Theoretical Computer Science, 365(1–2):23–66, Nov. 2006.

[44] JSR 166: Concurrency utilities.www.jcp.org/en/jsr/detail?id=166, 2007.

[45] L. Kornstaedt. Alice in the land of Oz – an interoperability-based implementation of a
functional language on top of a relational language. InProceedings of the First Workshop
on Mulit-Language Infrastructure and Interoperability (BABEL’01), Electronic Notes in
Theoretical Computer Science, Sept. 2001.

[46] H. Liebermann. A preview of ACT-1. AI-Memo AIM-625, Artificial Intelligence Labora-
tory, MIT, 1981.

[47] H. Liebermann. Concurrent object-oriented programming in ACT1. In Yonezawa and
Tokoro [68].

[48] B. Liskov and L. Shrira. Promises: Linguistic support for efficient asynchronous procedure
calls in distributed systems.SIGPLAN Notices, 23(7):260–267, 1988.

[49] D. A. Manolescu. Workflow enactment with continuation and future objects. InObject
Oriented Programming: Systems, Languages, and Applications (OOPSLA) ’02 (Seattle,
USA), pages 40–51. ACM, Nov. 2002. InSIGPLAN Notices.

[50] B. Meyer. Systematic concurrent object-oriented programming. Communications of the
ACM, 36(9):56–80, 1993.

[51] L. Moreau. The semantics of scheme with future. InInternational Conference on Func-
tional Programming, pages 146–156. ACM Press, 1996.

REFERENCES 34

[52] J. Niehren, D. Sabel, M. Schmidt-Schauß, and J. Schwinghammer. Observational seman-
tics for a concurrent lambda calculus with reference cells and futures.Electronic Notes in
Theoretical Computer Science, 2007.

[53] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda-calculus with futures.
Theoretical Computer Science, 2006. Preprint submitted to TCS.

[54] A. Poetzsch-Heffter and J. Schäfer. A representation-independent behavioral semantics for
object-oriented components. In M. M. Bonsangue and E. B. Johnsen, editors,FMOODS
’07, volume 4468 ofLecture Notes in Computer Science. Springer-Verlag, June 2007.

[55] P. Pratikakis, J. Spacco, and M. W. Hicks. Transparent proxies for Java futures. In
Ninetheeth Object Oriented Programming: Systems, Languages, and Applications (OOP-
SLA) ’04, pages 206–233. ACM, 2004. InSIGPLAN Notices.

[56] R. R. Raje, J. I. William, and M. Boyles. An asynchronousmethod incocation (ARMI)
mechanism for Java. InProceedings of the ACM Workshop on Java for Science and Engi-
neering Computation, 1997.

[57] A. Rossberg, D. L. Botland, G. Tack, T. Brunklaus, and G.Smolka. Alice through the
looking glass. InVol. 5 of Trends in Functional Programming, chapter 6. Intellect Books,
Bristol, 2006.

[58] J. Schwinghammer. A concurrentλ-calculus with promises and futures. Diplomarbeit,
Universität des Saarlandes, Feb. 2002.

[59] M. Steffen. Object-Connectivity and Observability for Class-Based, Object-Oriented Lan-
guages. Habilitation thesis, Technische Faktultät der Christian-Albrechts-Universität zu
Kiel, 2006. Submitted 4th. July, accepted 7. February 2007.

[60] B. Stroustrup.The C++ Programming Language. Addison-Wesley, 1986.

[61] T. Sysala and J. Janecek. Optimizing remote method invocation in Java. InDEXA, pages
29–35, June 2001.

[62] É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection: Spatial and
temporal reflection of reification. InEighteenth Object Oriented Programming: Systems,
Languages, and Applications (OOPSLA) ’03, pages 27–46. ACM, 2003. InSIGPLAN
Notices.

[63] K. Taura, S. Matsuoka, and A. Yoneazawa. ABCL/f: A future-based polymorphic typed
concurrent object-oriented language — its design and implementation —. InDIMACS
workshop on Specification of Parallel Algorithms, 1991.

[64] A. Welc, S. Jagannathan, and A. Hosking. Safe futures inJava. InTwentieth Object Ori-
ented Programming: Systems, Languages, and Applications (OOPSLA) ’05. ACM, 2005.
In SIGPLAN Notices.

[65] Y. Yokote and M. Tokoro. Concurrent programming in concurrent SmallTalk. In Yonezawa
and Tokoro [68], pages 129–158.

[66] A. Yonezawa.ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

[67] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent programming
in ABCL/1. In Object Oriented Programming: Systems, Languages, and Applications
(OOPSLA) ’86 (Portland, Oregon), pages 258–268. ACM, 1986. InSIGPLAN Notices
21(11).

[68] A. Yonezawa and M. Tokoro, editors.Object-oriented Concurrent Programming. MIT
Press, 1987.

[69] Y. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and programming in an
object-oriented concurrent language ABCL/1. In Yonezawa and Tokoro [68], pages 55–89.

Index
∆ ⊢ C : Θ, 16
∆́, Θ́ ⊢ o.l? : ~T → T (expected type of

l), 17
∆ (assumption name context), 6
∆ ⊢ C : Θ (typing judgment), 6
Γ (variable context), 7, 8
Γ;∆ ⊢ e : T :: Γ́, ∆́ (judgment), 7
[T] (type of reference to future of type

T), 6
Θ (commitment name context), 6
Θ1,Θ2, 7
Ξ (assumption/commitmentcontext), 16
Ξ ⊢∆ t : trace, 31
Ξ ⊢Θ t : trace, 31
v@l(~v) (asynchronous method call), 5
bind o.l(~v) : T →֒ n, 5
⌊γ⌋ (core of labelγ), 16
⌊a⌋ (core of labela, 16
0 (empty component), 5
γc (call label), 16
γg (get label), 16
⊥ (free lock), 5
⊤ (lock taken), 5
promise T(new promise), 5
new c (instantiation), 5
o[c, F, l] (object), 5
n〈t〉 (thread namedn), 5
⊢ a (well-formed label), 17
 (confluent internal step), 10
⌊T⌋, 7
τ
−→ (internal step), 10
⊥c (undefined reference), 5
v⊥ , 5
λfut(λ-calculus with futures), 27

ABCL/1, 30
abstract syntax, 4
actor, 30
α-conversion, 12
ASP, 27
asynchronous method call, 5

bn (free names), 16

C (component), 5
c (class name), 5
C#, 28

chord, 28
communication labels, 16
context

names update, 19
Cool, 30
core of a label, 16
Creol, 4

delegation
in ASP, 28

f (field), 5
Featherweight Java, 27
fn (free names), 16
future, 4, 5, 26

safe, 27
future type, 30

get(label), 16

handle error, 13, 27

instantiation
typing, 8

Io, 28

Java, 27
join calculus, 28

label
core, 16
well-formed, 17

legal trace, 21
lock, 5

M (method suite), 5
method suite, 5
mobile code, 18
monitor, 25
Multilisp, 26

n (name, reference to a future), 5
name context

well-formed, 6

O (methods and fields), 5
object versioning, 27
observational equivalence, 27

35

INDEX 36

polyphonicC#, 28
promise, 4

reentrance, 20, 25
run-time syntax, 4

Scoop, 28
scope extrusion, 16
sequential composition, 5
step

internal, 10
stop, 11
structural congruence, 11
subject reduction, 14, 15, 23
subsumption, 7, 10
subtyping, 7
suspend, 11

t (thread), 5
thread, 5
touch optimization, 26
type qualifier, 27
type system, 5
types, 5

Unit, 10
user syntax, 4

wait-by-necessity, 26
width subtyping, 7

LIST OF TABLES 37

List of Tables

1 Abstract syntax . 4
2 Typing (components) . 6
3 Typing . 8
4 Typing . 9
5 Internal steps . 12
6 Structural congruence . 13
7 Reduction modulo congruence . 13
8 Labels . 16
9 Typechecking labels . 17
10 External steps . 21
11 Legal traces (dual rules omitted) .22

List of Figures

1 Claiming a future . 11
2 Scenarios . 19
3 Claiming a future (busy wait) . 29

	Introduction
	Calculus
	Syntax
	Type system
	Operational semantics
	Internal steps
	External semantics

	Interface behavior
	Legal traces system

	Conclusion

