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Abstract

This paper formalizes the observable interface behavian@bncurrent, object-
oriented language with futures and promises. The calcudpsuces the core of
Creol a language, featuring in particular asynchronous metladild and, since
recently, first-class futures.

The focus of the paper ampensystems and we formally characterize their
behavior in terms of interactions at the interface betwéenprogram and its en-
vironment. The behavior is given by transitions betweelngyjudgments, where
the absent environment is represented abstractly by amasem context. A par-
ticular challenge is the safe treatment of promises: Thenewus situation that
a promise is fulfilled twice, i.e., bound to code twice, isyengted by a resource
aware type system, enforcing linear use of the write-peasimisto a promise. We
show subject reduction and the soundness of the abstradiicé description.

Keywords: concurrent object-oriented languages, Creol, formal s¢ics
concurrency, futures and promises, open systems, obsevehavior

1 Introduction

How to marry concurrency and object-orientation has be@mg-ktanding issue; see
e.g., [11] for an early discussion offtérent design choices. The thread-based model
of concurrency, prominently represented by languageslikeand C*, has been re-
cently criticized, especially in the context cddmponent-basesbftware development.
As the word indicates, components are (software) artifaténded for composition,
i.e., open systems, interacting with a surrounding envirent. To compare éierent
concurrency models for open systems on a solid mathematisid, a semantical de-
scription of the interface behavior is needed, and this iatwmie provide in this work.

*“Part of this work has supported by the NWWIBG project Mobi-J (RO 11282-4) and by the EU-project
IST-33826 Credo: Modeling and analysis of evolutionary structures disstributed services.For more
information, sethttp://credo.cwi.nl

TPart of this work has supported by the NWBFG project Mobi-J (RO 11292-4) and by the EU-project
IST-33826 Credo: Modeling and analysis of evolutionary structures didstributed services.For more
information, sethttp://credo.cwi.nl
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We present aompen semanticfor the core of theCreol languagell[25,-43], an object-
oriented, concurrent language, featuring in particulgnesronous method calls and,
since recently[[27], first-class futures.

Futures and promises

A future, very generally, represents a result yet to be computed. tét @ a proxy
for , or reference to,the delayed result from some piece déde.g., a method or a
function body in an object-oriented, resp. a functionalisg). As the consumer of
the result can proceed its own execution until it actuallgdeeit, futures provide a
natural, lightweight, and (in a functional setting) traasggnt mechanism to introduce
parallelism into a language. Since their introductioMaltilisp [36][L3], futures have
been used in various languages like Alice NILI , 58] E| 2@ ASP-calculud18],
Creol, and others. Aromiseis a generalizatiaghinsofar as the reference to the result
on the one hand, and the code to calculate the result on tee atie not created at the
same time; instead, a promise can be created and only |&esrpassibly passing it
around, be bound to the code (the promistiilled).

The notion of futures goes back to functional programmimgleages. In the func-
tional setting, futures are annotations to sidie&-free expressionsthat can be com-
puted in parallel to the rest of the program. If some progranemeeds the result of
a future, its execution blocks until the future’s evaluatie completed and the result
value is automatically fetched badknplicit futures). An important property of future-
based functional programs is, that future annotations delmange the functionality:
the observable behavior of an annotated program equalbge@able behavior of its
non-annotated counterpart.

Interface behavior

An open program interacts with its environment via messaghange. The interface
behavior of an open progra@ican be characterized by the set of all those message se-
guences (traces)for which thereexistsan environmeni such thaC andE exchange

the messages recordedinThereby we abstract away from any concrete environment,
but consider only environments that are compliant to thguage restrictions (syntax,

. . . t
type system, etc.). Consequently, interactions are natramnp tracesC —; instead

. N t Z < . . . -
we consider behavioG || E ? C || E whereE is anrealizableenvironment and

is complementary td. To account for the abstract environment(“there exist& .
..."), the open semantics is given in assumption-commitmewnay:

ArC:® = ArC: 0,

whereA (as an abstract version Bj contains thessumptionabout the environment,
and dually® thecommitmentsf the component. Abstracting away also fre@hgives a
language characterization by the set of all possible traeegeen any component and
any environment.

1The terminology concerning futures, promises, and relat@gtructs is not too consistent in the liter-
ature. Sometimes, the two words are used as synonyms. digériz the observable féérences between
futures and promises, we distinguish the concepts and dlies/fthe terminology as used e.g.,Ap;, Alice
ML, and the definition given in Wikipedia.

2Though in e.g.Multilisp also side-fect expressions can be computed in parallel, but still utiter
restriction that the observable behavior equals that o§éugiential counterpart.
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Such a behavioral interface description is relevant antuug® the following rea-
sons. 1) The set of possible traces is more restricted tieanorta obtained when ignor-
ing the environments. When reasoning about the trace-tmedevior of a component,
e.g., in compositional verification, with a more preciserelgterization one can carry
out stronger arguments. 2) When using the trace descrifirdsiack-box testingone
can describe test cases in terms of the interface tracehiandynthesize appropriate
test drivers from it. Clearly, it makes no sense to specifgassible interface behav-
ior, as in this case one cannot generate a correspondiray. tejt A representation-
independent behavior of open programs paves the way for pasitional semantics
and allows furthermore optimization of components: onlyb components show the
same external behavior, one can replace one for the otheowtithanging the interac-
tion with any environment. 4) The formulation gives insigitb the semantical nature
of the language, here, the observable consequences ad$wend promises. This helps
to compare alternatives, e.g., the Creol concurrency meitlelJavalike threading.

Results

The paper formalizes the abstract interface behavior focewrent object-oriented lan-
guages with futures and promises. The contributions aréotloeving.

Concurrent object calculus with futures and promises We formalize a class-based
concurrent language featuring futures and promises. Thediization is given as a
typed, imperative object calculus in the style [of [1] respe @f its concurrent exten-
sions. The operational semantics for components distihggiunobservable component-
internal steps from external steps which represent obskreamponent-environment
interactions. We present the semantics in a way that fat@btcomparison witbavas
multi-threading concurrency model, i.e., the operatisehantics is formulated so
that the multi-threaded concurrency as (for instancegiveand the one here based on
futures are represented similarly.

Linear type system for promises The calculus extends the semantic basi€adol
as given for example i [27] with promises. Promises camnr tefa computation with
code bound to it later, where the binding is done at most oficeguarantee such a
write-oncepolicy when passing around promises, we refine the typemsyisteoducing
two type constructors

[TI™™ and [T]"

representing a reference to a promise that can still beanr{ind read), with result type
T), resp. that hasead-permission. The write permission constitutes a resoutgetw
is consumed when the promise is fulfilled. The resource-atyge system is therefore
formulated in dinear manner wrt. the write permissions and resembles in intentie
one in [53] for a functional calculus with references. Ourkis more general, in that
it tackles the problem in an object-oriented setting (whiabwever, conceptually does
not pose much complications), and in that we do not consideed systems, but open
components. Also this aspect of openness is not dealt wifiZ/h Additionally, the
type system presented here is simpler a§in [53], as it ath&lsepresentation of the
promise-concept by so-callédndled futures.

Soundness of the abstractions We show soundness of the abstractions, which in-
cludes
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C == 0|C|IC|v(n:T).C|n[O)|n[n,F,L]|nt) program
O = FEM object
M = I=m....I=m method suite
F o= I=f...,1=f fields
m = ¢(nT).AXT,...,xT).t method
f o= ¢nT).A).v]¢(n:T).A0). Ly field
t == v|stop|letxT =eint thread
e = t|ifv=vtheneelsee|ifundefv.l())theneelsee expr.
| promise T|bindnl(V) : T < n|setv n|vi() | vl :=g(sn).A().v
|  newn|claim@(n,n) | get@n | suspen¢h) | grab(n) | releasén)
v = x|n|( values
L o= 1|7 lock status

Table 1: Abstract syntax

e subject reductioni.e., preservation of well-typedness under reduction.j&ub
reduction is not just proven for a closed system (as usuatifpb an open system
interacting with its environment. Subject reduction inagli

e absence of run-time errorike “message-not-understood”, also for open sys-
tems.

¢ soundnessf the interface behavior characterization, i.e., all jmesnteraction
behavior is included in the abstract interface behaviocdigtson.

o for promises: absence wfrite-errors,i.e. the attempt to fulfill a promise twice.

The paper is organized as follows. Secfidn 2 defines the sytfta type system,
and the operational semantics, split into an internal orte aare for open systems.
SectiorB describes the interface behavior. Seélion 4 udeslwith related and future
work. For more details and for the proofs s€e [2].

2 Calculus

This section presents the calculus, based on a version diréng-language with first-
class futures[27] and extended with promises. It is a carotivariant of an impera-
tive, object-calculus in the style of the ones frdr [1].

2.1 Syntax

The abstract syntax in Tallé 1 distinguishes betwemsrsyntax andun-timesyntax
(the latter is underlined). The user syntax contains theg#® in which programs
are written; the run-time syntax contains syntactic constits additionally needed to
express the executing program in the operational semantics

Names refer to classes, objects, threads, and to referencesit@fiaind promises.
We useo and its syntactic variants for objects anfbr classes, and when being un-
specific. The unit value is represented by (). A compoeista collection of classes,
objects, and threads, withbeing the empty component. A clagf©)] carries a name
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and defines its methods and field<OnA methodg(s:c).A(X:T).t provides the method
bodyt abstracted over thgbound “self” parametes and the formal parametexs For
uniformity, fields are represented as methods without patars (except self), with a
body being either a value or yet undefined. An obgct F, L] with identity o keeps a
reference to the clagst instantiates, stores the current vakief its fields, and main-
tains abinary lock Lindicating whether any code is currently active inside thgct
(in which case the lock is taken) or not (in which case the isdkee). The symbols,
resp.,L, indicate that the lock is taken, resp., free. Note that ththads are stored in
the classes but the fields are kept in the objects, of counsigeshly created objects,
the lock is free, and all fields carry the undefined referengevhere class nameis
the (return) type of the field.

Besides objects and classes, the dynamic configuration odgrgm contains in-
carnations of method bodies, writtext), as active entities. The tertris basically a
sequence of expressions, where the let-construct is usesduencing and for local
declarationf. During executionn(let xT = tin x) contains int the currently running
code of a method body and the result will be stored in the leadahblex. When eval-
uated, the thread is of the forni(set vi— n) and the value can be accessednjithe
future reference, or future for short, wheset vi— nis an auxiliary expressi(ﬂ1.

We usef for instance variables or fields ahé ¢(s:T).A().v, respl = ¢(sT).A(). L¢
for field variable definition. Field access is written\al§) and field update ag.| :=
s(s.T).4().v. By convention, we abbreviate the latter constructs byv, | = 1, v.l,
andv'.l := v. We will also usev, to denote either a valueor a symbolL. for being
undefined. Note that the syntax does not allow to set a field tsaendefined. Direct
access (read or write) to fields across object boundariexlédiden, and we do not
allow method update. Instantiation of a new object fromstas denoted byew c.

Expressionsinclude especiafiyomise Tfor creating a new promise, ahd al (V) :
T < n for binding the method calb.|(V) with return typeT to promisen. Asyn-
chronous method calls, central @reols concurrency model, are a derived concept.
An asynchronous call, writteo@I (V) is syntactic sugar for creating a new promise and
immediately binding.I(V) to it. Further, the expressiom$aim, get, suspengdgrab,
andreleasedeal with communication and synchronization. The expogssaim@ (n, 0)
is the attempt to obtain the result of a method call from theriinameadh while in pos-
session of the lock of objeot Executingeleas€o) relinquishes the lock of the object
0, giving other threads the chance to be executed in its stdaeh) succeeding to grab
the lock viagrab(o). Executingsuspen¢b) causes the activity to relinquish and re-grab
the lock of objecb (see the operational rules in Sectfon2.3.1 below). We asdym
convention, that when appearing in methods of classes,|#im-cand the suspend-
command only refer to the self-parameseif, i.e., they are writterclaim@(n, self)
andsuspen(self). §

2.2 Type system

The calculus is typed and the available types are given ifoll@ving grammar:

3ty (sequential composition) abbreviatesx: T = t; inty, wherex does not occur free ity.

4The reason why an evaluated futurés represented by (set vi» n) and not byn(v), which might
look more natural, is technical. In the operational sencantihe reference’ is hidden. Technically, the
representation allows to achieve subject reduction foofien semantics, without exposing the status of the
futuren.

5For the run-time constructgrab and release we need noimposethe analogous restriction, as it is
guaranteed by the operational semantics.
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T = B|Unit| [T |[T]ITI[1U,...,EUT (LU, ...,:U)] | n
U = Tx..xT->T

Besides base typds (left unspecified)Unit is the type of the unit value (). Types
[T]*~ and [T]* represent the reference to a future which will return a vafugpeT, in
case it eventually terminated ]["~ indicates that the promise has not yet been fulfilled,
i.e., it represents the write-permission to a promise (Whiaplies read-permission
at the same time). T[]* represents read-only permission to a future. The/redte
capability is more specific than read-only, which is expedsBy the (rather trivial)
subtyping relation generated by]f~ < [T]*, accompanied by the usual subsumption
rule. Furthermore, |* acts monotonely, and]['~ invariantly wrt. subtyping. When
not interested in the access permission, we just wfite [

The name of a class serves as the type for the named instahttess @ass. We
need as auxiliary type construction the type or interfacarofamed objects, written
[11:Uy,...,Ik:Uy] and the interface type for classes, writtel:{01, ..., lk:Uy). We
allow ourselves to writd for Ty x ... x T etc. where we assume that the number of
arguments match in the rules, and wiiteit — T for Ty x ... x Tx —» T whenk = 0.

We are interested in the behavior of well-typed programsy, and the section
presents the type system to characterize those. As thetmperlaules later, the deriva-
tion rules for typing are grouped into two sets: one for tgpam the level of compo-
nents, i.e., global configurations, and secondly one fdr fyatactic sub-constituents.

Table[2 defines the typing on the level of configurations, ia.“sets” of objects,
classes, and threads. On this level, the typing judgmeatsfahe form

ArC:0, (1)

whereA and® are name contexis.e., finite mappings from names to types. In the
judgment,A plays the role of the typing assumptions about the envirorpad®

of the commitments of the configuration, i.e., the nam@sred to the environment.
Sometimes, the words required and provided interface a¥é tesdescribe their dual
roles.A must contain at least all external names referencecidnyd dually® mentions
the names fiered byC, which constitute the static interface information. A pair
and® of assumption and commitment context with disjoint domaires calledwell-
formed

ABO,FCi:0 AOFC: 0O ArC:0O,nT
2100 T-Empry i 2 TPk ——— TN
: ArCy]Cy: 01,0, Arv(nT).C: 0
A CTH(O): T AFCI[Te, T Aock[F]C [T
(o) T-NCurass (Te. T [F1: [Te] T-NOgs
A+ c[O): (cT) A+ o[c, F1]: (o)
VAL [T] Rt T AN<A 6<® ArC:0
T-NTHREAD T-Sus
Ab ity (n[T]Y) ANrC: @

Table 2: Typing (components)
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The empty configuratiof is well-typed in any context and exports no names (cf.
rule T-Bvpry). Two configurations in parallel can refer mutually to eateo's com-
mitments, and togethefier the (disjoint) union of their names (cf. rule T&p. It will
be an invariant of the operational semantics that the itestf parallel entities are dis-
joint wrt. the mentioned names. Therefo®g,and®; in the rule for parallel composi-
tion are merged disjointly, indicated by writir®y, ®, (analogously for the assumption
contexts). In combination with the rest of the rules (in jwattr T-Bino below), this
assures that a promise cannot be fulfilled by the componeittenenvironment at the
same time. The-binder hides the bound object or the name of the future ingieé
component (cf. rule T-N). In the T-Nu-rule, we assume that the bound namis new
to A and®. Let-bound variables arstackallocated and checked in a stack-organized
variable contexi”. Names created byew are heapallocated and thus checked in a
“parallel” context (cf. again the assumption-commitmeanerT-Rr). The rules for
named classes introduce the name of the class and its typéhmtcommitment (cf.
T-NCvrass). The code of the clas<])] is checked in an assumption context where the
name of the class is available. An instantiated object vélblailable in the exported
context® by rule T-NGss. Named threads(t) are treated by rule T-NdrReap, where
the type [I']* of the future reference is matched against the result typeof thread.

As obviously futuren is already fulfilled inn(t), its type exports read-permission, only.
For a named threaatt) in rule T-NTureap to be well-typed, the codds checked using
the assumptiona of the conclusion buvithoutusing write-permissions mentioned in
A, expressed byA]. On types, the_| operation is defined 4$T]*"] = [T]* and as
identity on all other types. The definition is lifted poinseito binding contexts. The
last rule is a rule of subsumption, expressing a simple fdraubtyping: we allow that
an object respectively a class contaittdeastthe members which are required by the
interface. This corresponds to width subtyping. Note, haxghat each named object
has exactly one type, namely its class.

Definition 2.1 (Subtyping). The relation< on types is defined as identity for all types
except fof T]*~ < [T]* (mentioned above) and object interfaces, where we have:

[(|1ZU1,. o kiU le1: Ukt - )] < [(|1ZU1,...|kZUk)] .

For well-formed name contexts, and A, , we define in abuse of notatidn < Ay, if
A; and A, have the same domain and additionally(n) < Ax(n) for all names n.

The same definition is applied, of course, also for name et&@ used for the
commitments. The relationsare obviously reflexive, transitive, and antisymmetric.

Next we formalize the typing for objects and threads and thgitactic sub-cons-
tituents. Especially the treatment of the write-permissiquires care: The capability
to write to a promise is consumed by the bind-operation akdtukl be done only
once. This is captured bylaear type system where the execution of a thread or an
expression may change the involved types. The judgments éne form

Are: Tl A, 2)

where the change frof andA to I andA reflects the potential consumption of write
permissions when executirg The consumption is only potential, as the type system
statically overapproximates the run-time behavior, ofrseu The typing is given in
TabledB and4. For brevity, we writg T' + e : TforA;T +e: T = l'",A, when

[ =T andA = A. Besides assumptions about the provided names of the anwvénat
kept in A, the typing is done relative to assumptions about occurfrieg variables.
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They are kept separately in a variable contéxa finite mapping from variables to
types. Apart from the technicalities, treating the writpalilities in a linear fashion is
straightforward: one must assure that the correspondipaiifity is available at most
once in the program and is not duplicated when passed aréupchmise is no longer

available for writing when bound to a variable using thedeistruct, or when handed
over as argument to a method call or a return.

AFcC:[11:Uq,..., U] ToAFm Ui A m =¢(5:0).406:Ti) 4

T-Crass
CAF[li=m,..., lk=m):c
ArRC:[11:Ug,. .., l:Uk) AR fi D Ui fi = ¢(s:€).4().v..
T-Ogs
TAR[lL=f,..., lk="fJ:c
LRTASCrt:T/HA TiAre:T T=[.. IT>T,..)
T-Mems
I AFg(s0).ART).t: T
;A scre:f...,l:Unit—c,...)
T-UNpEF
A Fg(si0).A().Ly : C
;Arv:e T;ARC: T ARV CTI [Arc:[T)
T-FUppaTE — T-NewC
ARV =V :c I';Arnewc:c

Ty Aqre:TyoIn Ay I, XTy; A0 Ht: T T3, A3

T-Ler
T, A1k letxTy =eint: Ty T35 A3

T A1 FveiiTe T ALeve Ty TiArrer i Tl Ay ToiArrey Tl A

T-Conp
T, Ar Hifvy = vathenerelseey : To i T2 Az

IArrvie TyArrc: L. lUnit—> T,..0)
Ty Arke i TouTo Ay AL e Tl A

T-Conp
T; Aq + ifundef(v.l()) thenej else ey : To 1 T; An

T-Srop — T-Unir —— T-CompL
IArstop: T ;AR () : Unit I A+ setve n: Unit

Table 3: Typing

Classes, objects, and methods resp. fields havefact®nA (see rules T-Cass,
T-OsJ, T-Mems, and T-Ukper). Note that especially in T-kMs, the name contexa
does not change. This doest mean, that a method cannot have a siffeet by ful-
filling promises, but they are not part of the check of the rodttieclarationhere.
Rule T-G.ass is the introduction rule for class types, the rule of ingetidn of a class
T-NewC requires reference to a class-typed name. In the rulesvslnd T-FUbpare
we use the meta-mathematical notatiobhto pick the type inT associated with label
[, i.e.,T.I denotedJ, whenT =[...,[:U,...] and analogously foT = [...,l:U,...).
Rules T-Gass and T-Gs check the definition of classes resp., of objects against the
respective interface type. Note that the type of the salfip@ter must be identical to
the name of the class, the method resides in. The premisegofiMeme checks the
method body in the contexXt appropriately extended with the formal parameters
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T-Prom
T; A+ promise T: [T]*
CAEN:[T]F
- TCiam — T-Ger ——— T-CompL
;A F claim@(,0) : T I;Arget@n: T I, A+ setv ng @ Unit
=T T[=r\x:T A =T A=A\n:T
- T-Var T-Name
TAEX:TuTA AFN:T T A

CANT roic TANTIFreil.. iTo>T,..) TANTIFF:T [A=T;A\@:T)

; T-Binp
AN [T FbindalV) : T n:[T]" oA, [T
Aro:c
—— T-SuspenD ] T-Gras - T-RELEASE
T'; A + suspen(b) : Unit I'; A + grab(o) : Unit I; A + releaséo) : Unit
T<T

T-Sus
Ty ALt T T A

Table 4: Typing

resp. the contexh extended by the-bound self-parameter. Tader works similarly
treating the case of an uninitialized field. The terminatgotessiorstop and the unit
value do not change the capabilities (cf. rulestbsSand T-Ukit). Note thatstop has
any type (cf. rule T-Sop) reflecting the fact that control never reaches the paifiar
stop. Further constructs without sidffexts are the three expressions to manipulate
the monitor locks (suspension, lock grabbing, and lockas#¢, object instantiation
(T-NewC), and field update. Wrt. field update in rule T-#dre, the reason why the
update has notfiect on the contexts is that we do not allow fields to carry a type
of the form [T]*~. This dfectively prevents the passing around of write-permissions
via fields. The rule T-kr for let-bindings introduces a local scope. The change from
A; to A and further fromA, to Az (and analogously for thE’s) reflects the sequen-
tial evaluation strategy: first is evaluated and afterwards For conditionals, both
branches must agree on their pre- and posbntexts, which typically means, over-
approximating the fect by taking the upper bound on both as combin@ece Note
that the comparison of the values in 5@ resp. the check for definedness in G,

has no side4ect on the contexts. The rule for testing for definednesgusidef (not
shown) works analogously.

Table[4 deals with futures, promises, and especially thealimspect of consuming
and transmitting the write-permissions. Ttlaim-command fetches the result value
from a future; hence, if the referennods of type [T]*, the value itself carries typ€
(cf. rule T-G.amm). The rule T-Gr for getworks analogously.

The expressiopromise Tcreates a new promise, which can be read or written and
is therefore of typeT]*~. Note, however, that the contextdoesnot change. The
reason is that the new name createdpbymiseis hidden by av-binder immediately
after creation and thus does not immediately extend\tttentext (see the reduction
rule Rrom below). The binding of a threaidto a promisen is well-typed if the type
of n still allows the promise to be fulfilled, i.en is typed by [']*~ and not justT]*.

The auxiliary expressioset v~ n is evaluated for its sidefiect, only, and is of type
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Unit (cf. rule T-Gompr). claim dereferences a future, i.e., it fetches a value of type
T from the reference of typel]*. Otherwise, the expression has rféeet onA, as
reading can be done arbitrarily many times. As an aside: lm TeCramv, the type
of o is not checked, as by convention, the claim-statement naisiskd in the form
claim@(self) in the user syntax, whergelf is the self-parameter of the surrounding
methods. Reduction then preserves well-typedness so lzetere is not needed.
Similar remarks apply to the remaining. The treatmengeffis analogous (cf. rules
T-Cramv and T-Git). For T-Binp, handing over a promise with re@adite permissions
as an actual parameter of a method call, the caller losegghieto fulfill the promise.
Of course, the caller can only pass the promise to a methochvassumes reaarite
permissions, if itself has the write permission. The losshef write-permission is
specified by setting'& and to A\V : T resp. tol'\V : T. The differenceoperator
A\n : [T]*~ removes thavrite-permission fom from the contextA. In T-Bmb, the
premiseA; T, n[T]* + ¥ : T abbreviates the following: assumie= vi, ...V, and

T =Ti...T,and letZ; abbreviatd; A, n:[T]*. ThenZ + V: T meansZ; + v; : T; and
Ei.1 = 5\ T, forall 1 <i < n. Note that checking the type of the callee has not side-
effect on the bindings. Mentioning a variable or a name remdwesvtite permission
(if present) from the respective binding context (cf. AR\And T-Nume). The next three
rules T-Sispenp, T-Grag, and T-Riwease deal with the expressions for coordination
and lock handling; they are typed lynit. The last rule T-8B is the standard rule of
subsumption.

2.3 Operational semantics

The operational semantics is given in two stages, compongthal steps and exter-
nal ones, where the latter describe the interaction at tleefate. Section2.3.1 starts
with component-internal steps, i.e., those definable witeference to the environ-
ment. In particular, the steps have no observable exteffeadte The external steps,
presented afterwards in Sectiobn 213.2, define the interatttween component and
environment. They are defined in reference to assumptiorcamnitment contexts.

The static part of the contexts corresponds to the statie sygtem from Sectidn 2.2
on component level and takes care that, e.g., only welleyadues are received from
the environment.

2.3.1 Internal steps

The internal semantics describes the operational behaéelosedsystem, not inter-
acting with its environment. The corresponding reductips are shown in Tabfé 5,
distinguishing between confluent stepsand other internal transitions, both invis-
ible at the interface. Thew»-steps, on the one hand, do not access the instance state of
the objects. They are free of imperative sidieets and thus confluent. The-steps,
in contrast, access the instance state, either by readibg writing it, and thus may
lead to race conditions. In other words, this part of the c#ida relation is in general
not confluent.

The first seven rules deal with the basic sequential cortstralt asws-steps. The
basic evaluation mechanism is substitution (cf. ru®)R Note that the rule requires
that the leading let-bound variable is replaced onlwhijues v The operational be-
havior of the two forms of conditionals are axiomatized by four Gono-rules. De-
pending on the result of the comparison in the first pair oésuresp., the result of
checking for definedness in the second pair, either the threthe else-branch is taken.
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Figure 1: Claiming a future

In Conpy, wWe assume that; does not equal,, as side condition. Evaluatingop
terminates the future for good, i.e., the rest of the threddnever be executed as
there is no reduction rule for the futurgstop) (cf. rule Sror). The rule Flookup
deals with field look-up, wher&’.1(0)() stands forLc[o/s] = L, resp., fonjo/s),

where £, F’] = [c,...,| = ¢(s.€).A().Le, ..., L], if the field is yet undefined, resp.,
[c,F] =]c...,I =¢(sc).A().v,...,L]. In FUprpatg, the meta-mathematical notation
F.l:=vstandsfor(..,l =v,...),whenF =(...,I =V,...). There will be no external

variant of the rule for field look-up later in the semantic®pén systems, as we do not
allow field access across component boundaries. The samnieties holds for field
update in rule Flebate. A new object as instance of a given class is created by rule
NewQO;. Note that initially, the lock is free and there is not adtihvassociated with the
object, i.e., the object is initially passive.

The expressiopromise Tcreates a fresh promise Note that no new thread is yet
allocated, as so far nothing more than the name is known. dleéom mentions the
typesT andT’. The typing system assures that the typis of the form §]*~ for some
type S. A promise is fulfilled by thebind-command (cf. rule Bi;), in that the new
threadn is put together with the code to be executed and run in parallel with the rest
asn’{letx : T = tjinset x— ny (wheren’ is hidden). Upon termination, the result is
available via theclaim- and thegetsyntax (cf. the Cam-rules and rule @r;), but not
before the lock of the object is given back again usilgas€o) (cf. rule ReLeasg). If
the thread is not yet terminated, the requesting threacesulsptself, thereby giving up
the lock. The behavior aflaimis sketched in Figurd 1. Note the types of the involved
let-bound variables: the future reference is typedBly indicating that the value fox
will not directly be available, but must be dereferenced fira claim. When it comes
to claim a future, we added as auxiliary synset vi— n. The expression presents an
evaluated thread, just in front of the step where the valiseabout to be put into the
thread named. The reasons for that additional syntax are largely te@iniamely
to achieve a clean separation of internal and externalifpleibehavior, in particular,
to get a proper formulation of the subject reduction resdltdés additional expression
requires, that the rulesi@wm?, CLamv?, and Gery, dealing with evaluated threads of the
form n(v), are complemented by the rules«Bs® and Gam?, resp. Gr?.

The two operationgrab andreleasetake, resp., give back an object’s lock. They
are not part of the user syntax, i.e., the programmer cannettly manipulate the
monitor lock. The user can release the lock usingsihgpenecommand or by trying
to get back the result from a call usioim.

The above reduction relations are used modtiloctural congruenceyhich cap-
tures the algebraic properties of parallel compositionthrdhiding operator. The basic
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axioms for= are shown in TablEl6 where in the fourth axiomgoes not occur free in
C;. The congruence relation is imported into the reductioatiehs in Tabl¢l7. Note
that all syntactic entities are always tacitly understoatimoa-conversion.

n{letx:T = vint) ~» nt[v/X]) ReD
n{letXx: T = (letx1:T1 = e in€)int) ~ n(let x1:T1 = erin (let x2: T2 = eint)) LET
n{letx:T = (ifv = vthene; else &) int) ~ n{letx:T = e int) Conpy
n{letx:T = (ifvy = vothenep else &) int) ~» n{letxT = e int) ConD,
nKletx:T = (ifundef(L¢) thene; else &) int) ~» N{letx:T = erint) Conp;.
n{letx:T = (ifundef(v) thene; else &) int) » N{letx:T = eyint) Conp,
n{letx:T = stopint) ~» n(stop) Srop
ofc,F’,L] || ndletx:T = a.l()inty 5 ofc, F’, L] || ndlet x:T = F’.I(0)() int) FLookup
o[c,F, L] || n{letx:T = o.l := vinty S o[c, F.l := v,n’] || n{letx:T = oint) FUPDATE
c[(F, M) || n{let x:c = newcint) ~»
c[(F, M) || v(o:c).(o[c, F, L] || n¢letx:c = 0int)) NewO;
n'(letx:T’ = promise Tint) ~» v(n:T’).(n"{letx:T” = nint)) Prom
c[(F’, MY || o[c, F, 1] || nilet x:T = bind al(V) : T < nyinty) —
c[(F, M) |l o[c,F 1T |l niletx:T = nypinty)
| v(n’:Unit).(n'(let x: T, = grab(o); M.I(0)(V) in releas€o); set x— ny))
n'(setve ny) || nxletx: T = claim@(ng, 0) int) ~»
n(set vis m) || nx{letx : T = vint) Cram)
th #V

CLAIMi2
n(setb — ny) | niletx: T = claim@(n,, 0) int}) ~»

n(setb — n) || nu(let x : T = releas€o); get@n; in grab(o); t;)

NV || naletx : T = claim@(ng, 0) int) ~» ny(v)y || n{letx : T = vint) Cramv?
tb#v

CLAIMi4
() | m(letx: T = claim@(n, 0) int}) ~»

(o) || m(letx @ T = releasgo); get@n; in grab(o); t;)
NV || na{letx : T = get@ny int) ~» ni(v) || np{letx: T = vint) Ger?
n'(set v ny) || np{letx: T = get@n; int) ~» ni(set vi» ny) || nx{letx: T = vint)
n{suspen(b); t) ~» n(releaséo); grab(o); t) SUSPEND
o[c,F, 1] || n(grab(o); t) 5 o[c, F, T] || n{t)  Gras

o[c,F, T] || n(releasgo); t) = o[c, F, L] || n(t)  ReLease

Table 5: Internal steps

Binp;
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oc=cC GlC=CC (C1IIC)IIC3=Cr I (C2 11 C3)
Cp | v(n:T).Co = v(n:T).(C1 || Cp) v(Ng:T1)v(n2:T2).C = v(n2:T2).v(ng:T1).C

Table 6: Structural congruence

Next we show that the type system indeed assures what it {gosep to, most
importantly that a promise is indeed fulfilled only once.sEiwe characterize as erro-
neous situations where a promise is about to be written ansdane: A configuration
C contains awrite error if it is of the form C = v(®").(C’ || n’{(letx : T = bindt :
T1 = ninty) || n¢t)). Configurations without such write-errors are caledte-error
free denoted- C : ok In [53], an analogous condition is calleédndle error

First we show that a well-typed component does not contaiamifest write-error.

Lemma2.2. If A+ C: ®, then+ C : ok.

Proof. By induction on the typing derivations for judgments on theel of compo-
nents, i.e., for judgments of the formm + C : ©; the subordinate typing rules from
TabledB anfll4 on the level of threads and expressions doaoapble for the proof.
The empty component in the base case ofvibix is clearly write-error free. The
cases for the T-M-rules by straightforward induction. The case ds$or subsumption
is likewise follows by induction. The cases for T-NGs, T-NOss, and T-NFTurE are
trivially satisfied, as they mention a single, basic commonenly.

Case:T-Par
We are giverA, @, + C; : ®1 andA,®; + C, : ©,. By induction, bothC; andC,
are write-error free. The non-trivial case (which we wilateto a contradiction) is
when one of the components attempts to write to a promisestengartner already
has fulfilled it. So, wlog. assume th@g = v(07).(C} || n{letx: T = bindx: T —
n2int”) andC; = v(0)).(C,, || nx(t2)). Assume thah; neither occurs ir®] nor in
@), otherwise no write error is present (since in that casenémen, mentioned on
both sides of the parallel refer toftérent entities). Fo€; to be well-typed, we have
A,07 + n:[T4]* for some typel;. ForC, to be well-typed, we hav®, + n: [To]*
for some typ€l,. Thus,A + C; || C; : ©1, ®, cannot be derived, which contradicts the
assumption. m|
mi

The next standard property shows preservation of welldgypses under internal

C=w=C Cw CwC
C~C cClc’r~c|c” y(n:T).C ~» v(n:T).C’

c=5=cC cSc cSc
cSc cljecrsc e w(n:T).CS v(n:T).C’

Table 7: Reduction modulo congruence
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reduction. The necessary ancillary lemmas will in generatged by induction on the
typing derivations for judgments of the formr C : ®. From a proof-theoretical (and
algorithmic) point of view, the type system as formalizedrabledP[B, anfl4 has an
unwelcome property: it is too “non-deterministic” in thagllows the non-structural
subsumption rules T«® on the level of threadsand on the level of componen®
at any point in the derivation. This liberality is unwelcoifoe proofs by induction on
the typing derivation as one loses knowledge about thetsireiof the premises of an
applied rule in the derivation.

Lemma 2.3 (Minimal typing). 1. fA+rn C:®andA’ + C: ®, thenA < A" and
0<0O.

2. IfArnC:0@thenArC: 0.

3. fA+C: 0, thenA+, C: O WwWithA+r A’ and® < @'.
Proof. Straightforward. m] m]
Lemma 2.4 (Subject reduction:=). If A+ Cy: @ and G = Cy, thenA +,, C & ©.
Proof. We show preservation of typing by the axioms of Tdble 6. Redds induction

on the derivation oA +r, C; : ©.

Case: C|| 0 = C (idempotence)

We are giveA + C || 0 : ©. Inverting T-Rr and by T-Birry we get as sub-goals
A,O +y 0: () andA +y, C : O, which concludes the case.

Case: C= C|| 0 (idempotence)

Immediate using T-& and T-Bvpry.

Case: G || C; = C; || C1 (commutativity)

Immediate.

Case: G || (C2 || C3) = (C1 || Cy) || C2 and vice versa (associativity)

By straightforward induction.

Case: G || v(n:T).Cz = v(n:T).(Cy || C2)

wheren does not occur free i€;. We are givem\ + Cy || v(n:T).C, : ©1, ®,, where
n neither occurs i®; nor ®,. Inverting T-Rr and T-Nu¢ or T-Nu2, we obtain as two
subgoals\, ®; + C; : ®; andA, O1 + Cy : O1, 02, n:T, and the result follows by TAR
and the respective TaNrule. The case for T-b works analogously.
Case:v(ng:T1).v(n2:T2).C = v(N2:T2).v(n1:T1).C

Analogously. m]

Lemma 2.5 (Subject reduction:— and ). Assume\ + C : 0.
1. fCS C thenAr C: @,

2. IfC~ C,thenAr+ C: ©.

Proof. The reduction rules of Tab[@ 5 are all of the fo@a || n(t;) 5C [| n(ta),
where ofterC; = C, or C; andC; missing. In the latter case, it fices to show that
s AN[T]Y bty s Timplies ;A n[T]F Fto 0 T.
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Case:Rep: letx: T = vint s t[v/X]
By preservation of typing under substitution.

The 5 rules for let and for conditionals are straightforwafFtle case for stop fol-
lows from the fact thastop has every type (cf. rule Ta8p).
Case:Prom: n'(let x:T’ = promise Tint) ~> v(n:T’).(n"(letx : T = nint))
The type system assures thEt = [T]*7, i.e., for the left-hand side we obtain as
subgoal (inverting T-N#reap, T-Let, and T-Rom) X:[T]*7; A, n:[T]*~ r t : T. The
result follows from T-Ny, T-Ler, and T-NTHREAD.
Case:Bmp; ni(t)y = ny{letx:T = bindal(V) : T, < nyinty) 5 niletx:T = ()inty) ||
y(n:Unit).(n"{let x: T, = M.I(0)(V) in set x— ny))
The type system assures (cf. vB) thatT = [T’]* for some typel’. By assumption,
we are giveri + ny(t) : ®@ which implies® = n;:[T1]*. Inverting rule T-NtHREAD gives

TN N [To]" F MI(O)(V) - Ty
T-Bmnp i
TN R [To]" kbindal(V) : To s np T o A, mpi[To]* XTA” [T kg i Ty oo T A np:[To]*

T-Ler

JA o [To] FletxT = bind al(V) : To < nyinty @ Ty o35 A, np:[To]*

A FngdletxT =bindal(V) : Tz < npinty) : ng:[Ta]*, no:[Ta] "

Rule T-Bnp implies thatA = A’,n, : [T]*, i.e., the thread has write permissionmgn
in the pre-state. Furthermorg n, : [T]™, i.e., in the post-state, the thread has lost its

write-permission (as it has executed it). In additibris empty. With T-Rr we obtain
the following two sub-goals.

AN, [T2]7 F et x:Unit = ()intg) - ng:[T1]T A, ng:[T1]* = v(n':Unit).(n' (et xTo = M.I(0)(V) inset x> ny)) @ np:[To]*™

A’ F ngdletx:Unit = ()inty) || v(n":Unit).(n"(let T2 = M.I(0)(V) in set X ny)) : ne:[T1]*, no:[T2]*

Both can be straightforwardly solved using T-d6re, T-Nu, T-Unit, T-Let, T-CompL,
and the assumptions.
The remaining rules work similarly. m] m]

Lemma 2.6 (Subject reduction:=). If A+ C;: ® and G = C,, thenA+ C, : O.

Proof. AssumeA + C; : ® andC; = C,. By LemmalZHB)A" +m C; : O s.t.
A < A and®’ < ©. By LemmdZUBA’ +y, C, : @, and hence by Lemnfa2[B(2), also
A+ C,: @, and the result follows by subsumption (rule Tsh O m|

Lemma 2.7 (Subject reduction:— and ~»). Assume\  C : ©.
1. IfCS5 C, thenA vy, C: ©.
2. IfC ~» C, thenA +, C : ©.

Proof. As consequence of the corresponding property for miningahtyfrom Lemma
3 and LemmBAZ]3. o o

Lemma 2.8 (Subject reduction). If Z + C and C= C, then= r C.

Proof. A consequence of Lemnia®.6 dndl2.7. | o
A direct consequence is that all reachable configuratiomsvate-error free:

Corollary 2.9. If A+ C: ® and C= C, then- C : ok.

Proof. A consequence of Lemnia®.2 and subject reduction from Leinfha 21 o
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n{call o.l(V)) | n(getv)) | v(n:T).y basic labels
y?| ! receive and send labels

S
(|

Table 8: Labels

2.3.2 External semantics

The external semantics formalizes the environment intieraof an open component
as labeled transitions between judgments of the form

ArC: 0, 3)

whereA represent thassumptionsibout the environment of the componénand®
thecommitmentsThe assumptions require the existencearned entitiein the envi-
ronment (plus giving static typing information). The setiegmaintains as invariant
that the assumption and commitment contexts are disjomte&ming the names for ob-
jects, classes, and threads. In addition, the interfacpskieéormation about whether
the value of the future is already known at the interface. If it is, we writel = v as
binding of the context. We write furthermoser n = v, if A contains the correspond-
ing value information and writa + n = L, if that is not the case. This extension makes
the value of a future (once claimed) available at the intarfanith these judgments,
the external transitions are of the form:

ArC:®@ 5 ArC:6. (4)

Notation 2.10. We abbreviate the tuple of name context® as=. Furthermore we
understand\, ® asZ, etc.

The labels of the external transitions represent the cporeding interface interac-
tion (cf. Tabld®). A component exchanges information whté €énvironment vigall
labelsy. andgetlabelsyy. Interaction is either incoming or outgoing, indicated by ?
resp., !. In the labels) is the identifier of the thread carrying out the call resp. @iy
queried viaclaim or get Besides that, object and future names (but no class names)
may appear as arguments in the communication. Scope exirabhames across the
interface is indicated by thebinder. Given a basic labgl= v(Z).y’ whereZ is a name
context such that(=Z) abbreviates a sequence of singl€ bindings (whose names are
assumed all disjoint, as usual) and whefa@loes not contain any binders, we cgll
the core of the label and refer to it byy]. We define core analogously for receive
and send labels. The free nanfe&) and the bound namdsn(a) of a labela are as
usual, wherearamega) refer to all names oé. In addition, we distinguish between
names occurring as arguments of a labepassiveposition, and the name occurring
as carrier of the activity, iactiveposition. Naman, for illustration, occurs actively and
free inn{call 0.1.(V)) and inn(get(v)). We writefn,(a) for the free names occurring in
active positionfn,(a) for the free names in passive position, etc. All notatiaesused
analogously for basic labels Note that for incoming labels contains only bind-
ings to environment objects (besides future names), asifisbament cannot create
component objects; dually for outgoing communication.

The steps of the operational semantics for open systemg&slhisestaticassump-
tions, i.e., whether at most the names actually occurrinigpéncore of the label are
mentioned in the-binders of the label, and whether the transmitted value®hthe
correct types. This is covered in the following definition.
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= él,n:[T]*,éz ErV:T a= n(call o.1(V))? ErviT a= n(get(v))?
- LT-Carl - LT-Gerl
Era: To. Zra:.oT

Table 9: Typechecking labels

Definition 2.11 (Well-formedness and well-typedness of alteel). A labela= v(E).|a]
is well-formed,written+ a, if don(Z) ¢ fn(la]) and ifZ is a well-formed name-context
for object and future names, i.e., no name bound ccurs twice. The assertion

Erol?:T>T (5)

(“an incoming call of the method labeled | in objezexpects arguments of tyfeand
results in a value of type T") is given by the following rule.j implication:

Oro:ic  Erci[... IToT,..)

Erol?:T>T

(6)

For outgoing calls,= r oll: T > T is defined dually. In particular, in the first
premise® is replaced byA. Well-typednes®f an incoming core label a with expected
typeT, resp., T, and relative to the name contéxs asserted by

Zra:T—>_ resp, Zra:_—T, (7)

as given by TablE]9. IhT-CarLl, the premise = ErvV:Tis interpreted in such a
way that checking for write-permission consumes that pesioin (analogous to the
correspondlng premise GFBmp in Table[3): Let=o abbreviate =. Then;Z F v : T
meansE; r vi : T andZ,, = 5 \Tj,forall0<i<n-1.

_ Note that the receives of the call is checked using only the commitment context
®, to assure that is a component object. Note further that to check the interfgpe

of the clasg, the full £ is consulted, since the argument tygesr the result typd
may refer to both component and environment classes. Thenrental type of first
premise = 2+ V: T of LT-CaLLl assures that no name is transmitted twice with write-
permission. In a similar spirit: requiring thatis of the form=1, n[T]*, £, assures
that it is not possible to transmitwith write-permissions ifi is the active thread of the
label.

Besidescheckingwhether the assumptions are met before a transition, thexisn
areupdatedoy a transition step, i.e., extended by the new names, witope xtrudes.
For the binding parE’ of a labelv(Z’).y, the scope of the references to existing objects
and thread names extrudes across the border. In the st&pextends the assumption
contextA and®’ the commitment contex®. Besides information about new names,
the context information is potentially updated wrt. theikakility of a future value.
This is done when a get-label is exchanged at the interfadbédirst time, i.e., when
a future value is claimed successfully for the first time. &otgoing communication,
the situation is dual.

Before we come to the corresponding Definifion®.12 belowmaée clear (again)
the interpretation of judgments + C : ®. Interesting is in particular the informa-
tionn:[T]*~, stipulating that name s available with write-permission (and result type
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T). In case ofA + n : [T]*", the namen is assumed to available in the environment
as writeable, and converse®y/ + n : [T]*~ asserts write permission for the compo-
nent. Since read permissions, captured by typés,[are not treated linearly —one
is allowed to read from a future reference as many times asedis- the treatment
of bindingsn:[T]* is simpler. Hence here we concentraterofT]*~ and the write
permissions.

Since the domains of and@® are disjoint, bindings: T’ cannot be available in
the assumption conteXt and the commitment® at the same time. The information
T’ = [T]*" indicates which side, component or environment, has thie\warmission.

If, for instanceA + n : [T]*~, then the component is not allowed to execute a bind on
referencen. The same restriction does not apply to read permissiorteelmentioned
situationA + n : [T]*", the component can executelaim-operation om. The same
appliesifA + n: [T]*. In other words, a namecan be accessed by reading by both the
environment and the component once known at the interfadependent whether it is
part of A or of ®. A difference between bindings of the fomjT]*~ andn:[T]* (and
likewisen:[T]* = v) is, that communication cathangeA - n: [T]*"to®@ + n: [T]*~
and vice versa. For namef type [T]*, this change of side is impossible. The latter
kind of information, for instanc® + n: [T]*, implies that the code has been bound to
nand itis placed in the component. Once fixed there, the neferton may, of course,
be passed around, but the thread namigsklf cannot change to the environment since
the language does not supporbbilecode.

Now, how does communication labels as interface interastigpdate the binding
contexts? We distinguish two ways, the namef a thread can be transmitted in
a label: passively,when transported as the argument of a call or a get-interacti
andactively,when mentioned as the carrier of the activity, asthiea n{call 0.I(V))
andn(get(v)). As usual, such references (actively or passively) candresinitted as
fresh names, i.e., undenabinder, or alternatively as an already known name. When
transmittedpassivelyand typed with T]*~ for some typ€T, the write-permission ta
is handed over to the receiving side and at the same timepémnatission is removed
from the sender side. So if, e.g., the environment is assum@adssess the write-
permission for reference, witnessed byA + n : [T]*~, then sendingn as argument
in a communication to the component removes the binding ff@environment and
adds the permission to the component side, yieléngn : [T]*". In case the name is
transmittedactively,the receiver does not obtain write permission.

Now, what about transmitting actively? An incoming calln{call o.l(V))?, e.g.,
reveals at the interface that the promise indeed has befletul As, in that situation
of an incoming call, the thread is located at the componéetcommitment context
is updated to satisf® + n : [T]" = L (for an appropriate typ&) after the commu-
nication. Indeed, before the step it is checked, that the@mwent actually has write
permission fom, i.e., thatA + n: [T]*~, or that the nama is new. See the incoming
call in FigurgZ({d), where theis fresh, resp. i Z(F), where timhas been transmitted
passively and with write-permissions to the environmembieethe call (in the dotted
arrow).

Whereas call-labels make public, at which side the threapiestion resides, get-
labels, on the other hand, reveal that the thread has tetdiaad fix the result value
(if that information had not been public interface inforinatbefore). There are two
situations, where a, say, outgoing get-communication &sipte. In both cases, the
future resides in the component and after the get-commtimigahe value is deter-
mined, i.e.,® + n: [T]* = v (if not already before the step). One scenario is that
A+ n: [T]* = L before the step still. If, in that situation, tlyetis executed by
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the environment, it is required that the component must hadewrite permission be-
fore that step, i.e® + n : [T]*~ (cf. Figure[Z{0)). The only way, the value faris
available for the environment now is thafinoticefl at the interface, the promise had
been fulfilled and the corresponding thread already hasteted, and this could have
been done by the component, only. In that situation, theestsitare updated from
®Fn:[T]""to®r n:[T]* = v: the component loses the write-permission as it
obviously has executed its permission already and the vakiixed and known at the
interface. Alternatively, the thread may be known to be pathe component with the
promise already fulfilled® r n: [T]* = L, as shown in Figug Z{a) afd 4(c)). Finally,
the value fom might already been known at the interface, i.e., alreadgreehe step,
O+ n:[T]* = vholds. In that situations has been added as interface information pre-
viously, either by a prior get-interaction incoming getwounication or an outgoing
return-communication, and the situation correspondsedast get in Figurg 2(p) and
2(C)-
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Figure 2: Scenarios

This gives rise to the following definition.

Definition 2.12 (Context update). Let = be a name context and a v(Z’).|a] an
incominglabel. We define the (intermediate) conte@ts= @ andA” = A, Z’.

Let furthermoreZ” be the set of bindings defined as follows. In case of a callJabe
i.e., lal = n(call 0.I(%))?, let the vector of type$ be defined b + 0l? : T —> T
according to equatior[{5) of Definitidn ZI11. ThEt consists of bindings of the form
Vvi:[T/]*~ for values yfromV such that T= [T/]*". In case of a get label, i.ela] =
n(ge{(v))?, the context” is vi[T]*~ if A” + n: [[T]*"]", and empty otherwise.

With = given this way, the definitions of the post-contextand ® distinguish
between calls and get-interaction: If a is a call label and nameg(a), we define

A=A \T"\n[T]*" and ©=0".3" n[T]". (8)
If ais a get label a= v(Z’).n(gefv))? and ne hameg(a), A and® are given by:
A=A\ n[T]*=v and ©=0",5". 9
For outgoingcommunication, the definition is applied dually.

The definition proceeds in two steps. In a first step, the aggamand the com-
mitment contexté and® are extended with the bindings carried with the incoming

81t is important that the bind-operation on a promise is aeriml action andotrecorded at the interface.
This is also the reason to represent an evaluated futben’(set vi» ny, wheren' is hidden behind a-
binder and not byxv) (cf. rule Bino; of Tablel®.
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labela. Note that the bindingg’ + n: [T]*~ or Z + n: [T]* for future references,
kept inY’, are added to the assumption contaxbut not the commitment context
(in the considered case of incoming communication). Thersgstep deals with the
write permissions, i.e.., it transfers the write permissi@nsmitted arguments from
the sender side to the receiver side. The binding coatéxteals with the permissions
carried by thread names transmitted passively, i.e., as@gts of the communication.
It remains to take care also of the information carried byattiive thread. For that we
distinguish calls and get-labels. An incoming call (equa{@)) withn as active thread
additionally is the sign that the thread is now located atcii@ponent side and that
the write permission has been consumed by the environnamt kience, in equation
@), the environment loses the write-permission and thepmrant is extended by the
bindingn:[T]*. In case of an incoming get, the transmitted valis remembered as
part of A (cf. equation[(B)).

Now to the interface behavior. Corresponding to the lalrelsfTabld®B, there are
a number of rules for external communication: either inamyrdr outgoing calls, resp.,
get-labels. All rules have some premises in common. In akksathe contex@ before
the interaction is updated Bb=S+a using DefinitiolZZIR, wherais the interaction
label. The rules for incoming communicatiorffér from the corresponding ones for
outgoing communication in that well-typedness and welivfedness of the label is
checked by the premisés + |a] : T — _, resp.Z + |a] : - — T (for calls) resp.,
E+ la): - = T (for get-labels), using Definitid.ZIL1. For outgoing conmitation,
the check is unnecessary as starting with a well-typed coeppthere is no need in
re-checking now, as the operational steps preserve wedldiyess (subject reduction).

When the component claims the value of a future, we distsigtwo situations:
the future value is accessed for the first time across thefamt or not. In the first
case, corresponding to rulesAoul; and Gamly, the interface does not contain the
value of the future yet, stipulated by the premise n” = 1. Remember thaA + n
requires that the threadis part of the environment. In that situation it is uncleanfr
the perspective of the component, whether or not the valsalaady been computed.
Hence, it is possible that executictaim is immediately successful (cf. rule.@m;)
or that the thread trying to obtain the value has to suspend itself and try lgterule
Crammp). The external rule Gumy, works exactly like the corresponding internal rule
Cramv? from Tablel®, except that here it is required that the quétiagen’ is part of
the environment. The behavior of a thread wrt. claiming aritvalue is illustrated
in Figure[l. If the future value is already known at the iraed (cf. rule €ammz and
especially premisa + n’ = V), executingclaimis always successful and the valis
(re-)transmittedgetworks analogously tolaim, except thagetinsists of obtaining the
value, i.e., the alternative of relinquishing the lock arying again as in rule Gimy,
is not available foget The last two rules deal with the situation that the envirenin
fetches the value.

Finally, we characterize thiaitial situation. Initially, the component contains at
most one initial activity and no objects. More preciselweni thatZy + Cy is the
initial judgment, thenCy contains no objects. Concerning the threads as the active
entities: initially exactly one thread is executing, eitaethe component side or at the
environment side. The distinction is made at the interfaaginitially either®q + n or
Ao + n, wheren is the only thread name in the system.

Remark 2.13 (Comparison with Java-like multi-threading). The formalization for
the multi-threaded case, for instancefifi [4], is quite sanilOne complication encoun-
tered there is that one has to takeentrancénto account. The rule for incoming call
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a=v(E). ncallol(@)? E=Z+a E rnvArn:[]7) Erol?:To>T Erla:To_
. Carl
ErC3ErC [ n{letx:T = grab(o); M.I(0)(V) in releas€o); x)
a=v(E). ncallol(@) = =f(a)n=, E =5\ Ar0o E=E+a
CaO

=+ W(EL.(C | W (letxT = bindal(¥) : T < n int) > & + v(E).(C || {letx: T = n int))

a=vE).n{ge(v)? E=E+a Arn=1 Erla:i->T

Cramly
Z+v(E1).(C | ndletx:T = claim@(’, -)int)) L v(Z1).(C || n{letx:T = vint))

Arn =1
Cramly
Z+v(E1).(ClIndletxT = claim@(’, 0) int)) ~ Z + v(Z1).(C || n{letx: T = releas€o); get@n’ in grab(o); t))
a = n’(get(v))? Arn =v Zrlal:-—>T
Cramlg
Z+v(E1).(C || ndletx:T = claim@(’, -)int)) = v(Z1).(C || n{letx:T = vint))
a=v(Z"). n"{(gelv))? £E=Z+a Arn =1 Erlali-oT

Getly

Z+v(E1).(C | ndletx:T = get@n’ int)) Sar v(Z1).(C || n{letx:T = vint))
a=n'(getv))? Arn =v Zrlal:-—>T

Gerl,
=+ v(E1).(C || ndletx:T = get@n’ int)) ZEr v(Z1).(C || n{letx:T = vint))
a=v(E).ngev))) = =fn(a)n=; E =5\ E=Z+a a=n(ge(V))! Orn=v

P - GerOy GerO,
E+ v(E1).(C || v(n":T).(n'(set vi> n))) = = + v(Z1).(C || n¢vy) ErC 3 ErC

Table 10: External steps

CacLl in Table[ID deals with amon-reentrancsituation, which is the only situation
relevant in the setting here. In addition to the ruaiLl, Java-like multi-threading
requires furtherCacrrl-rules to cover the situations, when the call is reentrant. O

3 Interface behavior

Next we characterize the possible (“legdtijerface behavioas interaction traces be-
tween component and environment. Half of the work has beee @tready in the
definition of the external steps in Talfleg] 10: For incoming oamication, for which
the environmentis responsible, the assumption contegtsoarsulted to check whether
the communication originates from a realizable environim€oncerning the reaction
of the component, no such checks were necessary. To chézasthen a given trace is
legal, the behavior of the component side, i.e., the outgoing comcation, must ad-
here to the dual discipline we imposed on the environmerih®open semantics. This
means, we analogously abstract away from the program cedeéering the situation
symmetric.
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=+ € . trace L-Empry

a=v(Z"). n(call 0.I(V))? E=EZ+a EFrnvArn:[7)
Erol?2:T>T &Erlal:T>_ Ers:trace
L-Carrl
Z+as:trace
a=v(E)ngev))? E=Z+a Arn=1 =+la]:.>T =Zrs:trace
L-Gerlq
Zras:trace

a=n(getv))? Arn=v ZE} s:trace

L-Gertl,
Zt+as:trace

Table 11: Legal traces (dual rules omitted)

3.1 Legal traces system

The rules of Tabl€Z11 specify legality of traces. We use theesaonventions and
notations as for the operational semantics (cf. Notdfidfl)2. The judgments in the
derivation system are of the form

E+ s:trace. (10)

We writeZ + t : trace if there exists a derivation according to the rules of THAl&vith

an instance of L-kpry as axiom. The empty trace is always legal (cf. rulewrEy),
and distinguishing according to the first acti@wof the trace, the rules check whether
ais possible. Furthermore, the contexts are updated agptelyy and the rules recur
checking the tail of the trace. The rules are symmetric watoming and outgoing
communication (the dual rules are omitted). Rule A=@ for incoming calls works
completely analogously to thea@G.I-rule in the semantics: the second premise updates
the context= appropriately with the information contained @ premiseZ’ + n of
L-CaLLl assures that the identityof the future, carrying out the call, is fresh and the
two premiseé Fol?:T—>_and=+rla): T — _together assure that the transmitted
values are well-typed (cf. DefinitionZI11); the latter twloecks correspond to the
analogous premises for the external semantics in rulelCexcept that the return
type of the method does not play a role here. Thedrt@ules for claiming a value
work similarly. In particular the type checking of the tramited value is done by the
combination of the premises + n : [T]andZ + [a] : - — T. As in the external
semantics, we distinguish two cases, namely whether thee\aflthe future has been
incorporated in the interface already or not (rules krlgand L-Gerly). In both cases,
the thread must be executing on the side of the environmeatfincoming get. This
is checked by the premiger n = L resp. byA + n = v. In case of L-Grl,, where the
value of the future has been incorporated @so the interface information, the actual
parameter of the get-label must, of courseybéf not (for L-Gerl,), the transmitted
argument value is arbitrary, apart from the fact that it niagstonsistent with the static
typing requirements.

It remains to show that the behavioral description, as giweable[Tl, actually
does what it claims to do, to characterize the possiblefaterbehavior of well-typed
components. We show the soundness of this abstractionusecessary ancillary
lemmas such as subject reduction.
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Lemma 3.1 (Subject reduction). Z + C = = + C, thenz + C.

Proof. By induction on the number of reduction steps. That intesteps preserve
well-typedness, i.eZ + C = E + C, follows from LemmdZB. That leaves the
external reduction steps of Talfjld 10.

Case:Cartl

We are giverE + C. The disjunctive premise of the rule distinguishes two sabes:

1) Z’ + n (the thread name is transmitted freshly) o2} n : [_]*~ (the thread is not
transmitted freshly and the environment has write-periorisbefore the step). Both
are treated uniformly in the argument. For the right-hamni@ %f the transition, we
need to show

=+ C | n(letx:T = grab(0); M.I(0)(¥) in releas€o); x) .

According to the definition of context update (DefinitBEZ.1= = A,®, where
©® = 0,%”,n : [T]* and wherez” contains bindings':[T’]* for those references
transmitted with read-write permission as argument of #ie(see the right-hand of
equation[(B)). The assumption conteéxfor C after the step (by the left-hand of the
same equation) is of the form A’, ¥’ \ £ \ n:[T]*~, which we abbreviate bi, A", Z.
So for the new thread at component side, we need to show that

A, N, 25,0 + rKletx: T = grab(o); M.I(0)(V) inreleaséo); x) : n:[T]*, X" . (12)

This follows by rules T-Nibture, T-Let, T-GraB, preservation of typing under substi-
tution, T-ReLease, and the axiom T-Wk. Note that the result typ€ (which is the type
of X) is guaranteed by the premiéer 0.?: T — T of the reduction rule @.I. From
equation[(IM), the result follows by T subsumption, and the assumpt®m C.

Case:CaLLO
We are given

E+v(E).(ClInletxT =bindal(V) : T < nint))

before the step. By one of the premises of rulei© we knowA + o, i.e., objec is
an environment objeBtThato refers to an object is assured by the type system and the
assumption that the pre-configuration is well-typed.

We distinguish two sub-cases, namely whether promisgeis known at the inter-
face before the step or 2) it is hidden still. In the first casehave® + n:[T’]*~ with
T = [T’]*" (as a consequence of the fact that the configuration is weded. Espe-
cially, inverting T-NFsture and T-Bnp entails that the component must have write-
permission fon to be well-typed). The result follows by the typing rules T;N-Par,
T-Ler, and T-NwME.

Case:Cram,

The core of the type preservation here is to assure that #ima-gtatement in the pre-
configuration and the transmitted vala@ the post-configuration are of the same ap-
propriate typerl. Well-typedness of the pre-configuration implies withim@(n’, o,)

of type T, that the reference’ is of type [T]*. The third premise of Cuml; states

Z + la) : - — T, which implies with Definitio 211, especially rule LTe@ of Table

[, that alsov is of typeT, as required.

"We do not allow cross-border instantiation here, i.e., tmponent is not allowed to instantiate envi-
ronment objects and vice versa.
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Case:Crammy
By inverting the type rules T-N T-Par, T-Ler and T-G.amv for the pre-configuration of
the step, and by using the same typing rules (exceptaim} plus T-Ger, T-RELEASE,
and T-Gras.

The remaining rules work similarly. ] ]

. t
Lemma 3.2 (Soundness of abstractions)if Zp + C and=Zp + C =, thenZg + t :
trace.

Proof. By induction on the number of steps:'téb. The base case of zero steps (which
impliest = ¢) is immediate, using L-izery. The induction for internal steps of the
form 2 + C = = + C follow by subject reduction for internal steps from Lemimg; 2.
in particular, internal steps do not change the corxRemain the external steps of
Table[ID. First note the contex&areupdatedby each external step ® the same
way as the contexts are updated in the legal trace system.

The cases for incoming communication are checked straighirdly, as the oper-
ational rules check incoming communication for legalityeady, i.e., the premises of
the operational rules have their counterparts in the raekefjal traces.

Case:Carl
Immediate, as the premises of La@l coincide with the ones of G.Ll.

Case:Cram; and Gerg
The two cases are covered by rule i@ which has the same premises as the opera-
tional rules.

Case:Cramy
Trivial, as the step is an internal one.

Case:Cramvz and Girp
The two cases are covered by Le.

The cases for outgoing communication are slightly more dermas the label in
the operational rule is not type-checked or checked for-feethedness as for incom-
ing communication and as is done in the rules for legality.

Case:CaLLO
We need to check whether the premises of 4u1©, the dual to L-GrLl of Table[T1,
are satisfied. By assumption, the pre-configuration

EFV(ED.(C| n{letxT =bindal(V) : T < n int)) (12)

is well-typed. For thread namethis implies, it is bound either i& or in Z;, more
precisely, eithe® + n : [T]*~ (it is public interface information that the component
has write-permission fon) or Z; + n : [T]*~ (the namen is not yet known in the
environment before the communication). In the latter $icuawe obtain=" + n : []+*

by the premis&’ = fn(la])NE; of CaLrO. Thus, the third premis& - nv@ + n: []*~

of L-CaLLO is satisfied. We furthermore need to check whether the ialhgbe-correct
(checked by premises nr. 4 and 5 or L+00). Its easy to check that the label is well-
formed (cf. the first part of Definitiof 221 1). The first premisf the check of equation
@), that the receiving objectis an environment object, is directly given by the premise
A + 0 of CaLrO. That the objead supports a method labelé@of type'f' — T) follows
from the fact that the pre-configuration of the call-step mElwyped. So this gives
L-CaLLO’s premiseZ + ol! : T — T. Remains the type check + |a] : T —
(checking that the transmitted valuBsire of the excepted tyfil which again follows
from well-typedness of equatiofi{|12) (especially invegfinBmo).
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The remaining cases work similarly. O m]

Remark 3.3 (Comparison with reentrant threading). In a multi-threaded setting
with synchronous method calls (see for instamnée [4] [59HE tefinition of legal traces
is more complicated. Especially, to judge whether a trace goissible required refer-
ring to the past. l.e., instead of judgments of the form ofa¢iqn {I0), the check for
legality with synchronous calls uses judgments of the form:

Z+r > S:trace,

reading “after historyr (and in the contexE), the trace s is possible”. This jgér-
ence has once more to do with reentrance, resp. with the absgfithis phenomenon
here. In the threaded case, where, e.g., an outgoing callbeafollowed by a subse-
guent incoming call as a “call-back”. To check therefore, etther a call or a return
is possible as a next step involves checking the properngesfithe call- and return
labels. This nesting requirement (also called the balarar&ition) degenerates here
in the absence of call-backs to the given requirement thett eall uses a fresh (future)
identity and that each get-label (taking the role of the ratiabel in the multithreaded
setting) is preceded by exactly one matching preceding c&lis can be judged by
Arn:[]or®rn:[] (depending on whether we are dealing with incoming or out-
going get-labels) and especially, no reference to the hjstbinterface interactions is
needed. m]

Remark 3.4 (Monitors). The objects of the calculus act as monitors as they allow only
one activity at a time inside the object. For the operatioseinantics of Sectidn 2.3,
the lock-taking is part of thimternalsteps. In other words, the handing-over of the call
at the interface and the actual entry into the synchronizethiwd body is\on-atomic
and at the interface, objects aimeput-enabled.

This formalization therefore resembles the one used foirtegface description
of Javalike reentrant monitors in[[3]. To treat the interface iméetion and actual
lock-grabbing as non-atomic leads to a clean separatiorooerns of the component
and of the environment. 1I][3], this non-atomicity, howeggéve rise to quite complex
conditions characterizing the legal interface behaviar. short, in the setting of ]3],
it is non-trivial to characterize exactly those situatiomghen the lock of the object
is necessarilytaken by one thread which makes certain interactions ofratimeads
impossible. This characterization is non-trivial espédlgias the interface interaction
is non-atomic.

Note, however, that these complications acd presentin the current setting with
active objects, even if the the objects acts as monitorsrifg]. The reason is simple:
there is noneedto capture situations when the lock is taken. Java the synchro-
nization behavior of a method is part of tlirterfaceinformation. Concretely, the
synchronizeemodifier ofJava specifies that the method'’s body is executed atomically
in that object without interference of otlflehreads, assuming that all other methods of
the callee are synchronized, as well. Here, in contrastglieno interface information
that guarantees that a method body is executed atomicailpatticular, the method
body can give up the lock temporarily via the suspend-statenibut this fact is not
reflected in the interface information here. This absencknoiwvledge simplifies the
interface description considerably. m|

8Note that a thread can “interfere” in that setting with itskle to recursion and reentrance.
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4 Conclusion

We presented an open semantics describing the interfaceibelof components in a
concurrent object-oriented language with futures and gesn The calculus corres-
ponds to the core of th€reollanguage, including classes, asynchronous method calls,
the synchronization mechanism, and futures, and extendprobimises. Concentrating

on the black-box interface behavior, however, the interfeemantics is, to a certain
extent, independent of the concrete language and is clkasdict for the mentioned
features; for instance, extendidgvawith futures (see also the citations below) would
lead to a quite similar formalization (of course, low leveltails may be dferent).
Concentrating on the concurrency model, certain aspeat@d/ have been omitted
here, most notably inheritance and safe asynchronousuagades.

Related work

The general concept of “delayed reference” to a result ofraprdation to be yet com-
pleted is quite old. The notion of futures was introduced lak& and Hewitt[TT3],
where future €) denotes an expression executed in a separate threaconeyr-
rently with the rest of the program. As the result of this not immediately available,
a future variable(or future) is introduced as placeholder, which will eveallyicon-
tain the result ok. In the meantime, the future can be passed around, and wien it
accessed for reading (“touched” or “claimed”), the exemususpends until the future
value is available, namely wheris evaluated. The principle has also been calad-
by-necessitfl6][L/]. Futures provide, at least in a purely functioretting, an elegant
means to introduce concurrency amansparentsynchronization simply by accessing
the futures. They have been employed for the pard#igltilisp programming language
[38].
Indeed, quite a number of calculi and programming langubges been equipped
with concurrency using future-like mechanisms and asyorobus method calls. Flana-
gan and Felleisef [31[T29IT30] present an operational seite(based on evaluation
contexts) for at-calculus with futures. The formalization is used for anlgsia and
optimization technique to eliminate superfluous derefeiren (“touches”) of future
variables. The analysis is an application of a set-baselgsisand the resulting trans-
formation is known as touch optimization. Moreful[51] prese semantics of Scheme
equipped with futures and control operatd?smiseds a mechanism quite similar to
futures and actually the two notions are sometimes usedngynously. They have
been proposed i [48]. A language featuring both futures@odises as separate
concepts, iAlice ML [9)][&5][58].

[53] presents a concurrent call-by-valirgalculus with reference cells (i.e., a non-
purely functional calculus with an imperative part and af)emd with futures {su),
which serves as the core diice ML [9] [B7] [£5]. Certain aspects of that work are
quite close to the material presented here. In particulanweare inspired by using a
type system to avoid fulfilling a promise twice (in]53] callbandle error). There are
some notable dierences, as well. The calculus incorporates futures amdipes into
a A-calculus, such that functions can be executed in pardifetontrast, the notion
of futures here, in an object-oriented setting, is coupbethe asynchronous execution
of methods. Furthermore, the object-oriented setting,hiespired byCreol is more
high-level. In contrastls relies on an atomic test-and-set operation when accessing
the heap to avoid atomicity problems. Besides that, thapédize promises using the
notion ofhandledfutures, i.e., the two roles of a promise, the writing- anelibading
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part, are represented by twdldirent references, where thandleto the futures rep-
resents the writing-end. Apart from thdf, [53] are not caned with giving an open
semantics as here. On the other hand, the paper investtatesle of the heap and
the reference cells, and gives a formal proof thatdhly source of non-determinism
by race conditions in their language actually are the refezeells and without those,
the language becomes (uniformly) coanLﬂﬁtecently, an observational semantics for
the (untyped)s-calculus has been developed[inl[52]. The observationalaigmce

is based on may- and must-program equivalence, i.e., twgranofragments are con-
sidered equivalent, if, for all observing environmentgytlexhibit the same necessary
and potential convergence behavior.

Apart from functional languages, the concept of futuresadisg been investigated
in the object-oriented paradigm. lfava5, futureshave been introduced as part of the
java.util.concurrent package. Aslavadoes not support futures as core mecha-
nism for parallelism, they are introduced in a library. Oerencing of a future is done
explicitly via aget-method (similarly to this paper). A recent paperl[64] icmces
safefutures forJava The safe concept is intended to make futures and the related
parallelismtransparentand in this sense goes back to the origins of the concept-intr
ducing parallelism via futures does not change the programaning. While straight-
forward and natural in a functional setting, safe futureanrobject-oriented and thus
state-based language suchJasarequire more considerations. The paper introduces
a semantics which guarantees safe, i.e., transparente$uty deriving restrictions on
the scheduling of parallel executions and uses objectomirsy. The futures are intro-
duced as an extension of Featherweidhta(FJ) [37], a core object calculus, and is
implemented on top afikesRVM [0, [15]. Pratikakis et. al[T85] present a constraint-
based static analysis for (transparent) futures and psaxigavg based on type quali-
fiers and qualifier inferencE[B2]. Also this analysis is fotated as an extension 6t/
by type qualifiers. Similarly, Caromel et. dl. J201119]] 1i8ckle the problem to provide
confluenti.e., dfectively deterministic system behavior for a concurrenéctcalcu-
lus with futures (asynchronous sequential proces88#, an extension of Abadi and
Cardelli's imperative, untyped object calculus i) and in the presence of imper-
ative features. ThASP model is implemented in theroActive Javdibrary [21]. The
fact, thatASPis derived from some (sequential, imperative) objectdalg, as in the
formalization here, is more a superficial or formal similgrin particular when being
interested in the interface behavior of concurrently ragrobjects, where the inner
workings are hidden anyway. Apart from that there are soméagities and a number
of differences between the work presented hereA®@ First of all, both calculi are
centered around the notion of first-class futures, yieldictive objects. The treatment,
however, of getting the value back, is doné&etiently in [I8]. Whereas here, the client
must explicitly claim a return value of an asynchronous roéthf interested in the
result, the treatment of the future references is domdicitly in ASP, i.e., the client
blocks if he performs a strict operation on the future (withexplicit syntax to claim
the value). Apart from that, the object model is more soptaged, in that the calculus
distinguishes between active and passive objects. Hersimm@e have objects, which
can be behave actively or passively (reactively), dependinthe way they are used.

9Uniform confluence is a strengthening of the more well-knawtion of (just ordinary) confluence; it
corresponds to the diamond property of thee-stepreduction property. For standard reduction strategies
of a purely functionali-calculus, only confluence holds, but not uniform confluene®wever, the non-
trivial “diamonds” in the operational semantics.4f; are caused not by filerent redices within ong-term
(representing one thread), but by redices froiffiedent threads running in parallel, where the reduction
strategy per thread is deterministic (as in our setting, &lf.w
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In ASP, the units of concurrency are the explicitely activatedvacbbjects, and each
passive one is owned and belongs to exactly one active opeckadly, passive objects
do not directly communicate with each other across the batiesl of concurrent ac-
tivity, all such communication between concurrent adegis mediated and served by
the active objects.

Related to that, a core feature AEP, not present here, is the necessity to specify
(also) thereceptive behavioof the active object, i.e., in which order it is willing to pro
cess oserveincoming messages. The simplest serve strategy would beltmgness
to accept all messages and treat them in a first-come, fingt-seanner, i.e., a input-
enabled FIFO strategy on the input message queue. Thelsd-saivemethod is the
dedicated activity of an active object to accept and scleehdoming method calls.
Typically, as for instance in the FIFO case, it is given an an-terminating process,
but it might also terminate, in which case the active objegether with the passive
objects it governs, becomes superfluous: an active objeichvdoes no service any
longer does not become a passive data structure, but camgerloeact in any way.

As extension of the cor&SP calculus,[18, Chapter 10] treadslegatiorthat bears
some similarities with the promises here. By executing thestructdelegatéo.|(V))
(using our notational conventions), a thredltinds over the permission and obligation
to provide eventually a value for the future referende method of objecto, thereby
losing that permission itself. That corresponds to exeguindol(V) : T < n.
Whereas in our setting, we must use a yet-unfulfilled promifm that purpose, the
delegation operator iASPjust (re-)uses the current future for that. ConsequeA$R
does not allow the creation of promises independently fioerimplicit creation when
asynchronously calling a method, as we do withgh@mise Tconstruct. In this sense,
the promises here are more general, as they allow to profit ffelegation and have
the promise as first-class entity, i.e., the programmer eas i around as argument of
methods, .... This, on the other hand, requires a more eltébtype system to avoid
write errors on promises. This kind of error, fulfilling a pngse twice, is avoided in
the delegate-construct &SP not by a type system, but by construction, in that the
delegate-construct must be used only at the end of a metbdkasthe delegating ac-
tivity cannot write to the futurromise after it has delegated the permission to another
activity.

Further uses of futures fafavaare reported in[[49][44]1586][62][61]. Futures
are also integral part db [B8] andScoop(simple concurrent object-oriented program-
ming) [24] [12] |[50], a concurrent extension &fffel. Both languages are based on the
active objects paradigm.

Benton et. al.[[T4] present polyphonie¥, adding concurrency t€*, featuring
asynchronous methods and based on the join calduliis[[3B]P&dyphonicC*allows
methods to be declared as being asynchronous usiragyine keyword for the method
type declaration. Besides that, polyphoiiit supports so-calledhordsas synchro-
nization or join pattern. With similar goaldavahas been extended by join patterns in
(3] [&d].

In the context ofCreol de Boer et. al.[[27] present a formal, operational seman-
tics for the language and extend it fitures(but not promises). Besides the fact, that
both operational semantics ultimately formalize a comiplaraet of features, there are,
at a technical level, a number offtéirences. For once, here, we simplified the lan-
guage slightly mainly in two respects (apart from making drmexpressive in adding
promises, of course). We left out the “interleaving” operat|| and j/ of [2Z4] which
allows the user to express interleaving concurremitiyin one method body. Being in-
terested in the observable interface behavior, those tipeseaare a matter of internal,
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Figure 3: Claiming a future (busy wait)

hidden behavior, namely leading to non-deterministic biat the interface. Since
objects react non-deterministically anyhow, namely dueat® conditions present in-
dependently of|| and j/, those operators have no impact on the possible traces at
they interface. The operators might be useful as abstrefmr the programmer, but
without relevance for the interface traces, and so we ightirem here. Another sim-
plification, this time influencing the interface behaviar,How the programmer can
claim the value of a future. This influences, as said, thefate behavior, since the
component may fetch the value of a future being part of th&enment, or vice versa.
Now, the design of th€reofcalculus in [2F¥] is more liberal wrt. what the user is al-
lowed to do with future references. In this paper, the irtgoa is rather restricted:
if the client requests the value using ttlaim-operation, there are basically only two
reactions. If the future computation has already been cetag) the value is fetched
and the client continues; otherwise it blocks until, if ewée value is available. The
bottom line is, that the client, being blocked, can nedaservethat the value is yet
absent. The calculus dfR7], in contrast, permits the useiotl the future reference
directly, which gives the freedom to decidmtto wait for the value if not yet available.
Incorporating such a construct into the language makealisencef the value for a
future reference observable and would complicate the betenterface semantics
to some extent. This is also corroborated by the circumsttrat the expressive power
of explicit polling quite complicates the proof theory b6f/(see also the discussion
in the conclusion off[27]). This is not a coincidence, sinoe arux of the complete
Hoare-style proof systems such as[inl[27] is to internaliee(ideally observable) be-
havior into the program state by so-called auxiliary vagaldn particular recording
the past interaction behavior in so-called history vagali$, of course, an internaliza-
tion of the interface behavior, making it visible to the He@ssertions. As a further
indication that allowing to poll a future quite adds expigggto the language is the
observation that adding a poll-operationASP, destroys a central property &SP,
namely confluence, as is discussedid [18, Chapter 11].

Apart from that, the combination of claiming a futures, tlesgibility of polling a
future, and a general await-statement complicates thergasaf claiming a future:
in [27], this is done byusy-waitingwhich in practice one intends to avoid. So instead
of the behavior described in Figurk 1, the formalizatioridi] [oehaves as sketched in
Figurel3.

After an unsuccessful try to obtain a value of future, theuesting thread is sus-
pended and loses the lock. In order to continue executiedylticked thread needs two
resources: the value of the future, once it is there, plusattieagain. The dference
of the treatment in Figuld 1 and the one of Fidglre 3 [fol [27his drder in which the
requesting thread attempts to get hold of these two ressumg formalization first
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check availability of the future and afterwards re-gairesltick to continue, whereas
[27] do it vice versa, leading to busy wait. The reason why #aund to copy the future
value into the local state space without already havingdbk &gain (Figurgll) is , of
course, that, once arrive, the future value remains statulewailable.

In addition, our work diers also technically in the way, the operational semantics
is represented.[J27] formulated the (internal) operatfi@eaantics using evaluation
contexts (as do, e.gl[63] fak,), whereas we rely on a “reduction-style” semantics,
making use of an appropriate notion of structural congraeithile largely a matter
of taste, it seems to us that, especially in the presenceroplicated synchroniza-
tion mechanisms, for instance the ready queue represemiti[Zi], the evaluation
contexts do not give rise to an immediately more elegantip&iion of the reduc-
tion behavior. Admittedly, we ignored here the internaéntgaving operatorl and
/I, which quite contribute to the complexity of the evaluat@mmtexts. Another tech-
nical difference, if you wish, concerns the way, the futures, threaid,objects are
representedn the operational semantics, i.e., in the run-time syntathe calculus.
Different from our representation, the semantics makes thesamtijects paradigm
of Creol more visible, in that the activities as part of the objectrenprecisely, an
object contains, besides the instance state, an explpiésentation of the current ac-
tivity (there called “process”) executing “inside” the ebj plus a representation of the
ready-queue containing all the activities, which have mependedluring their ex-
ecution inside the object. The scheduling between tffergint activities is then done
by juggling them in and out of the ready-queue at the procestease points. Here,
in contrast, we base our semantics on a separate représetahe involved seman-
tics concepts: 1) classes gsneratorsof objects, 2) objects carrying in the instance
variables the persistestateof the program, thus basically forming the heap, and 3),
theparallel activities in the form of threads. While this representativakes arguably
the active-object paradigm less visible in the semantias) the other hand separates
the concepts in a clean way, and instead of an explicit locaduler inside the ob-
jects, the access to a share instance states of the objemgsiiated by a simple, binary
lock per object. So, instead of having to levels of parafeli—locally inside the ob-
jects and inter-object parallelism— the formalizationiagbs the same with just one
conceptual level, namely: parallelism is between threadd ¢(he necessary synchro-
nization is done via object-locks). Additionally, our semties is rather close to the
object-calculi semantics for multi-threading asjiava(for instance as il [41]142] or
[59]). This allows to see the fierences and similarities between th&etient mod-
els of concurrency, and the largely similar representatmrid allow are more formal
comparison between the interface behaviors in the twangstti

The languageCool [27] [23] (concurrent, object-oriented language) is defias
an extension o€** [60] for task-level parallelism on shared memory multi-gessors.
Concurrent execution i€ool is expressed by the invocation of parallel functions ex-
ecutingasynchronously.Unlike the work presented her€&ool future types, which
correspond to the types of the form][ Further languages supporting futures include
ACT-1 [44d] [44], concurrenSmalltalk [65] [69], Cool [27] [23] (concurrent, object-
oriented language) as a parallel extensiorCof [60], and of course the influential
actor modell[B-35,17]1ABCL/1[686] [67] (in particular the extensioABCL/f [63]).

We have characterized the behavioral semantics of opearsgssimilarly to the
one presented here for futures and promises, in earlierpapspecially for object-
oriented languages based davalike multi-threading and synchronous method calls,
as inJavaor C*. The work [5] deals with thread classes afhtl [4] with re-enttra
monitors. In [59] the proofs of full abstraction for the seqtial and multi-threaded
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cases of a class-based object-calculus can be found. Plodtester and Schafer
[54] present a behavioral interface semantics for a clasedbobject-oriented calculus,
however without concurrency. The language, on the othed Haatures an ownership-
structured heap.

Future work

An obvious way to proceed is to consider more features oCitemFlanguage, in par-
ticular inheritance and subtyping. Incorporating inkaarite is challenging, as it renders
the system open wrt. a new form of interaction, namely thérenment inheriting be-
havior from a set of component classes or vice versa. &lsgols mechanisms for
dynamic class upgrades should be considered from a behbaypioint of view (that
we expect to be quite more challenging than dealing withritdogce). An observa-
tional, black-box description of the system behavior isassary for the compositional
account of the system behavior. Indeed, the legal interdaseription is only a first,
but necessary, step in the direction of a compositional #ndately fully-abstract se-
mantics, for instance along the lines bf[59]. Based on theracttion trace, it will be
useful to develop a logic better suited for specifying theidel interface behavior of a
component than enumerating allowed traces. Another direét to use the results in
the design of a black-box testing framework, as we starteddgain [26]. We expect
that, with the theory at hand, it should be straightforwarddapt the implementation
to other frameworks featuring futures, for instance, tofthare libraries ofJavab.
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